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Abstract

Trends in technological developments, such as autonomous vehicles, home automation,
connected cars, IoT, etc., are based on integrated systems or application-specific integrated
circuits with high capacities, where these systems require even more complex devices.
Thus, new techniques to design more secure systems in a short time in the market are
needed. At this point, verification is one of the highest costs in the manufacturing stage
and most expensive in the design process. To reduce the time and cost of the verification
process, artificial intelligence techniques based on the optimization of the coverage of
behavioral areas have been proposed. In this chapter, we will describe the main tech-
niques used in the functional verification of digital systems of medium complexity, focus-
ing especially on meta-heuristic algorithms such as particle swarm optimization, genetic
algorithms, and so on. Several results are presented and compared, where the opportunity
areas will be described.
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1. Proposed techniques for functional verification of digital systems

New applications in different areas, such as the automotive industry, robotics, IoT, and

smartphones, among others, require increasingly complex digital devices. This implies the

use of new techniques to reduce the design time of the devices, ensuring useful functionality

according to the specification. It is important to know that manual simulation and functional

verification require much time and expertise, so it has been necessary to develop software tools

that improve performance, reduce manufacturing times, decrease verification costs, and

increase the confidence level of the RTL implementations. In addition, new systems use a large

amount of computational resources and new algorithms that increase the complexity of digital

systems and require new methods to analyze and evaluate the device under verification

(DUV). Several works of researchers on functional coverage methods have been made. Most

studies use the following philosophies: static (methods based on logical or mathematical

techniques), dynamic (methods based on simulation), and hybrid methods (combining static

and dynamic). Next, works based on meta-heuristic and data mining algorithms report differ-

ent methods for verification.

To perform verification of digital systems, different approaches have applied heuristic algo-

rithms, for example, genetic algorithms (GA) that apply the evolution theory, where individ-

uals within a population adapt to the conditions to the environment, compete for resources,

and generate the evolution of the population through operators such as selection, crossing and

mutation. Most of the time, the generation of pseudorandom tests produces worse results than

this generation of test sequences. For example, authors in [1] perform a PowerPC architecture

verification using genetic algorithms by generating pseudorandom custom instructions and

encoding a sequence of instructions with a fixed length. The population size is small to reduce

system simulation time. In the same way, in [2] the authors presented an implemented method

to generate directed tests through a genetic algorithm, and a cell represents the chromosome in

a uniform random distribution in two limits; the different parameters of the method were not

fully automated; therefore, extensive knowledge of the evolutionary framework by the user is

needed. In addition, in [3], the authors configure a genetic algorithm, which is included in a

software platform to improve the functional coverage in a device. In this latter, chromosome

coding is based on established instructions, and the proposed method helps to achieve uncov-

ered tasks and increases the hit rate in the test of hard cases, improving the results of the

pseudorandom test generation.

Some works have implemented ant colony optimization (ACO) and particle swarm optimiza-

tion (PSO). On the one hand, the ACO uses the imitation of the behavior of ants seeking better

paths from the initial place to the food place; ants get their food by means of pheromones and,

in this way, other ants walk the paths and can provide positive feedback. In [4], a method

based on the ACO that combines the pseudorandom test generation with a software platform

that generates the digital system states is presented. The results show a reduction in computa-

tional complexity compared to random generation and other heuristics based on GA. On the

other hand, the PSO algorithm is based on the interaction between the particles in the swarm.

For instance, the authors in [5] present a verification method by using branches as a coverage

metric and a PSO algorithm to perform the validation of RTL implementations.
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Other algorithms have been applied; for example, in [6], the authors used Bayesian networks in a

functional verification method, and this type of networks is a model based on probabilistic

graphs that are composed of random variables or nodes and edges that represent dependencies

between them. The verification has feedback and the ability to cover hard cases and increase the

coverage rate of progress, even though a manual configuration for the process was required.

Other techniques were proposed for hardware verification based on meta-heuristics [7], where a

differential evolution (DE) algorithm is applied; the verification is based on a coverage model

using coverpoints and the algorithm is used to generate test vector sequences.

