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Abstract

Focal-plane avalanche photodiodes (APDs) are being more and more widely and 
deeply studied to satisfy the requirement in weak light and single photon imaging. The 
progresses of this worldwide study, especially the distinctive researches and achieve-
ments in Southwest Institute of Technical Physics and University of Electronic Science 
and Technology of China are reviewed in this chapter. We successfully fabricated up 
to 64 × 1 linear-mode Si APD arrays, and 32 × 32–64 × 64 Si single-photon avalanche 
detector (SPAD) arrays, and applied them in Laser Detection and Ranging (LADAR) 
platforms like driverless vehicles. Also, we developed 32 × 32–64 × 64 InGaAsP/InP SPAD 
arrays, and constructed three-dimensional imaging LADAR using them. Together with 
the progresses of other groups and other materials, we see a prospective future for the 
development and application of focal-plane APDs.

Keywords: avalanche photodiode, focus plane, laser detection and ranging

1. Introduction

Avalanche photodiodes (APDs) have been widely studied and effectively applied in commer-

cial, military, and academic fields [1] for a few decades. Compared with p-i-n photodiodes, 

APDs provide higher gain, higher sensitivity and lower detection limit [2], so they are mostly 

well applied in optical communications [3], imaging [4, 5], and single photon detection [6, 7] 

in recent years. As all-solid-state optoelectronic devices operating at room-temperature or 

under thermoelectrically-cooled conditions, APDs are scalable to numerous pixels so that they 

are taking more and more important roles in focal-plane processing and imaging [8]. Owing 

to the advantages such as internal photoelectric gain, small size, low driving voltages, high 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



efficiency, and fast response, focal-plane APD arrays bring about new three-dimensional (3D) 
imaging techniques which provide much wealthier and more accurate information for object 

recognition and identification [9]. Advanced 3D imaging technologies are strongly required 

in radar systems including laser detection and ranging (LADAR), so the focal-plane APDs 

and their LADAR applications were widely and deeply studied in recent years [10–20]. For 

the purpose of more progress in the future, it is necessary to take an overview on the present 

research and production of APD arrays. Briefly, the most significant progress is made by MIT 
Lincoln Laboratory. They developed state-of-the art products of Si and InP/InGaAs Geiger-

mode focal-plane arrays [10], which have been successfully applied in a few LADAR systems. 

Princeton Lightwave also succeeded in producing focal-plane single photon avalanche detec-

tor (SPAD) arrays and commercializing their single-photon camera based on the SPADs [11]. 

The research and production of other groups [12–14] may also be valuable as references for 

future developments. In this chapter, we review the research and application of the focal-

plane APDs in Southwest Institute of Technical Physics and University of Electronic Science 

and Technology of China [15–20]. It includes linear mode Si APD arrays, Si SPAD arrays and 

InGaAsP/InP SPAD arrays, which have been applied in LADAR systems.

2. Linear-mode Si APDs

The detection of weak light is technically significant in many application fields such as single 
molecule fluorescence, high-speed quantum cryptography, and infrared detection [21–23]. In 

all the application fields, APD devices are strongly required to perform photon-counting with 
high quantum efficiencies, quick optoelectronic response, and low dark counting rates (noise). 
LADAR imaging systems work in the way of sampling the spatial and/or temporal informa-

tion of the optical radiation to an array of detectors. Linear-mode (applied bias slightly lower 

than the breakdown voltage) APDs are often desired by LADAR systems because their dead-

time is normally much shorter than that of Geiger-mode (applied bias slightly higher than 

the breakdown voltage) APDs so that they can measure sequential pulse returns from closely 

spaced multiple objects. In extreme cases, linear-mode APDs can even detect a few photons 

or a single photon, which adds an extra dimension to LADAR scene data [21]. Generally, in 

the near-infrared spectral band, especially at 905 nm, Si APDs might be applied for ultra-

weak light detection, and can be used in linear-mode at gains up to about 500 or greater [23]. 

Therefore, linear-mode Si APD arrays were developed and applied in LADAR systems.

2.1. Fabrication of the linear-mode Si APD chips

A basic linear-mode APD detector, as shown schematically in Figure 1, consists of the APD 

element and the readout integrated circuit (ROIC) [24, 25]. The ROIC is composed of a trans-

impedance amplifier (TIA), a stabilivolt source circuit and a comparer. The APD element 
converts incident light signal into primary photo-generated carriers and photocurrent, then 

amplifies the resulting photocurrent through internal avalanche gain, i.e. the impact ioniza-

tion. The TIA converts the amplified APD current into a voltage signal, which is proportional 
to the total multiplied charge delivered by the APD.
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The design and simulation of an APD device were carried out using a full-band Monte Carlo 
(MC) device model. For each APD geometry, the MC model incorporates realistic band struc-

tures [26, 27]. The basic reach-through APD model with separate layers of absorption, charge 

and multiplication (SACM) is shown in Figure 2(a). In particular, it is important to know that, 

in general, electrons can be much more ionized than holes in silicon. Electrons rather than 

holes should be swept by the electric field into the high field region where the multiplication 
takes place. Thus, there should be a π-type absorbing region of suitable width for absorbing 

the incident radiation, and the radiation should be able to enter this region with no loss in any 

n+-type layer.

