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Abstract
In this paper, we establish the fractional Cauchy-Kovalevskaya extension (F'CK-extension) theorem
for fractional monogenic functions defined on R?. Based on this extension principle, fractional Fueter
polynomials, forming a basis of the space of fractional spherical monogenics, i.e. fractional homogeneous
polynomials, are introduced. We studied the connection between the FCK-extension of functions of the
form z® P, and the classical Gegenbauer polynomials. Finally we present two examples of F'C K-extension.
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1 Introduction

In the last years, there is an increasing interest in finding fractional correspondences to various structures in
classical mathematics. This popularity arises naturally because on the one hand different problems can be
considered in the framework of fractional derivatives like, for example, in optics and quantum mechanics, and
on the other hand fractional calculus gives us a new degree of freedom which can be used for more complete
characterization of an object or as an additional encoding parameter. An important issue is the construction
of a fractional function theory, not only as a counterpart of the theory of holomorphic functions in the complex
plane, which nowadays is well established, but also of its higher-dimensional version. These higher-dimensional
analogues were developed in two major directions, the first one being several complex variable analysis and
the second one being Clifford analysis, i.e., the theory of null solutions of a Dirac operator, called monogenic
functions [3, 5].

The major problem with most of the fractional approaches is the presence of non-local fractional differential
operators. Furthermore, the adjoint of a fractional differential used to describe the dynamics is non-negative
itself. Other complicated problems arise during the mathematical manipulations, as the appearance of a very
complicated rule which replaces the Leibniz rule for product of functions in the case of the classic derivative.
Also we have a lack of any sufficiently good analogue of the chain rule. It is important to remark that there are
several definitions for fractional derivatives (Riemann-Liouville, Caputo, Riesz, Feller, ...), however not many
of those allow our approach. For the purposes of this work, the definition of fractional derivatives in the sense
of Caputo is the most appropriate and applicable.

Recently in [11], a framework for a fractional counterpart of Euclidian Clifford analysis was set up and
developed, based on the introduction of fractional Weyl relations. Definitions were give for a fractional Dirac
operator via Caputo derivatives, fractional monogenic functions and fractional spherical monogenics, i.e., frac-
tional homogeneous polynomials, defined as the eigenfunctions of a fractional Dirac operator. Moreover, some
basic results of fractional function theory, such a fractional Fischer decomposition, were obtained.
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The Cauchy-Kovalevskaya extension theorem, which we will denote simply as C'K-extension, (see [4, 13]) is
very well tool in Clifford analysis. In its most simple presentation, it reads as follows:

Theorem 1.1 If the functions F, fo, ..., fr—1 are analytic in a neighborhood of the origin, then the initial value
problem

OFh(T,t) = F(T,t,0; 0%h)
O h(z,0) = f;(7), j=0,...k—1

has a unique solution which is analytic in a neighborhood of the origin, provided that |a] + s < k.

When the differential operator involved is the Cauchy-Riemann operator, i.e., when the differential equation
reduces to Oth = —i0;h (with k = 1, |a| = 1, s = 0), the theorem states that a holomorphic function in an
appropriate region of the complex plane is completely determined by its restrictions to the real axis. When we
are dealing with harmonic functions, we have 9?h = —92h (with k = 2, |a| = 2, s = 0), which means that
additionally the values of its normal derivative on the real axis should be given in order to determine it uniquely.
In fact, the necessity of these restrictions as initial values becomes clear in the following construction formula
for holomorphic and harmonic C K-extensions:

Proposition 1.2 If the function fo(x) is real-analytic in |x| < a, then

F) = e (i ) o)l = 3 25 9

k=0

is holomorphic in |z| < a and F(Z)’R = fo(z). If moreover f1(z) is real-analytic in |x| < a, then
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j=0 =0
is harmonic in |z| < a and G(z)’]R = fo(x), while % G(z)‘]R = f1(z).

The C' K-extension in Euclidian Clifford analysis is a direct generalization to higher dimension of the complex
plane case, and can be founded in [5]. Generalizations the C'K-extension to another Clifford algebra settings
can be found for instance in [2, 6, 7, 8, 9, 15].

The aim of this paper is to establish a F'C K-extension theorem for fractional monogenic functions, and, in
particular, to apply it for the construction of bases for the spaces of fractional spherical monogenics. The author
would like to point that in spite of some similarities between the formulation of this fractional approach and
the classical case, the proofs are very different because we can not apply polar or spherical coordinates when
we are dealing with fractional derivatives. This impossibility comes from the fact that an explicit and complete
derivation of fractional operators in polar or spherical coordinates is still an open task, despite the fact, that
there have been several attempts in the past (Goldfain [10], Tarasov [17], Roberts [16], Li [14]). The idea to
overcome this problem is to adapt the approach presented for the discrete case (see [7]).