Works have improved the functional coverage using data mining. In [8], the authors proposed

a learning methodology where knowledge from test is extracted. The extracted data is reused

to generate tests with similar values to other important ones and cover new assertions. The

method is applied to perform a constrained random verification of a processor and reports

improvements in assertions coverage through the information extracted in the verification. The

authors in [9] proposed an automatic learning method of rules regarding micro-architectural

behavior of the instructions, and these rules were embedded in a stimuli generator tool. The

method is applied in a microprocessor, improves the quality of the test cases generated and

reaches interesting coverage events. In addition, [10] describes a method based on decision

trees. In this method, before activating the sentences, they go through an engineering of formal

verification to filter the candidate alterations in the output, generating automating RTL

sentences. The proposed method was divided into two spaces: static and dynamic techniques.

Static analysis techniques were used to direct the data mining process. In addition, Hidden

Markov Models (HMM) are statistical methods that use probability measurements for sequen-

tial models of the data represented by sequences.

Other techniques used in functional verification are based on mutations that are changes of the

RTL implementation, and such coverage metrics are used to drive the verification progress

during simulation. For example, in [11] the authors proposed a methodology to verify a

microprocessor using mutations. To test the vector sequences, the design simulation is

performed first, then a set of mutations is added, and the verification is executed. Finally, a

comparison of the results is made. One of the problems occurs when a large number of

mutations are added because the verification time is increased.

In this chapter, an alternative hybrid method that uses coverage models is presented. This

method represents the device behavior through CoverPoints, and fitness functions focused on

sets of specific behavioral regions. In particular, a PSO algorithm with a re-initialization

mechanism (BPSOr) is described. The method represents a hybrid technique that uses a

simulation tool and meta-heuristic algorithms through a proposed verification interface.

2. Functional verification elements

In large-scale electronic integration design, functional verification is the verification process of

a design logic that complies with specific rules design for its operation and manufacturing in

an integrated circuit. The functional verification answers the question: “Does the proposed
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electronics design meet the desired design and functionality requirements?” A complex task

with times and high computational efforts is presented mainly in VLSI design. The functional

verification is adjacent to a deeper design verification that, in addition to functional verifica-

tion, adopts nonfunctional aspects such as time, design and power, implemented in the design

of mixed circuits for signal processing.

There are different elements which work during the functional verification process. A verifica-

tion system usually consists of several types of components:

1. Test generators are used in the stages of the functional verification where the test vectors

are used to detect a fault presented in the specifications and the generation of the code.

These generators use a full SAT type of NP resolution that is computationally expensive. In

other types of generators, the vectors are created manually, for instance, the patented

graphics-based generator (GBM). In short, modern generators create random vectors that

are applied statistically on the design verification. Therefore, the users of the generators do

not clearly specify the requirements to the test generation.

2. The supervisors interpret the stimuli produced by the vector generator for the DUV inputs.

Generators create entries with a high level of abstraction, for example, transactions or

instructions in assembly language. Supervisors convert this entry into inputs for the DUV

as defined in the design interface specification.

3. The simulators (software tool) excite the circuits under verification to obtain their outputs,

depending on the current state of the design and the input vectors injected (verification

vectors). In this case, the software tool has a description of the design network list.

4. The monitor converts the state of design and its outputs into an abstraction transaction

level that will be stored in a score-board database for later verification.

5. The verifier validates the score-board data. In some cases, the generator produces the

expected results, in addition to the inputs. For those cases, the verifier must validate actual

results that match the expected results.

6. The supervisor is included in the verification environment and manages all the above

components together.

Figure 1 shows a pseudorandom test generation scheme where the functional coverage is used

as coverage metric. The verification is done using constraints for the stimuli during the device

simulation. After a specific number of iterations, the coverage information is reviewed by

Figure 1. HDL verification through pseudorandom test generation.
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identifying the holes produced and, then adding more constraints. Finally, the process is

executed until a stop criterion is met.

Verification is a very difficult task due to a large volume of possible test cases that exist even in

a simple design. The verification can be attacked by many methods:

1. The logical simulation executes the logic of a circuit before building it to obtain its approx-

imate behavior.

