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Chapter

Immunotherapy for Treatment of 
Cancer
Aida Karachi

Abstract

Cancer is known to be second cause of death worldwide despite aggressive 
therapeutic measures such as surgical resection of tumors, radiation therapy, and 
chemotherapy. The failure of currently available therapeutics for cancers, has 
led to increasing interest in alternative approaches including immunotherapy. 
Immunotherapy for cancer treatment is enhancing immune responses to fight 
cancer cells. Monoclonal antibodies, immune checkpoint blockades, targeted 
therapy, adoptive cell therapy, CAR T cells, and cancer vaccines are the most cur-
rent and efficient parts of immunotherapy armamentarium. Immunotherapy has 
tremendous success in the treatment of cancers and is considered as a standard care 
of treatment or recurrence preventive therapy for variety of cancers. In this chapter, 
we discuss different types of immunotherapy for cancer treatment in detail.

Keywords: immunotherapy, immune checkpoint blockades, cancer vaccines, 
adoptive cell therapy, CAR T cell, personalized immunotherapy

1. Introduction

Cancer is the second most common cause of death in the world that has 
 threatened health for thousands of years. Several aggressive measures such as 
surgical resection of tumors, chemotherapy, and radiotherapy are used to cure 
cancers. Although these therapeutics can minimize and inhibit cancer cells prolif-
eration and metastasis, they have not been able to effectively defeat cancers until 
now. The efficacy of conventional treatments for cancer management is limited by 
factors such as recurrence of tumors and severe toxicities induced by therapeutics. 
Immunotherapy has become a tempting approach a long time after William Coley 
described the first immune stimulation by live bacteria for the treatment of cancer 
in 1893 [1]. Immunotherapy harnesses patients’ own immune system to kill cancer 
cells thereby reducing toxic effects of traditional chemotherapy and radiotherapy. 
Immune cells can identify cancer cells by recognizing tumor-associated antigens. 
The ability of cancer cells to escape from immune system has limited the efficacy of 
immunotherapy. Current novel approaches have been involved in immunotherapy 
to stop immune evasion of cancer cells.

Immunotherapy includes several therapies such as monoclonal antibodies, 
tumor cell vaccines, immune cell vaccines, and adoptive cell therapy. Monoclonal 
antibodies, which block cytotoxic T lymphocyte-associated protein-4 (CTLA-4), 
programmed cell death-1 (PD-1), dendritic cell vaccines, and chimeric antigen 
receptor (CAR) T cells have shown a tremendous success in clinical trials for several 
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cancers. It is shown that immunotherapy has the potential to move to the front-line 
of therapeutic options in most cancers. Despite the benefits of immunotherapy, 
some treatments have severe side effects such as nausea, fever, and diarrhea [2]. The 
aim of this chapter is to study the concept of immunotherapy for cancer treatment 
and to provide a thorough review on immunotherapy’s developments for both 
oncologists and cancer immunologists.

2. Monoclonal antibodies

One of the mechanisms of immune system to defeat pathogens or cancers is 
to identify foreign substances or malignancies and generate antibodies against 
them. These antibodies can recognize pathogens and cancer cells by the antigens 
expressed on their surface. Antibodies have the ability to attach to the specific 
antigens and destroy foreign particles or malignancies. In the laboratory, scientists 
can generate many copies of antibodies that are specific to certain antigens on 
cancer cells. These are known as monoclonal antibodies. In 1997, the first monoclo-
nal antibody, rituximab, was approved for treatment of non-Hodgkin’s lymphoma. 
Beneficial outcomes of rituximab treatment resulted in emergence and develop-
ment of monoclonal antibodies as a therapeutic approach for various hematologi-
cal and solid cancers [3]. The most important step in generating monoclonal 
antibodies for cancer treatment is identifying right antigens on cancer cells. High 
mutation capacity of cancer cells and existence of various antigens make this task 
 challenging. So far, monoclonal antibodies therapy has been more beneficial against 
some cancers than others.

