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Abstract

In this paper, we establish the fractional Cauchy-Kovalevskaya extension (FCK-extension) theorem

for fractional monogenic functions defined on Rd. Based on this extension principle, fractional Fueter

polynomials, forming a basis of the space of fractional spherical monogenics, i.e. fractional homogeneous

polynomials, are introduced. We studied the connection between the FCK-extension of functions of the

form xαPl and the classical Gegenbauer polynomials. Finally we present two examples of FCK-extension.
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1 Introduction

In the last years, there is an increasing interest in finding fractional correspondences to various structures in

classical mathematics. This popularity arises naturally because on the one hand different problems can be

considered in the framework of fractional derivatives like, for example, in optics and quantum mechanics, and

on the other hand fractional calculus gives us a new degree of freedom which can be used for more complete

characterization of an object or as an additional encoding parameter. An important issue is the construction

of a fractional function theory, not only as a counterpart of the theory of holomorphic functions in the complex

plane, which nowadays is well established, but also of its higher-dimensional version. These higher-dimensional

analogues were developed in two major directions, the first one being several complex variable analysis and

the second one being Clifford analysis, i.e., the theory of null solutions of a Dirac operator, called monogenic

functions [3, 5].

The major problem with most of the fractional approaches is the presence of non-local fractional differential

operators. Furthermore, the adjoint of a fractional differential used to describe the dynamics is non-negative

itself. Other complicated problems arise during the mathematical manipulations, as the appearance of a very

complicated rule which replaces the Leibniz rule for product of functions in the case of the classic derivative.

Also we have a lack of any sufficiently good analogue of the chain rule. It is important to remark that there are

several definitions for fractional derivatives (Riemann-Liouville, Caputo, Riesz, Feller, ...), however not many

of those allow our approach. For the purposes of this work, the definition of fractional derivatives in the sense

of Caputo is the most appropriate and applicable.

Recently in [11], a framework for a fractional counterpart of Euclidian Clifford analysis was set up and

developed, based on the introduction of fractional Weyl relations. Definitions were give for a fractional Dirac

operator via Caputo derivatives, fractional monogenic functions and fractional spherical monogenics, i.e., frac-

tional homogeneous polynomials, defined as the eigenfunctions of a fractional Dirac operator. Moreover, some

basic results of fractional function theory, such a fractional Fischer decomposition, were obtained.
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The Cauchy-Kovalevskaya extension theorem, which we will denote simply as CK-extension, (see [4, 13]) is

very well tool in Clifford analysis. In its most simple presentation, it reads as follows:

Theorem 1.1 If the functions F, f0, . . . , fk−1 are analytic in a neighborhood of the origin, then the initial value

problem

∂kt h(x, t) = F (x, t, ∂st ∂
α
xh)

∂jt h(x, 0) = fj(x), j = 0, . . . , k − 1

has a unique solution which is analytic in a neighborhood of the origin, provided that |α|+ s ≤ k.

When the differential operator involved is the Cauchy-Riemann operator, i.e., when the differential equation

reduces to ∂th = −i∂xh (with k = 1, |α| = 1, s = 0), the theorem states that a holomorphic function in an

appropriate region of the complex plane is completely determined by its restrictions to the real axis. When we

are dealing with harmonic functions, we have ∂2
t h = −∂2

xh (with k = 2, |α| = 2, s = 0), which means that

additionally the values of its normal derivative on the real axis should be given in order to determine it uniquely.

In fact, the necessity of these restrictions as initial values becomes clear in the following construction formula

for holomorphic and harmonic CK-extensions:

Proposition 1.2 If the function f0(x) is real-analytic in |x| < a, then

F (z) = exp

(
iy

d

dx

)
[f0(x)] =

∞∑
k=0

(iy)k

k!
f

(k)
0 (x)

is holomorphic in |z| < a and F (z)
∣∣
R = f0(x). If moreover f1(x) is real-analytic in |x| < a, then

G(z) =

∞∑
j=0

(−1)j y2j

(2j)!

(
d

dx

)2j

[f0(x)] +

∞∑
j=0

(−1)j y2j+1

(2j + 1)!

(
d

dx

)2j

[f1(x)]

is harmonic in |z| < a and G(z)
∣∣
R = f0(x), while ∂

∂y
G(z)

∣∣
R = f1(x).

The CK-extension in Euclidian Clifford analysis is a direct generalization to higher dimension of the complex

plane case, and can be founded in [5]. Generalizations the CK-extension to another Clifford algebra settings

can be found for instance in [2, 6, 7, 8, 9, 15].

The aim of this paper is to establish a FCK-extension theorem for fractional monogenic functions, and, in

particular, to apply it for the construction of bases for the spaces of fractional spherical monogenics. The author

would like to point that in spite of some similarities between the formulation of this fractional approach and

the classical case, the proofs are very different because we can not apply polar or spherical coordinates when

we are dealing with fractional derivatives. This impossibility comes from the fact that an explicit and complete

derivation of fractional operators in polar or spherical coordinates is still an open task, despite the fact, that

there have been several attempts in the past (Goldfain [10], Tarasov [17], Roberts [16], Li [14]). The idea to

overcome this problem is to adapt the approach presented for the discrete case (see [7]).

The outline of the paper reads as follows. In the Preliminaries we recall some basic facts about fractional

Clifford analysis, fractional Caputo derivatives, fractional Dirac operators and fractional Fischer decomposition.