The basic design of a reach-through APD consists of a narrow high-field region where the 
multiplication takes place, with a much wider low field region in which the incoming radia-

tion is absorbed. As schematically shown in Figure 2(b),an avalanche process occurs as the 

electric field in a p-n junction is higher than the critical field (E
cr
) at which impact ionization of 

carrier starts. The electric field in the p-n junction of a Si APD should be some 2–5 × 105 V/cm. 

It should not be more than 106 V/cm at which the Zener effect may take place [28–30].

For satisfactory operation of the APD, the high resistivity π-type substrate must be fully 

depleted by the applied bias voltage. Generally, it works well provided the substrate wafer is 

not too thick and the required response times are not less than ~10 ns. However, fabrication 

Figure 1. Schematic of the linear-mode Si APD.

Figure 2. (a) Schematic cross section (not to scale), and (b) schematic profile of electric field of a typical APD structure.
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Figure 3. The TIA with the regulated cascode circuit configuration.

of Si APDs on 6-inch or 8-inch wafers, as is now usually the case, will often mean that the 

absorption region is thick (~700 μm), operating voltages are high, and response times are 

slow. These problems can be avoided with the use of an epitaxial version of the design in 

Figure 2(a). In this approach, a high-resistivity π-type layer is epitaxially grown on the surface 

of a low resistivity p-type Si substrate. The absorption region (epitaxial layer) may be of any 

thickness (typically chosen to be in the range of 30–50 μm), and its resistivity is chosen to be 

low enough so that it does not introduce a significant series resistance. When bias voltage 
is applied, the depletion layer stops at the interface between the substrate and the epitaxial 

layer [31–34]. While fast response is a requirement, the narrow active region of this APD is 

normally the best option.

Linear-mode Si APD arrays are fabricated by adopting Si planar manufacturing process on a 

high-resistivity π-type layer, which is grown epitaxially on the top of a low resistivity p-type 

Si substrate. The initial material developed is the Si layer 35–40 μm thick, a highly-resistive 

epitaxial layer on a p+-type Si <111> substrate.

2.2. Design of the TIA

As mentioned above, the ROIC chips consist of a voltage-stabilized source and a TIA. The 

voltage-stabilized source effectively reduces external noise jamming and increases voltage 
suppression ratio of the power source. Here we have the structure of a new-type regulated 

cascode circuit configuration which is compatible with the APD chips. The bandwidth, the 
parallel negative feedback and the trans-impedance gain of the TIA are improved by using 

regulated cascode circuit [35, 36].

Figure 3 schematically illustrates the TIA with the regulated cascode circuit configuration. 
The regulated cascode circuit consists of common gate amplifier input stage (including R

1
, R

2
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and M
2
) and common source amplifier stage (including M

1
 and R

3
), forming partial current 

parallel negative feedback. The primary photocurrent generated by APD is imported to the 

source electrode of the cathode-input amplifier. Then the APD’s current signal is converted 
into a voltage signal. The source follower, consisting of M

3
 and M

4
, is used for isolation. The 

secondary common-source amplifier is composed of M
3
 and R

4
, which play a part role in 

amplifying signal again. To improve the output drive capability, the output stage contains 

two-stage source followers, made up of M
6
 + R

5
 and M

7
 + M

8
 respectively.

2.3. Properties of the Si APD array

Developed at SITP, Si APD arrays were characterized at UESTC. The fabricated devices exhibit 

high primary photoelectric sensitivity (about 0.5 A/W @905 nm at gain M = 1) and high speed of 
operation (about 10 ns). Figure 4 shows an example of typical dependences of the gain on the 

reverse bias. As the bias arises up to the reach-through voltage V
rt
, it depletes the π-type ava-

lanche region. For the APDs, V
rt
 attains values of 60–70 V, over which not much more regions are 

depleted. Further increasing the bias voltage mainly leads to higher electric fields in the struc-

ture. As the highest electric field reaches the critical value E
cr
, multiplication of carriers starts to 

occur. More rising in the reverse voltage makes the steady current density go up to in principle 
infinity, where actually the avalanche breakdown takes place [37–39]. The corresponding volt-

age here is thus named avalanche breakdown voltage V
br

, about 110 V for Si APDs.

