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Chapter

The Importance of Spatial 
Reasoning in Early Childhood 
Mathematics
Kelli Rich and Jonathan L. Brendefur

Abstract

It is important to recognize the critical role spatial reasoning, relational think-
ing, and mathematical modeling play in the overall development of students’ 
central understanding of mathematics. Spatial reasoning predicts students’ later 
success in higher levels of mathematics, such as proportional thinking and algebraic 
reasoning. The National Research Council report implores educators to recognize 
the importance of developing spatial reasoning skills with students across all 
areas of mathematics. This chapter describes a study that used the Primary Math 
Assessment—Screener and Diagnostic to assess students’ spatial reasoning and 
relational thinking. The results highlighted curricular resources to improve stu-
dents’ understanding of mathematics. Students’ mathematical spatial reasoning 
improved significantly.

Keywords: spatial reasoning, relational thinking, early childhood, mathematics, 
achievement, DMTI

1. Introduction

It is important for educators to recognize the critical role spatial reasoning along 
with mathematical modeling plays in the overall development of mathematical 
skills and understanding. It is a fundamental bridge to algebraic thinking and con-
ceptual understanding. The National Research Council report [1] urges educators to 
recognize the importance of developing these skills with students across all areas of 
mathematics.

Bruner’s [2] modes of representation describe the process of enriching students’ 
understanding by working through enactive, iconic, and symbolic (EIS) models. 
The enactive (physical) and iconic (visual) models are critical to help students 
develop connections to a task and allows for better recall of mathematical ideas. It 
is critical for teachers to expose students to different methods of modeling relation-
ships with multiple representations. Students will have a better opportunity to 
generalize and build on existing foundational knowledge of equivalence throughout 
their mathematical careers.

Many students have difficulty in understanding concepts without being able to 
first observe a pictorial image of an idea in their mind [3]. Mathematics curricula 
loaded with symbolic representation require students to memorize procedures, 
denying the student an opportunity to utilize their visual thinking modality in the 
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process of building conceptual understanding. On the other hand, curricula that 
embed more iconic models may allow for students to deepen their understanding of 
the mathematics and improve their skill levels [4]. Thus, we wanted to investigate 
whether there was a significant difference in first grade students’ performance in 
spatial reasoning after being introduced to mathematics that included a plethora of 
iconic modeling.

2. Spatial reasoning

Spatial reasoning is strongly correlated with achievement in mathematics [5–7]. 
Students who perform better on spatial tasks also perform better on tests of math-
ematical ability [8–10]. Spatial reasoning involves (a) composing and decomposing 
shapes and figures, (b) visualization, or the ability to mentally manipulate, rotate, 
twist, or invert pictures or objects, (c) spatial orientation, or the ability to recognize 
an object even when the object’s orientation changes, and (d) spatial relations, or 
the ability to recognize spatial patterns, to understand spatial hierarchies, and to 
imagine maps from verbal descriptions [10, 11]. Recent evidence indicates that 
spatial reasoning training can have transfer effects on mathematics achievement, 
particularly on missing term problems (e.g., 7 + __ = 15), which are important in 
developing algebraic understanding [8].

In addition, spatial reasoning skills and mathematical competency are 
directly related to each other [12–15]. Learning with specific spatial reasoning 
tasks improves students’ abilities in the Science, Technology, Engineering, and 
Mathematics (STEM) fields [16, 17]. And there is a strong link between spatial 
reasoning ability and geometry where strong visuospatial skills predict how well 
students will complete 3D geometry tasks [18–20]. As educators become more 
aware of the need for spatial reasoning tasks, it is important to recognize the critical 
role mathematical modeling plays in the overall development of mathematical 
thinking.

The National Research Council report [1] urges educators to recognize the 
importance of developing spatial reasoning skills with students across all areas of 
mathematics. And the National Council of Teachers of Mathematics [21] suggests 
more spatial reasoning be integrated into the elementary mathematics curriculum 
to promote relational thinking skills. Mathematical modeling may be a key compo-
nent to help students explain their thinking when representing algebraic concepts.