2. Simulation acceleration applies special-purpose hardware to the logic simulation problem.

3. Programmable logic creates a version of a system; this is expensive and even much slower

than real hardware and orders of magnitude faster than simulation. For example, they can

be used to start the operating system in a processor.

4. Formal verification attempts to prove mathematically that certain requirements are met or

that certain undesired behaviors cannot occur.

5. Automated verification uses automation to adapt the test bench to changes in the register

transfer level code.

6. Specific HDL versions and other heuristics are used to find common problems.

Different methodologies have been proposed in order to perform the functional verification.

Three different philosophies have been suggested in order to perform the functional verifica-

tion: static methods (formal methods), dynamic methods (which are based on simulation) and

hybrid methods (which does not fall in formal and informal methods). Every philosophy

contains different strategies in order to test the digital system functionality. For example,

formal methods perform the verification using mathematical expressions to give a formal

description of the device’s behavior. Examples are model checking, theorem proving, etc.

During the verification based on dynamic methods, the stimuli are used to exercise the func-

tionality, and test benches are also implemented and added to the verification environment.

These methods are very scalable and practical. Due to the greater constant complexity of the

devices, the use of these methods in the industry is very common. On the other hand, even if

the designs are completely verified, it is not easy to guarantee that there are no errors.

Hybrid methods make up the third category, combining the formal and dynamic techniques.

This type of methods is focused on increasing the coverage obtained from the bottleneck

guiding the search through the full coverage space. A disadvantage is that its design requires

broad background about verification techniques.

2.1. Problems solution through meta-heuristic algorithms

Searching directly for test vectors sets that appropriately evaluate and examine the functional-

ity of the developed devices is not trivial. For example, for the deterministic methods, the

consumption of resources is generally growing exponentially, which depends on the size and

architecture of the circuit. Consequently, other solutions have been proposed, i.e., methods that

use meta-heuristic are mainly applied to decrease the computational complexity when verify-

ing the device.
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http://dx.doi.org/10.5772/intechopen.80048

77



Meta-heuristics methods are algorithms to find a global solution using local approximations

and heuristics. A meta-heuristic represents a top-level strategy which guides the heuristics to

solve a problem. Frequently, not all search details are specified and can be adjusted according

to a specific problem. Alternatively, there are general techniques to handle the directed search

where optimal local solutions will be avoided; they are employed in the verification context.

For instance, in genetic algorithms, a population of individuals is used as an initial set of

solutions. The fitness value of a test sequence represents how good an individual is. In

addition, the search for solutions is directed by an individual’s combination that uses a set of

operators.

There are different definitions of meta-heuristics; commonly, a meta-heuristic can be defined as

a process that drives other heuristics through a combination of elements to explore and exploit

the search spaces. Besides that, it uses learning strategies to manage the information obtained

and achieve optimal solutions. Some examples of meta-heuristics are ant colony, artificial bee

colony algorithm, genetic algorithms, etc. Many works have used this type of algorithms to

find solutions to different problems. Its applicability is suitable in optimization problems

where the computation of cost functions is so expensive and influenced by a type of noise.

Consequently, meta-heuristics are techniques that find good solutions in large search spaces.

2.2. Automated functional verification in digital systems

In this work, the functional verification of the devices is designed and executed automatically.

Moreover, when the functional verification uses the coverage data that is produced from each

simulation, it is named as “directed functional verification.” A fundamental aspect is the

coverage information (integrity measurement) for the test sets and represents the data where

the revision is made in the verification. In addition, the analysis of this process allows the

generation of new test sequences to evaluate other coverage regions.

The verification by simulation of the device is carried out when the expected functionality is

translated into the implementation of RTL according to the specification and the criteria of the

designer. Then, the device is reviewed through a series of steps, for example, checkers, moni-

tors, test-benches, etc. In the end, the verification platform gives the coverage results that

express the percentage of functionality verified. When reviewing the functional verification

definition in [12], the RTL implementation of a device based on a set of features and opera-

tional requirements should be provided, to execute the verification, which is composed of the

process that guarantees the device implementation that complies with each feature given in the

specification.

