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Abstract

The p-i-n a-Si:H photodiode is a promising device as a transducer in biosensors. The 
native and light-induced localized state density and energy distribution in the energy 
gap of a-Si:H have a large effect on the photoconductivity of thin-film photodiodes. 
Depending on their nature, they play a crucial role in trapping and recombination pro-
cesses and consequently influence the photodiode capacitance. The optical bias depen-
dence of modulated photocurrent, OBMPC, method using the blue LED light is applied 
to clarify the nature and energy distribution of the energy gap density of states and their 
influence on the photodiode capacitance, from photodiodes transient response. It is 
observed that the deep defect states of the i-layer contribute to the capacitance at various 
bias voltages. Also, the capacitance achieves the upper limit around the built-in potential. 
Based on this method and obtained results, the a-Si:H p-i-n photodiode is used as a bio-
sensor transducer in the detection of mammalian cell chemiluminescence.

Keywords: a-Si:H p-i-n photodiode, biosensor, blue light, capacitance, defects, density 
of states, LED, transient response

1. Introduction

The recent advances, miniaturization and integration, in nanotechnology and CMOS technol-

ogy afforded by photolithographic patterning, have had a transformative impact on the field 
of single-cell biology and diseases that depend on small collections of cells in their initial 

stages such as cancer. The microfluidic Lab-on-a-chip technology, still under development, 
meets point-of-care (POC) requirements for biomolecular analyses. The biosensors consisting 

of amorphous silicon (a-Si:H) p-i-n photodiode as integrated luminescence sensor in lab-on-a-

chip devices, coupled with a microLED, have progressed rapidly over the last two decades and 

are still under development [1, 2]. The a-Si:H p-i-n photodiode is widely used as a transducer 
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in biosensors for biochemical analysis, where are applied pico- to nano-liters (microliters) 

of volumes of fluids in channels of tens to hundreds of micrometers. The photodiode array 

must have very high detection precision and allow conducting parallel experiments for the 

detection of biomolecules. Biosensor response must satisfy the main performance criteria: 

selectivity, sensitivity, linearity, and response time. At the same time, the photonic method for 

measuring the oxygen consumption rate (OCR) of a single cell must be developed.

The sensitivity of thin-film a-Si:H p-i-n photodiodes, integrated with microfluidics, allows low-
level luminescence signal detection from the volume of a microfluidic channel. The thin-film 
hydrogenated amorphous silicon (a-Si:H) technology [3] allows the custom fit of amorphous 
silicon photodiode arrays to the geometry of the flow microfluidic channel. The low-temper-

ature (below 200°C) technology plasma-enhanced chemical-vapor deposition (PECVD) [2] or 

hot wire chemical-vapor deposition (HWCVD) [4] allows deposition of amorphous layers on 

the glass and polymer substrates, respectively, and on top of crystalline silicon integrated 

circuits without any damage to the circuits below [5]. At appropriate RF power, gas flows, 
chamber pressure, and substrate temperature in PECVD, hydrogen atoms are introduced into 

the thin film to passivate the silicon dangling bonds (DBs) and remove a part of (metastable) 
defect states from the forbidden band gap. In pure amorphous silicon, unsaturated dangling 

bonds (DBs) give rise to electronic states inside the band gap. The hydrogen atoms restore 

the energy gap and semiconductor properties. Due to the disordered structure alloying vir-

tually all optical transitions, the absorption coefficient of a-Si:H is higher than that of c-Si 
(500–650 nm) [6]. Besides, a much lower dark current of a-Si:H than c-Si at room temperature 

enables its use as a photodiode material for low-noise detection. The photodiodes, as part of 

active area in active pixel sensors (APSs) [7–10] and other devices based on amorphous sili-

con, recently entered the field of microelectronics. The main part of applications was directed 
toward steady-state illumination of slowly varying light signals. The transient photocurrent 

was used for the material properties characterization and color detection [11–13].

The amorphous silicon photodiode can operate in integrated and in a reverse-biased pho-

todiode mode. In the latter, they have a high response speed and the photocurrent is only 
controlled by the light intensity. In amorphous silicon, the transport of free carriers involves 

trapping, detrapping through a large density of midgap states (DOS), and motion through 

transport in the extended states—localized band tail state [14]. These native and light-induced 

densities of state and their energy distribution in the energy gap of a-Si:H have a large effect 
on the photoconductivity of thin-film photodiodes. Depending on their nature, they play a 
crucial role in trapping and recombination processes and consequently influence the pho-

todiode capacitance and relaxation time. Furthermore, they lead to a high RC constant of a 

thin-film a-Si:H photodiode.