Mix and Cheng [22] found that students with strong spatial reasoning skills 
do well in mathematics [23]. Spatial reasoning is a critical element for developing 
ways students think about equations. Given the opportunity, students’ spatial 
reasoning skills can increase when practice is integrated and supported throughout 
mathematics instruction [24]. By the time students reach kindergarten, their spatial 
reasoning skills predict their overall mathematical success [25]. Therefore, students’ 
educational experience in elementary school should have an intentional focus on 
improving spatial reasoning skills.

The focus of the next section is to highlight the connection between spatial 
reasoning and spatial orientation on a number line, gesture, visualization, and 
mental rotation. For instance, a crucial component to understanding ordinality (the 
position of a number in relation to its location on a number line) and magnitude 
(the size of a number) is the development of a spatial representation of numbers in 
connection to the symbolic representations [26]. The number line has been shown 
in cognitive studies to be important for the development of numerical knowledge 
[27–29]. Ramani and Siegler [30] report that students who play board games such 
as Chutes and Ladders increase rote counting skills, number identification, and the 
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conceptual understanding of numerical magnitude. Additionally, activities which 
include puzzles, video games, and blocks with significant connections to spatial 
reasoning skills and mathematical competency improve accuracy of symbolically 
representing a number line [31].

Problem-solving tasks regarding orientation, transformations, and move-
ment of shapes create an opportunity among students and the teacher to engage 
in rich, mathematical discourse. As students discuss their thinking, they will use 
their hands to gesture while attempting to convey their thoughts surrounding the 
task. Gesturing allows students to explain the visual imagery taking place inside 
their head as they work on problem-solving specific tasks [32]. Students’ gestures 
represent the movement of the transformation and create an avenue for their think-
ing to emerge through the discussion. Alibali and Nathan [33] found gestures to 
be an excellent tool for teaching students how to solve spatial transformation tasks 
by placing an emphasis on the importance of moving the pieces without the actual 
physical movement. In essence, they used their hands to gesture what their mind 
was creating and conveying mathematical thinking.

The ability to gesture what the mind is thinking is dependent upon students’ 
ability to visualize mathematical transformations [34]. The ability to think 
relationally requires students to visualize how numbers can be manipulated and 
rearranged in an equation [35]. Therefore, visualization is a key component across 
mathematical topics [34]. Spatial visualization tasks require students to create an 
image in their mind, hold the image, and then mentally transform or manipulate 
that image to be different. Some examples of these types of tasks include composing 
and decomposing pattern blocks to determine a new composed image, imagining 
transformations and perspectives of a three-dimensional cube, or activities that 
involve mentally folding a two-dimensional shape to form a new three-dimensional 
shape. In addition to spatial visualization, mental rotation has also been shown to 
increase student performance in mathematics [8].

Students who are allotted time to practice mental rotation have demonstrated 
the ability to solve a series of multi-step word problems [36]. Mental rotation 
consists of the ability to look at an object or picture of an object and visualize what 
it might look like when rotated in 2D or 3D space. The most recent study of spatial 
training with mental rotation was conducted with young students developing 
number sense, counting sequence, fact fluency, and missing term problems [8, 22]. 
Although the other areas showed improvement with the spatial training, missing 
term problems such as 2 + __ = 6 indicated the most significant effect size. Much 
like the relational skills needed to find the most efficient way to solve missing term 
problems, the completion of mental rotation tasks during spatial training helped to 
strengthen students’ ability to visualize the necessary transformations of numbers 
within equations for simpler computation [8].

It is important to note that mental rotation and spatial visualization are 
both subsets to spatial reasoning and much of their characteristics overlap [34]. 
Developing both skills is a powerful way to connect back to the bigger idea of con-
ceptual understanding for relational thinking, spatial reasoning, and equivalence 
[37, 38].

3. Relational thinking

In addition to spatial reasoning, relational thinking or early algebraic rea-
soning is critical for long-term success in mathematics. Students need time to 
develop relational thinking, with practice designed to explicitly examine the way 
in which numbers relate, and ways that those relations can generalize to other 
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areas of mathematics [39–42]. One way to improve conceptual understanding is 
to increase the exposure of problem-solving tasks involving nontraditional equa-
tions. It has been shown that students as young as kindergarten and first grade 
have informal knowledge of number relations; however, the mathematics pre-
sented in traditional textbooks do not explicitly draw out these relations, allow 
time for the relations to organically emerge, or instruct students to determine 
how the ideas can be generalized (Blanton and Kaput [40]). Consequently, there 
is a need for mathematics instruction to incorporate more than just the traditional 
format of equations into daily lessons and include ways to represent relational 
equivalence [43, 44].