In Section 3 we establish a FCK-extension theorem for fractional monogenic functions defined on Rd. In the

following section, based on this extension principle, fractional Fueter polynomials, forming a basis of the space of

fractional spherical monogenics, i.e., fractional homogeneous monogenic polynomials, are introduced. In Section

5 we go into detail about the connection between the FCK-extension of functions of the form xαPl and the

classical Gegenbauer polynomials. In the last section we present two examples of FCK-extension.

2 Preliminaries

We consider the d-dimensional vector space Rd endowed with an orthonormal basis {e1, · · · , ed}. We define the

universal real Clifford algebra R0,d as the 2d-dimensional associative algebra which obeys the multiplication

rules eiej +ejei = −2δi,j . A vector space basis for R0,d is generated by the elements e0 = 1 and eA = eh1 · · · ehk ,
where A = {h1, . . . , hk} ⊂ M = {1, . . . , d}, for 1 ≤ h1 < · · · < hk ≤ d. The Clifford conjugation is defined by
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1 = 1, ej = −ej for all j = 1, . . . , d, and we have ab = ba. An important property of algebra R0,d is that each

non-zero vector x ∈ Rd1 has a multiplicative inverse given by x
||x||2 . Now, we introduce the complexified Clifford

algebra Cd as the tensor product

C⊗ R0,d =

{
w =

∑
A

wAeA, wA ∈ C, A ⊂M

}
,

where the imaginary unit i of C commutes with the basis elements, i.e., iej = eji for all j = 1, . . . , d. We have

a pseudonorm on Cd viz |w| :=
∑
A |wA| where w =

∑
A wAeA, as usual. Notice also that for a, b ∈ Cd we only

have |ab| ≤ 2d|a||b|. The other norm criteria are fulfilled.

An important subspace of the real Clifford algebra R0,d is the so-called space of paravectors Rd1 = R
⊕

Rd,
being the sum of scalars and vectors. An element x = (x0, x1, . . . , xd) of Rd will be identified by x = x0 +x, with

x =
∑d
i=1 eixi. From now until the end of the paper, we will consider paravectors of the form xα = xα0 + xα,

where

xαj =


exp(α ln |xj |); xj > 0

0; xj = 0

exp(α ln |xj |+ iαπ); xj < 0

,

with 0 < α < 1, and j = 0, 1, . . . , d.

An Cd−valued function f over Ω ⊂ Rd1 has representation f =
∑
A eAfA, with components fA : Ω → C.

Properties such as continuity will be understood component-wisely. Next, we recall the Euclidean Dirac operator

D =
∑d
j=1 ej ∂xj , which factorizes the d-dimensional Euclidean Laplacian, i.e., D2 = −∆ = −

∑d
j=1 ∂x

2
j . A

Cd-valued function f is called left-monogenic if it satisfies Du = 0 on Ω (resp. right-monogenic if it satisfies

uD = 0 on Ω). For more details about Clifford algebras and monogenic function we refer [5].

The fractional Dirac operator will correspond to the fractional differential operator Dα =
∑d
j=1 ej

C
+∂

α
j ,

where C
+∂

α
j is the fractional Caputo derivative with respect to xαj defined as (see [12])

(
C
+∂

α
j f
)

(x) =
1

Γ(1− α)

∫ xαj

0

1

(xαj − u)α
f ′u(xα1 , . . . , x

α
j−1, u, x

α
j+1, . . . , x

α
n) du. (1)

A Cn-valued function f is called fractional left-monogenic if it satisfies Dαu = 0 on Ω (resp. fractional right-

monogenic if it satisfies uDα = 0 on Ω). The fractional Dirac operator verifies the following identity ∆2α =

−DαDα, i.e., factorizes the fractional Laplace operator.

Now we recall some facts proved in [11]. There the authors introduced the following fractional Weyl relation[
C
+∂

α
i , x

α
i

]
= C

+∂
α
i xαi − xαi C

+∂
α
i =

απ

sin(απ) Γ(1− α)
=: Kα, (2)

with i = 1, . . . , d, 0 < α < 1 and C
+∂

α
i the fractional Caputo derivative with respect to xαj defined in (1). In the

same paper the authors showed that

{Dα, xα} = Dαxα + xαDα = −2Eα −Kαd, [xα, Dα] = xαDα −Dαxα = −2Γα +Kαd, (3)

where Eα, Γα are, respectively, the fractional Euler and Gamma operators. They also presented the following

expressions for Eα and Γα

Eα =

d∑
i=1

xαi
C
+∂

α
i , Γα =

∑
i<j

eiej(x
α
i
C
+∂

α
j − C

+∂
α
j xαi ). (4)

Furthermore, in [11] the authors deduced the following relations

Eα + Γα = −xαDα, [Eα,Γα] = 0, [xα,Eα] = −Kαx
α, [Dα,Eα] = KαD

α, (5)

In [11] was introduced the following definition of fractional homogeneity of a polynomial by means of the

fractional Euler operator.

Definition 2.1 A polynomial P is called fractional homogeneous of degree l ∈ N0, if and only if EαP =

Kl,α l P , where Kl,α = α Γ(αl)
Γ(1+α(l−1)) .
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From the previous definition the basic homogeneous powers are given by (xα)β = (xα1 )β1 . . . (xαd )βd , with l =

β1 + . . .+βd. In combination with the third relation in (5), this definition also implies that the multiplication of

a fractional homogeneous polynomial of degree l by xα, will result in a homogeneous polynomial of degree l+ 1,

and thus may be seen as a raising operator. Moreover, we can also ensure that for a fractional homogeneous

polynomial Pl of degree l, DαPl is a fractional homogeneous polynomial of degree l − 1.