The disordered structure of hydrogenated amorphous silicon (a-Si:H) leads to localized states 

as band tails that extend inside the energy gap. The coordination defects associated with 

dangling bonds are sources of defect states located around the midgap. The tail states are 

shallow states, and the dangling bonds, the deep states. Both of them influence the recombi-
nation processes, capture and reemission of carriers in semiconductor. The emission of free 

charge carriers from deep states at the p-i and i-n interfaces influences the dark current, space 
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charge inside i-layer, and capacitance. The concentration of midgap states and their spatial 

distribution in the i-layer and at p+-i and n+-i interfaces can be extracted from transient dark 

current and steady-state thermal generation current, as described by Murthy and Dutta, and 
by Mahmood and Kabir [15, 16]. Models of transport and recombination through localized 

states have also been well described by Fuhs [14] and Dhariwal et al. [17–19]. Several tech-

niques based on steady-state and transient photocurrent techniques have been developed 

to determine the nature and role of gap density of states (DOS) in the trapping-detrapping, 

recombination processes of mobile carriers and gap-state parameters [20]. To estimate the 

DOS in the lower part of band gap between the Fermi level and valence band edge, methods 

such as constant photocurrent method (CPM) [21], Fourier transform photocurrent spectros-

copy (FTPS) [22, 23], and dual beam photoconductivity (DBP) [24] were used in the past. On 

the other hand, the multiexponential trapping rate and modulated photocurrent (MPC) tech-

nique [25–27] allow determining parameters of localized states throughout the entire energy 

gap by employing frequency and temperature scans.

The aim of our research is the mammalian cells chemiluminescence detection, which is based 

on the phenomenon that under illumination of two-beam, low intensity probe beam and simul-

taneously a higher intensity bias beam, reverse-biased a-Si:H p-i-n photodiode photocurrent 

exceed expected primary photocurrent [26].

The transient response of a-Si:H p-i-n photodiode to blue LED light pulse superimposed to 

the blue LED light optical bias (optical bias dependence of modulated photocurrent method— 

OBMPC [11, 27]) at various reverse bias voltages and one frequency is applied to clarify the 

nature and energy distribution of energy gap density of state and their influence on the pho-

todiode capacitance [28]. It is observed that the deep defect states of the i-layer contribute to 

the capacitance at various bias voltages. Also, the capacitance achieves the upper limit around 

the built-in potential.

Based on this method and obtained results, we describe our experiment, where the a-Si:H 

p-i-n photodiode is used as a biosensor transducer in the detection of mammalian cell’s 

chemiluminescence.

2. a-Si:H p-i-n photodiode

2.1. Device structure and characterization

The fundamental structure of a photodiode in amorphous silicon is p-i-n or n-i-p. The a-Si:H 

p-i-n structure (Figure 1) investigated in this work (Sunčane ćelije d.o.o. Split, Croatia) was 

deposited on a transparent conductive oxide (TCO)-coated glass from undiluted SiH
4
 by 

plasma-enhanced CVD at 13.56 MHz. The different layers of the p-i-n structure have the 
parameters of standard solar cell production. The thicknesses of the n-type, i-type, and 

p-type layers were 5, 300, and 5 nm, from top to the bottom, respectively. The n-type layer 
was made by adding phosphine PH

3
 and the p-type by adding diborane B

2
H

6
 into the silane 

SiH
4
 source gas during growth. The back contact was aluminum deposited by evaporation. 
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The active area of the pixel was 0.81 cm2. The basic device characterization and experimental 

system are described in more detail in [12, 13]. Photoillumination was obtained through the 

bottom p-type layer.