Monoclonal antibodies can defeat cancer in different ways. Some monoclonal 
antibodies can recognize antigens expressed by cancer cells and mark them as a 
target that should be destroyed by immune system. This monoclonal antibody 
treatment is also known as targeted therapy [4]. Some of monoclonal antibodies 
cause apoptosis in cancer cells by directly attaching to the cancer cells. Preventing 
cell proliferation, destroying cell membrane, delivering radiation or chemotherapy 
to cancer cells, and inhibiting blood vessel growth are other functions of mono-
clonal antibodies to stop cancer cells. Monoclonal antibodies can robust, mimic or 
maintain the immune system’s response on cancer cells in different ways, and some 
particular monoclonal antibodies act by more than one function [3]. Monoclonal 
antibodies can be categorized to three groups such as naked monoclonal  antibodies 
(Table 1), conjugated monoclonal antibodies (Table 2), and bispecific monoclonal 
antibodies. Naked monoclonal antibodies act by just a single function. This single 
function can either be directly affecting cancer cells or by improving immune 
system against cancer cells. Trastuzumab is an example of monoclonal antibodies 
with direct effect on cancer cells. Trastuzumab can identify and block HER2 anti-
gen, which is highly expressed on breast and stomach cancer cells. HER2 antigen is 
responsible for growth and proliferation of cancer cells. By blocking HER2 antigens, 
cancer cells are not able to expand and proliferate and spread in the body [5]. 
Immune check point inhibitors are monoclonal antibodies which improve immune 
system function. This group of antibodies will be discussed in detail later on this 
chapter. Some monoclonal antibodies can trigger immune system by attaching to 
immune cells and activating immune cells to destroy cancer cells. Alemtuzumab, 
which is a monoclonal antibody to treat chronic lymphocytic leukemia, binds 
to CD25 marker on the surface of lymphocytes and attracts immune cells to 
destroy cancer cells [6]. Conjugated monoclonal antibodies, also known as tagged 
 antibodies or loaded antibodies, are antibodies that are being used to deliver either 
chemotherapy drugs or radioactive particles to cancer cells. These monoclonal 
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antibodies reduce the toxic effects of systemic chemotherapy and radiotherapy by 
directly homing the toxic drugs to tumor microenvironment [7, 8]. Ibritumomab 
tiuxetan is a radio-immunotherapeutic drug which directly delivers radio isotopes 
to cancerous B cells in non-Hodgkin lymphoma. Ibritumomab tiuxetan is a radio-
labeled monoclonal antibody against CD20 antigen, which is expressed on B cell 
surface. By attaching Ibritumomab tiuxetan to CD20 on the B cells and killing 
cancer cells, the drug is able to eliminate lymphoma [7]. Chemolabeled antibodies 
are monoclonal antibodies that are attached to chemotherapy drugs. Brentuximab 

Monoclonal 

antibody

Target Type Approval 

year

Cancer

Rituximab CD20 Chimeric IgG1 1997 B cell non-Hodgkin 

lymphoma

Trastuzumab EGF Humanized IgG1 1998 Breast cancer

Gemtuzumab 

Ozogamicin

CD33 2000 Acute myeloid leukemia

Alemtuzumab CD52 Humanized IgG1 2001 B cell chronic 

lymphocytic leukemia

Ibritumomab 

Tiuxetan

CD20 2002 B cell non-Hodgkin 

lymphoma

Cetuximab VEGFR Chimeric IgG1 2004 Merkel cell carcinoma

Bevacizumab VEGF Humanized IgG1 2004 Colon cancer

Panitumumab EGFR Human IgG2 2006 Colorectal Ca

Catumaxomab CD3 Chimeric mouse-rat 

hybrid

2009 Malignant ascites

Ofatumumab CD20 Human IgG1 2009 B cell chronic 

lymphocytic leukemia

Ipilimumab CTLA-4 Human IgG1 2011 Melanoma

Brentuximab Vedotin CD30 2011 Hodgkin lymphoma

Pertuzumab HER2 Humanized IgG1 2012 Breast cancer

Ado-Trastuzumab 

Emtansine

HER2 Humanized IgG1 2013 Breast cancer

Obinutuzumab CD20 2013 B cell chronic 

lymphocytic leukemia

Denosumab Human IgG2 2013 Osteoclastoma

Ramucirumab VEGFR2 Human IgG1 2014 Gastric Ca

Pembrolizumab PD-1 Humanized IgG1 2014 Melanoma

Nivolumab PD-1 Human IgG1 2014 Melanoma

Dinutuximab GD2 Chimeric IgG1 2015 Neuroblastoma

Daratumumab CD38 Human IgG1 2015 Multiple myeloma

Necitumumab EGFR Human IgG1 2015 Lung cancer

Elotuzumab SLAMF7 Humanized IgG1 2015 Multiple myeloma

Atezolizumab PD-L1 Humanized IgG1 2016 Urothelial cancer

Avelumab (14) PD-L1 human IgG1 

monoclonal 

antibody

2017 Metastatic merkel cell 

carcinoma

Durvalumab PD-L1 human IgG1 

kappa monoclonal 

antibody

2018 Urothelial carcinoma/

non-small cell lung cancer

Table 1. 
Unconjugated monoclonal antibodies currently approved by the Food and Drug Administration (FDA) for 
cancer therapy.
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vedotin is a chemolabeled monoclonal antibody specific for CD30 antigen on 
lymphocytes that delivers monomethyl auristatin E chemotherapy to cancer cells 
for treatment of Hodgkin lymphoma and anaplastic large cell lymphoma [9]. Ado-
trastuzumab emtansine is another chemolabeled antibody attached to Mertansine 
(DM1) chemotherapy with ability to target HER2 molecules on breast cancer 
cells [10]. Immunotoxin monoclonal antibodies are a new class of monoclonal 
antibodies that are attached to highly toxic protein molecules of a plant or bacteria. 
Immunotoxins can specifically bind to their target and deliver potent toxins to 
cancer cells [11]. The most recent group of antibodies is bispecific monoclonal 
 antibodies that consist of two separate antibodies targeting different specific 
 antigens. Blinatumomab is a bispecific monoclonal antibody with the ability to 
bind to CD19 on lymphoma and leukemia cells and CD3 on T cells. This antibody 
is usually used for treatment of acute lymphocytic leukemia. By binding to two 
antigens on separate cells, Blinatumomab is able to bring immune cells and cancer 
cells together and ease the pathway for immune cells to find, attack, and kill cancer 
cells [12].