The outline of the paper reads as follows. In the Preliminaries we recall some basic facts about fractional
Clifford analysis, fractional Caputo derivatives, fractional Dirac operators and fractional Fischer decomposition.
In Section 3 we establish a F'C'K-extension theorem for fractional monogenic functions defined on R¢. In the
following section, based on this extension principle, fractional Fueter polynomials, forming a basis of the space of
fractional spherical monogenics, i.e., fractional homogeneous monogenic polynomials, are introduced. In Section
5 we go into detail about the connection between the F'CK-extension of functions of the form 2P, and the
classical Gegenbauer polynomials. In the last section we present two examples of FC K-extension.

2 Preliminaries

We consider the d-dimensional vector space R? endowed with an orthonormal basis {e1,--- ,eq}. We define the
universal real Clifford algebra Ry 4 as the 29-dimensional associative algebra which obeys the multiplication
rules e;e; +eje; = —26; ;. A vector space basis for Ry q is generated by the elements eg = 1 and e4 = ep, - - - ep,,,
where A = {hy,...,hxg} C M ={1,...,d}, for 1 < hy < --- < hy < d. The Clifford conjugation is defined by



T=1,e;=—¢jforall j=1,...,d, and we have ab = ba. An important property of algebra R 4 is that each
non-zero vector x € R{ has a multiplicative inverse given by ﬁ Now, we introduce the complexified Clifford
algebra Cy4 as the tensor product

C®Ro,d={w=ZwAeA, wAe(C,ACM},
A

where the imaginary unit ¢ of C commutes with the basis elements, i.e., ie; = e;i for all j =1,...,d. We have
a pseudonorm on Cy viz |w| := ) , [wa| where w =) , waea, as usual. Notice also that for a,b € Cyq we only
have |ab| < 2%|a||b|. The other norm criteria are fulfilled.

An important subspace of the real Clifford algebra R 4 is the so-called space of paravectors R{ = R P R,

being the sum of scalars and vectors. An element z = (x¢, 1, ..., z4) of R? will be identified by 2 = x¢+x, with
T = E?Zl e;x;. From now until the end of the paper, we will consider paravectors of the form x* = x§ + 2,
where
exp(a Inlz;|); xz; >0
i =4 0; z; =0,

exp(a In|z;| +ian); z; <0

with0 <a<1,and j =0,1,...,d.

An Cg—valued function f over  C R¢ has representation f = Y- aeafa, with components fa : @ — C.
Properties such as continuity will be understood component-wisely. Next, we recall the FEuclidean Dirac operator
D = ijl e;j O, which factorizes the d-dimensional Euclidean Laplacian, i.e., D? = A = —Z;l:l &r?. A
Cg-valued function f is called left-monogenic if it satisfies Du = 0 on Q (resp. right-monogenic if it satisfies
uD =0 on Q). For more details about Clifford algebras and monogenic function we refer [5].

The fractional Dirac operator will correspond to the fractional differential operator D% = Z?Zl €; Ea;%,
Caq

where §05 is the fractional Caputo derivative with respect to z§ defined as (see [12])

(o2 ) (x) = F(ll—a)/o (x?iu)a P w2ty 2l du, (1)
A C,,-valued function f is called fractional left-monogenic if it satisfies D*u = 0 on Q (resp. fractional right-
monogenic if it satisfies uD® = 0 on Q). The fractional Dirac operator verifies the following identity A%* =
—D%D* i.e., factorizes the fractional Laplace operator.

Now we recall some facts proved in [11]. There the authors introduced the following fractional Weyl relation

Co x| =Co* 2% — 2 Cor = - = K ?
[ SO x| =07 aff —af G0 sin(ar) I(1 — a) s (2)

withi=1,...,d,0<a<1and g&f‘ the fractional Caputo derivative with respect to z§ defined in (1). In the
same paper the authors showed that

{D% 2%} = D% + 2D = —2E* — K,d, [z9, D] = 2“D* — D%z = =21 + K,d, (3)

where E®, I'* are, respectively, the fractional Euler and Gamma operators. They also presented the following
expressions for E¢ and I'*

d
E* =Y Co7, D= eie;(af (0 — (o0 af). (4)
i=1 1<J
Furthermore, in [11] the authors deduced the following relations
E® +T% = —z“D%, [E*, T =0, [%,EY) = —Kaa®, [DY,E*] = K, D, (5)
In [11] was introduced the following definition of fractional homogeneity of a polynomial by means of the
fractional Euler operator.