From the fact recalled previously we have that (xαj )k are the basic fractional homogeneous polynomials of

degree k in the variable xj . In the following result their fundamental properties are listed

Theorem 2.2 For all k ∈ N and i, j = 1, . . . , d we have

C
+∂

α
j (xαj )k = k Kα (xαj )k−1, C

+∂
α
i (xαj )k = 0, i 6= j,

C
+∂

α
j (xαj )k1(xαi )k2 = k1 Kα (xαj )k1−1 (xαi )k2 , i 6= j. (6)

Moreover, for any two multi-index γ = (γ1, . . . , γd) and β = (β1, . . . , βd) with |γ| = |β|, it holds that

C
+∂

γ1
1 . . .C+∂

γd
1 ((xα1 )β1 . . . (xαd )βd) =

{
(Kα)γ! γ!, if γ = β

0, if γ 6= β

where we have put γ! = γ1! . . . γd!.

The proof of this result is immediate and therefore we will omit it from the text. Furthermore, from the previous

theorem we conclude that a closed form for the fractional homogeneous polynomials are given by

(ejx
α
j )2n+1 = (−1)nej(x

α
j )2n+1, (ejx

α
j )2n = (−1)n(xαj )2n, (7)

for n = 1, 2, . . . and j = 1, . . . , d.

3 FCK-extension

Due to the formal similarities with the classical setting, we propose the following form for the FCK-extension:

F (xα1 , x
α
2 , . . . , x

α
d ) =

∞∑
k=0

(e1x
α
1 )k

k!
fk(xα2 , . . . , x

α
d ),

with f0 = f . Taking into account (7), we conclude that the function F takes the correct values and satisfies

F |x1=0 = f . For F to be fractional monogenic it must be vanish under the action of the fractional Dirac

operator Dα, which can be rewrite as

Dα = C
+∂

α
1 +

d∑
j=2

ej
C
+∂

α
j = C

+∂
α
1 +Dα

∗ .

In order to determine the coefficient functions fk, k = 1, 2, . . . , d in such that DαF = 0, we proceed by direct

calculation. Taking into account Theorem 2.2 for the action of C+∂
α
j over xα1 , and from the facts that C+∂

α
1 only

acts on (xα1 )k and Dα
∗ anticommutes with xα1 , we obtain

0 = DαF =
(
C
+∂

α
1 +Dα

∗
)( ∞∑

k=0

(e1x
α
1 )k

k!
fk

)
=

∞∑
k=0

(e1x
α
1 )k

k!
fk+1 +

∞∑
k=0

(−1)k
(e1x

α
1 )k

k!
Dα
∗ fk,

resulting into the recurrence relation

fk+1 = (−1)k+1 Dα
∗ fk.

Hence we obtain the following definition for the FCK-extension:

Definition 3.1 The FCK-extension of a function f = f(xα2 , . . . , x
α
d ) is the fractional monogenic function

FCK[f ](xα1 , x
α
2 , . . . , x

α
d ) =

∞∑
k=0

(e1x
α
1 )k

k!
fk(xα2 , . . . , x

α
d ), (8)

where f0 = f and fk+1 = (−1)k+1Dα
∗ fk.

4



Let us observe that the previous definition does not impose any conditions to the original function f . From (7)

follows

(e1x
α
1 )2n+1 = 0 for n ≤ |xα1 |,

(e1x
α
1 )2n = 0, for n ≤ |xα1 |+ 1,

which implies that for every point (xα1 , . . . , x
α
d ) ∈ Rd, there exists N ∈ N such that all but the first N terms in

the series (8) vanish, and therefore the series reduces to a finite sum in every point of Rd. This fact implies that

function f(xα2 , . . . , x
α
d ) its FCK-extension is well-defined on Rd. The uniqueness of the extension is a corollary

of the following result.

Theorem 3.2 Let F be a fractional monogenic function defined on Rd, with F |xα1 =0 ≡ 0. Then F is the null

function.

Proof: The fractional monogenicity of F explicitly reads as
(
C
+∂

α
1 +Dα

∗
)
F = 0. Now take (xα1 , x

α
2 , . . . , x

α
d ) ∈

Rd with xα1 = 0. Since F |xα1 =0 ≡ 0 the above expression reduces to C
+∂

α
i F = 0. Furthermore −∆2αF =

DαDαF = 0, from which we obtain, for (0, xα2 , . . . , x
α
d ) ∈ Rd with xα1 = 0, that F ≡ 0. Repeating this

procedure, we find F ≡ 0 on Rd.

�

Corollary 3.3 (Uniqueness of the FCK-extension) Let F1 and F2 be two fractional monogenic functions

such that F1|xα1 =0 = f and F2|xα1 =0 = f . Then F1 and F2 coincide.

4 Fractional Fueter polynomials

The fractional FCK-extension procedure establishes a homomorphism between the space Π
(d−1)
l of fractional

homogeneous polynomials of degree l in d− 1 variables and the space M(d)
l of spherical fractional monogenics

of degree l in d variables. From Theorem 3.2 and Corollary 3.3 we get that this homomorphism is injective.

Moreover, a basis for the space Π
(d−1)
l is given by the fractional homogeneous polynomials (xα2 )β2 . . . (xαd )βd ,

with β2 + . . .+ βd = l, and its dimension is

dim
(

Π
(d−1)
l

)
=

(l − d)!

l! (d− 2)!
,

which corresponds to the dimension ofM(d)
l (see last theorem in [11] with d = d−1), whence the homomorphism

also is surjective. The FCK-extension procedure thus establishes an isomorphism between Π
(d−1)
l and M(d)

l ,

allowing us to determine a basis for the space M(d)
l .