Automated functional verification involves different elements such as coverage models, con-

trol flow graphs, test sequences, and cost functions, among other elements. When these ele-

ments interact, a system of test vector generation is formed. Some verification methods use this

type of scheme to perform verification of digital devices.

An important case occurs when the test generation uses feedback information to explore new

behavior regions, when this happens it is named as coverage-directed test generation. There

are different definitions, for instance, according to [12], this generation allows to produce

different test sequences to exercise different functionalities (characteristics of the coverage
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models) of the device. Therefore, this process occurs when a test sequence is injected into the

input of a device and then a new function value is exercised. Then, the value obtained is stored.

Finally, all device states are reviewed and a new test is generated.

In other words, first, a test vector sequence is injected into the input of the device; then, if a new

feature from the intended behavior is covered, the test sequence and the value of the feature

exercised are stored. Later, the device states are reviewed and another test vector is produced

to verify the “DUV.” After this, all the states are verified and the values of coverage metrics are

analyzed.

Figure 2 shows the main steps in the automation of the directed test generation. In this scheme,

a verification plan based on based on a functional specification is needed, which describes

what characteristics of the device will be verified and how it will be done.

2.3. Functional coverage models and coverage metrics

A functional coverage model can be described as a functional coverage space where the device

behavior is captured. This means that it represents a coverage space that contains the interre-

lationships that exist between inputs, outputs, tasks, events, conditions and characteristics,

which could show the correct functionality of a device with a confidence degree of a device.

The coverage model is designed based on the implementation or device specification and a

coverage metric or coverage structure.

A coverage metric consists of a heuristic to measure what part of the device behavior has been

verified correctly. The main objective of this measure is to reflect which parts of the function-

ality have been met with correct execution during the processing of the information by the

device, i.e., functional coverage (verify that all characteristics meet the specification), statement

coverage (verify if the lines of code in the HDL implementation are exercised), branch coverage

(analyze if the paths are traveled through the branches during the simulation), and finite-state

machine (check how many states have been covered correctly).

The models are fundamental components of the verification process. A coverage model using

stimuli, events, constraints, and CoverPoints is generated. It means that the coverage models

are representations that map the intended behavior through characteristics, inputs, outputs,

and its interrelations. A coverage model can be based on coverage points (CoverPoints).

CoverPoints represent the values of each variable in a coverage model.

A coverage model can be defined as the different characteristics to represent the device

behavior according to a functional specification that has different constraints. In particular,

Figure 2. Automation of directed test generation.
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the way of representing the behavior affects the granularity of the model, that is, a model with

more characteristics can represent the original intention more efficiently, and as a consequence,

it has a higher level of granularity. The accuracy of that model describes the implementation.

The coverage model may contain explicit and implicit device behavior features. Moreover, the

models are designed according to the device specification and implementation. Figure 3 shows

a coverage model where fidelity of a model determines how closely the model defines the

actual requirements of a device behavior.

3. Verification method using BPSOr algorithm

The proposed verification method uses the BPSOr algorithm, which is based on several psy-

chological aspects and social elements. In this social-cognitive context, individuals must inter-

act among them, where the best performance occurs within the particle group and previous

behaviors. Each individual is a particle, each particle group is a neighborhood, and each

cognitive and social particle behavior is influenced by an improved performance from the

groups.

At this point, two proposals are presented: lbest (local-best) and gbest (global-best). In the first

proposal, the particle with the best performance in its groups affects to the remaining parts. In

the second proposal, the swarm is important, because particles are connected among them,

where the best performance of a particle from the swarm affects it and the results are

improved.

In the swarm, each dimension is analyzed, and there are two main computational problems:

memory and velocities; the first one establishes the best particle location, comparing the actual

position and other better ones by means of the search. In addition, a key metric is the rate of

change, which is computed for the particle based on the velocities to obtain gbest (the best

global) and lbest (the best local solution). Incremental changes in both learning and attitude are

simulated, providing the granularity of the search in the problem space. On the one hand,

speed represents changes in probabilities, which may have the value “1” or “0.” On the other

Figure 3. Functional coverage model.