Definition 2.1 A polynomial P is called fractional homogeneous of degree | € Ny, if and only if E*P =

Kio | P, where Ko = prao



From the previous definition the basic homogeneous powers are given by (z)# = (z¢)%1 ... (29)%¢, with | =
B1+...4 B4. In combination with the third relation in (5), this definition also implies that the multiplication of
a fractional homogeneous polynomial of degree | by =, will result in a homogeneous polynomial of degree [+ 1,
and thus may be seen as a raising operator. Moreover, we can also ensure that for a fractional homogeneous
polynomial P; of degree [, D®P, is a fractional homogeneous polynomial of degree [ — 1.

From the fact recalled previously we have that (xjo‘)k are the basic fractional homogeneous polynomials of
degree k in the variable x;. In the following result their fundamental properties are listed

Theorem 2.2 For allk € N andi,j=1,...,d we have

Cos(a§)F =k Ko ()71, Co(as)k =0, i# ]
CoF (x5 ) (29) = k1 Ko (a)17" (20)*, i # . (6)

Moreover, for any two multi-index v = (71,...,74) and B = (B1,. .., Ba) with |y| = |B], it holds that

Ko Al i
281“.--i‘azd((x?)ﬂl...(xz)‘*d){g, r

(IS

#

=2 1=

where we have put v! =y !...yql.

The proof of this result is immediate and therefore we will omit it from the text. Furthermore, from the previous
theorem we conclude that a closed form for the fractional homogeneous polynomials are given by

(ejaf)*" ™ = (=1)"e;(x§)*"*, (ej2§)*" = (=1)"(=5)*", (7)

forn=1,2,... and j=1,...,d.

3 FCK-extension

Due to the formal similarities with the classical setting, we propose the following form for the F'C' K-extension:

0 a\k
e1xr
F(x‘f,xg,...,xg)zz( 127) fe(zy, ... z9),

!
— K

with fo = f. Taking into account (7), we conclude that the function F takes the correct values and satisfies
F|y—0 = f. For F to be fractional monogenic it must be vanish under the action of the fractional Dirac
operator D®, which can be rewrite as

d
D* =90y + ) e; o5 =op + D2
In order to determine the coefficient functions fx, £ = 1,2,...,d in such that D*F = 0, we proceed by direct

calculation. Taking into account Theorem 2.2 for the action of g@;" over z¢, and from the facts that $Of only
acts on (z§)* and D¢ anticommutes with z$', we obtain

oo a\k k

k=0 k=0

resulting into the recurrence relation

fesr = (=D Def.

Hence we obtain the following definition for the F'C K-extension:

Definition 3.1 The FCK -extension of a function f = f(x%,...,x5) is the fractional monogenic function
= (erx§
1
FOK(f](=,25,...,2§) = Y 1 (22,-..,23), (8)
k=0

where fo = f and fr41 = (‘UkHfok-



Let us observe that the previous definition does not impose any conditions to the original function f. From (7)
follows

(e12$)*" ™ =0 for n < |z{|,

(e12$)*™ =0, for n < |z¥| + 1,
which implies that for every point (z¢,...,25) € R4, there exists N € N such that all but the first N terms in
the series (8) vanish, and therefore the series reduces to a finite sum in every point of R?. This fact implies that

function f(z3,...,25) its FCK-extension is well-defined on R?. The uniqueness of the extension is a corollary
of the following result.

Theorem 3.2 Let F be a fractional monogenic function defined on R, with Flgo—o = 0. Then F is the null

function.

Proof: The fractional monogenicity of F explicitly reads as ({0f + D) F = 0. Now take (z§,2%,...,25) €
R? with 2§ = 0. Since F|,a—o = 0 the above expression reduces to 9% F = 0. Furthermore —A2°F =
D*D*F = 0, from which we obtain, for (0,z2%,...,25) € R? with 2§ = 0, that F = 0. Repeating this
procedure, we find F = 0 on R

Corollary 3.3 (Uniqueness of the FCK-extension) Let Fy and Fy be two fractional monogenic functions
such that Fi|gzo—o = f and Fylze—o = f. Then Fy and Fy coincide.

4 Fractional Fueter polynomials

The fractional F'C K-extension procedure establishes a homomorphism between the space Hl(d_l) of fractional
homogeneous polynomials of degree [ in d — 1 variables and the space ./\/ll(d) of spherical fractional monogenics

of degree [ in d variables. From Theorem 3.2 and Corollary 3.3 we get that this homomorphism is injective.