Based on the genetically engineering techniques, four groups of monoclonal 
antibodies have been developed. Murine monoclonal antibodies, which were 
derived from mice, were the first generation of antibodies. They were quickly 
eliminated from clinical studies as they were not able to interact with human 
immune system. Chimeric monoclonal antibodies are another category of mono-
clonal antibodies, consist of constant regions mostly derived from human source 
and variable regions entirely derived from murine source [13]. There is a subtype of 
chimeric non-humanized monoclonal antibodies also known as rat-mouse hybrid 
monoclonal antibodies with murine Fc portion that have specificities for binding to 
three different tumor cells, T cells and also accessory cells [14]. On the other hand, 
chimeric humanized monoclonal antibodies, that comprise human Fc portion, are 

Monoclonal 

antibody

Target Type Approval 

year

Cancers

Ibritumomab 

tiuxetan

CD20 

Radionucleotide 

(Yttrium90 or 

Indium111)

Murine IgG1 2002 B cell non-Hodgkin's lymphoma/

lymphoproliferative disorder

Ositumomab CD20

Radionucleotide 

(Iodine131)

Murine 

IgG2a

2003 Non-Hodgkin lymphoma

Brentuximab 

vedotin

CD30 Chimeric 

IgG1 Drug 

(auristatin E)

2011 Hodgkin lymphoma and 

systemic anaplastic large cell 

lymphoma

Trastuzumab 

emtansine

Trastuzumab

DM1

Humanized 

IgG1

Drug 

(mertansine)

2013 Breast cancer

Tositumomab;

Iodine I 131 

Tositumomab

CD19+ CD3 Murine 

IgG2a

2014 Acute lymphoblastic leukemia

Arcitumomab Diagnostic Murine IgG1 Colorectal cancer

Capromab 

pendetide

Diagnostic Murine IgG1 Prostate cancer

Table 2. 
Conjugated monoclonal antibodies currently approved by the Food and Drug Administration (FDA) for cancer 
therapy.
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developed with more efficient interaction with human immune system and less 
immunogenicity [15]. Less immunogenic and more efficient monoclonal antibodies 
have been developed as humanized monoclonal antibodies, which predominantly 
originated from human source excluding Fab portion which is derived from murine 
source. Human monoclonal antibodies that are fully human and are derived from 
transgenic mice known to be the most efficient and the least immunogenic [16].

Although monoclonal antibodies are being used for treatment of cancer, they 
may increase the risk of immune reactions or adverse effects. The immune reactions 
including acute anaphylactic reaction, serum sickness, or cytokine release syn-
drome (CRS) generally occur after first infusion of monoclonal antibodies. Adverse 
effects of monoclonal antibodies are the result of immunodeficiency mediated 
by blockade of specific targets. Infections such as reactivation of tuberculosis or 
progressive multifocal leukoencephalopathy, autoimmune diseases such as lupus 
and thyroid disease, cancer, dermatitis, and organ-specific adverse effects are other 
risks of monoclonal antibodies administration [13]. The other problem of monoclo-
nal antibodies are constant mutation of cancer cells which results in formation of 
different or neoantigens that already available antibodies cannot function against 
them. Generation of different or neoantigens lead to absence of responsiveness to 
monoclonal antibodies. Developed genome sequencing techniques is promising 
for identifying neoantigens and producing monoclonal antibodies against this 
targets [3]. Monoclonal antibodies have been proven to remarkably shrink solid 
tumors, suppress malignancies, diminish metastasis, and increase overall survival 
in patients [17, 18]. Monoclonal antibodies are promising for treatment of cancers in 
both monotherapy and in combinatorial therapeutic approaches.

3. Immune checkpoint blockades

It was believed that cancer cells were completely resistant to immune system 
till 1800s when researchers reported regression or total elimination of some solid 
tumors in patients who had streptococcal skin infections or were infused with bac-
terial extracts [1, 19]. These studies were not continued until Sharma and Allison 
noticed that blocking of cytotoxic T lymphocyte-associated protein 4 (CTLA-4) 
enhances tumor killing capacity of T cells [20]. This hypothesis pops up that some 
bacterial or organisms’ extracts have the ability to block molecules on immune cells, 
known as checkpoints, which promote immune cells’ functionality against cancer 
cells. These observations led to more in-depth studies to identify immune check-
points which their blockade can trigger robust anticancer immune responses.

One type of monoclonal antibodies that bind to immune check points is referred 
as immune checkpoint blockades. Checkpoints or coinhibitory receptors are 
molecules on immune cells that bind to their ligands expressed on normal cells. 
Under normal circumstances, immune checkpoints recognize healthy cells as 
non- pathogenic by binding to the ligands on normal cells and prevent activity of 
the immune system against its own tissue. Some cancer cells express check points 
ligands which help them to escape from recognition and elimination by immune 
system. By blocking immune checkpoints, immune cells gain a robust response 
against cancer cells. Immune check point blockades have been proven to be  effective 
in many cancers and are promising because they are targeting immune cells by 
removing inhibitory pathways [21].