Definition 4.1 Let β = (β2, . . . , βd) ∈ Nd−1 with β2 + . . .+ βd = l. Then the fractional spherical monogenics

Vβ = FCK[(xα2 )β2 . . . (xαd )βd ]

are called the fractional Fueter polynomials of degree l.

Theorem 4.2 The set {Vβ | β2 + . . .+ βd = l} is a basis for M(d)
l .

Proof: The FCK-extension procedure is an isomorphism between both space. In fact the basis

{(xα2 )β2 . . . (xαd )βd | β2 + . . .+ βd = l}

of Π
(d−1)
l is transformed into the basis

{FCK[(xα2 )β2 . . . (xαd )βd ]| β2 + . . .+ βd = l}

of M(d)
l .

�
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Example 4.3 The space M(3)
2 has dimension 3. A basis for it is given by the elements

V2,0 = FCK[(xα2 )2] = (xα2 )2 − 2xα1x
α
2 − (xα1 )2,

V1,1 = FCK[xα2x
α
3 ] = xα2x

α
3 − xα1xα3 + xα1x

α
2 + (xα1 )2,

V0,2 = FCK[(xα3 )2] = (xα3 )2 − 2xα1x
α
3 − (xα1 )2,

of which it can be checked also directly that they are fractional monogenic, of homogeneity degree 2 in (xα1 , x
α
2 , x

α
3 )

and linearly independent.

5 FCK-extension of (xα)sMl

In [5] we read that in the Euclidian setting, functions of the form xsPl(x) are building blocks of homogeneous

polynomials in Rd and whence, in order to characterize spaces of inner spherical monogenics in Rd+1, it suffices

to determine the CK-extension of polynomials of the for xsPl(x), which was formulated in the following theorem:

Theorem 5.1 Let s ∈ N and Pl ∈M+(l; d;C). Then the CK-extension of xsPl(x) has the form Xs
l (x0, x) Pl(x)

where

Xs
l (x0, x) = λsl r

s

[
C
d−1
2 +l

s

(x0

r

)
+

2l + d− 1

s+ 2l + d− 1
C
d+1
2 +l

s−1

(x0

r

) x0

r

]
.

In this formula, r2 = x2
0 − x2 and the polynomials Cλn(x) are the standard Gegenbauer polynomials [1] given by

Cλn(x) =

[n2 ]∑
j=0

(−1)j (λ)n−j
j! (n− 2j)!

(2x)n−2j , (9)

where the Pochhammer symbol (a)n denotes a(a+ 1) . . . (a+ n− 1). Furthermore, the coefficients λsk are

λ2k
l = (−1)k

(
C
d−1
2 +l

2k (0)
)−1

, λ2k+1
l = (−1)k

2k + 2l + d

2l + d− 1

(
C
d+1
2 +l

2k (0)
)−1

and explicitly

λ2k
l =

k! Γ
(
l + d−1

2

)
Γ
(
k + l + d−1

2

) , λ2k+1
l =

2k + 2l + d

2l + d− 1

k! Γ
(
l + d+1

2

)
Γ
(
k + l + d+1

2

) . (10)

We now consider the fractional version of the previous theorem. In our fractional setting we will consider Pl be

a fractional homogeneous monogenic function in d variables xα1 , . . . , x
α
d . We will determine the FCK-extension

of (xα)sPl. The result is a fractional monogenic in d+ 1 variables xα0 , x
α
1 , . . . , x

α
d :

FCK[f ] =

∞∑
k=0

1

k!
xα1 fk, f0 = f, fk+1 = (−1)k+1Dαfk,

where Dα is the fractional Dirac operator in d variables. The operators Dα and xα satisfy (see [11])

Dα(xα)sPl = gs,l(x
α)s−1Pl + (−1)s(xα)sDαPl, (11)

where g2k,l = −2k and g2k+1,l = −(2(kKα +Kl,αl) +Kαd). Denote by R the fractional vector variable in d+ 1

dimensions, i.e.,

R = xα0 −
d∑
j=1

ejx
α
j = xα0 − xα,

with R2 = (xα0 )2 − (xα)2. During this section we use the formal notations
xα0
R and xα

R as arguments in the

Gegenbauer polynomials by which we mean that we first of all expand the Gegenbauer polynomials using(
xα0
R

)k
=

(xα0 )k

Rk
, and then cancel out all appearances of R in the denominators, after which no ambiguity is left.

6



5.1 Auxiliar results

In this subsection we present some necessary results for the proof, in the next subsection, of the main theorem.

We start recalling some multiplications rules

C
+∂

α
0 (xα0 )s = sKα(xα0 )s−1 + (xα0 )s C+∂

α
0 ,

Dα (xα)2s = −2sKα(xα)2s−1 + (xα)2sDα,

Dα (xα)2s+1 = −(2sKα +Kαd)(xα)2s−1 − 2(xα)2sEα − (xα)2s+1Dα.

Moreover, we present the following auxiliar lemmas:

Lemma 5.2 Let k ∈ N, and Pl a fractional spherical monogenic of degree l in the variables xα1 , . . . , x
α
d . Then

C
+∂

α
0 R2kPl = 2Kαk x

α
0 R2k−2Pl,

DαR2kPl = −2Kαk x
α R2k−2Pl,

EαR2kPl =
(
Kl,αl R

2 +Kαk (xα)2
)
R2k−2Pl.

Proof: We start expanding R2k in the following way

R2k =

k∑
s=0

(
k

s

)
(xα0 )2k−2s(xα)2s.