Moreover, a basis for the space Hl(d_l) is given by the fractional homogeneous polynomials (x5)%2 ... (z§)P,

with B3 + ...+ B4 = [, and its dimension is

, . I —d)!
dim (Hl(d )) - l!((d—)2)!’

which corresponds to the dimension of Ml(d) (see last theorem in [11] with d = d—1), whence the homomorphism

also is surjective. The FC K-extension procedure thus establishes an isomorphism between Hl(d_l) and ./\/ll(d),
allowing us to determine a basis for the space Ml(d).

Definition 4.1 Let = (f2,...,3q) € N1 with By + ...+ B4 = l. Then the fractional spherical monogenics
Vs = FOK[(x5) ... (x§)"]
are called the fractional Fueter polynomials of degree [.
Theorem 4.2 The set {Vg| B2+ ...+ Ba =} is a basis for ./\/ll(d).
Proof: The FCK-extension procedure is an isomorphism between both space. In fact the basis
{(@)” .. (@)’ Ba+ ...+ Ba =1}
of Hl(d_l) is transformed into the basis
[FCK[@$)% ... @) )] Ba+ ...+ Ba =1}

of M(?.



Example 4.3 The space Mgg) has dimension 3. A basis for it is given by the elements
Voo = FCK|[(25)%]

V11 :FCK[$2.733}
V02 —FCK[(J’)?)) ]

§)? — 2afa§ — (a1)?,

(@
g —afag +afes + (1),
(w5)*

- 2a§a§ — (a7)?,

of which it can be checked also directly that they are fractional monogenic, of homogeneity degree 2 in (x$, 2§, %)
and linearly independent.

5 FCK-extension of (z%)°M,

In [5] we read that in the Euclidian setting, functions of the form z°P;(z) are building blocks of homogeneous
polynomials in R? and whence, in order to characterize spaces of inner spherical monogenics in R?*1, it suffices
to determine the CK-extension of polynomials of the for z° P;(x), which was formulated in the following theorem:

Theorem 5.1 Lets € N and P, € M (l;d; C). Then the CK-extension of x5 Py(z) has the form X} (zo,x) Pi(x)
where

d=1 41 /g 204+d -1 Al /o o
X7 (o, ) = Njr* |Cs ? (*) : ( ) .
P (zo, ) = Ajr [C’ . + sroltd_1 (O )

In this formula, r* = 22 — 2% and the polynomials C;)(z) are the standard Gegenbauer polynomials [1] given by

LIRS |
e = 3 G Qi gy, ©

! — |
= It (n—2j)!

N3

where the Pochhammer symbol (a), denotes a(a+1)...(a+n —1). Furthermore, the coefficients A}, are

k Y S U ki1 w 2k+204+d g iy T
= (-0 (0 o) R O il (T )
and explicitly
2 _ RIT(1+ 45 okt _ 2k+2+d RUT(1+ 4 10)
== e ; = .
U (k+1+ 41 204+d—1 T (k+1+ %)
We now consider the fractional version of the previous theorem. In our fractional setting we will consider P, be
a fractional homogeneous monogenic function in d variables z¢, ..., z§. We will determine the F'C K-extension
of (x*)*P;. The result is a fractional monogenic in d 4 1 variables z§, z¢, ..., z§:
= 1
FCK[f] =)+ o fr, fo=1, frr1 = (=1)*1D* fy,
k=0

where D is the fractional Dirac operator in d variables. The operators D* and z® satisfy (see [11])
D*(@®)* Py = gau(2*)* " P+ (=1)*(2%)* D", (11)

where gor; = —2k and gop+1, = —(2(kK4 + K1 ol) + Kod). Denote by R the fractional vector variable in d+ 1
dimensions, i.e.,

d
@ .« «@
— g e;x; = x5 — %,
j=1

with R? = (2§)? — (z*)2. During this section we use the formal notations % and L= as arguments in the
Gegenbauer polynomials by which we mean that we first of all expand the Gegenbauer polynomials using

«@ ayk
(%) = (:'}gk) , and then cancel out all appearances of R in the denominators, after which no ambiguity is left.



5.1 Auxiliar results

In this subsection we present some necessary results for the proof, in the next subsection, of the main theorem.
We start recalling some multiplications rules

Cao (26)” = sKa(a§)"™" + () $05,
(xa)Qs _ —28K ( )23—1 4 (xa)2sDa’
(xoz)Qe—i-l 2SK + Kad)(xa)%—l _ 2($(1)28E(¥ _ (wa)25+1Da.