Digital Systems80



hand and considering the particle dimension, the attitude of the changes represents the prob-

ability, which can be “1” or “0.” For these reasons, the sigmoid function S V idð Þ [13] transforms

velocities to probability values and obtains a zero state for each particle, see Eq. 1. If vid is high,

the particle bit will probably be 1, and if the vid is low, the particle bit will probably be 0, where

vid is a value in the range Vmin;Vmax½ � ¼ 0:0; 1:0½ �, ensuring that two possible values take the

dimension bit (for the sequences): “1” or “0.”

S V idð Þ ¼
1

1þ exp �vidð Þ
(1)

It is important to control the influence (from paths by each particle and other particles in the

population), because the particles can move to the regions where the fitness variables have the

best values. In this case, the pseudorandom values have produced better results when they are

the mutation operators in the genetic algorithms. If the PSO algorithm is expressed in real

numbers, a great number of problems are presented in binary domains, requiring extra oper-

ations for converting real values to binary values.

In binary versions, the PSO algorithm uses binary data directly with a re-initialization process,

see Algorithm 1. The latter is composed of instructions or rules, where a particle is represented

by a set and its elements are binary sequences. In this algorithm, in the first step, the position xi
!

and velocity G xi
!� �

are initialized and computed for each particle. In the second step, G xi
!� �

and its best previous position pid are compared. If G xi
!� �

is better, then its best position pid is

equal to xid. In this case, the velocities vid are compared. For every particle dimension, xid has a

value “0” when rid position fitness is less than s vid tð Þð Þ (from sigmoidal speed function), but it

has a value “1.” These steps are executed until stop condition is reached.

Algorithm 1. Pseudocode of Binary PSO with a re-initialization process (BPSOr).
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In this pseudocode, Vmax and Vmin are constraints of each probability of change, where each

position of the particle is considered, and the re-initialization process avoids local solutions

and covers new behavior regions. This process is based on population-based measures, and if

the best global performance is greater than the best current performance of the swarm, then the

swarm of particles is initialized again. Consequently, the best particle position and the best

particle of the population are stored. In addition, both the current positions and particle

velocities are re-initialized. To re-initialize the velocities, a probability value is computed,

whose aim is to avoid a convergence in an optimal local solution.

The main aspect of this algorithm is the decision when the bit string has a value of 1 or 0,

which is based on the probability and is defined as a function of personal and social factors,

see Eq. 2, where: (a) vid t� 1ð Þ is a measure of the current probability (individual predispo-

sition) for the decision of 1 or 0; (b) φ1 and φ2 are positive random numbers, which are

obtained form an uniform distribution, and they represent predefined upper limits; (c) r1

and r2 are positive random numbers, which can take some value from 0 to 1; (d) xid tð Þ

describes the current state, when a bit-string d is analyzed for the individual i; (e) t repre-

sents the current discrete time, and t� 1 represents the previous discrete time; (f) pid is the

variable that represents the best state and has a value of 1 if the individuals with the best

success are located when xid is 1 and 0 in otherwise; (g) pgd is the best neighbor and has a

value of 1 if the best success is reached by some number at the moment of examining the

neighborhood with state 1 and has a value of 0 in the other case; and (h) rid describes a

vector or data structure of random numbers, which are obtained by using an uniform

distribution among 0.0 and 1.0, and Pre represents the re-initialization factor with real value

in the unit interval 0.0 to 1.0.

vt tð Þ ¼ vid t� 1ð Þ þ r1� φ1 pid � xid t� 1ð Þ
� �

þ r2� φ2 pgd � xid t� 1ð Þ
� �

(2)

Figure 4. Flow diagram of BPSOr algorithm.

Digital Systems82



Figure 4 shows the flow diagram of BPSOr algorithm. The different advantages of the binary

PSO algorithm with re-initialization (BPSOr) enable to produce test sequences, operating in the

verification context and analyzing the devices, which are being verified.

4. Test vector generation method

A proposed interface based on heuristic algorithms and a software tool is used. Moreover,

some steps to verify the digital systems are performed. The description of the test generation

method implemented in this work is shown in Algorithm 2. Firstly, the device parameters

must be configured and initiated. In the same way, for the meta-heuristic process, several

parameters are initiated and assigned based on the operational requirements (specifications)

and implementation. Then, the set of device parameters are initialized.