Taking into account that xα and Pl do not depend on xα0 , we get

C
+∂

α
0 R2kPl =

k∑
s=0

k!

s! (k − s)!
(2k − 2s) (xα0 )2k−2s−1 (xα)2sPl

= 2Kαk

k−1∑
s=0

(k − 1)!

s! (k − s− 1)!
(xα0 )2k−2s−1 (xα)2sPl

= 2Kαk

k−1∑
s=0

(
k − 1

s

)
(xα0 )2(k−1)−2s+1 (xα)2sPl

= 2Kαk x
α
0 R2k−2Pl.

The proof of the second statement uses the fact that Pl is a fractional spherical monogenic in the variables

xα1 , . . . , x
α
d (thus DαPl = 0).

DαR2kPl =

k∑
s=0

(
k

s

)
Dα

(
(xα0 )2k−2s(xα)2sPl

)
=

k∑
s=0

(
k

s

)
(xα0 )2k−2s Dα

(
(xα)2sPl

)
=

k∑
s=0

k!

s! (k − s)!
(xα0 )2k−2s

(
−2sKα(xα)2s−1Pl

)
= −2sKα

k∑
s=0

k!

(s− 1)! (k − s)!
(xα0 )2k−2s (xα)2s−1Pl

= −2sKαk

k∑
s=1

k!

(s− 1)! (k − s)!
(xα0 )2k−2s (xα)2s−1Pl

= −2sKαk

k∑
s=1

(
k − 1

s− 1

)
(xα0 )2(k−1)−2(s−1) (xα)2(s−1)+1Pl

= −2sKαk

k−1∑
p=1

(
k − 1

p

)
(xα0 )2(k−1)−2p (xα)2p+1Pl

= −2Kαk x
α R2k−2Pl.

7



For the final relation, we use the commutation relation

xαEα − Eαxα = −Kαx
α ⇔ Eαxα = xαEα +Kαx

α

which implies that

Eα(xα)2s = (xα)2sEα + 2sKα(xα)2s,

to show that

EαR2kPl =

k∑
s=0

(
k

s

)
(xα0 )2k−2s Eα(xα)2sPl

=

k∑
s=0

(
k

s

)
(xα0 )2k−2s

(
(xα)2sEα + 2sKα (xα)2s

)
Pl

= Kl,αl

k∑
s=0

(
k

s

)
(xα0 )2k−2s(xα)2sPl + 2Kα

k∑
s=1

(
k

s

)
(xα0 )2k−2s(xα)2sPl

= Kl,αl R
2kPl + 2Kαk

k−1∑
p=0

(
k − 1

p

)
(xα0 )2(k−1)−2p(xα)2p+2Pl

=
(
Kl,αl R

2 + 2Kαk(xα)2
)
R2k−2Pl.

�

Lemma 5.3 For a parameter λ and k ≥ 1, one has(
C
+∂

α
0 +Dα

) [
Cλ2k

(
xα0
R

)
R2kPl

]
= 2Kαλ

[
Cλ+1

2k−1

(
xα0
R

)
− Cλ+1

2k−2

(
xα0
R

)]
R2k−1Pl.

Proof: Taking into account the series expansion (9) for the Gegenbauer polynomials, the relations presented

in Lemma 5.2, and after straightforward calculations, we have(
C
+∂

α
0 +Dα

) [
Cλ2k

(
xα0
R

)
R2kPl

]
=

k∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j)!
22k−2j

(
C
+∂

α
0 +Dα

) [
(xα0 )2k−2j R2jPl

]
=

k∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j)!
22k−2j

[
Kα (2k − 2j) (xα0 )2k−2j−1 R2j

+(xα0 )2k−2j C
+∂

α
0 R2j + (−1)2k−2j (xα0 )2k−2j Dα R2j

]
Pl

= Kα

k−1∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j − 1)!
22k−2j (xα0 )2k−2j−1 R2jPl

+

k∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j)!
22k−2j (xα0 )2k−2j

(
2j(xα0 − xα)R2j−2

)
Pl

= 2Kαλ

k−1∑
j=0

(−1)j (λ+ 1)2k−j−1

j! (2k − 2j − 1)!
(2xα0 )2k−2j−1R2jPl

+ 2Kαλ

k∑
j=0

(−1)j (λ+ 1)2k−j−1

(j − 1)! (2k − 2j)!
(2xα0 )2k−2j R2j−1Pl

= 2Kαλ

k−1∑
j=0

(−1)j (λ+ 1)2k−j−1

j! (2k − 2j − 1)!

(
2xα0
R

)2k−2j−1

R2k−1Pl

− 2Kαλ

k−1∑
p=0

(−1)p (λ+ 1)2k−p−2

(p! (2k − 2p− 2)!

(
2xα0
R

)2k−2p−2

R2k−1Pl

= 2Kαλ

[
Cλ+1

2k−1

(
xα0
R

)
− Cλ+1

2k−2

(
xα0
R

)]
R2k−1Pl.

8



�

Let us observe that in Lemma 5.3, on the right-hand side, there is no ambiguity about whether the R’s should

be left or right since the first thing one has to do is to eliminate the powers of R in the denominator which

leaves only even powers of R (in the nominator) who commute with xα0 and xα. We continue now presenting

more auxiliar lemmas:

Lemma 5.4 For a parameter λ and k ≥ 1, one has(
C
+∂

α
0 +Dα

) [
Cλ2k−1

(
xα0
R

)
xα

R
R2kPl

]
=

[
2Kαλ C

λ+1
2k−2

(
xα0
R

)
xα R2k−2 −Kα(d+ 2l) Cλ2k−1

(
xα0
R

)
R2k−1 + 2Kαλ C

λ+1
2k−3

(
xα0
R

)
xα

R
R2k−1

]
Pl.