CTLA-4 is a coinhibitory receptor on T cells that prevent T cells activation. 
During T cells activation, antigen-presenting cells (APCs) present processed 
antigens on their major histocompatibility complex (MHC) molecules to T cell 
receptors. After the initial phase of activation, B7-1 or B7-2 molecules of APCs 
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attach to CD28 on T cells. TCR signal and costimulatory B7-CD28 induce complete 
T cell activation that result in cytokine release from activated T cells [22]. Besides, 
inhibitory signals induce by CTLA-4 act in an opposite way [23]. CTLA-4 mol-
ecule expressed on T cells has a higher affinity to bind to B7 compare to CD28. In 
a competition between CD28 and CTLA-4, CTLA-4 predominantly binds to B7 
and generates an inhibitory signal during T cells activation. Inhibitory signals of 
CTLA-4 halt T cells activation and induce immune tolerance. Blocking of CTLA-4 
by Ipilimumab (CTLA-4 blockade) was first approved by FDA due to success of 
CTLA-4 blockade in treatment of melanoma patients [24]. Ipilimumab boosts 
immune responses to cancer cells mediated by T cells activation. Most of patients 
experience Ipilimumab-related side effects like diarrhea, vomiting, skin rashes, 
nausea, and even life-threatening effects. All patients receiving this drug are always 
monitored closely and side effects are managed by corticosteroids [25].

In cancer, T cells are constantly exposed to antigen stimulation which result 
in gradual deterioration of their function by losing cytokine production  ability 
and persistent increase in expression of inhibitory receptors. Defects in T cell 
activation, cytokine production, and proliferation is defined as exhaustion. 
Inhibitory  receptors are highly expressed on exhausted T cells. Cancer cells have 
a high expression of inhibitory ligands that increase the chance of exhaustion in 
T cells. Programmed cell death-1 (PD-1) is an inhibitory molecule known as the 
receptor for cell death and have regulatory inhibitory role in activation of T cells. 
Physiologically, PD-1/PD-1 ligand (PD-L1) signaling pathway is a way to control 
excessive inflammation to protect normal tissues by induction of immune  tolerance 
[26]. Interaction of PD-1 and PD-L1, which is highly expressed on tumor cells, 
causes exhaustion and dysfunctionality in T cells that avoid immune response 
against cancer cells. PD-1 or PD-L1 inhibitors pharmacologically prevent  interaction 
of these molecules and efficiently maintain T cells function and facilitate them to 
kill tumor cells. Both PD-1 and PD-L1 immune checkpoint blockades have been 
proven to be effective for many malignancies but still it is not obvious that whether 
blocking of PD-1 on T cells or PD-L1 on tumors is more effective for cancer treat-
ment. Patients’ characteristics such as type of tumor, mutation burden of tumor, 
and metastases of tumor affect efficacy of PD-1/PD-L1 inhibitors [27]. PD-L1 is 
not constantly expressed on different tumors and even in different stages of tumor 
growth. Therefore, efficacy of PD-L1 blockade depends on the type of tumor, stage 
of tumor, location of the tumor, and many other factors [28, 29]. Atezolizumab, 
the first FDA-approved PD-L1 blockade, has been used as the first-line treatment of 
metastatic non-small lung carcinoma and cisplatin-resistant metastatic urothelial 
carcinoma. Avelumab, is another FDA-approved PD-L1 blockade for metastatic 
merkel cell carcinoma that lack efficient response to chemotherapy [30]. Nivolumab 
and Pembrolizumab are PD-1 blockers and are successfully used in Phase I clini-
cal trial on patients with non-small-cell lung cancer and renal cell carcinoma. 
Nivolumab was approved by FDA for treatment of advanced melanoma patients 
after significant improved response in phase III trial. Also, Pembrolizumab is the 
first-line immune checkpoint blockade for the treatment of metastatic melanoma 
and metastatic non-small cell lung cancer [31]. These drugs have significantly 
increased survival of patients with minimal side effects in other solid tissue tumors. 
To improve benefits from immune checkpoint blockades, combinatorial strategies 
are under study. Combination regimens include administration of two immune 
checkpoint blockades together or a monoclonal antibody with chemotherapy or 
radiotherapy [32]. Combinatorial strategies enhance anticancer responses because 
each treatment works through targeting different pathways. Combination therapy 
of Ipilimumab/Nivolumab is approved by FDA for treatment of melanoma [33]. 
Pembrolizumab plus chemotherapy (pemetrexed/carboplatin) is approved for 
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treatment of non-small cell lung carcinoma [34]. Several combination therapies 
including either two different checkpoint blockades or with chemo/radiotherapy 
are under investigation [32].

Immune checkpoint blockades have changed the treatment strategies for cancer 
with dramatic improves in many cancers. PD-1, PD-L1, and CTLA-4 inhibitors are 
able to change immune responses and it may cause adverse immune reactions. These 
immune reactions are usually better tolerated than chemotherapy drugs but still 
recognition and proactive treatments should be included in the treatment strategy 
for patients receiving immune checkpoint blockades [35].