Moreover, we present the following auxiliar lemmas:
Lemma 5.2 Let k € N, and P, a fractional spherical monogenic of degree | in the variables x¢,...,25. Then

(o8 R*P =2Kuk = R*7°P,
DR P, = —2K,k z* R***P,
E“R* P, = (Kol R? 4+ Kok (2%)?) R** 7P,

Proof: We start expanding R?* in the following way

k
R2k _ Z( IZ ) (1’0)2k 25( 05)28.

s=0

Taking into account that 2 and P} do not depend on zf§, we get
k ol
ga(()l R2kPl _ Z (2]{5—25) ( )Qk 2s5—1 ( a)2sPl

_ QKQk Z . ((kk‘—sl)! 1)' ($8)2k_28_1 (SL’a)2SPl

(k-1
= 2K,k ( ) (1.84)2(1671)72&%1 (za)2spl
0

2Kk x§ R**2p,.

The proof of the second statement uses the fact that P, is a fractional spherical monogenic in the variables
xf, ..., xg (thus D*P, = 0).

k
DaRQkP)l — Z( k )Da (( )Qk 25( Q)QSPZ)

s=0
k il
_ e 2k—2s a\2s—1
= 2 sy @) (—2sKa(x*)>7' 1)
s=0
= 2k—2s a\2s—1
= ~2sKa ;JT)(%) (%)™ P
k il
= -2 K k —' a\2k—2s a 2571P
P k-1
= 25K,k ;( s 1 ) (x8)2(k—1)—2(s—1) (xoe)Z(s—l)-‘rlPl
k—1 b1
= —-2sK, k Z( ) > (x8)2(k71)72p (xa)2p+1])l
p=1

= 2K,k z* R**72p,.



For the final relation, we use the commutation relation
z°E* —E%2% = —-K,z% <& E%%=z°E*+ K,z%
which implies that
E*(2%)% = (%) B + 25K, (2*)?*,

to show that

k
k ) X
E(XR2]€,F)[ — Z ( ) > (m((jv)Qk—Qb ]Ea(xa)QsPl

s=0

k k
— Kl,al Z( i: ) (mg)Zk_Qs(wa)Qspl—i-QKa Z( i ) (xg)Qk—25<xa)2sPl

_ ( l;: ) (zg)2k—2s ((IQ)QSEO‘ + 25K, (l"a)%) B

s=0

k—1
-1
— Kol R?*P, 4 2K.k Z( kp >(x8¢)2(k1)2p(xa)2p+213l

p=0
= (Kol R* +2K,k(z*)?) R**72D,.

Lemma 5.3 For a parameter A and k > 1, one has
[o fe} T o 3
(§95 + D7) {C% (RO) RQ’“PI] = 2K\ {c;,jll <R0> oM <R§)>} R%-1p,

Proof: Taking into account the series expansion (9) for the Gegenbauer polynomials, the relations presented
in Lemma 5.2, and after straightforward calculations, we have

a5+ o) [or (B or

*j)‘2j22g o 2k—2j p2j
(j|1()2k( )215) 92k (030+D )[( )k R Pl]

Il
.
E| Mk‘
=)

(—1()23k(/\);l;)a 92k—2j [K (2k — 2j) (a )2k 2j-1 R2j

=0

Al

_|_(x84)2k72j Eagz R2j +(_1)2k72j ($8)2k72j D R2j] P,

k—1
2k j —25 a —2j— j
— Kog Z J' 2k —J 22k 2j (xO)Zk 25—1 R2‘7P)l

o - 2] —1)!
+i g‘k R 27 @ P (2i(af — o) R 2) P
Jj=
— e AZ Qk)\—'—z? 1;_1 (226)* T RY Py
e A; G- 1)\+2/1 ik2]) S (22)%7% RYTIP,
_ QKQ)\I;Z: (—jl!)zy(g)\_—i—%)ikl;!l (2;?“)%2]1 pihip
-2 AZ (p! 2ljj21132k 2]3 : (2;?)%_2]3 2 RAR

p=0

= 2K\ [03;11 (”;g) CHH, (”}g)] R*'P,.



Let us observe that in Lemma 5.3, on the right-hand side, there is no ambiguity about whether the R’s should
be left or right since the first thing one has to do is to eliminate the powers of R in the denominator which
leaves only even powers of R (in the nominator) who commute with z§ and z*. We continue now presenting

more auxiliar lemmas:

Lemma 5.4 For a parameter A\ and k > 1, one has
C qa a A g\ =% o
0, D C — | — R“*P,
($o5 + )[2k—1<R> 7 z}

- [zKaA O, (‘TRO> 2 B2 _ Ko (d+21) CY_, (52) R 2K, C)H, (“’2) = 32“] P.