At operating voltage (V
br

 × 98%), the multiplication region of a Si APD has an electric field as 
high as about 3.7 × 105 V/cm and an impact generation rate as high as about 2.8 × 1025 s−1 cm−3. 

As a result, the avalanche gain (M) and the sensibility (S) of the linear-mode Si APDs are 

observed to be up to about 600 and 300 A/W @905 nm respectively.

Figure 4. Dependence of dark current, photocurrent (with/without multiplication) and multiplication gain on reverse 

bias voltage of the designed SACM Si APD.
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The ROIC chips were developed on the 0.18-μm CMOS platform of SMIC, Shanghai. The 
voltage-stabilized source effectively reduces external noise jamming and increases voltage 
suppression ratio of the power source. TIA shows trans-impedance of 120 dBΩ, the equivalent 

input noise is about 6 pA/Hz1/2, the rise time is 7.3 ns, and the bandwidth is BW ≥ 35 MHz.

Arrays of 64 × 1 Si APDs and ROIC chips were integrated to form the photodetector device 

by performing bonder-leading welding techniques. Together with packaging processing, 

the devices of 64 × 1 Si APD focal-plane arrays were successfully fabricated, one of which is 

shown in Figure 5. The power of input signal light is 0.9 nW (the duty cycle is 1/1000), and 

the maximum output voltage amplitude is 1.04 V. The devices present pulse responsivity 

R ≥ 1 × 106 V/W, noise equivalent power NEP ≤ 5 pW/Hz1/2, rise time t
r
 ≤ 3 ns, and inhomoge-

neity of responsivity of each pixel ≤10%, under 905 nm, 100 ns and 10 kHz of laser irradiation.

2.4. Application of the linear mode Si APD array

As we constructed linear-mode Si APD focal-plane detectors, the 64 × 1 array devices are tested 

for possible applications. One example is that, the device is effective in running a driverless 
platform. Using this APD array, an obstacle-avoidance LADAR, as shown in Figure 6(a), is 

successful with detection distance of 110 m, distance resolution of 5 cm and angle resolution 

of 0.5o. This LADAR can effectively detect the obstacles on the way, as shown in Figure 6(b). 

Compared with traditional technique, in which a single detector was used, the image is much 

clearer (10 times of pixels) and the imaging speed is much faster (35 versus 15 Hz), so this 

newly developed obstacle-avoidance LADAR is more accurate and better to be used in driver-

less vehicles.

Figure 5. The device of 64 × 1 linear-mode Si APD focal-plane array.
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3. Si SPAD focal-plane arrays

A Geiger-mode APD can detect a signal as weak as a single photon. In recent years, it is 

very active and effective as a single-photon detector and usually termed SPAD. Organized 
into arrays, SPAD can be used in many systems such as LADAR, mobile laser imaging and 

viewing instrument. By using some special processing, we developed typical Si-based SPAD 

arrays working at 905 nm. The key techniques are described as follows.

3.1. Fabrication of Si SPAD array chip

3.1.1. Design

According to the requirement of a Si SPAD, there would be a depletion region as thick as 

30 μm. Using usual single-sided abrupt p-n junction, to get such a large depletion while 

remaining avalanche gain, one need to apply a voltage as high as 500 V, which is not real-

istic enough. We design a reach-through structure, containing n+-π-p-π-p+ layers, as shown 

in Figure 7. The electric field distribution under bias near breakdown is similar to that in 
Figure 2(b). The light-generated carriers is multiplied in the region with highest electric field, 
so called multiplication region. This region is very thin compared to the whole depletion 

region. The other parts in the depletion region can have electric field as weak as possible but 
sufficient to ensure carrier drifting at the saturated speed. As a result, the operating voltage 
can be greatly decreased.

There could be two types of host materials. One is high-resistive Si wafer (p-type with 

1014 cm−3 boron doped), the other is epitaxial lowly-doped p-type Si on a p+-doped Si wafer. 

To fabricate the reach-through structure on bulk Si, the whole wafer has to be depleted as the 

Figure 6. (a) An obstacle-avoidance LADAR, using 64 × 1 linear-mode Si APD array as the focal-plane detector, is installed 

on a driverless vehicle. (b) The imaging effect of the LADAR, where the red pattern shows the existence of obstacles.
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device works. To get low breakdown voltage of 150 V or so, we must polish the wafer down 

to a thickness of 50 μm, which is difficult and brings a lot of unstable features to the devices. 
Therefore, we use epitaxial wafer as the material for fabricating Si SPAD arrays.