4. Cancer vaccines

Cancer vaccines are a new generation of vaccines different to traditional pro-
phylactic vaccines which were administered to healthy people. Cancer vaccines are 
administered to either prevent cancer in high-risk individuals or to treat cancer 
in patients with malignancies. Therapeutic cancer vaccines are able to enhance 
immune system to attack cancer cells. Two prophylactic vaccines were approved 
for cancers that are caused by virus infections. One of the prophylactic vaccines 
is for hepatitis B virus (HBV) infection that can cause liver cancers such as cir-
rhosis and hepatocellular carcinoma in those who suffer from chronic infections. 
Another prophylactic vaccine is against human papilloma virus (HPV) that medi-
ates cervical, anal, vaginal, vulvar, and throat cancers as well as genital warts. 
Until now, preventive vaccines were only available for the cancers that are caused 
by infections. Therapeutic vaccines are meant to enhance immune system in order 
to interfere with cancer cells, stop their growth and proliferation, and kill cancer 
cells. Therapeutic cancers are divided to several categories of cell vaccines, peptide 
vaccines, and genetic vaccines.

Tumor cell vaccines are a type of cell vaccines including autologous tumor cell 
vaccines and allogenic tumor cell vaccines. Autologous tumor cell vaccines are 
isolated from patient-derived tumor cells and prepared in vitro for administration 
to the patient from whom the tumor cells were isolated. Preparation of tumor cells 
for vaccination includes irradiation of tumor cells or combining tumor cells with an 
immune stimulatory adjuvant such as recombinant granulocyte monocyte-colony 
stimulating factor (GM-CSF) [36]. Autologous cell vaccines are able to present a 
wide range of tumor-associated antigens to cytotoxic T cells, resulting in a robust 
antitumor activity. Modification of autologous tumor cells to induce higher levels 
of immune stimulation has been studied by many researchers. Autologous tumor 
cell vaccines in animal tumor models of lymphoma and melanoma were more 
potent when tumor cell vaccines were infected with Newcastle disease virus [37]. 
In another study, tumor cell vaccines were genetically modified to express higher 
levels of IL-2 which induced activation of T cells and natural killer (NK) cells [38]. 
Autologous tumor cell vaccines transduced with GM-CSF, named GVAX, are able 
to get involved with dendritic cells (DCs), and induce maturation of DCs. GVAX-
mediated matured DCs activate cytotoxic T cells and improve T cells response to 
cancer [39]. Autologous tumor cell vaccines have been extensively investigated 
in clinical and preclinical studies on several cancers and approximately 20% of 
patients survived for a long time [40]. The advantage of autologous tumor cell 
vaccines is that the vaccines can target the patient’s own tumor-associated antigens 
and excludes the step to select specific antigens. One major problem in prepar-
ing autologous tumor cell vaccines is the time-consuming process of harvesting 
 sufficient amount of tumor cells, which is a restriction for certain tumors. Appose 
to autologous tumor cell vaccines, allogeneic tumor cell vaccines are easy and less 
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expensive to produce in large scales. Allogeneic whole tumor cell vaccines consist 
of at least two human tumor cell lines and have unlimited tumor-specific antigens. 
Canavaxin is an allogeneic tumor cell vaccine consisting of three irradiated alloge-
neic melanoma cell lines combined with adjuvant Bacillus Calmette-Guérin (BCG). 
Despite Canavaxin increased overall survival of melanoma patients in phase II of 
trials, clinical trials were terminated because of failure of the vaccine in stages III 
and IV [41]. Allogeneic GVAX vaccine has been studied for treatment of prostate 
cancer [42], breast cancer [43], and pancreatic cancer [44]. Combination of GVAX 
vaccine with CTLA-4 antibody (Ipilimumab) was approved by FDA for treatment 
of metastatic melanoma [45]. Belagenpumatucel-L is another allogeneic tumor 
cell vaccine formed from four non-small cell lung carcinoma (NSCLC) cell lines 
transfected with plasmid containing a transforming growth factor (TGF)-beta2 
antisense transgene. This genetically modified vaccine secretes TGF-beta and is 
used for treatment of NSCLC [46].