The doped layers in a-Si:H are nearly transparent to visible light and should be as thin as 

possible to minimize parasitic absorption. The minority carriers have small diffusion lengths; 
therefore, n-type and p-type a-Si:H are not photoactive layers. The i-layer is a region with 

high electric field. The light is mostly absorbed in the intrinsic i-layer, where the photo-gen-

eration occurs. The photocarriers at reverse bias voltages are swept away by the electric field 
in the i-layer, electrons to the n-type and holes to the p-type, and contribute mainly to drift 

photocurrent. Dark current increases with bias voltage as shown in Figure 2. It is very small 

in a-Si:H devices at low bias voltages and is given by thermal carrier emission from the bulk. 

With increased bias voltage, the injection from the doped layer increases too [15]. The signal 

current should be much higher than the leakage (dark) current at applied reverse bias voltage 

at which the electric filed, necessary to achieve full depletion inside the i-layer, collects all the 
photo-generated e-h pairs. At the same time, the absorbed light creates additional defects.

Defects in amorphous silicon lead to a low mobility of the charge carriers. The recombina-

tion losses of free carriers, trapping-detrapping in midgap states, and band tail states lead 

to photo-generated space charge in the i-layer. The space charge distribution at the p-i edge 

and at the n-i edge influences the internal field and screens the applied field. It is associated 
with the electrons and holes’ capacitance in the series. In amorphous silicon, the localized 

states arise from their disordered nature, bond lengths, and angles between the silicon atoms. 

The broken or dangling bonds (DBs) arise from not-satisfied Si-Si bonds. To passivate those 

DBs in material is introduced the hydrogen to form the chemical bonds with the defects. 

Figure 1. The a-Si:H p-i-n photodiode structure.
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The H content in the material influences the band gap values which are typically around 
1.7–1.8 eV. These metastable localized states act as defect (D) states at discrete energies and 

as recombination centers. Dangling bonds are the main defect in a-Si:H and have defect pool 

model distribution and Gaussian distribution (Figure 3) [27]. They can be in neutral D0(E), 

positive D+(E), and negative D−(E) charge states and their distributions depend on light inten-

sity and temperature. The transition D+/0 follows acceptor statistics and D0/− donor statistics.

Figure 2. The p-i-n a-Si:H PD current-voltage, I-V, characteristics measured under the dark and blue LED light illumination, 

λ = 430 nm.

Figure 3. Scheme of band tail distribution (Dv, Dc), DOS equilibrium distribution according to defect pool model, and 

D1(E) acceptor-like Gaussian distribution after [27].
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In a-Si:H, electrons occupying the localized states are trapped or immobile, and electrons occu-

pying extended states are assumed to be mobile and are characterized by a “band mobility”  

(  μ  
n
   ≃ 10  cm   2   s   −1  ). The localized band tail states are divided from extended electron states by E

C
 con-

duction mobility edge. There are the valence mobility-edge E
V
 separating delocalized transport 

states (below E
V
), where the free holes are characterized by a “band mobility”  ( μ  

p
   ≃ 1  cm   2   s   −1 )  , and 

localized traps (above E
V
). The band tail states have an exponential distribution (“Urbach” tail). 

The conduction band tail (acceptor type) width is assumed  to be  ∆ E  
C
   = 25 eV  and the valence band 

tail (donor type) width   ∆ E  
V
   = 45 − 50 meV , respectively. Hence, in a-Si:H, the mobility gap denotes 

the switch from small to larger mobility.

The localized state density (DOS) is so large that an electron can move from one localized site 

to another by hopping and the transport via these gap states is possible, but usually in numer-

ical analysis it is neglected. The DBs act as main recombination centers. The empty gap states 

(trap) which interact with majority carriers via trapping-detrapping processes can be probed 

under sufficiently weak bias illumination level and high modulation frequency MPC method 
[27]. At low frequency regime, the recombination of free electrons through the recombination 

centers in gap distributions D(E) occupied by holes between the trap quasi-Fermi levels of 

electrons and holes can be probed depending on the magnitude of the capture coefficients of 
the recombination centers. The scheme of the DOS distribution in undoped a-Si:H, according 

to the defect pool model and Gaussian distribution, is shown in Figure 3.

Han et al. [29] have reported the most interesting feature of optical bias. Optical bias impedes 

deep trapping, thus enhancing electron drift. Their photocapacitance and capacitance tran-

sient measurement result indicates the band tail transport occurs in time shorter than 10 μs 

which is not affected by optical bias, electron trapping, and further drift following reemission 
from the deep trap in time longer than 1 ms.