Decreasing the dark count rate (DCR) is conflicting with choosing lower avalanche electric 
field E

max
 and lower operating voltage. There should be tradeoff between these two to get 

optimized structure parameters. Our previous product has DCR of several 10 kHz with light 

receiving area of Φ500 μm. Here we try making a device area of Φ50 μm to get much lower 

DCR. By further well designing and optimizing the internal structure, improving the pixel 

uniformity and surface passivation effect, we succeeded in controlling the DCR under 10 kHz.

3.1.2. Precise control and uniformity

Precise control of the device structure is a decisive step. The multiplication layer and charge 

layer are most important because they greatly influence the key parameters such as quantum 
efficiency, response time and gain. To precisely control the charge quantity and multiplica-

tion length, we adopt the following process. Boron ion-implantation is firstly performed to 
accurately control the dopant amount. Due to smaller diffusion coefficient of boron in Si, the 
broadening of boron distribution after thermal treatment is weaker. Then, second epitaxy is 

carried out to grow n-type layer. This is the way to precisely control the multiplication length.

It is the critical process of a Si SPAD array to make all the pixels controllably consistent in char-

acteristics, e.g. the avalanche gain, the response time, and the breakdown behavior. The pixels 

uniformity is influenced by four factors: epitaxial structure, ion-implantation of the charge 
layer, diffusion of the p-n junction, heat-induced doping redistribution in the device process. 
The most important is that, the epitaxial layers should be grown as uniform as possible. 

Usually, a 50-μm thick epitaxial layer should have thickness uncertainty of less than 50 nm.

In an SPAD array, one of the critical structures is the guard-ring. The designed SPAD struc-

ture shows that, the n+ contact and light-incident layer is so small that the p-n junction depth 

is about 0.5 μm. In order to prevent the device from being lowly broken down, a guard-ring 

around the device can be fabricated by doping at the edge of the n+-doped area. It uses more 

deeply diffused n-doping (Phosphorus has big diffusion coefficient in silicon) to decrease the 
curvature rate of the edge of the p-n junction with the π-region, to reduce the electric-field 

Figure 7. The designed structure of Si SPAD.
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of the junction edge, to improve the breakdown voltage at the edge of the device. Properly 

controlling diffusion depth, doping level and ring width, the edge breakdown voltage can be 
improved to be about 1.5 times that in the avalanche region. As an example, usually, 2–3 μm 

wide guard-ring is suitable for the above purpose.

3.1.3. Isolation process

In the avalanche procedure, there come photons at wavelength shorter than 1 μm while creat-

ing multiplication carriers. These photons may enter other pixels nearby to generate unin-

tentional count. In order to suppress cross-talk between pixels, design of the SPAD structure 

is optimized. Further by processing the light-hiding belt and with the aid of decreasing the 

reflectivity at the interface, the optical cross-talk is well controlled. In the Si SPAD array, there 
exist big shunt capacitances in between the adjacent pixels, so the electric cross-talk could be 

of high possibility. This is resolved by decreasing capacitances related to the wires in the later 

interconnection process.

With a long absorption region (~30 μm), it needs to keep background doping level being lower 

than 1014 cm−3 in order to remain lower electric field in this layer. In the meantime, the inver-

sion layer near the surface is a major factor causing device failure. Thus, it is necessary to set 

a p+-doped area around the surficial active region, i.e. the channel-resisting region. It can cut 
the inversion layer at the SiO

2
-p-Si interface and stop the surficial expansion of the depletion 

region. Its final role is to suppress the surficial leakage current and to prevent the device from 
being broken down by a low bias. By calculation and experience, a doping level higher than 

1016 cm−3 in the surface layer is sufficient to form the channel-resisting effect.

By performing the above processes, chips of 32 × 32–64 × 64 Si SPAD arrays are fabricated. One 

sample is shown in Figure 8.

Figure 8. One chip of Si SPAD array.
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3.2. ROIC optimization

To realize highly accurate timing of the photon arrival, we use a time-digit-conversion (TDC) 

circuit with the aid of phase-shifting technique. This approach satisfies the requirements of 
2 ns in the time resolution and 20 kHz in frame frequency while decreasing the power con-

sumption of the whole chip. An active-quenching design is used to reach an extinction time 

of less than 50 ns.