Proof: Taking into account the series expansion (9) for the Gegenbauer polynomials, the relations presented
in Lemma 5.2, and after straightforward calculations, we have

o o 1,0( Ia
($o5 + D) {02%_1 (E) = R%Pl}

k—1
1) , , '
= > Ll st ganinn [, (k=g — 1) ()P — ) o o + D] RO
—2j —
7=0
k—1
- K D7 Nak—jr 92k=2j-1 (;0\2k=2j=2 ya R2ip,
* L gl (2k — 25 — 2)! 0
j:O
k—1 .
(=1)7 (N)2k—j—1 =21 [a Caa P2 2
- 2 7 * 7 2E* + K,d @D J
- ]'(2k—2j—1)'( O) [ a()R ( + +x )R ]
7=0
k—1 i 2k—2j—2
(=1)7 (N2k—j—2 (2$8) 2k—2
=2K,\ -0 R P,
;j'(2k—2]—2) R
k—1

o (206)% 77 [2Kag 2 af RY7? = Kod RY + 2K, (a7)? R¥

—2(Ki,ol R¥ +2K,j (z*)* R¥ )| P,

R
k—1 (_1)j ()\)2k 1 2k—2i—1 9o 0
_ '(2k—2—j1) (2z§) - [ZKQJ (z8 — 2%) 2* R¥ 2 — K, (d+20) R ]] P,
=0 J J
= 2K\ OO 3«“}3)  R2p,
5 (1 (Vaemyon 4 | |
"2 ek 1y BT [2Kaj et R - Ka(d+20) RY] A

§=0
= 2K\ Oyl xo) 2@ R* 2P, — Ko (d+21) Ch\_, (xRo) R2-1p,

+ 2K N z_: j+1 )2k —Jj—2 (Qxa)2k—2j—1 2 R2j—1B
e (2k —2j — 1)1 70

= 2K\ Oy, <xR0) 2® R* 2P — Ko (d+21) O3y (% ) R¥-1p,
-2

(21,84)2]6721773 % R2p+1]3l

= 2K\ C)F, (x}g) 2 R*2P — Ko (d+21) Cy 4 1:0> R21p,
R

2K\ Nakp-s (275
+ Z 2k72p 3)! (R



_ NS a p2k—2 A x5 2k—1 a1 [(T6) Y o1
= [2Ka Oy () = R Ko(d+20) Oy (G5 ) B +2Kad O3 (53 ) 5 B A

We remark that in Lemma 5.4 after elimination of the powers of R in the denominator, there is no ambiguity
for the first and the last term of the right-hand side. For the second term however, we must clarify how the
elimination should be made. For example, let d = 2:

2@\ o zg x o .«
o (}g) = B =201 F 5 R =200+ 1) of "R,

which is not the same as
T x® a a
C’1>\+1 <1§> R’ R =2(A+1) 25 R 2%,

or

xa 1,04 a L«
R?,Ci\ﬂ(RS)R =2(A+1) R xf ==

For the second term in the right-hand side we thus put as a convection that (after elimination of R in the
denominator), the remaining (odd) powers of R are written on the total right of both z§ and z®.

In a very similar way as we have done in Lemma 5.4, we can prove the following results:

Lemma 5.5 For a parameter A and k > 1, one has

e o (1) o] -anafe ()2 () (1-5)] o

Lemma 5.6 For a parameter A and k > 1, one has

(Go5 +0°) [ca () 4 o)

R R
(e} [0 « [0 (e}
- {_KQ(CH 21) 3 (”;3) R 4+ 2K, A O (2) % R%* 4 2K, A\ O (xRO) % ° R2k‘1} p.
5.2 Main result
We present now the main result of this section:
Theorem 5.7 For a fractional spherical monogenic P, of degree | in the fractional variables z$,...,z§ and
for s € N, the fractional FCK -extension of (x*)*P; is the fractional monogenic polynomial in d + 1 variables
g, xy, ..., xq given by
) ) a1 (xf 20+4d—1 d=1ip (x&\ z¢
FCK [(x™)*P] = (—1)* M* R | T (22 ) + =2~ o2 (22) | 12
[(Z‘ ) l] ( ) l 2k R + 2l+d* 1+2]€ 2k—1 R R 1y ( )

a\2h+1pT [ yk (2Rl p2kdl |~k (TG 20+d-1 ik (20| 2%

In this formula, > = (z§)% — (2®)2, C}(x) are the standard Gegenbauer polynomials given by (9), and the
coefficients A, are given by (10).