Proof: Taking into account the series expansion (9) for the Gegenbauer polynomials, the relations presented

in Lemma 5.2, and after straightforward calculations, we have(
C
+∂

α
0 +Dα

) [
Cλ2k−1

(
xα0
R

)
xα

R
R2kPl

]
=

k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 1)!
22k−2j−1

[
Kα (2k − 2j − 1) (xα0 )2k−2j−2 xα − (xα0 )2k−2j−1(xα C

+∂
α
0 +Dαxα)

]
R2jPl

= Kα

k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 2)!
22k−2j−1 (xα0 )2k−2j−2 xα R2jPl

−
k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 1)!
(2xα0 )2k−2j−1

[
xα C

+∂
α
0 R2j − (2Eα +Kαd+ xαDα) R2j

]
Pl

= 2Kαλ

k−1∑
j=0

(−1)j (λ)2k−j−2

j! (2k − 2j − 2)!

(
2xα0
R

)2k−2j−2

R2k−2 xαPl

−
k−1∑
j=0

(−1)j (λ)2k−j−2

j! (2k − 2j − 1)!
(2xα0 )2k−2j−1

[
2Kαj x

α xα0 R2j−2 −Kαd R
2j + 2Kαj (xα)2 R2j−2

−2(Kl,αl R
2j + 2Kαj (xα)2 R2j−2)

]
Pl

= 2Kαλ C
λ+1
2k−2

(
xα0
R

)
xα R2k−2Pl

−
k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 1)!
(2xα0 )2k−2j−1

[
2Kαj (xα0 − xα) xα R2j−2 −Kα(d+ 2l) R2j

]
Pl

= 2Kαλ C
λ+1
2k−2

(
xα0
R

)
xα R2k−2Pl

−
k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 1)!
(2xα0 )2k−2j−1

[
2Kαj x

α R2j−1 −Kα(d+ 2l) R2j
]
Pl

= 2Kαλ C
λ+1
2k−2

(
xα0
R

)
xα R2k−2Pl −Kα(d+ 2l) Cλ2k−1

(
xα0
R

)
R2k−1Pl

+ 2Kαλ

k−1∑
j=1

(−1)j+1 (λ)2k−j−2

(j − 1)! (2k − 2j − 1)!
(2xα0 )2k−2j−1 xα R2j−1Pl

= 2Kαλ C
λ+1
2k−2

(
xα0
R

)
xα R2k−2Pl −Kα(d+ 2l) Cλ2k−1

(
xα0
R

)
R2k−1Pl

+ 2Kαλ

k−2∑
p=0

(−1)p (λ)2k−p−3

(p! (2k − 2p− 3)!
(2xα0 )2k−2p−3 xα R2p+1Pl

= 2Kαλ C
λ+1
2k−2

(
xα0
R

)
xα R2k−2Pl −Kα(d+ 2l) Cλ2k−1

(
xα0
R

)
R2k−1Pl

+ 2Kαλ

k−2∑
p=0

(−1)p (λ)2k−p−3

(p! (2k − 2p− 3)!

(
2xα0
R

)2k−2p−3
xα

R
R2k−1Pl
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=

[
2Kαλ C

λ+1
2k−2

(
xα0
R

)
xα R2k−2 −Kα(d+ 2l) Cλ2k−1

(
xα0
R

)
R2k−1 + 2Kαλ C

λ+1
2k−3

(
xα0
R

)
xα

R
R2k−1

]
Pl.

�

We remark that in Lemma 5.4 after elimination of the powers of R in the denominator, there is no ambiguity

for the first and the last term of the right-hand side. For the second term however, we must clarify how the

elimination should be made. For example, let d = 2:

Cλ+1
1

(
xα0
R

)
xα

R
R3 = 2(λ+ 1)

xα0
R

xα

R
R3 = 2(λ+ 1) xα0 xαR,

which is not the same as

Cλ+1
1

(
xα0
R

)
R3 xα

R
= 2(λ+ 1) xα0 R xα,

or

R3 Cλ+1
1

(
xα0
R

)
xα

R
= 2(λ+ 1) R xα0 xα.

For the second term in the right-hand side we thus put as a convection that (after elimination of R in the

denominator), the remaining (odd) powers of R are written on the total right of both xα0 and xα.

In a very similar way as we have done in Lemma 5.4, we can prove the following results:

Lemma 5.5 For a parameter λ and k ≥ 1, one has

(
C
+∂

α
0 +Dα

) [
Cλ2k+1

(
xα0
R

)
xα

R
R2kPl

]
= 2Kαλ

[
Cλ+1

2k

(
xα0
R

)
− Cλ+1

2k−1

(
xα0
R

) (
xα0
R
− xα

R

)]
R2kPl.

Lemma 5.6 For a parameter λ and k ≥ 1, one has

(
C
+∂

α
0 +Dα

) [
Cλ2k

(
xα0
R

)
xα

R
R2k+1Pl

]
=

[
−Kα(d+ 2l) Cλ2k

(
xα0
R

)
R2k + 2Kαλ C

λ+1
2k−1

(
xα0
R

)
xα

R
R2k + 2Kαλ C

λ+1
2k−2

(
xα0
R

)
xα

R
xα R2k−1

]
Pl.