High precision timing and time-reading circuit is composed of TDC and memory readout 

unit, as shown in Figure 9. After gate/signal conversion circuit transforms the high voltage 

output of SPAD into low voltage signal, it firstly needs to read the photon flying time of every 
pixel through TDC, to change times into digits, and to read out the digits through the memory 

readout circuit. For the purpose of 2 ns of time resolution, highly frequent, highly stable main 

clock is supplied to the 12-digits counter. Frequency more than 500 MHz is not easy to be real-
ized at every pixel at the same time. Due to the processing limit, shunt resistors and capaci-

tors may significantly contribute to the power consumption (To an 32 × 32 array, the power 
consumed in clock lines would be 100 mW). Without using phase-locking loop (PLL), here 

we design TDC circuit with the aid of phase-shifting technique, to satisfy the requirement of 

high time resolution while decreasing the requirement for clock frequency. The TDC consists 

of counter and time-delay chain. When the external timing signal (a rising edge) comes, the 

counter starts to work; when a photon is detected, the circuit generates a signal to stop the 

counter and remain the present count data. Via the time-delay chain composed of 8 units, 

the external clock creates 8 clock signals with different phases. As the starting signal comes, 
every clock signal is sampled and the time-delay chain outputs an 8-digit signal, which will be 

coded and saved into the data process module. A similar process happens when a stop signal 

comes. Difference calculation between the start and stop data gives a 4-digit signal, construct-
ing a 12-digit information together with the data from the counter. Then, the time interval 

Figure 9. Structure of the high precision time-digit conversion circuit designed for Si SPAD array.
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between start and stop is converted into a 12-bit digital signal. When the counter output clock 

is effective, its locked state is transferred bit by bit into a 12-digit register. Controlled by a 
25 MHz clock, the register transfers its digits into the register of the neighboring pixel. This 
serial transform mode gives at last a frame frequency of 25 kHz.

Avalanche-quenching circuit is another important aspect in SPAD array. To realize a dead-time 

less than 50 ns, we design actively-quenching circuit as shown in Figure 10. When avalanche 

photocurrent is detected, the voltage at point a jumps down and forces the quenching circuit 

run. After a while, the voltage at point b comes higher, switching on the transistor M1 via the 
feedback branch, and quickly pulling down the voltage at point V

apd
 to make the APD bias 

lower than breakdown voltage (quenching the APD). After more a while, the charge– discharge 

circuit gradually decreases the voltage at point b, M1 is turned off via feedback circuit, and V
dd

 

charges the APD through R
0
 and parasitic capacitances to restore the Geiger mode.

The above designs are realized by performing CMOS processing, and thus the ROIC chips 
are produced.

3.3. Interconnection and package

The next key processing is interconnecting the SPAD chip and the ROIC chip. The fabrication 

is as follows. After some degree of thinning processing, the backside of the wafer is treated 

to have a light-incident window for every pixel. As shown in Figure 11, the window area is 

formed by etching off the p-type substrate, and the layer under the etched window is made to 
be ~35 μm thick. Dry etching such as SF

6
 + O

2
 ICP is used to fabricate windows with straight 

sidewalls. In addition, the uniformity of this processing must remain ≤ ±2% in the window 

depth and ≤ ±0.5 μm in the window diameter. Then, it is realized that negligible light is 

absorbed by the p-type substrate. Using standard Indium-shot interconnection processing, 

the SPAD chip is connected exactly with the ROIC, as shown in Figure 11. Integrating the 

interconnected chip with TEC cooling cells, and packing these all into a vacuum can, a Si 

SPAD focal-plane device is developed.

Figure 10. Structure of the quenching circuit for Si SPAD array.
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3.4. Application of Si SPAD focal-plane arrays

Measurements show that the developed SPAD array have DCR lower than 5 kHz, average 
photon detection efficiency (PDE) ~25%, time resolution <1 ns, and frame speed ~25 kHz. 
The 32 × 32 SPAD array exhibits pixel uniformity < ±5% (e.g. in counting rate). It can thus be 

applied in a practical imaging system. The above fabricated SPAD array device is installed in 

a LADAR 3D imaging instrument. The instrument can three-dimensionally detect and rec-

ognize multi-hided objects in forests and mountains, and be of small size, light weight, high 

resolution and rapid imaging.

4. InGaAsP/InP SPAD focal-plane arrays

Like InGaAs/InP SPADs [40], InGaAsP/InP SPADs are also extensively studied and practi-

cally explored for their utility in many fields including single photon imaging [41] and quan-

tum information processing [42, 43] in the near-infrared wavelength range. Thanks to the 

advanced epitaxial techniques, this kind of SPADs has been well developed and applied in, 

e.g., LADAR in recent years [41, 44]. Nevertheless, many critical problems are still open to be 

resolved. One of them is the device homogeneity, such as the reproducibility and uniformity 

of the SPAD performance [45], which are strongly required to be precisely controlled by refin-

ing the structure parameters in epitaxial growing and device processing. One can, of course, 

estimate the effects of some individual physical parameters on the performance homogeneity 
using some analytical method [46], but it is not easy to obtain the knowledge of many param-

eters at the same time. It is even unlikely to make clear the collective influence of multiple 
parameters and to quantitatively take a balance between various parameters. The quantita-

tive association between the device inhomogeneity and structure uncertainty should thus 

be necessarily established. Therefore, we firstly carry out a statistical analysis on InGaAsP/
InP SPAD characteristics by randomizing the structure parameters, and then figure out the 

Figure 11. Schematic of the interconnection process for fabricating Si SPAD arrays.
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necessary control accuracies in a few significant structure parameters, which are required for 
nice device homogeneity. Accordingly, we fabricate InGaAsP/InP SPAD focal-plane arrays 

and demonstrate their applications.