One aspect of relational thinking is equal sign. Most elementary students 
begin to develop their awareness of the equal sign’s functionality at an operational 
level, where the equal sign acts as a symbol to perform a calculation or action [42]. 
When the bulk of instruction is focused on procedures and computing facts, many 
elementary students develop a shallow understanding of the equal sign and con-
sider it an operational symbol [45, 46]. For instance, students with an operational 
view of the equal sign will reject any equations presented outside of the traditional 
format, a + b = c, and will define the purpose of the equal sign as a cue to perform 
the calculations on the left side of the equal sign to get an answer [47]. However, 
given more exposure to a variety of equations, students can become more flex-
ible with their thinking and progress to different levels of understanding [40]. 
Mathematics instruction for early elementary classrooms should foster relational 
thinking by including tasks designed to draw attention to how numbers relate to 
one another and develop the flexibility to think of numbers in a variety of ways to 
establish the idea of equivalence [8, 48].

Matthews et al. [49] developed a construct map based on the research of 
Carpenter [47] and Hunter [50] to explain the continuum of relational thinking for 
students’ thinking. The first level of student understanding is called rigid opera-
tional. Students at this level are calculating traditional or missing term equations. 
Traditional equations, written a + b = c, place the equal sign as a function for 
solving the addition problem a + b to produce an answer. This traditional format 
instills an operational view of the equal sign [51]. With exposure to nontraditional 
equations, such as a = b + c, students become more flexible in their determination 
of a correctly written equation. However, their view of the equal sign still remains 
as a cue for calculation. As students move into the basic relational stage, their 
flexibility to solve equations written with operations on both sides of the equals 
sign increases. However, it is not until the final stage, comparative relational when 
students consider the number relations on each side of the equal sign to determine 
equivalency and their need to calculate diminishes. This level of relational thinking 
demonstrates students’ knowledge about how the equal sign relates to the entire 
equation, where they are looking for relatable numbers in the equation prior to 
solving the problem [52]. Identifying these relationships in equations and their con-
nections with the numbers is a critical component of mathematical understanding. 
Developing and applying the knowledge of relational thinking to solve mathemati-
cal equivalence problems will increase early algebraic understanding [41, 44, 46, 53].  
Students who think at the comparative relational level have a strong understanding 
of the equal sign and a deeper connection to algebraic reasoning [47, 50].

The natural tendency for students as young as kindergarten is to demonstrate 
an operational view of the equal sign; however, they do have the capabilities to 
think relationally if given the opportunity [45]. Therefore, relational thinking skills 
should be explicitly taught at an early age to avoid a deep-rooted set of operational 
skills [54]. Relational thinking involves flexible thinking to determine how num-
bers can be manipulated before answering a problem. Using relational thinking to 
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solve an algebraic equation requires the conceptual understanding that each time a 
number is manipulated the equation remains equivalent.

Providing students with a progression of nontraditional number sentences 
focused on numerical relationships and patterns will develop relational thinking. 
As a starting point for young students reversing the order of the number sentence 
to begin with the answer such as 3 = 2 + 1 presses students to accept that the answer 
does not always need to be after the operation [49, 55]. Next, students develop their 
understanding of the term equal as they begin to recognize that both sides of the 
equation compute to the same quantity through exposure to nontraditional equa-
tions written with the operations on both sides of the equal sign [47]. Students who 
possess the conceptual knowledge of equivalence recognize transformations can 
occur by adding the same number to both sides of the equal sign without chang-
ing the structure of the equation. For example, when asked whether the equation 
18 + 3 = 16 + 5 is true or false, students who are taught to think about the relation-
ship between 18 and 16, notice that 18 is 2 more than 16, and reason that it must be 
true because 5 is 2 more than 3. Unfortunately, if students are not taught to look at 
equations relationally, then the transformations between 18 and 16 simply become 
proceduralized and learned as memorized rules [52]. This strategy shows a level 
of relational thinking in which students use number relations to make the problem 
more manageable. Thinking relationally, therefore, is different from applying a col-
lection of memorized mathematical rules and procedures [56]. Students who think 
relationally identify number relations and reason about which transformations 
make sense in a particular problem [42].