5.2 Main result

We present now the main result of this section:

Theorem 5.7 For a fractional spherical monogenic Pl of degree l in the fractional variables xα1 , . . . , x
α
d and

for s ∈ N, the fractional FCK-extension of (xα)sPl is the fractional monogenic polynomial in d + 1 variables

xα0 , x
α
1 , . . . , x

α
d given by

FCK
[
(xα)2kPl

]
= (−1)k λ2k

l R2k

[
C
d+1
2 +k

2k

(
xα0
R

)
+

2l + d− 1

2l + d− 1 + 2k
C
d−1
2 +k

2k−1

(
xα0
R

)
xα

R

]
Pl, (12)

FCK
[
(xα)2k+1Pl

]
= (−1)k λ2k+1

l R2k+1

[
−C

d−1
2 +k

2k+1

(
xα0
R

)
+

2l + d− 1

2l + d− 1 + 2k
C
d+1
2 +k

2k

(
xα0
R

)
xα

R

]
Pl. (13)

In this formula, r2 = (xα0 )2 − (xα)2, Cλn(x) are the standard Gegenbauer polynomials given by (9), and the

coefficients λsk are given by (10).

Before we present the proof we give the following remark concerning understanding the notation, which is similar

to the one presented in [7].

Remark 5.8 Please note that in the main theorem appear terms like Cλk

(
xα0
R

)
. While in fact

xα0
R is not well-

defined, since Rxα0 6= xα0R and Rxα 6= xαR the notation has to be understood in the following way: because

Cλk (x) contains only powers of x of degree at most k, we first multiply it by Rk after which there is no ambiguity

left.
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Let us now consider the proof.

Proof: We start with expression (12). The proof has two parts. In the first we show that the restriction of

F := (−1)k λ2k
l n R

2k

[
C
d−1
2 +k

2k

(
xα0
R

)
+

2l + d− 1

2l + d− 1 + 2k
C
d+1
2 +k

2k−1

(
xα0
R

)
xα0
R

]
Pl

to the hyperplane xα0 = 0 is exactly (xα)2kPl. In fact, R2j |xα0 =0 = (xα)2j and

Cλ2k

(
xα0
R

) ∣∣
xα0 =0

=

k∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j)!

(
2xα0
R

)2k−2j ∣∣
xα0 =0

=
(−1)k (λ)k

k!
,

Cλ2k−1

(
xα0
R

) ∣∣
xα0 =0

=

k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 1)!

(
2xα0
R

)2k−2j−1 ∣∣
xα0 =0

= 0,

which implies that

F
∣∣
xα0 =0

= (−1)k λ2k
l

(−1)k

k!

(
d− 1

2
+ l

)
k

(xα)2kPl

=
k! Γ

(
l + d−1

2

)
Γ
(
l + d−1

2 + k
) 1

k!

Γ
(
l + d−1

2 + k
)

Γ
(
l + d−1

2

) (xα)2kPl

= (xα)2kPl.

In the second part of the proof we show that F is a fractional monogenic in the d+ 1 variables xα0 , x
α
1 , . . . , x

α
d .

By the uniqueness of the FCK-extension, we know that F must be exactly FCK
[
(xα)2kPl

]
. Since F consists

in two terms, we will first consider C
+∂

α
0 + Dα acting on both terms separately via Lemmas 5.3 and 5.4 with

λ = l + d−1
2 . We will then continue by combining the obtained results.(

C
+∂

α
0 +Dα

)
F

= (−1)k λ2k
l

[(
C
+∂

α
0 +Dα

)(
Cλ2k

(
xα0
R

)
R2kPl

)
+

λ

λ+ k

(
C
+∂

α
0 +Dα

)(
Cλ+1

2k−1

(
xα0
R

)
xα0
R

R2kPl

)]
= (−1)k λ2k

l 2Kαλ

[
Cλ+1

2k−1

(
xα0
R

)
− Cλ+1

2k−2

(
xα0
R

)]
R2k−1Pl

+ (−1)k λ2k
l

λ

λ+ k

[
2Kα(λ+ 1) Cλ+2

2k−2

(
xα0
R

)
xα R2k−2 −Kα(2λ− 1) Cλ+1

2k−1

(
xα0
R

)
R2k−1

+2Kα(λ+ 1) Cλ+2
2k−3

(
xα0
R

)
xα

R
R2k−1

]
Pl

= (−1)k λ2k
l

[(
2Kαλ−

Kαλ(2λ− 1)

λ+ k

)
Cλ+1

2k−1

(
xα0
R

)
R2k−1 − 2Kαλ Cλ+1

2k−1

(
xα0
R

)
R2k−1

+
2Kαλ(λ+ 1)

λ+ k
Cλ+2

2k−2

(
xα0
R

)
xα

R
R2k−1 +

2Kαλ(λ+ 1)

λ+ k
Cλ+2

2k−3

(
xα0
R

)
xα

R
R2k−1

]
Pl

= (−1)k λ2k
l 2Kα λ

[
2k + 1

2λ+ 2k
Cλ+1

2k−1

(
xα0
R

)
R2k−1 − Cλ+1

2k−1

(
xα0
R

)
R2k−1

+
λ+ 1

λ+ k
Cλ+2

2k−2

(
xα0
R

)
xα

R
R2k−1 +

λ+ 1

λ+ k
Cλ+2

2k−3

(
xα0
R

)
xα

R
R2k−1

]
Pl.
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Taking into account the series expansion (9) for the Gegenbauer polynomials, the previous expression becomes

equal to:

(−1)k λ2k
l Kα

λ(2k + 1)