4.1. SPAD array homogeneity versus material controllability

An InGaAsP/InP APD structure is designed as an example SPAD object. It is of a hetero-

structure comprising SACM layers, as can be seen schematically in Figure 12(a). By using 

conventional APD theory [28, 47] and lately advanced approaches [48–50], citing material 

parameters from previous reports [49, 51, 52], and neglecting the dead-space effect [53], the 

device characteristics of this structure was calculated.

Figure 12(b) illustrates the calculated current–voltage (I-V) characteristics in dark. Here 

the breakdown voltage V
b
 is principally the applied reverse bias V at infinite avalanche 

current. The simulated DCR r
d
 versus PDE η is shown in Figure 12(c). Both of them are 

dependent on the applied excess bias V
ex

 = V − V
b
. As the SPAD is running under a middle 

excess bias V
ex0

 = 5 V, r
d
 is found below 10 kHz and η appears some 0.50. It suggests that 

5 V of V
ex

 is an optimal operating condition at 230 K, so V
ex

 = 5 V will be the reference point 
in this study.

As a SPAD array is used, there is usually a common bias V
0
 generally applied to more than 

thousands of pixels [44]. Provided structure fluctuations exist among the numerous pixels, the 

Figure 12. (a) The structure diagram of a designed InGaAsP/InP Geiger-mode APD (or SPAD) studied in this work; (b) 

calculated I-V relationship in dark and (c) calculated DCR versus PDE for the InGaAsP/InP SPAD device at 230 K.
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effective V
ex

 will vary from this to that pixel so that device performance exhibits inhomogene-

ity. To clarify this effect, we first set any structure parameter t randomly changing in a way as

   t  
i
   =  t  

0
   (1 + W  σ  

i
  ) ,  (1)

where the subscription i = 1, 2, 3 is the calculation sequence number in a series of simulations, 
t

i
 is the ith value of parameter t, t

0
 is the designed value of t, W is the fluctuation degree of t 

relative to t
0
, and σ

i
 is the ith value of the random variable σ, distributed in a normal mode 

with full width at half maximum (FWHM) of unity. Similarly we can set

   
 n  

ci
   =  n  

c0
   (1 +  W  

nc
    σ  

nci
  ) ,

   
 t  

mi
   =  t  

m0
   (1 +  W  

tm
    σ  

tmi
  ) ,

   (2)

and so forth, where n
ci
(t

mi
) is the ith value of charge density n

c
 (multiplication width t

m
), n

c0
(t

m0
) 

is the designed value of n
c
(t

m
), W

nc
(W

tm
) is the relative FWHM of n

c
(t

m
) with respect to n

c0
(t

m0
), 

and σ
nci

(σ
tmi

) is the ith value of σ for changing n
c
(t

m
). All the variables are defined in a similar 

way to the above. The structure parameters are changing independently because each has 

its own FWHM and σ values. With a set of structure parameters (n
ci
, t

mi
,...), one set of device 

performance data is calculated. With thousand sets of device performance data, distributions 

of V
b
, V

ex
, r

d
, and η are obtained through statistics, and then the correlation between the per-

formance fluctuations and device structures is figured out.

Our simulations show that n
c
, t

m
 and t

c
 (charge layer thickness) have strong effects, while 

absorption layer doping level n
a
, thickness t

a
 and multiplication layer doping level n

m
 have 

weak effects on V
ex

. The strong t
m

 effect can be easily understood since the width of the 
multiplication region is crucial to determine the characteristics of a SPAD [48, 54]. It means 

that the charge quantity should be controlled most precisely in design and epitaxy process. 

In addition, we see that every single structure parameter leads to V
ex

 fluctuation in a linear 
manner.

Extending the above simulation to more structure parameters, the homogeneity of device 

performance can be obtained in terms of varying parameter numbers. The result of V
ex

 is 

displayed in Figure 13(a), where a sublinear change of V
ex

 fluctuation is seen to happen with 
increasing parameter number. Taking all of the six parameters into account, we get that V

ex
 

varies with a FWHM of 24%, far less than a simple summation of the effects of individual 
parameters. The V

ex
 distribution arisen by six independently varying parameters is demon-

strated in Figure 13(b). With the referred excess bias V
ex0

 = 5 V, the practical value of V
ex

 varies 

mainly in the range of 4.4–5.6 V, quite good for many applications. It may be also worthy to 

get the effects on other performance characters. Figure 13(c) presents the variation of DCR r
d
, 

which exhibits a roughly normal distribution with a wide relative FWHM (54%). In detail, the 
worst DCR is some 30% higher than the designed value, which is acceptable in applications. 