To use the a-Si:H p-i-n photodiode as a biosensor transducer in detection of mammalian HeLa 

cells’ chemiluminescence in our main experiment, the photodiode characterization is first 
done. All measurements were performed at the room temperature. LEDs (Kingbright) emit-

ting at 430 nm for blue (B) were used in the experiment and the dc forward current through 

the LED was I
F
 = 20 mA. The energy of monochromatic LED light is higher than the band gap 

energy.

The photodiode current-voltage (I-V) characteristics measured under the dark and blue LED 

light illumination at λ = 430 nm are shown in Figure 2. Under low forward voltages, the dark 

current is dominated by Shockley-Read-Hall (SRH) recombination [30].

In order to obtain the information on the recombination rate in dark, the ideality factor is 

studied. It is well known that in a-Si:H, the ideality factor is a non-integer and decreases with 

temperature [30].

The recombination rate depends on the concentration of active recombination centers which 

include all traps between the quasi-Fermi levels for trapped charges. Second, it depends on 

the recombination efficacy of each of these recombination centers. These two factors are volt-
age dependent due to the continuous density of states in the band gap. The dark current has 

an exponential term and the integration term. The exponential term with ideality factor n = 2 
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is due to the injection of free carriers, electrons and holes, from the n and p contacts, and 

their recombination through a single defect level. The integration term is due to the number 

of defect states which act as recombination centers and are located between the quasi-Fermi 

levels for trapped holes,   E  
 fp  

t
  
  ,  and trapped electrons,   E  

 fn  
t
  
   . Their concentrations increase with 

increased applied voltage, as the separation of quasi-Fermi levels increases.

From dark current-voltage characteristics

  I (V)  =  I  
0
   exp  (  

qV
 ____ 

nkT
  )   (1)

and the ideality factor defined by Deng and Wronski [31] is

  n (V)  =   [  kT ___ q     
dln ( I  D  ) 

 ______ 
dV

  ]    

−1

 .  (2)

The shape of the  n (V)   curve, shown in Figure 4, reflects the energy distribution, as a Gaussian 
one, of the defect states in the i-layer.

The total recombination current density conducted through the device expressed by its acti-

vation energy of SRH recombination [30] shown in Figure 5 is calculated by the expression:

   E  
a
  R  (V)  =   

 E  
μ
   − V
 _____ 

2
   + 3kT  (3)

Figure 4. The voltage-dependent ideality factor,  n (V)  , as a function of voltage at room temperature for a p-i-n photodiode 

with an i-layer thickness of 300 nm. Calculation is done using the Deng and Wronski definition of voltage-dependent 
ideality factor.
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where   E  
μ
    is mobility gap and V the applied voltage. Calculation is done following the Kind 

et al. expression for the voltage-dependent activation energy of the total recombination at 

various mobility gap and voltage-dependent ideality factor values shown in Figure 4. For 

comparison is given the activation energy at constant ideality factor n = 2 (the thermal ideality 

factor defined by Pieters et al. and used in [30]).

2.2. Photodiode capacitance

The time domain technique at low frequency is used to measure the photodiode’s capacitance 

[32]. The measurements have been carried out on a-Si:H p-i-n cells under forward and reverse 

bias voltages, in dark and upon blue LED illumination and voltage pulses at 333 Hz [33].

The total charge stored in photodiode capacitor depends on the photodiode voltage as described 

by

  Q =   ∫ 
0

  
 V  

PD
  

    C  
PD

   dV  (4)

where Q is the total charge stored,   C  
PD

    is the photodiode capacitance as a function of voltage, 

and   V  
PD

     is the voltage across the photodiode capacitance. The current due to stored charge is

  i (t)  =   
dQ

 ___ 
dt

  .  (5)

The charge equivalent linear capacitor   C  
q
  ,  which stores the same amount of charge as a photo-

diode capacitor at photodiode voltage V
PD,

 is defined as

Figure 5. The activation energy as a function of voltage for an a-Si:H p-i-n photodiode with an i-layer thickness of 300 nm 

at room temperature.
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   C  
q
   =   

Q
 ___ 

 V  
PD

  
   =   

  ∫ 
0

  
 V  

PD
  

   idt

 _____ 
 V  

PD
  
   =   

  ∫ 
0

  
 V  

PD
  

    C  
PD

   dv

 _______ 
 V  

PD
  
    (6)

The photodiode current is measured with digital storage oscilloscope (Keysight InfiniiVision 
2000 X-Series Oscilloscopes) by voltage drop across the resistor. The dc bias voltage (−2 to 

0.7 V) is applied and measurements are carried out. The characteristic photodiode transient 

response on voltage pulse is shown in Figure 6. The cell capacitance is calculated from total 

charge obtained by integration of photodiode current transient response on voltage pulse Eq. 