Providing students with true or false equations can be another way to press 
students to think about number relationships. Equations such as 14 + 18 = 13 + 17 
are more compatible with instructing students to see number relationships because 
a numerical answer is not required. Engaging students in a discussion of how the 
numbers relate to each other to determine whether the equation is true or false 
strengthens their conceptual understandings of equivalence (Carpenter [47]). 
Students with sufficient conceptual knowledge of how these number properties 
are applied have the understanding to transfer their procedural knowledge of 
mathematical equations to algebraic thinking [48]. Meaningful discussions about 
number relationships and the transferability of those ideas helps students make 
more mathematical generalizations [39].

4. Enactive, iconic, and symbolic representations

Bruner’s modes of representations begin with the enactive, which includes 
manipulatives, or concrete, physical objects. The second representation is iconic, 
which represents any visual representations like diagrams, number lines, bar 
models, and graphs. The third representation is symbolic, which are abstract 
symbols like equations and algorithms. According to Bruner [2], students access 
their background knowledge of the representations to help make connections when 
the abstract symbols are isolated from other contexts. Concrete materials provide 
an opportunity for students to build background knowledge with iconic images 
depicting the meaning of the abstract symbols. When new abstract symbols are 
introduced, students can use their visual background knowledge as a retrieval 
mechanism to help remind them of the relevant concepts.

Instructional tasks heavily focused on abstract symbols tend to draw out the 
use of rote, memorized skill practice, which has been shown to compete with 
the development of spatial reasoning skills [57]. One way to help students make 
connections between numbers and symbols is to incorporate concrete materials 
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for students to manipulate during their practice and application [58]. Including 
concrete manipulatives for mathematical tasks has been shown to improve student 
understanding and retention of the practiced concept [59]. The use of concrete 
materials in isolation does not always guarantee that students will flexibly transfer 
the concrete representation to the symbolic representations [60]. Solving problems 
strictly in symbolic form leads to inefficient solution strategies, entrenchment of 
operational procedures, and inconsistent errors [42, 54, 57]. As a whole, math-
ematics instruction that isolates the symbolic representations leads students to 
manipulate symbols without conceptual understanding and a weakened ability 
to solve problems outside of their procedural understandings [61]. Alternatively, 
instruction designed to include a progression of representations beginning with an 
enactive or physical model to then an iconic or visual representation to a symbolic 
form can support a deep understanding of the mathematics [2, 62, 63].

Many students have difficulty in understanding concepts without being able to 
first visualize an idea in their mind [3]. Visualization helps students use figures or 
shapes in their mind to recall, understand, make connections, clarify, and remember 
new information [64]. Mathematics curricula loaded with only symbolic representa-
tions require students to memorize procedures, denying the student an opportunity 
to utilize their visual thinking in the process of building conceptual understanding. 
However, including visual representations into daily mathematics lessons can sup-
port the learning process and increase conceptual understandings [65].

Strong visualization and spatial reasoning skills contribute greatly to students’ 
ability to organize the structure of equations and mathematics [66]. Mathematical 
models can be a way to connect one’s visualization to their understandings of the 
problem [67]. The model connects the visualization into the spatial layout of an 
equation so students can devise a solution to solve the problem [68]. As students 
visualize the problem, they flexibly decode the context into the spatial layout of an 
equation [69].

When given the opportunity, students can develop the necessary spatial skills to 
visualize mathematics. Gesturing assists students to communicate their thinking. 
Mental rotation and spatial visualization can strengthen students’ ability to solve 
nontraditional equations. Therefore, promoting spatial reasoning and modeling 
(EIS) early on in students’ learning can promote mathematical competency and 
algebraic thinking.

5. Developing mathematical thinking

Curriculum should include ways to promote spatial reasoning through math-
ematical modeling to develop students’ conceptual understandings [47, 70]. 
Mathematical tasks should include both traditional and nontraditional equations 
[44, 46]. The use of mathematical modeling should connect through a progression 
of enactive models, iconic models, and formal, symbolic models. Iconic models are 
one way to introduce spatial reasoning tasks and can be integrated throughout the 
instructional year to increase students’ flexibility with the structure of equations 
and mathematical competency [8, 34].