Figure 13(d) displays the distribution of PDE η, normal with a narrow relative width (17%). It 

suggests a PDE change within 0.46–0.54, which is homogeneous enough in many applications. 
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The reason why the DCR fluctuation is much larger than PDE is that DCR depends almost 
exponentially on V

ex
 and PDE, as Figure 12(c) shows.

In realistic epitaxial growth, controlling the thickness or the doping level may usually have 

a common precision in different layers, although a non-dope layer would have worse car-

rier density fluctuation than the intentionally doped regions. The following thus shows a 
way more effective to investigate the uncertainty correlation between the epitaxy growth 
and the device performance. Let us study the device characteristics varying with com-

mon fluctuation width W
nd

 of the residual carrier densities in the absorption layer and the 

Figure 13. (a) Simulated distribution FWHM of the excess bias V
ex

 dependent of the number of simultaneously varying 

parameters; distribution histograms of (b) V
ex

, (c) DCR and (d) PDE brought about by six simultaneously varying 

parameters including the doping level and the width of the absorption region n
a
 and t

a
, of the charge layer n

c
 and t

c
, 

and of the multiplication region n
m

 and t
m

, respectively. The dashed lines on the histograms indicate the fitted results to 
normal distributions.
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Figure 14. Contours of V
ex

 fluctuation width as a function of the thickness and doping level fluctuation widths W
t
 and W

n
, 

under different fixed fluctuation widths of the residual carrier density in the non-dope layers W
nd

.

multiplication layer, common fluctuation width W
t
 of the widths of the absorption, charge 

and multiplication regions, and fluctuation width W
n
 of the doping level in the charge 

layer, that reads

   

 n  
ai
   =  n  

a0
   (1 +  W  

nd
    σ  

nai
  ) ,

   

 n  
mi

   =  n  
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    σ  
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t
    σ  

tmi
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 t  
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   =  t  

c0
   (1 +  W  

t
    σ  

tci
  ) .

    (3)

One typical trial is to examine the dependence on two fluctuating parameters while remain-

ing the others fixed. With W
nd

 fixed, Figure 14 shows the V
ex

 contours as functions of W
n
 and 

W
t
. From these data, the precision range of epitaxy growth required for definite performance 

homogeneity can be clearly seen. At first, two conditions with 10 and 20% of W
nd

 appear close 

to each other, especially for high V
ex

 variations, owing to the weak effect of the carrier density 
in non-dope layer. The relationship between W

n
 and W

t
 is far away from a linear curve but 

more like a circle for a finite V
ex

 fluctuation. To constraint V
ex

 fluctuation below a certain value, 
the fluctuations in thickness and charge control should roughly follow

    W  
n
     2  +   W  

t
     2  <   W  

x
     2 ,  (4)

where W
x
 is a certain precision control value of thickness and charge. Quantitatively speak-

ing, V
ex

 relative fluctuations below 50, 40, 30 and 20% need W
x
 values of about 4, 3, 2 and 1%, 

respectively.
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In conventional growth, it is more difficult to control doping than thickness. Based on the 
result of Figure 14, as the thickness control can be better than 1–2%, V

ex
 homogeneity of 50, 

40 and 30% could be realized by constraining the charge precision within 4–4.5, 3–3.6 and 

2–2.7%, respectively. Viewed from another angle, the result is suggestive of a large space to 

tradeoff between the controls in thickness and charge. The example of V
ex

 fluctuating below 
50% with W

nd
 = 10% suggests that the thickness (charge) precision W

t
(W

n
) is better to be as 

small as 1% if W
n
(W

t
) just satisfies 4.5%(4%), while W

t
(W

n
) could be roughened to 3%(3.5%) if 

W
n
(W

t
) weakly decreases to be about 3.5%(3%). In general, limiting the device inhomogeneity 

(in term of V
ex

) below 50, 40, 30, and 20% needs the thickness and charge be controlled to a pre-

cision degree better than 3–3.2, 2.4–2.6, 1.7–1.9, and 0.9–1.2%, respectively. Since these degrees 
of control accuracies are easy or possible in epitaxy growth, InGaAsP/InP SPAD arrays are 

now producible in many laboratories [55–57] including our group, as will be described below. 