Before we present the proof we give the following remark concerning understanding the notation, which is similar
to the one presented in [7].

Remark 5.8 Please note that in the main theorem appear terms like C,i‘ (%) While in fact % s not well-
defined, since Rz # x§R and Rx® # x“R the notation has to be understood in the following way: because
C,;\(x) contains only powers of x of degree at most k, we first multiply it by R* after which there is no ambiguity

left.
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Let us now consider the proof.
Proof: We start with expression (12). The proof has two parts. In the first we show that the restriction of

d—1 o 20+d—1 dei e (xf\ xf
F e (—1)k \2k 2k s +k [ Lo ) o ) %o | p
COPNI B R ) T araira 0 \R) R

to the hyperplane zf = 0 is exactly (#*)*P,. In fact, R% |;a—o = (z*)% and

oy (BY ] =S EW Qo (205)7) (D
2k \ 'R ) =g=0 " (2 - 2))! R z§=0 — kO
oo () S O ()T
k=1 'R ) lag=0 k-2 -1 \ R ag=0
which implies that
(_1)k d—1 o
F zg=0 (=1)F AF* A 9 +1 i (x*)** Py
RIT(I+95Y) 1 T+ +k) o
= d—1 T d—1 (‘T ) Py
D+ +k) KT (145
_ (.%‘a)QkPl.
In the second part of the proof we show that F'is a fractional monogenic in the d 4 1 variables zf, z¢, ..., 5.

By the uniqueness of the F'C K-extension, we know that F' must be exactly FCK [(:E“)QkPl] Since F' consists
in two terms, we will first consider 288‘ + D® acting on both terms separately via Lemmas 5.3 and 5.4 with
A=1+ %. We will then continue by combining the obtained results.

(o + D) F
= (=1 k )\Zk Caa D C)\ ﬁ R2kP A C’aa D¢ C>\+l ﬁ ﬁ R2k:P
= (=1)" A" | (§9§ + D) | Ca R l+7)\+kz(+0+ ) | Cas R )R !
= a2 [ai () - an, ()] e

A xg

+ (DR = y? [QKQ(/\ +1) G2, <R> x® B2 — Ko (20— 1) Oyt (”;g) R

F2KL (A +1) O (mo) r R%‘l} P,

R) R
KoA2X — 1 o B a
= (—1)k A2k KQKQ)\ - ()> oMY <%> R 2k N O <“T°

N——
=y
[ )
E
L

Py R R

2K AN+ 1) aqo (2§ z© 1 2K A\ + 1) xg\ x® _
o\ T2 O + 0 el R2k 1 sra\ T2 C«)\+2 -0 i R2k 1 P,
T %2\®) R TNk %3\ R ) R !

2% + 1 a a
= (—1)F AF 2K, A {% :Qk e (xﬁ) R*1 - opF (2) R

A1 « a 3 A1 « « 3

e G (2) T a5 (?) 7 1] -

11



Taking into account the series expansion (9) for the Gegenbauer polynomials, the previous expression becomes

equal to:
e 1
A2k +1) AN+ Dog—j—1 o o .
1)k Ak K —j Wh—2j—1 [ an2k—2j—1 p2j
(=17 Atk Z ]' 2k—2]—1) (z5) R
7=0
k—1
(=1)7 A+ 1D)ak—j—2 jon_2j 2 2k—2j-2 p2j+1
)N 92h=2i=2 (o) 2h—2)~2 p2j+
2 T2k —2; - 2) (z5)
7=0
k71
2A(A+1) (A+2)2k—j-2 Jok-2j-2 ; a\2k—2j-2 a2
Atk ]Z 2]{:—2]—2) (z5) R
k—2 -
20\ +1) (=17 (A +2)2k—j-3 jor-2j-3 2k—2j-3 2
22k =2 o« I3 g*R¥TL P
Ak (k=2 - 3)! (z5) * !

k:_ .
— (—D)F N K, A2k + 1) Z (=1)7 (Nak—j 92k=2=1 (o \2k=2j~1 2

! Atk gl (2k—2j - 1)
k—1 19 (A
_Z (_ ) ( )2k—j—1 92k—2j-1 (xa)Qk—Qj—2R2j+1
— jl (2k — 2j — 2)! 0
7=0
k—1 ;
1 (=1)7 (N2 J 2k—2j5—1 2k—2j—2 2j
+ 2 J o 7 *R~
Atk J;O]'(Qk—Zj—Z) (z5) v
k—2 :
1 (‘DJ ()‘)2k —Jj—1 52k—2j-2 2k—25—3 24
2?7272 ()2 g RV P 14
Xk < T2k —2j - 3)! (x5) v ! (14)

From the series expansion of R?/ and R?/+!