Algorithm 2. General method of generation of test vector sequences.

In this case, BPSOr algorithm generates the test sequences; then, a simulation tool to evaluate

them is used. The coverage information from device simulation is reviewed and saved. Then,

the fitness variables are computed and the best values are stored, which are used in the new

iteration.

Local-best topology was implemented in the verification method to perform different experi-

ments. The scheme of this topology is shown in Figure 5 where test vector sequences are

clustering in some sets representing groups of particles; in this case, the particles or test

sequences are affected by its fitness value and the best in its neighborhood. The best particle

consists of the test sequence with the best fitness value in the group. Additionally, each test

sequence or particle can communicate with others in its group. Later, in every iterations, the

set of particles is directed toward the best particle in the swarm.

Global-best configuration is represented in Figure 6; in this topology, each particle is affected

by the best solution in the swarm. All particles are included in the same group and they move

toward the best solution. After every algorithm iteration, the test sequence with the best

performance guides to the others through the search space.

On the other hand, the fitness function used in the algorithms is shown in Eq. 3. This function

is focused on the percentage of holes produced in specific CoverPoints (Peh). Therefore, the

Functional Verification of Digital Systems Using Meta-Heuristic Algorithms
http://dx.doi.org/10.5772/intechopen.80048

83



problem is translated to maximize the number of points covered and, at the same time,

minimize the percentage of holes in specific behavior regions.

f 1 ¼ MAX
1

Peh

� �

(3)

Test generation sequences are produced in the verification environment to verify the devices.

In the beginning, a new binary sequence is tested and analyzed in the device, running the

Figure 5. Groups of test vector sequences using the local-best topology.

Figure 6. Groups of test vector sequences using the global-best topology.
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respective simulation. Then, after the last sequence is completed, the cost values are quantified.

Their calculation dependents of the points and holes are determined during the respective

simulation. The information obtained is delivered to the generator module of test sequences.

Therefore, a new sequence is generated and the process is repeated while the stop condition is

not reached.

The proposed verification system is composed of several modules that are connected through

an interface between C and SystemVerilog languages. Figure 7 shows a scheme where the

system couples the device under verification and the verification process is performed at the

RTL level.

5. Case study

The proposed verification method is validated through different experiments using two digital

systems. Additionally, the performance of the BPSOr, genetic algorithm, PSO, and random test

generation is compared. RTL implementation of the devices was employed as benchmarks in

the verification platform. The applicability of this type of method focuses on the block-level

verification of IP cores because the automatic verification depends on the controllability degree

of events generated from the stimulus during the device simulation. PSO algorithm with a re-

initialization mechanism can be more complex computable, however, because this algorithm

Figure 7. Proposed scheme.
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achieves fine solutions very quickly, the verification time could be reduced. The best scenarios

with different features of BPSOr algorithm will be presented.

Devices such as a UART-IP core were employed in order to perform its verification. The

UART-IP can be used as a transmitter and receiver. A 16-bit address bus and an 8-bit data bus

are included in the IP core. Its verification was based on the functional specification and the

RTL code implementation. The coverage model was implemented using 785 bins in 12

CoverPoints. The initialization and configuration were performed based on the specification.

Besides, the verification of a FIFO memory was performed using a coverage model with 784

bins. The memory is often contained in devices such as processors, UARTs, interfaces, and so

on. Its implementation was designed in Verilog language and the configuration of the signals

was controlled according to the features described in the functional specification.

To develop the proposed experiments, different values of parameters were used, which were

included in several scenarios. Therefore, a scenario consists of a set of parameters that are used

for the meta-heuristic algorithm. In the case of BPSOr algorithm, the parameters such as

topology (global or local), velocity values, number of particles, and ϕ value were modified.

Additionally, running a scenario of a defined number of times with a specific parameter

configuration is defined as an experiment. The size of the swarm used was among 3 and 16

particles. Also, “global-best” and “local-best” topologies were implemented in the algorithm.