In order to finely limiting the device homogeneity, such as with V
ex

 fluctuation less than 10%, 
the thickness and charge should be controlled better than 0.5% in fluctuation, together with 
non-dope carrier density controlling within 10%. This degree of epitaxy precision is quite 

a challenging technique. It is possibly one of the reasons why it is presently still difficult to 
prepare 512 × 512 or larger scale SPAD arrays. Obviously, the above method is very helpful 

and effective to quantitatively correlate the controllability of multiple structure parameters 
with the SPAD device homogeneity.

4.2. Fabrication of InGaAsP/InP SPAD arrays

InP based APDs must use epitaxial materials. Firstly, we prepared APD materials with the 

main structure as shown in Figure 12(a) by using metal organic chemical vapor deposition 

(MOCVD). MOCVD growth is performed to satisfy the material uniformity requirements 
described above. On this epitaxial wafer, SPAD device structure as shown by Figure 15 

will be fabricated. As an array, there are isolating grooves (channels) between the pixels, 

Indium shots on the front side for interconnection and micro-lenses on the backside for light 

collection.

The key processes to fabricate the InGaAsP/InP SPAD arrays are as follows. First the active 

p-n junction is formed by selective diffusion. The diffusion process includes, thermally 

Figure 15. Structure of InGaAsP/InP SPAD array chip.
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evaporating one layer of solid Zn
3
P

2
, depositing one layer of SiN

x
 to thoroughly cover Zn

3
P

2
, 

rapid thermal annealing to diffuse Zn into the chip, and etching off the SiN
x
 and the resident 

Zn
3
P

2
. To make the response time of a SPAD device shorter than 5 ns, the active area (the p-n 

junction area) of a pixel is made to be less than ϕ100 μm. Considering the guard-rings, the 

lateral depletion width and the diffusion length of electrons and holes, the distance between 
neighboring pixel centers is taken to be 300 μm. To suppress the cross-talk between pixels, the 

isolation between pixels is, besides the deep grooves, aided by highly resistive p-n junction. 

To increase the filling factor, light is incident on the backside, where there fabricated micro-
lenses for each pixel. The microlenses here are not bonded onto the backside, but directly 

fabricated on the backside by specific dry-etching.

The fabricated SPAD array is characterized as shown in Figure 16. Measurements on material 
properties show that residual carrier density, layer thickness, and doping level fluctuations 
in a 10 × 10 mm2 area appear about 8, 0.8 and 1.5%. On such a chip, 32 × 32–64 × 64 arrays of 

SPADs were developed and characterized at low temperatures. Under gated mode with gate 

repetition rate of 500 kHz and gate width of 10 ns, DCR and PDE were measured using a 

single-photon laser at 1.06 μm. The afterpulsing probability is controlled below 2% by setting 
the dead time to be ~2 μs. As presented by the inset in Figure 16, various pixels have dark I-V 

curves with V
b
 (defined to be the bias at 10 μA) weakly changing but around 75 V. Figure 16 

shows that, the fluctuation in the excess bias distributes in a normal way with FWHM of 14%, 
which is consistent with the simulated value 18%, and compatible with an estimation based 

on Figure 16. The DCR and PDE vary normally with FWHM of 31 and 10%, and this is also 
consistent with the simulated values 37 and 12%, respectively.

The ROIC is designed in a way similar to that of Si SPAD arrays. The interconnection is a 

standard indium-shot inversion-bonding process. After packaging into a vacuum can with 

Figure 16. An experimental result of V
ex

 fluctuation distribution of InGaAsP/InP SPAD array. The dashed line represents 
the fitting to a normal distribution. The inset exhibits the I-V curves in dark of a few typical InGaAsP/InP SPAD devices.
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a transparent window, the InGaAsP/InP SPAD array is developed and can be used in an 

imaging system.

4.3. Application of the InGaAsP/InP SPAD arrays

A 64 × 64 InGaAsP/InP SPAD array device is installed onto the focal plane of a LADAR sys-

tem. Under 1.06 μm laser irradiation, the scence 1–3 km away was successfully imaged with 

3D information, as shown in Figure 17.

5. Summary

APDs are being more and more widely and deeply studied to satisfy the requirement in 

weak light and single photon imaging. The progresses of this worldwide study, especially the 

distinctive researches and achievements in SITP and UESTC are reviewed. We successfully 

fabricated up to 64 × 1 linear-mode Si APD array, and 32 × 32–64 × 64 Si SPAD arrays, and 

applied them in LADAR platforms like driverless vehicles. Also, we developed 32 × 32-64 × 64 

InGaAsP/InP SPAD arrays, and constructed 3D imaging LADAR using them. Together with 

the progresses of other groups and other materials, we see a prospective future for the develop-

ment and application of focal-plane APDs.
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