(6) and divided with the corresponding photodiode bias voltage.

The dark capacitance’s dependence on photodiode voltage and capacitance under illumina-

tion with blue light is shown in Figure 7. It shows a quasi-linear dependence of capacitance 

on the voltage under illumination.

It is observed that the deep defect states of the i-layer contribute to the capacitance at various 

bias voltages. It is evident that around the built-in voltage, the injected charge in the dark and 

photo-generated charge have the same value. At higher voltages prevails the injected charge 

in dark. Also, the capacitance achieves the upper limit around the built-in potential. The 

capacitance degradation effect happens at sufficiently high forward voltages around built-in 
voltage (V

bi
), where the diode injection capacitance becomes more dominant and the device 

responds to the voltage as a resistor.

The area under the current response curve gives the total charge (Figure 8) accumulated in the 

photodiode. In dark, at reverse bias voltages higher than 0.5 V, the changes in space charge 

Figure 6. The transient response of a-Si:H photodiode to a square voltage pulse upon blue light illumination and reverse 

bias voltage V
PD

 = −1.5 V.
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Figure 8. The a-Si:H photodiode total accumulated charge at different device voltages in dark and under blue LED light 
illumination (430 nm).

and local electric field in i-layer around p/i and n/i interfaces lead to the increase in total accu-

mulated charge and consequently the capacitance increases. The increase in photo-generated 

charge with increased reverse bias voltage is smaller than dark charge. The proposed method 

can be used for further development of photodiode-integrated system and biosensors.

Figure 7. The a-Si:H photodiode capacitance versus bias photodiode voltages.
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2.3. The blue light-induced defect creation examined with the OBMPC method

Using moderated OBMPC [11, 27, 36], we examine the light-induced defects kinetics and 

nature in the i-layer of a-Si:H p-i-n photodiode. Furthermore, we clarify their influence on 
photocurrent degradation and capacitance contribution.

The photodiode was illuminated with two blue LEDs (430 nm), a constant pump (optical 

bias) light and square pulse (probe) light at frequency of 333 Hz with 50% duty cycle. The 

intensity of the optical bias light and the pulsed probe beam was adjusted with 20-mA cur-

rent through the LEDs. The illuminations were from the p-type layer side. The measurements 

were performed in the range from forward bias voltages of 0.7 V to reverse bias voltages of 

−2 V. From the measured switch-off transient response to a blue light pulse, we numerically 
analyze, by the generalized Foss method and general solution developed by Jeričević [33, 34], 

the trap and recombination localized states’ energy distribution in the energy gap. The num-

ber of components, not known in advance, in multiexponential decay of measured switch-off 
transient response is determined by its best fit with numerically modeled transient response.

The photo-generated electron-hole pairs upon blue light illumination are nonuniformly gen-

erated near the front surface in the vicinity of the p+/i interface. The photo-generated free 

carrier densities, electrons, and holes, have dc and time-dependent pulsed components.

The holes’ contribution to the transient photocurrent is small, due to their trapping near the p+/i 

interface where arises the space charge density or their movement into the front contact [11].

We observe a short time delay of transient photocurrent ascribed to trapping and release 

interaction of free carriers with shallow band gap localized states. The transient photocurrent 

decay in tail-like form, dependent on applied voltage, often happens due to deep trapping. It 

is dependent on the time that an electron spent in discrete localized states N(E
i
) at E

i
 energy 

levels (capture and release), as described in [11].

  τ  = v  
0
  −1   e    ( E  

i
  /kT)  .  (7)

Based on the MPC theory described in [36], the band gap energy is divided into three energy 

ranges. The energies from which electrons (holes) can be trapped and released to the conduc-

tion (valence) band, E, are above, E > E
tn

 (below, E < E
tp
) quasi-Fermi level for trapped elec-

trons, E
tn

 (trapped holes, E
tp
), and recombination states between quasi-Fermi level for trapped 

electrons, E
tn

 and holes, E
t
 ,   E  

tp
   < E <  E  

tn
   .