The ϕ variable was modified with values from 2.0 to 4.0 for the scenarios. On the other hand,

the evaluation of the test sequences was performed using two fitness functions, which are

based on the coverage obtained. Basically, these functions get the CoverPoints and the holes

generated at the run-time. When the simulation of a device ends, the coverage produced is sent

to the test generator module and, finally, a new test is generated.

The results obtained are expressed in the best scenarios where information such as the best, the

average, the total iterations, etc. are included. In addition, the binary test sequences were

evaluated by modifying their number of elements or length. For example, if a particle is

composed of two sequences, then its height is equal to 2.

The obtained results from the best scenarios will be presented to analyze the BPSOr perfor-

mance. Furthermore, a genetic algorithm (GA) with elitism feature was implemented. Some

algorithm parameters such as crossover percentage, mutation percentage, maximal number of

evaluations, and population size were modified. A stop criterion was defined using the total

number of evaluations. Besides, all CoverPoints were clustered focusing in the points that

required to be exercised.

The experiments were performed using a computer with Linux Fedora Core 23. The features of

the computer are as follows: Processor model: Intel Core i7-4790 K CPU-4 GHz., RAM: 8 GB,

CPU: 4298.5 MHz, and Cache: 8192 KB. Additionally, all experiments were performed over a

Linux Fedora Operating System, where the verification platform was successfully installed.

After this, the obtained data were saved and reviewed. The obtained results from simulations

were handled as statistical information to obtain the best fitness values.

When the verification process is performed, some characteristics could not be exercised due to

different factors; for instance, if the behavior regions have the same cost values, then the fitness
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functions could not give a difference regarding to other regions. Even, if more algorithm

iterations are used, then the test sequences generated will cover the same behavior regions

and the holes will not be covered. It is important to design strategies by focusing on the regions

that are not easily covered. One strategy consists of a group the CoverPoints in sets with

different weights to produce higher behavior areas. In addition, efficient search algorithms

are required. Therefore, meta-heuristic algorithms can guide the search usefully and exercise

all functionality of the device.

5.1. Experiments

The functional verification method based on meta-heuristic algorithms can test the functional-

ity regions by focusing on specific behavior parts that can required more exploration. In these

experiments, the verification method is used to verify two different digital systems. First, to

show the performance of the GA a set of experiments will be developed. The genetic algorithm

used was a binary version where the best individual remained in the next epoch (elitism).

Table 1 contains the parameters used for three different scenarios. Each experiment was run 30

times and then the coverage percentages and average time were stored. For instance, in the

first case, a population of 100 individuals was configured with a crossover of 0.5 percentage

and a mutation of 0.001 percentage.

Table 2 shows the obtained results for four best scenarios. Reviewing the results, in the third

scenario, a few number of iterations was required in order to reach 100 coverage percentage.

Besides, the average time used was 160.46 minutes.

Parameters GA scenarios

1 2 3 4

Crossover percentage 0.5 0.5 0.45 0.45

Mutation percentage 0.001 0.001 0.0005 0.003

Population size 150 120 100 100

f f 1 f 1 f 1 f 1

Table 1. GA algorithm settings for four different scenarios.

Final values 1 2 3 4

Best value 100 100 100 100

Worst value 95.44 97.13 99.08 98.30

Average value 98.23 99.12 99.87 99.62

Average evaluations 8090 7944 7353 7623

Average Time (min) 178.09 173.05 160.46 165.36

Table 2. Results obtained using a genetic algorithm in the platform to verify a UART-IP core.
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Table 3 shows the four best scenarios using the BPSOr algorithm to perform the verification of

a IP-UART core. One of the parameters that was changed is the swarm size. In this case, 3, 6, 9,

and 12 particles were used in the proposed method. For example, in the first scenario, the

parameters used were: 9 particles, 3 neighborhoods, ϕ = 4.0, global-best topology, and the f 1
cost function.

After, the experiments were performed, the obtained information was reviewed and the best

results for the four scenarios are presented in Table 4. According to these results, using the

fourth scenario, the average number of iterations was 1065 in 23.085 minutes to achieve 100

coverage percentage.