5. Dendritic cell vaccines

Dendritic cell (DC) vaccines emerged as a potent cancer vaccine. DCs are pro-
fessional antigen-presenting cells (APCs) that act as a bridge between innate and 
adoptive immune system [47]. DCs uptake pathogens, process them, and present 
pathogen antigens on their MHC molecules. Processed antigens on DCs are directly 
recognized by T cells which induce antigen-specific immune responses. Different 
subtypes of DCs exist in human body based on CD8, CD103, or CD11b expressions. 
DCs are in both non-lymphoid organs and lymphoid organs such as lymph nodes, 
spleens, and bone marrow. Classical DCs (cDCs) are divided to CD8+, CD103+, and 
CD11b+ DCs. Non-classic DCs include monocyte-derived DCs, plasmacytoid DCs, 
and Langerhans cells. These categories are based on expression of molecules and 
the location of DCs in body [48]. Studies showed that different subsets of DCs can 
prime and expand various T cells. For example, CD8+ CD205+ DCs present antigens 
on both MHC-I and MHC-II and are able to prime CD4+ T cell and CD8+ T cells but 
CD8-33D1+ DCs present antigens just on MHC-II and prime CD4+ T cells [49]. DCs 
act as a double-edged sword that can induce both immune tolerance and immune 
activation depending on which receptors on DCs are engaged [50]. Maturation and 
migration of DCs play a critical role in characteristics of DCs [51]. Matured DCs 
migrate to lymphoid organs and prime T cells to enhance antitumor responses. 
Loading of MHC molecules with cancer antigens, up regulation of costimulatory 
molecules such as CD40, CD80, and CD86 on DCs, and cytokine production of DCs 
are critically required for activation of T cells DCs [52, 53]. DC vaccines include 
ex vivo generation of DCs from CD34+ hematopoietic progenitor cells or peripheral 
blood-derived monocytes (PBMC) [53]. Ex vivo-generated DCs are loaded with 
appropriate source of tumor antigens and are subsequently activated with adjuvants 
and are administered back to patients to kill tumors. Tumor antigens derived from 
total tumor [54], DNA/RNA virus [55], tumor proteins, or peptides [56, 57] are 
utilized for DC vaccines. Moreover, some DC vaccines are composed of fusion of 
tumor cells and ex vivo-generated DCs [58]. Autologous DC vaccine pulsed with 
HLA-A0201 peptide (prostate-specific antigen) was among the first dendritic cell 
vaccines used in clinical trials with promising results [56]. DC vaccines have been 
studies in many clinical trials on various cancers. FDA-approved Sipuleucel-T DC 
vaccine for the first time for the treatment of metastatic castrate-resistant prostate 
cancer [59]. Sipuleucel-T composed of PBMC-derived DCs loaded with PA2024 
(prostatic acid phosphate) fused to GM-CSF, which significantly increased patients 
survival. Although DC vaccines were successful in prostate cancer treatment, their 
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efficacy in other cancers was modest. Researchers conduct studies to enhance DC 
vaccines potency by modulating stimulatory and inhibitory molecules on DCs. 
Modulation of costimulatory molecules such as CD40L, CD70, GITRL, CD137L, 
and OX40L [60–63] or inflammatory markers of IL-12p70, IL-18, IL-12, CXCL10, 
and CCR7 on DCs improve DCs maturation and T cell priming characteristics 
[64–68]. The other way to enhance anticancer T cell response by DCs is to suppress 
inhibitory molecules on DCs. Genetically silencing of ubiquitin-editing enzyme 
A20 [69], suppressor of cytokine signaling 1 (SOCS1) [70], and scavenger receptor 
SRA/CD204 [71] improve DCs function and subsequently enhance T cell response 
to cancer cells.

Two of the most important limitations of cancer cell vaccines and DC vac-
cines are limited source of specimen and complicated procedure to generate these 
vaccines. New vaccines generated by tumor-associated antigen peptides combined 
with an adjuvant seemed to solve the restrictions of cancer cell and DC vaccines. 
The first encoded human tumor-associated antigen peptide was named MAGE-1 
[72]. Different types of tumor-associated antigen peptides are studied. Cancer 
testis antigens are a group of genes available in both healthy and cancerous tissues. 
These genes such as MAGE, BAGE, NY-ESO-1, and SSX-2 are scant in normal 
tissues but are highly expressed in tumors [73–75]. Tissue differentiation antigens 
are available and active in both healthy tissues and tumors-like PSA and PAP in 
prostate cancer [76, 77], gp100, Melan-A/Mart-1, and tyrosinase in melanoma 
[78–80], and mammaglobin-A in breast carcinomas [81]. Tumor-specific antigens 
or -mutated oncogenes are a group of antigens expressed on both normal tissues 
and tumors with a unique up regulation in tumors such as CEA [82], MUC-1 [83], 
HER2/Neu [84], and certain antiapoptotic proteins (i.e. livin and survivin) [85, 86]. 
Clinical trials mostly focused on effects of peptide vaccines that target cancer testis 
antigens, and differentiation-associated antigens. To produce an effective peptide 
vaccine, addition of immune stimulatory adjuvant is required for an efficient 
immune response as tumor-associated antigens are not immunogenic. Some adju-
vants used for peptide vaccine generation are aluminum salt, pathogen-associated 
molecular patterns (PAMPs), TLR agonists [87], BCG [88], and monophosphoryl 
lipid A (MPL) [89]. Cervarix is the first peptide vaccine for human papillomavirus 
composed of MPL and aluminum salt [90]. The advantage of peptide vaccines to 
DC vaccines and cancer cell vaccines is that peptide vaccines are more cost effec-
tive, but they may also appear to be less potent because they only target one or few 
epitopes of tumor-associated antigens. Formulation of peptide vaccines, route of 
delivery, and selection of immunogenic adjuvants can influence efficacy of peptide 
vaccines [91].