The position of quasi-Fermi level for trapped electrons, E
tn

 [35, 36], is determined from the 

measured dc photocurrent at applied bias voltage and under constant illumination from Eq. 

(8) in [36]. At E
tn

 and E
tp,

 the occupation function, f
dc,

 of gap states changes from 1 to 0 in 

two steps. The dc generation rate characteristic time response (Eq. (1) in [36]), extracted from 

measured photocurrent transient response is compared with the characteristic time of the 

experiment, taking in to account the characteristic capture frequency ω
c
 (Eq. (2) in [36]) to 

determine the high or low frequency regime of the experiment.

From calculated values, in our experiment, the chosen frequency falls in the low-frequency 

regime. In this regime, only the defects around the Fermi level can be probed. The requirement 
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Figure 9. The measured a-Si:H p-i-n photodiode switch-off photocurrent transient response on blue probe light at blue 
bias light and 0 V bias voltage on 10 kΩ load resistor, the numerically reconstructed transient response (theory), and 

difference between them.

that Fermi level of free electrons coincides with quasi-Fermi level of trapped electron will be 

satisfied.

The measured a-Si:H p-i-n photodiode switch-off photocurrent transient response on blue 
probe light at blue bias light and 0 V bias voltage on 10 kΩ load resistor, the calculated tran-

sient response, and difference between them are shown in Figure 9. The two exponential 

functions, as in Figure 9, are present in all the cases of applied bias voltage.

Figure 10 shows the numerically extracted energies of localized states from measured pho-

tocurrent transient response. The weighting factor (pre-exponential factor) of localized states 

is shown in Figure 11. The weighting factors corresponding to the deeper gap states (E
2
) are 

higher than those of the shallower (E
1
) states for all voltages below the built-in voltage. With 

increasing forward bias voltage, there is an increase in weighting factor corresponding to 

energy E
1
 and decrease in those of energy E

2
. The energy levels E

1
 and E

2
 shift toward deeper 

energy levels for moderate forward voltages below the built-in voltage. At high forward volt-

ages, both shift toward shallower values. This is in agreement with [27], where the capture 

coefficients of the midgap states were higher than those of the shallow localized states. Also, 
these results confirm the capacitance upper limit described above (Figures 7 and 8).

2.4. a-Si:H p-i-n photodiode as a transducer in biosensors

By definition of Mehrotra, biosensors are analytical devices that convert a biological response 
into an electrical signal [37]. They have many applications in medical diagnostics, pharma-

ceutical, food, beverage, agricultural, environmental, and biotechnological industries. Two 

main components of biosensors are the bioreceptor and transducer [38, 39]. Bioreceptor is a 
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part that recognizes the analyte of interest, while biotransducer is a physicochemical detector 

that converts the bioreceptor-analyte complex into a measurable signal. As the name says, a 

bioreceptor is a biological molecule like enzymes, antibodies, and nucleic acid, but it can also 

be a tissue, organelle, or microorganism, while the biotransducer’s measurable signal may be 

viscosity, mass, temperature, electrical current, electrical potential, impedance, conductance, 

Figure 10. The energies of localized states extracted from measured photocurrent transient response of a-Si:H p-i-n PD 

on blue probe light at blue bias light at applied voltages Vappl. = −2 to 0.7 V.

Figure 11. Weighting factor of localized states extracted from measured photocurrent transient response of a-Si:H p-i-n 

PD on blue probe light at blue bias light at applied voltages Vappl. = −2 to 0.7 V.
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electromagnetic field, electromagnetic radiation, or visible light. Biosensors can be label-free 
or label based which depends on their detection system [40].

Biosensing elements can be described as follows:

Enzymes: protein molecule which acts as a catalyst in chemical reactions. They can be mobi-

lized on transducers by gel entrapment technology, covalent binding, or physical adsorption.

Microbes: they are capable of transforming analytes to specific products which can be moni-
tored by transducer.

Organelle: more specific for analysis.

Antibodies: highly selective to antigens and can be attached to matrix surface of transducer.