Table 5 contains the obtained results for four algorithms: GA, pseudorandom, BPSO, BPSOr,

etc. In these experiments, different parameters over the verification platform were changed. In

addition, four of the best scenarios are presented showing the best, worst, and average cover-

age. Also, the average number of iterations and the average time are added.

Commonly, the pseudorandom test generation is used to exercise the device functionality

during the functional verification. Reviewing the results, at the start, the coverage percentage

was increased very quickly. However, after achieving a coverage threshold percentage, more

iterations to increase the coverage were needed. For instance, in the case of the UART-IP core,

percentages over 95% were obtained.

According to the results the use of meta-heuristic algorithms to guide the search during the

functional verification of digital systems is a good alternative because the behavior areas can

Parameters BPSOr scenarios

1 2 3 4

Number of particles 9 6 12 3

Number of neighborhoods 2 2 4 1

ϕ max 4 4 4 4

Topology G-best G-best G-best G-best

f f1 f1 f1 f1

Table 3. Configuration parameters of the BPSOr algorithm for four scenarios using the UART-IP core for two sequence

solutions.

Scenario Number of evaluations Best value Worst value Average Time (min)

1 2137 100 100 100 46.53

2 1608 100 100 100 37.12

3 2719 100 100 100 60.954

4 1065 100 100 100 23.085

Table 4. Results obtained for four different scenarios using the BPSOr algorithm in the proposed platform with a UART-

IP core.
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be covered very quickly. In the case of genetic algorithms, the population of individuals can

evolve by modifying the test sequences to exercise new features of the device. One of the

problems is that the guide is based on the evaluations of all population which evolves by

means of operators such as mutation, crossover, etc.; when the population size increases, most

number of evaluations in each epoch is required; thus, the simulation time is increased. During

the functional verification, percentages over 99% were reached using the UART-IP core and the

FIFO memory using less time than pseudorandom generation.

On the other hand, when the BPSOr algorithm was used in the verification platform, more

functionality was exercised requiring less number of evaluations. Different from the original

version of PSO, the BPSOr algorithm can re-initialize the particle swarm based on the current

best coverage percentage and the number of iterations performed on run time. It means, if the

coverage percentage is not increased, then the best solution, the best particle positions, and the

positions and velocities of the particles are reinitialized. This mechanism is used to avoid to fall

in local optima solutions and guide the search to behavior regions not explored. In addition, in

most of the experiments, the coverage results obtained with BPSOr algorithm were higher than

PSO algorithm. It is important to mention that meta-heuristics can be useful techniques to

guide the test generation during the verification of devices.

6. Conclusions

Complexity of digital systems is constantly increasing; therefore, the implementation of new

methods to improve the confidence and reduce the time of design is required. In this chapter, a

verification method based on the use of meta-heuristic algorithms is described. Techniques

such as genetic algorithms and particle swarm optimization algorithms were used to verify the

digital systems, and a comparison was presented. Also, elements such as coverage models,

fitness functions, and software tools are included. According to the results, the use of meta-

heuristic algorithms such as the BPSOr algorithm and fitness functions can be useful to

exercise the device functionality by focusing on behavior regions that have not been covered.

In the case of GA, the coverage results obtained show that a lower number of iterations than

pseudorandom test generation is required. Although in the best coverage scenarios a coverage

percentage of 100 was obtained, it was observed that when increasing the number of

Final values Binary GA pseudorandom BPSOr BPSO

Best value 100 96.09 100 100

Worst value 99.08 94.53 100 100

Average value 99.87 95.27 100 100

Average evaluations 7353 8000 2137 2194

Average Time (min) 160.46 174.73 46.538 48.755

Table 5. Functional coverage results obtained using genetic algorithms, pseudorandom generation algorithms, PSO and

BPSOr to verify a UART-IP core.
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individuals, the number of iterations used was increased; thus, more time was used in each

iteration. The PSO algorithm obtained higher coverage percentages than GA and pseudoran-

dom generation. A main characteristic is that a fewer number of individuals or particles than

GA are required. In the case of the BPSOr algorithm, the number of iterations required was less

than PSO and GA in most of experiments; therefore, the verification time was reduced.

Consequently, hybrid verification methods can improve the performance during the functional

verification at block level of digital systems.
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