6. Genetic vaccines

Genetic vaccines are another approach for carrying tumor-associated antigens 
to patients by utilizing plasmid DNA vectors. Genetic vaccines transfect DCs 
and directly present tumor-associated antigens to cytotoxic T cells or they can 
transfect somatic cells and indirectly cross prime T cells. Each genetic vaccine can 
deliver many tumor-associated antigens to patients and induce a robust anticancer 
 immunity [92]. DNA vaccines are composed of bacterial plasmids that carry genes 
of interest under the control of mammalian promoter. DNA vaccines are able to ini-
tiate innate immunity and based on the site of delivery, they can trigger cellular and 
humoral immunity [93]. Usually the transgene is cytomegalovirus (CMV) immedi-
ate early promoter and its intron A sequence [94]. Optimizing codon usage can 
increase the transduction of antigens. In the intra muscular administration of DNA 
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vaccines, DNA plasmids transfect both myocytes and DCs. The plasmids act as an 
immunogenic and activate T cells via toll-like receptors [95]. DNA sensors in cytosol 
of cells such as DAI, H2B, IFI16, DDX41, LRRFIP1, and cGAS are able to detect pres-
ence of DNA vaccines. DNA sensors send signal to STING-TBK1 signaling cascade 
and activate interferon regulatory factor 3 which results in expression of type I 
interferons. TLR9 recognizes unmethylated CpG DNA and activates interferon 
regulatory factor 7 that induce expression of interferons. DCs phagocyte antigen-
expressing cell (myocytes) and cross present antigens on MHC-I to CD8 T cells. 
Moreover, interferons promote this pathway. If DNA vaccines directly transfect 
DCs, DCs are able to uptake, process, and present antigens on MHC-I to CD8 T cells 
[96]. Transfection of the vector with multiple gene sequences increases the immu-
nization and induces humoral [97] and CD8 T cell response [98]. Combination of 
DC vaccines with other immune stimulatory agents such as TLR agonists [99], or 
monoclonal antibodies [100] increase anticancer immunity. RNA vaccines are safe 
vaccines compared to DNA vaccines as they degrade and clear quickly in body. Total 
tumor RNAs are isolated from tumor tissues and they can induce a potent immune 
response. RNA vaccines are composed of various tumor antigens which reduce 
the possibility of immune escape by tumor cells. The first use of RNA vaccines 
was to immunize patients with mRNAs that encode tumor-associated antigens. 
Furthermore, RNA vaccines can be produced for personalized cancer treatment. 
Patients’ neoantigens can be identified by tumor exome analyzing and personalized 
RNA vaccine can be specifically generated. In addition to direct use of mRNAs for 
vaccine generation, RNAs are utilized in cell therapies. Transfecting patient-derived 
cells with RNAs and giving manipulated cells back to patients are another form of 
utilizing mRNAs. For example, transfection of patient-derived DCs with mRNA of 
tumor-associated antigens can induce an antigen-specific T cell response in cancer 
patients. Transfection of patient-derived T cells with mRNA of chimeric antigen 
receptors, triggers T cells to identify specific antigens on cancer cells which quickly 
deteriorate cancer [101]. Liposomes and protaminase are adjuvants of RNA vaccines 
and help to stabilize RNAs [102].