The Developing Mathematical Thinking Institute (DMTI) offers a compre-
hensive curriculum designed to encompass all of these components for students 
to develop procedural and conceptual understandings. The DMTI curriculum is 
an alternative to the typical curriculum for teaching mathematics to help teachers 
develop a different approach to how mathematics is taught [71].

The DMT framework consists of five key elements for teachers to reflect upon 
as they plan, prepare, and instruct mathematics lessons: taking student’s ideas 
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seriously, encouraging multiple solution strategies and models, pressing students 
conceptually, addressing misconceptions, and maintaining a focus on the structure 
of the mathematics [72, 73]. Using students’ informal strategies values their think-
ing and gives the teacher insight as to the level of understanding each student has. 
Teachers use the five elements of the DMT to develop more efficient strategies and 
multiple models for solutions to mathematical problems. Students are encouraged 
to talk with others about their thinking, compare solutions, and make corrections 
to their errors. One of the most critical components of the framework is to draw 
attention to the structural components in mathematics.

One of the ways the DMTI curriculum builds student thinking is through the 
inclusion of Bruner’s [2] enactive, iconic, and symbolic models. Each module is 
comprised of lessons with tasks centered on the EIS framework to develop a strong 
foundation for the development of conceptual understanding and for solving 
problems [72]. For example, students in first grade are given a contextual problem 
about 10 children playing in sandbox, where they need to determine whether six of 
the children are boys, and then how many children are girls? Students first demon-
strate their thinking using unifix cubes, followed by drawing an iconic bar model to 
match their unifix cubes model. The symbolic representation of the numbers is then 
attached with labels. For example, to highlight the variety of ways to represent the 
number 10, students are asked to demonstrate the other possible representations for 
making 10 following the EIS progression. Modeling all of the possible combinations 
for 10 emphasizes the idea of equivalence, and using the EIS progression helps all 
students to visualize how the numbers relate to one another. Figure 1 provides a 
sample solution for the students to use as a model.

As students become fluent with facts within 10, they are introduced to the vari-
ety of ways to compose the teen numbers using units of tens and ones. For example, 
one task is to represent each teen number using units of one. Eventually, students 
begin to recognize the inefficiency of counting each unit of one. At that point, the 
teacher introduces a more efficient way of building the teen numbers by using a unit 
of 10. Over time, students independently build efficient models for larger numbers 
based on their previous experiences building with units of one. Once again, tasks 
such as these expose students to relational thinking and highlight the structure of 
equivalence through the use of mathematical modeling.

The DMTI curriculum encourages students to represent solutions to contextual 
problems, explain their solutions, and then generalize their understandings to other 
concepts (see Figure 2). An example of this is with contextual compare problems 
presented in Module 3 where students represent the number of blocks used to build 
two different towers. The task states that one tower is eight blocks tall, and another 

Figure 1. 
Sample solution for making 10 in Module 3 of the DMTI curriculum.
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tower is six blocks tall. Students are asked to represent both towers using unifix 
cubes and determine whose tower is tallest and by how much. Next, students draw 
an iconic representation of the towers, paying attention to the spatial relationship 
between the number seven and four. The drawing should depict that one tower is 
taller than the other, and the enactive model is used to determine the difference 
between the numbers seven and four. Last, students connect their understandings 
of the relationship between the two towers back to the symbolic representation by 
notating 8–6 = 2. As students fluently build models to represent the context, they 
are then asked to look at a given set of numbers, build the models with unifix cubes 
to match, draw an iconic representation of the models, and create their own story 
to match their model. Students work in partners to listen to the story, but then also 
explain the relationships between the two towers. With this activity, students often 
times gesture with their hands to explain how many more blocks are in one tower 
than the other tower.

As suggested by NCTM [21], the DMTI curriculum intentionally focuses on 
building students’ conceptual understandings of mathematical concepts through 
spatial reasoning tasks. Each task presents students with meaningful problem-
solving situations where they are encouraged to begin to represent their thinking 
through enactive mathematical modeling, followed by an iconic representation 
depicting their thinking, and lastly with a connection to the symbolic representa-
tion of the problem. Students are encouraged to communicate their thinking with 
partners to check for understanding or assessing any misconceptions that may arise. 
The structural components are intentionally highlighted within each lesson to foster 
deep conceptual understanding and help students generalize their knowledge to 
other tasks throughout the year. Overall, the DMT framework delivers a compre-
hensive curriculum designed to increase students’ mathematical understanding and 
improve spatial reasoning.