λ+ k

k−1∑
j=0

(−1)j (λ+ 1)2k−j−1

j! (2k − 2j − 1)!
22k−2j−1 (xα0 )2k−2j−1R2j

−2λ

k−1∑
j=0

(−1)j (λ+ 1)2k−j−2

j! (2k − 2j − 2)!
22k−2j−2 (xα0 )2k−2j−2R2j+1

+
2λ(λ+ 1)

λ+ k

k−1∑
j=0

(−1)j (λ+ 2)2k−j−2

j! (2k − 2j − 2)!
22k−2j−2 (xα0 )2k−2j−2 xαR2j

+
2λ(λ+ 1)

λ+ k

k−2∑
j=0

(−1)j (λ+ 2)2k−j−3

j! (2k − 2j − 3)!
22k−2j−3 (xα0 )2k−2j−3 xαR2j+1

Pl
= (−1)k λ2k

l Kα

λ(2k + 1)

λ+ k

k−1∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j − 1)!
22k−2j−1 (xα0 )2k−2j−1R2j

−
k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 2)!
22k−2j−1 (xα0 )2k−2j−2R2j+1

+
1

λ+ k

k−1∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j − 2)!
22k−2j−1 (xα0 )2k−2j−2 xαR2j

+
1

λ+ k

k−2∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 3)!
22k−2j−2 (xα0 )2k−2j−3 xαR2j+1

Pl. (14)

From the series expansion of R2j and R2j+1

R2j =

j∑
s=0

(
j

s

)
(xα0 )2j−2s (xα)2s,

R2j+1 =

j∑
s=0

(
j

s

) (
(xα0 )2j−2s+1 (xα)2s + (xα0 )2j−2s (xα)2s+1

)
,

there are two possible combinations (with respect to the powers of xα0 and xα): either an odd power of xα0
combined with an even power of xα or vice-versa. We will look at both possibilities separately and show that

both must be zero. We first consider the terms of (14) containing a combination of an even power of xα0 and a

odd power of xα, which we will denote by “even part” (EP).

EP = (−1)k λ2k
l Kα

− k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 2)!
22k−2j−1 (xα0 )2k−2j−2 xαR2j

+

k−1∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j − 2)!

22k−2j−1

λ+ k
(xα0 )2k−2j−2 xαR2j

+
1

λ+ k

k−2∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 3)!
22k−2j−2 (xα0 )2k−2j−3 xα0 xαR2j

Pl
= (−1)k λ2k

l Kα

k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 2)!
22k−2j−1 (xα0 )2k−2j−2 xαR2j

(
λ+ 2k − j − 1

λ+ k
− 1

)

+
1

λ+ k

k−2∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 3)!
22k−2j−2 (xα0 )2k−2j−3 xα0 xαR2j

Pl
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= (−1)k λ2k
l Kα

 1

λ+ k

k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 2)!
(k − j − 1) 22k−2j−1 (xα0 )2k−2j−2 xαR2j

+
1

λ+ k

k−2∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 3)!
22k−2j−2 (xα0 )2k−2j−2 xαR2j

Pl
= 0.

For the “odd part” (OP) containing all terms with an odd power of xα0 and an even power of xα we have

OP = (−1)k λ2k
l Kα

λ(2k + 1)

λ+ k

k−1∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j − 1)!
22k−2j−1 (xα0 )2k−2j−1R2j

−
k−1∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 2)!
22k−2j−1 (xα0 )2k−2j−1R2j

+
1

λ+ k

k−2∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 3)!
22k−2j−2 (xα0 )2k−2j−3R2j+1

Pl
= (−1)k λ2k

l Kα

k−1∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j − 1)!
22k−2j−1 (xα0 )2k−2j−1R2j

(
2k − 1

λ+ k
− 2k − 2j − 1

λ+ 2k − j − 1

)

+
1

λ+ k

k−2∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 3)!
22k−2j−2 (xα0 )2k−2j−3

(
R2j+2 − xα0R2j

)Pl
= (−1)k λ2k

l Kα

k−1∑
j=0

(−1)j (λ)2k−j

j! (2k − 2j − 1)!
22k−2j−1 (xα0 )2k−2j−1R2j

(
2k − 1

λ+ k
− 2k − 2j − 1

λ+ 2k − j − 1

)

+
1

λ+ k

k−1∑
p=1

(−1)p−1 (λ)2k−p

(p− 1)! (2k − 2p− 1)!
22k−2p (xα0 )2k−2p−1R2p

− 1

λ+ k

k−2∑
j=0

(−1)j (λ)2k−j−1

j! (2k − 2j − 3)!
22k−2j−2 (xα0 )2k−2j−1R2j

Pl.
One check for different values of j that the coefficients of R2j will be zero, and hence the total sum will be zero.

Regarding (13) we proceed in a similar way and considering Lemmas 5.5 and 5.6.

�

6 Examples

To end this paper, we present some examples of FCK-extension

Example 6.1 The FCK-extension of xαPl is given by

FCK[xαPl] =

∞∑
k=0

(xα0 )k

k!
fk,

where the functions fk are

f0 = xαPl, f1 = (2Kl,αl +Kαd)Pl,

whence explicitly

FCK[xαPl] = [xα + 2Kl,αl +Kαd]Pl.

13



Example 6.2 The FCK-extension of (xα)2Pl is given by

FCK[(xα)2Pl] =

∞∑
k=0

(xα0 )k

k!
fk,

where the functions fk are

f0 = (xα)2Pl, f1 = 2Kαx
αPl, f2 = −2Kα(2Kl,αl +Kαd)Pl,

whence explicitly

FCK[(xα)2Pl] =
[
(xα)2 + 2Kαx

α − 2Kα(2Kl,αl +Kαd)
]
Pl.
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