7. Adoptive cell therapy

Adoptive T cell therapy (ACT) is a treatment that enhances T cells’ ability to kill 
cancer cells by transferring immune system-derived cells to patients. The cells used 
for ACT can originate from the same patient or another individual. In 1988, the first 
ACT reduced metastatic melanoma tumors with transferring of autologous CD4+ 
and CD8+ tumor infiltrating lymphocytes (TILs) to the patients [103, 104]. Both 
peripheral blood T cells and TILs extracted from tumors are utilized to generate 
specific T cells for ACT. These T cells can be modified and then transferred to 
patients or directly administered in their natural state. TILs by their own nature 
have an antitumor activity as they are specific for tumor cells. TILs can recognize 
tumor antigens such as cancer germline antigens, neoantigens, and viral proteins 
and kill cancer cells [104]. After tumors are resected, the tumor tissues digest 
into fragments and each fragment is cultured in the presence of IL-2. The T cells 
are expanded and each clone is monitored for its reactivity against tumor cells. 
Proliferating lymphocytes kill tumor cells and produce a pure population of T cells. 
Cancer reactive T cells are infused back to patients. Moreover, T cells that express a 
TCR specific for tumor antigens can be selected in vitro from peripheral blood and 
expanded. Antigen-specific T cells are selected by coculturing of T cells with APCs 
loaded with tumor particles such as RNAs. By expansion of antigen-specific T cells, 
a specific antitumor T cell clone can be generated [105]. T cells with TCR targeting 
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tumorigenic mutations such as Ras mutations have shown promise in cancer 
treatment. Ras is commonly mutated at the onset of tumorigenesis in the domi-
nant population of tumor cells. Targeting Ras mutations and killing tumor cells 
with Ras-specific ACT may have profound effects on cancers with Ras mutations 
[106]. TCRs targeting KRAS G12D, a common proto-oncogene encoding GTPase, 
have anti-tumorigenic effects on patients with colorectal cancer [107]. Also, 
 genetically modified antitumor T cell clones can be produced by infecting T cells 
with viruses that carry genetically engineered TCRs [108]. TCR-transduced T cells 
are generated by cloning specific TCRs into a retrovirus. Patients derived PBMCs 
are activated with CD3 and IL-2 and are transduced with the retrovirus encod-
ing the antigen-specific TCR. The T cells are expanded and injected back to the 
individuals. Peripheral blood T cells transfected with retrovirus encoding MART-1 
TCR regress tumors in melanoma [103]. Genetically engineering techniques can 
modify TCRs to target-specific antigens. For example, T cells with modified TCRs 
that target NY-ESO-1, a cancer germline antigen, were successfully used as ACT for 
treatment of patients with synovial cell sarcoma and melanoma [109]. One major 
limitation of ACTs is that they induce short-lasting responses in immune system. 
Administration of T cells after chemotherapy increases cancer regression due to 
repopulation of host T cells with antigen-specific T cells. Lymphodepletion induced 
by chemotherapy helps T cells from ACT to proliferate during hemostatic prolifera-
tive phase and persist for months after infusion [109]. It was also shown that high 
doses of IL-2 therapy contribute to expansion of the transferred cells [110, 111]. 
The first signal in T cell activation begins with binding of TCR to MHC molecules 
on APCs. Furthermore, MHC expression downregulates on APCs in cancers so that 
they can escape immunity [112]. In 1989, first chimeric antigen receptors (CARs) 
were  developed to avoid interaction of T cells with MHC molecules. CAR T cells are 
designed to identify cancer cells and attack them without mediation of APCs. As a 
result, CARs act independent of any stimulatory and TCR signaling. CAR composed 
of a ligand-binding domain and a signaling domain. Ligand-binding domain is the 
extracellular part of CAR that includes B cell receptor derived single chain variable 
fragment. The signaling domain is made of costimulatory molecules and CD3f and 
1 [112]. CD19 CAR T cells were used in clinical trial for patients with refractory B 
cell lymphoma and hematological malignancies. No acute graft versus host disease 
(GVHD) has been reported in patients except for one mild chronic ocular GVHD 
that was observed 2 years after CAR T cells infusion [113]. In 2017, FDA-approved 
Tisagenlecleucel, CD19 CAR T cell, for the treatment of acute lymphoblastic 
leukemia (ALL). Excellent results with these trials, increased interests in CAR T cell 
immunotherapy approach [114, 115]. Cytokine release syndrome (CRS) is one of 
the side effects of CAR T Cells. CRS is a storm of inflammatory cytokines including 
IL-6, IL-10, and IFN-γ that happens after the infusion of CAR T cells [2]. Patients 
may show symptoms such as hypotension, pulmonary edema, multi-organ failure, 
and even CRS-related death. Treatment of CRS includes administration of cortico-
steroids and IL-6 blockade. Using corticosteroids for treatment of CRS symptoms is 
controversial as corticosteroids dramatically decrease inflammatory cytokines and 
mitigate CAR T cells efficacy [116]. Another problem with CAR T cells is that they 
cannot penetrate into solid tumors. Studies are underway to alleviate limitations of 
CAR T cells and improve their efficacy for treatment of solid tumors [117].

8. Developing personalized immunotherapy

Many cancer patients do not benefit from immunotherapies they are receiv-
ing. Recently, many studies are focusing on identifying predictive and prognostic 
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biomarkers in cancers as a beneficial guide for treatment decisions. This will stop 
administration of drugs for those patients who does not benefit from them and 
improve treatment in patients that are most likely respond to specific immuno-
therapies. Selecting the appropriate immunotherapy for each cancer patient is still a 
challenge. Scientists and oncologists are developing methods in genomic testing to 
discover cell signaling and biomarkers involved in responding to immunotherapy. It 
has been shown that cancers identified by specific quantity or pattern of  mutations 
in the tumor microenvironment or surrounding area are more responsive to 
immune checkpoint blockades. Of note, scientists are trying to exploit other drugs 
to alter the tumor microenvironment of less immune responsive tumors, known as 
cold tumors, and turn them to check point blockades susceptible tumors that are 
defined as hot tumors [32]. Altering tumor microenvironment and surrounding tis-
sues can increase the number of patients who can benefit from immune checkpoint 
blockades. Immunopharmacogenomics approach is providing a significant hope for 
personalized immunotherapy [118].

9. Conclusion

In summary, immunotherapy shows a tremendous potential in treatment of 
cancer. Different immunotherapies have been approved by FDA for prevention 
and treatment of cancers. Despite the breakthroughs achieved by immunotherapy, 
many cancers still do not respond to immunotherapy. Monotherapy of immune 
checkpoint blockades or other immunotherapies failed in treatment of some 
cancers. Finding the efficient treatment by combinatorial immunotherapies or 
combination of immunotherapy and traditional chemotherapy and radiotherapy 
are under investigation. Development of DCs and cancer vaccines, immune check-
point blockades, CAR T cells, and ACT requires an in-depth understanding of 
tumor microenvironment and identifying tumor-specific antigens. More studies to 
develop immunotherapy can provide improved efficacy in cancer treatments.
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