6. Summary

Most elementary students begin to develop their awareness of the equal sign’s 
functionality at an operational level, where the equal sign acts as a symbol to 
perform a calculation or action [42]. When the bulk of instruction is focused on 
procedures and computing facts, many elementary students develop a shallow 
understanding of the equal sign and consider it an operational symbol [45, 46]. 
Mathematics instruction for early elementary classrooms should foster relational 

Figure 2. 
Example of student work mat from Module 3 of the DMTI curriculum.
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thinking by including tasks designed to draw attention to how numbers relate to 
one another and develop the flexibility to think of numbers in a variety of ways to 
establish the idea of equivalence [8, 48]. Mathematical tasks should include both 
traditional and nontraditional equations [44, 46].

As educators become more aware of the need for relational thinking tasks, 
it is important to recognize the critical role spatial reasoning and mathematical 
modeling play in the overall development of algebraic thinking and the equal sign. 
The National Research Council report [1] and the National Council of Teachers of 
Mathematics [21] suggest more spatial reasoning be integrated into the elementary 
mathematics curriculum to promote relational thinking skills. Spatial visualization, 
gesturing, and mental rotation have been shown to increase student performance in 
mathematics [8].

Mathematical modeling gives students a visual representation to explain their 
mathematical thinking [74]. The use of mathematical modeling should connect 
through a progression of concrete representations, visual or iconic representations 
to more formal, and abstract representations [62]. We will examine whether cur-
riculum that supports students’ conceptual understandings through the integration 
of relational thinking, spatial reasoning, and mathematical models by incorporating 
Bruner’s EIS framework improves students’ spatial reasoning and relational thinking.

7. Overview of the study

This study was conducted to investigate whether there was a significant difference 
in first grade students’ performance in spatial reasoning when they learn to construct 
and compare numbers using iconic modeling. The study examined spatial reasoning 
for first grade students whose teachers either received a curriculum built on the use of 
enactive, iconic, and symbolic representations (EIS group) and an adopted tradi-
tional curriculum (traditional group). Students in both groups were tested using the 
Primary Mathematics Assessment Screener [75] in September, prior to the math-
ematics instruction, and again mid-May after the mathematics instruction. Student 
performance was compared across time. Thus, this study used a 2 (EIS group versus 
comparison group) × 2 (pretest versus posttest) design. The dependent variable was 
the students’ knowledge of spatial reasoning measured with the PMA-S. The goal 
of this study was to determine whether student achievement on the PMA-S differed 
between the EIS and traditional groups and whether achievement differed across 
time. The following research question was investigated: What is the effect of integrat-
ing iconic representations through student drawings in conjunction with the enactive, 
iconic, and symbolic teaching methodology into mathematics instruction on first 
grade students’ spatial reasoning and relational thinking performance?

The study consisted of first grade classrooms from five school districts. Two of the 
school districts serve between 15,650 and 26,240 students, and three of the districts 
serve between 600 and 1725 students. There were over 2600 students with Limited 
English Proficiency (LEP) comprising approximately 8% of the total districts. In 
these districts, the student demographics were 79.3% white, 10.3% Hispanic/Latino, 
5.9% Asian, 3.3% black, 0.9% Native American, and 0.8% Pacific Islander. First, 
grade classrooms were chosen on the basis of similarly matched demographics related 
to students who received free and reduced lunch assistance. There were 10 teachers 
in the EIS treatment group and 12 teachers in the traditional comparison group. The 
treatment group used the DMTI curriculum [76], and the comparison group used 
Bridges in Mathematics [77], and Math in Focus, Singapore Math [78].

The Primary Mathematics Assessment [75] is a formative assessment that 
includes a screener and six diagnostic measures. The PMA-Screener (PMA-S) builds 
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a profile of students’ strengths and weaknesses for six dimensions: number sense 
and sequencing, number facts, contextual problems, relational thinking, measure-
ment, and spatial reasoning.