Nucleic acids: are DNA and RNA molecules which can be hybridized with other nucleic 

acids, so it can be a good sensing element for metabolic disorders, infection disease, cancer, 

and genetic disorders.

Aptamers: those are single-stranded DNA or RNA molecules and can be specific against 
amino acids, proteins, and other molecules by adopting specific and stable secondary struc-

tures against mentioned analytes.

Biosensors can be classified as electrochemical, mass dependent, optical, radiation sensitive 
[39], or piezoelectric based on their transduction principle. Based on the detected analyte, 

they can be immunosensors, aptasensors, genosensors, or enzymatic biosensors.

Optical biosensors have light as the output transducer signal. Light is generated by opti-

cal diffraction and electrochemiluminescence as main mechanisms for light production [41]. 

Bioluminescence is a process in which biomolecules absorb light, from the excitation source and 

enter into excited state, then fall down to the ground state and emit light as fluorescence or phos-

phorescence. Chemiluminescence is a type of luminescence when the light is emitted by chemi-
cal reaction. If the chemical reaction is catalyzed by an enzyme, it is called bioluminescence [42].

Regard, their above described characteristics, the a-Si:H photodiodes have become driving 

force in the scientific community for detection of tumor cells. For in vitro testing of HeLa cells, 

it is important to note that:

1. Cells are standardly grown in complemented Dulbecco’s Modified Eagle Medium (DMEM) 
with fetal bovine serum addition.

2. For counting, cells are removed from the surface plate by use of enzyme trypsin.

3. All the components (cells, DMEM, and trypsin) absorb blue light.

DMEM (Dulbecco’s Modified Eagle Medium) has been proposed for culturing normal and 
tumor cells. Constituents of the medium are high level of glucose, essential minerals, amino 

acid, and vitamins. Alone, it does not function for cell culturing; so, it must be complemented 
with fetal bovine serum, antibiotics, and l-glutamine. The components of the complemented 

medium DMEM that absorb blue light are riboflavin (vitamin B12), hemoglobin, and bilirubin 
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[43–45]. From previous works, it is known that bilirubin and riboflavin decompose under 
exposure of blue light [43, 46]. There are numerous factors that influence photodegradation, 
like radiation source, intensity, wavelength, pH, buffer, solvent polarity, and viscosity [43]. 

The influence of blue light on (a) complemented DMEM medium and (b) HeLa cells can be 
monitored by amorphous silicon (a-Si:H) photodiodes.

The photodiode’s (Department of Information Engineering, Electronics and Telecommuni-

cations, Sapienza Università di Roma, Italy) p-doped/intrinsic/n-doped junction of a:Si-H 

layers were deposited on 50 × 50 × 1.1 mm3 glass substrate and arranged in 5 × 6 array. The 

a-Si:H layers were deposited by plasma-enhanced chemical vapor deposition (PECVD) in a 

three-chamber high-vacuum system. The bottom electrode is a 180–nm-thick indium tin oxide 
(ITO) layer. The top metal electrode is a three-metal-layer stack (30-nm-thick Cr/150-nm-thick 

Al/30-nm-thick Cr). The area of each photodiode is 2 × 2 mm2. Further details on the photodi-

ode array fabrication can be found in [47].

The a-Si:H photodiode illuminated with blue LED light (RGB LED Lamp Kingbright emitting 
at 430 nm) is placed in a dark metallic box. The LED current was fixed at 20 mA to provide 
constant illumination. A reverse bias voltage equal to 2 V was applied to the photodiode. The 

measurements for calibration were performed at room temperature for 1 h. Before starting 

the assay, the 3-ml solutions containing the appropriate concentration of HeLa cells in DMEM 

and DMEM, respectively, are introduced with pipette in a plastic well posted on a photodiode 
surface. The box is then closed to minimize room light interference. The measurements are 

performed at 2-V reverse bias. The photodiode current and voltage are monitored for 1 h 

using the Keysight BenchVue software. The photodiode is connected in series with a load 

resistor, R
L
, of 10 kΩ, voltage source (Agilent Technologies E3631A DC voltage source), and 

digital multimeters, DMMs (Agilent Technologies 34450A meter). Before starting the assay, 

the a-Si:H photodiode is illuminated with white light to neutralize the defects induced with 

previous blue light illumination and to reverse the process of decreasing of photoconductivity.