J )
R =3 ( ; ) (26)72 ()2,
s=0 s
(i
R2j+1 — Z ((x8)2j72s+1 (a:oz)Qs + (m8)2j72s (xa)25+1)’
s=0 s
there are two possible combinations (with respect to the powers of z§ and z®): either an odd power of z§
combined with an even power of z or vice-versa. We will look at both possibilities separately and show that
both must be zero. We first consider the terms of (14) containing a combination of an even power of z§ and a
odd power of x®, which we will denote by “even part” (EP).

k 1

. 1)3 )2k—j 1 _aj o .
EP = )\Qk —J- 22k: 2j—1 a\2k—25—2 aR2]

E

-1 i . 92k—2j—1

*. 2k 2]_2) Atk

(x8)2k—2j—2 2O R

“M

A)2k—j—1 _9i_ AN2k—2i—3 a a2
)\ - ? Z Zk = 2j _]3) 22k 25—-2 (xo )2k 25-3 8 T RQj Pl
k—1 ; .
—1)j ()\)gk i1 o oa_ o AN+ 2k — j—1
— 1 k /\Zk Ka ( —J— 22k 25—-1 a\2k—2j—-2 aRQJ -1
(D" A ;Og' (2k — 25 — 2)! (z5) v Atk
A)ak—j—1 _9i_ AN2k—2i—3 a2
)\ — Z Qk - 2] _JS) 22k 2j—2 (370 )Qk 2j—3 § RQJ P,
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1 & (=1 (WNaneja

_ ( )k )\le ; (k‘ _j _ 1) 22k—2j—1 ($8)2k_2j_2 xaRQj
A+k = (2k — 25 —2)!
+ 1 = (_1)j ()‘)% —j—1 92k—2j—2 (xa)2k—2j—2 2*R¥| P
A+ k o (2k 27 3)
=0.

For the “odd part” (OP) containing all terms with an odd power of 2§ and an even power of 2% we have

A2k +1) 2 (=1 (Nabej  oopni i1

P=(-1 k 2k K J 22k 25—1 a\2k—2j—1 p2j

OP = (=1)F AT Ko |\ =37 2 51 (2k —2j —1)! (z5) R
k— 1

1)J ()‘ 2k—j—1 52k—2j—1 2k—2j—1 p2j
A e k) J a J—1 p2j
2k —2j —2) (z5)

“M

k—2 ;
1 (*1)j (>‘)2k —Jj—1 52k—2j-2 2k—25—3 p2j
22k =2 & ISR P
Tk ]Z I (2k —2j — 3)! (5) :

k—1 , _
—1)7 (N2k—j o i1 (2k—1 2k—2j—1
— (—1)F A2k K (—12% 2j—1 (po\2k—2j—1 p2j _
(T AT Ko ;)ﬂ (2k —25 —1)! (a5) Ak A+2k—j5—1

2k —Jj—1 52k—2j-2 / a\2k—2j—3 2542 a p2j
2 J J R74 — g0 R | P,
)\+k Z 2k 2j — 3)! (z5) ( wBY)| B

—1)7 (Nak—j i1 (2k—1  2%k—2j—1
— (-1 k 2k K ( —J 22k 25—1 a\2k—25—1 p2j _
(=P AT Ka JZ ] 1) (25) B\ STk otz -1

k-1
1 ( 1)p 1( )2k -p 2k—2 2k—2p—1 p2
2 D (O p—1p2p
Atk pz::(p D! (2k —2p —1)! (x5)
1 k—
( ) ( )2k —j—1 92k—2j—2 (xg)zk—Qj—lej P.

_/\+k < j! (2k — 25 — 3)!

One check for different values of j that the coefficients of R* will be zero, and hence the total sum will be zero.
Regarding (13) we proceed in a similar way and considering Lemmas 5.5 and 5.6.

6 Examples

To end this paper, we present some examples of F'C K-extension

Example 6.1 The FCK-extension of P, is given by

where the functions fi are
fo=a"P, fi = (2K 0l + Kod) P,
whence explicitly

FCK[z®P] = [2% + 2K ol + K,d] P,
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Example 6.2 The FCK -extension of (x%)%P, is given by

a\2 _ - (xg)k
FOK|(@")’P] =Y
k=0

Jrs

where the functions fy are

fo= ()P, fi =2K,a*P, fo = —2K,(2K,.ol + Kod) P,

whence explicitly

FCK[(z*)*P] = [(2*)® + 2Ka2® — 2K, (2K 0l + Kod)] P
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