One of the diagnostics includes a series of questions for shape composition. 
There are three subsections which include—shape composition without the need to 
rotate, composing a figure requiring overlapping of pieces during translations, and 
composing a figure by filling in a missing space.

A two-way design was used to explore the main effects on the different treat-
ments, EIS instruction and Traditional instruction and their interactions under 
different conditions, pretest and posttest. The research question was analyzed using 
a 2 × 2 analysis of variance (ANOVA) to explore whether scores on the pre and 
posttest was dependent upon the type of instruction. Repeated measure analysis 
of variance (ANOVA) allows a look at change over time using the PMA-S given two 
times over 9 months of instruction with different conditions (EIS and traditional 
instruction). Main effects and interactions were analyzed on the independent 
variables (EIS and traditional instruction and time) from the dependent variable 
PMA-S scores.

8. Findings

A two-way repeated measure ANOVA was conducted to determine whether 
there was a significant difference in growth between the EIS group and the tradi-
tional group for relational thinking and spatial reasoning. The PMA-S screened four 
other subset dimensions, facts, context, sequence, and measurement, which were 
not included in the design of the study.

For the relational thinking subtest, there was a main effect for TIME with a 
statistically significant difference for both groups (EIS and traditional)—scores 
increase from pretest to posttest, F(1, 449) = 105.2, MSe = 0.9, p < 0.001. There is 
also a main effect for groups with a statistically significant difference between EIS 
and traditional, F(1, 449) = 5.6, MSe = 1.2, p = 0.019.

There was a statistically significant interaction between both groups and time on 
relational thinking, F(1, 449) = 13.2, MSe = 0.9, p < 0.001, η2 = 0.03. This indicates 
that the difference between the change in students’ knowledge of relational think-
ing in the EIS and traditional groups was dependent upon the type of mathematical 
instruction. Based on the profile plots of estimated marginal means of relational 
thinking in Figure 3, EIS (group 1) and traditional (group 2), EIS and traditional 
groups’ trajectories indicate different patterns of mean scores over time. The 
p-value for the two-way interaction effect is <0.001, indicating mean relational 
thinking changed differently over time depending on whether students were in EIS 
or traditional.

To better understand the interaction, tests of simple effects were conducted. 
These results showed for the EIS group, scores on the relational thinking scale 
increased significantly from pretest to posttest, t(242) = 10.2, p < 0.001. For the 
traditional group, scores on the relational thinking scale also increased significantly 
from pretest to posttest, t(242) = 4.6, p < 0.001. Thus, for both groups, scores 
increased from pretest to posttest. The EIS and traditional groups were also com-
pared separately on the pretest and then on the posttest. These results showed that 
for the pretest, the groups differed significantly, t(449) = 4.5, p < 0.001. For the 
posttest, the groups were not significantly different, t(449) = 0.53, p = 0.6. For the 
pretest, scores were greater for the traditional group than for the EIS group.

Taken all together, the results of these analyses show that scores on the rela-
tional thinking subtest scores did not differ across groups. However, significant 
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interaction suggests that the change from pretest to posttest was not the same for 
the two groups. As seen in Table 1, the change was greater for the EIS group than 
for the traditional group. The EIS group began the study with significantly lower 
scores on the relational thinking subtests. The EIS group shows statistically higher 
gains than the traditional, thus confirming EIS has an effect.

For the spatial reasoning diagnostic, there was a main effect for TIME with a 
statistically significant difference for both groups (EIS and traditional)—scores 
increased from pretest to posttest, F(1, 449) = 85.2, MSe = 0.6, p < 0.001. There was 
also a main effect for groups with a statistically significant difference between EIS 
and traditional, F(1, 449) = 3.9, MSe = 0.9, p = 0.05.

There was a marginal significant interaction between both groups and time on 
spatial reasoning, F(1, 449) = 3.3, MSe = 0.6, p < 0.071, η2 = 0.01. This indicates 
that the difference between the change in students’ knowledge of spatial reasoning 
in the EIS and traditional groups was dependent upon the type of mathematical 
instruction. Based on the profile plots of estimated marginal means of spatial rea-
soning (Figure 4), EIS and traditional groups’ trajectories indicate slightly different 
patterns of mean scores over time.

To better understand the interaction, tests of simple effects were conducted. 
These results showed for the EIS group, scores on the spatial reasoning scale 
increased significantly from pretest to posttest, t(207) = 7.4, p < 0.001. For 

Figure 3. 
Estimated marginal means of relational thinking.