The significant changes in current are observed in first 20 minutes. The current characteristic 
transients corresponding to blue LED-induced HeLa cells’ chemiluminescence detected by 

a-Si:H p-i-n photodiode are shown in Figure 12.

It can be deduced from the Figure 12 that the photocurrent initially decreases due to creation 

of two types of defects under blue light illumination. The measured photocurrent (a) when 

3 mL of complemented DMEM and trypsin are placed in plastic well has faster exponential 

decay than the photodiode in first 2 min. The decrease in photocurrent can be attributed 
to absorption of blue light in the DMEM solution and in the photodiode. After 20 min, the 

photocurrent decreases which can be attributed to the decomposition of riboflavin (not pre-

sented here). It is also known from the literature that bilirubin and riboflavin obey first-order 
decomposition kinetics when they are exposed to blue light; and although the kinetic coef-
ficient for riboflavin is 10 times greater than for bilirubin, it can be speculated that riboflavin 
decomposes in our experiment [46, 48].

Effects of visible spectra on live organisms have been studied for different approaches. Light 
can induce photochemical reactions in living cells and can have benefits in treatment of some 
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diseases, that is, psoriasis and neonatal hyperbilirubinemia [49, 50]. It can modulate the endo-

crine system and accelerate the maturation of ovaries in young rats [51].

Blue light can influence skin-keratinocytes exerting antiproliferative effect and inducing dif-
ferentiation; so, it can have therapeutic effects for hyperproliferative skin conditions [52]. 

Effects of blue light on human health are very beneficial because it can inhibit the growth of 
tumors, killing bacterial spores or inactivate microorganisms [53–55]. There are a number of 

chromophores inside cells that absorb blue light like riboflavin, flavin proteins, iron-sulfur 
proteins, cytochromes, etc. a-Si:H p-i-n photodiode can be a good detector with high sensitiv-

ity, good spectral responsivity, and small reflectance for blue light, for measuring low light 
intensity in visible spectrum (430–780 nm). So, (b) in experiment with HeLa cells under blue 

light illumination the low intensity light, which is product of chemiluminescence inside cells, 

can be detected. According to this experiment, HeLa cells under illumination with blue light 

exert dramatic changes in their metabolic activity. It is well known that blue light can induce 

hydrogen peroxide production in mammalian cells, and release nitrogen oxide from nitrosyl-

ated proteins [52, 53]. In tumor HeLa cells, nitric oxide modulates a number of biological pro-

cesses which can be witnessed by increase in NO-synthetase levels [56]. Also, it is well known 

that nitric oxide and hydrogen peroxide can react and release light from chemiluminescence 

reaction producing the toxic reactive oxygen species singlet oxygen [57]. Singlet oxygen can 

induce serious damage in cells and could kill 43% of tumor cells in 1 h in our experiments. So, 

the blue light has two effects on tumor HeLa cells: inducing chemiluminescence and killing 
tumor cells. Chemiluminescence can be detected by a-Si:H photodiode and that chemilumi-

nescence reaction rate versus time sequence obeys the exponential decay. Figure 13 shows 

the difference in photocurrent of HeLa cells and DMEM and trypsin. It can be deduced that 
absorption of HeLa cells can be separated from complemented DMEM medium. It can be 

Figure 12. Normalized measured a-Si:H p-i-n photodiode, PD photocurrent versus time, with HeLa cells, and DMEM 

and trypsin, respectively, in plastic well on PD surface.
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concluded that HeLa cells produce chemiluminescence radiation in the visible part of spec-

trum, while in the DMEM solution, this is not observed.

3. Conclusions

We performed an experiment on mammalian cells’ chemiluminescence detection based on 

the phenomenon that under illumination of two-beam, reverse-biased a-Si:H photodiode cur-

rent exceed expected primary photocurrent. The native and metastable defects in a-si:H p-i-n 

phtodiodes activated in this phenomenon are first characterized with simultaneous blue light 
pulse and constant blue light illumination at low frequency. From a transient response, the 

photocapacitance is analyzed. Finally, the HeLa cells’ chemiluminescence reaction measure-

ment method is done. It can be concluded that a-Si:H photodiodes can be good transducers 

in optical biosensors for detecting tumor cells and chemiluminescence reaction inside cells.
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