Relational thinking

Pretest Posttest

Group Mean SD Mean SD

EIS 0.74 0.77 1.61 1.2

Traditional 1.14 1.1 1.55 1.1

Table 1. 
Relational thinking descriptive statistics.
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the traditional group, scores on the spatial reasoning scale also increased signifi-
cantly from pretest to posttest, t(242) = 5.5, p < 0.001. Thus, for both groups, 
scores increased from pretest to posttest. The EIS and traditional groups were also 
compared separately on the pretest and then on the posttest. These results showed 
that for the pretest, the groups differed significantly, t(449) = 2.8, p < 0.01. For 
the posttest, the groups were not significantly different, t(449) = 0.36, p = 0.72. For 
the pretest, scores were greater for the traditional than for the EIS group, and on the 
posttest, scores were the same across both groups.

Taken together, the results of these analyses show that scores on the spatial 
reasoning subtest were equal on the posttest across both groups. However, the 
marginally significant interaction suggests that the change from pretest to post-
test was not the same for the two groups. As seen in Table 2, the change was 
greater for the EIS group than for the traditional group. The EIS group began the 
study with significantly lower scores on the spatial reasoning subtests. The EIS 
group shows statistically higher gains than the traditional, thus confirming EIS 
has an effect.

In summary, the instructional method (EIS vs. traditional) did have a significant 
effect on first grade students’ spatial reasoning. The study demonstrated statistical 
significance between the treatment groups who implemented the EIS instruction 
and comparison group who used traditional mathematics instruction. The next 

Spatial reasoning

Pretest Posttest

Group Mean SD Mean SD

EIS 1.24 0.803 1.82 0.871

Traditional 1.46 0.905 1.85 0.912

Table 2. 
Spatial reasoning descriptive statistics.

Figure 4. 
Estimated marginal means of spatial reasoning.
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section will provide details of the interpretation of findings, practical implications 
for educators, and recommendations for further study.

9. Interpretation of findings

The primary focus of the study was to look at the effects on students’ conceptual 
understandings of relational thinking and spatial reasoning when integrating the 
EIS representations into first grade mathematics lessons. As Cheng and Mix [8] 
revealed through their research, the need to integrate spatial reasoning tasks is 
critical for the development of students’ conceptual knowledge. Similar claims can 
be made based on the results of this study.

The EIS group performed statistically higher in relational thinking than the 
traditional group, doubling mean scores from pretest (0.74) to posttest (1.27). 
Previous work has shown students who are instructed to solve equations strictly 
in symbolic form struggle with algebraic thinking [79]. Integrating EIS repre-
sentation into first grade mathematics lessons with a balanced set of equations 
has shown to be effective at developing students’ relational thinking and spatial 
reasoning.

As Cheng and Mix [8] revealed through their research, the need to integrate 
spatial reasoning tasks is critical for the development of students’ conceptual 
knowledge. Similar claims can be made based on the results from this study. We 
conclude that the integration of spatial reasoning had positive effects on first grade 
students’ spatial reasoning skills, relational thinking, the development of concep-
tual understanding, and mathematical competency.

The findings support the notion that the integration of EIS representation 
into mathematics lessons offers students sufficient conceptual knowledge to 
develop number operations and mathematical competency [48]. Gain scores in 
facts and context are found to be consistent with earlier works from Carbonneau 
and colleagues [61], who suggests mathematics instruction should refrain from 
isolated skill and procedural practice in lieu of the development of conceptual 
understanding. Curriculum designed to include a progression of enactive, iconic, 
and symbolic models supports students’ conceptual understanding [2, 62, 63]. 
Students in the EIS group were instructed to enactively build and iconically 
represent their math facts simultaneously. In doing so, they increased their 
conceptual understanding of the mathematics. K-12 reform has included an 
integration of meaningful lessons designed to enhance algebraic thinking across 
all mathematical domains, and altering the curriculum to include spatial reason-
ing tasks has shown to improve mathematical performance [54]. Our investiga-
tion has demonstrated a positive effect on students’ spatial reasoning, relational 
thinking, and overall mathematical competency when first grade mathematics 
lessons integrate EIS representations.
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