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Abstract

Low-velocity impact damages in composite material laminates, such as matrix cracks, 
delaminations and fibre breakage, usually develop inside the material and can be dif-
ficult to detect. As these flaws downgrade the structural integrity of the composite, the 
thorough damage evaluation is essential to assess the impact damage criticality. This 
chapter focuses on the ultrasonic non-destructive inspection of low-velocity impacted 
composite laminates for damage estimation and assessment. The impact damage genera-
tion mechanisms are described and characterised. Ultrasonic testing methods and their 
defect detection capabilities are illustrated. Recent research studies on ultrasonic non-
destructive evaluation of low-velocity impacted composite materials are presented and 
discussed.

Keywords: composite materials, low-velocity impact, non-destructive testing, ultrasonic 
inspection

1. Introduction

Low-velocity impact is one of the most subtle threats to composite materials integrity. Due 
to the weak bonds between the plies, even small energies imparted by out-of-plane loads can 
result in hardly detectable damages, such as matrix cracks, delamination and fibre break-

age, causing considerable stiffness and strength losses in tension and, especially, in compres-

sion and severely reducing the material structural integrity. Generally, the main observable 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



damage affecting a laminate subjected to low-velocity impact is delamination, mainly respon-

sible for compression strength decay. For this reason, diverse research works have been 
devoted to the mechanisms of delamination initiation and growth [1–6]. During impact, more 
than one delamination in the thickness direction generally develops in a composite laminate, 

depending on the impact energy and the laminate stacking sequence. Hence, it is crucial to 
understand the mechanisms of impact damage onset and growth in composite laminates.

To date, non-destructive testing (NDT) techniques play a fundamental role in diverse industrial 
areas (such as aerospace, automotive, naval and sporting goods, etc.) for the detection of defects 
in composite material components in order to ensure their integrity during both the manufac-

turing phase and the service life [7]. Many types of NDT methods are used for flaw analysis, 
including ultrasonic inspection, X-ray, acoustography, shearography, acoustic emission, etc. [8].

Ultrasonic testing is the most widely utilised NDT procedure for the detection of flaws in com-

posite materials, allowing the identification and characterisation of internal and external dam-

ages without cutting apart or otherwise altering the composite material. The main advantages 
of UT NDT include [9]: high penetration capacity, which allows to inspect parts of large size; 
high sensitivity, permitting to detect extremely small defects; only one surface of the part needs 
to be accessible for UT testing and no hazards exist for the operator or the test materials. The 
disadvantages of UT NDT comprise: need for expert operators; difficulty in inspecting rough 
surfaces with irregular or too small shapes; need for a coupling medium between the UT probe 
and the test part and reference standards are required for both instrument calibration and defect 
characterisation.In this chapter, the non-destructive characterisation and assessment of low-
velocity impact damage in composite material laminates is investigated through UT inspection. 
A description of low-velocity impact damage generation and development in composite materi-
als is presented in Section 2. Section 3 gives an overview of the UT testing methods, describing 
the basic principles, the UT inspection systems, the defect identification capabilities and the UT 
data representation; moreover, the UT NDT techniques applied to composite materials are illus-

trated. In the last section, the research studies of the last several years on the detection of defects 
generated in low-velocity impacted composite materials are presented and discussed.

2. Impact damage in composite materials

By considering that for many composite materials applications, such as body panels of cars, 
trucks, rail vehicles and aircraft fuselage, the designer of the composite structure must ensure 
the prevention of penetration by foreign objects of known mass and velocity. Accordingly, the 
knowledge of penetration energy becomes a critical issue. Moreover, the absorbed energy is a 
fundamental parameter in impact situations where it is necessary that the mechanical shock 
is not transferred to the human body, such as in motorcycle helmets and race car frames, 
with the aim to ensure the driver’s safety in case of high-speed crashes. Accordingly, for 
these applications, laminated composites must be designed to absorb as much as possible the 
impact energy and to limit the decelerations on the human body.

Due to their brittleness and anisotropy, composite laminates are particularly sensitive to 
low-velocity impact damage caused by accidental loadings imparted during fabrication or 
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service. This has led to numerous studies concerning impact dynamics [10–12], mechanisms 

of failure initiation and propagation [12–15] and correlation between impact energy, damage 
and residual material properties [2, 9, 12, 16–18].

Delamination is the most important and crucial damage caused by dynamic loading condi-
tions. Matrix cracking consists in cracks that develop in the resin rich areas between two 
adjacent composite layers. It has been observed that delamination occurs when a threshold 
energy is reached in presence of matrix cracking [19]. Even if there is a common agreement 
on the mechanisms of initiation and growth of this failure mode during an impact event, and 
several research studies are devoted to this topic [15, 20], a general approach to predict the 

damage mechanisms and interaction in order to prevent catastrophic failures, is absent. The 
complexity of the stresses in the vicinity of the point of impact complicates the analysis. In 
[21], it was shown that delamination growth is governed by interlaminar longitudinal shear 
stress (σ13) and transverse in-plane stress (σ

22
) in the layer below the delaminated interface and 

by the interlaminar transverse shear stress (σ23) in the layer above the interface.

A critical aspect of impact damage is the fact that it is difficult to detect by visual inspection: 
a composite structure can be severely damaged without any external sign. The only exter-

nal indication of an impact is indentation, that is, the plastic deformation of the laminate 
surface due to the contact, left by the impactor during the loading phase. This has led to the 
concept of “barely visible impact damage”, usually adopted in the design of aeronautical 
structures.

2.1. Experimental characterisation of impact damage

A thorough study of the behaviour of composite laminates subjected to dynamic loads, was 
carried out by [1–6, 12–14], with the aim to understand the complex mechanisms of damage 
initiation and propagation under low-velocity impact loading. Many parameters are involved 
in an impact event and the diverse induced damages, together with their interaction, are very 

complex to investigate. Moreover, there are instances where impact damage, though seri-
ously present inside the material, is barely visible or not at all visible from the outside.

An extensive experimental testing campaign was carried out on different composite material 
systems by increasing the initial kinetic energy up to the complete material penetration [16]. 
This allowed the study of the initiation and the propagation of the complex failure modes 
related to impact damage. The starting point was the study of the load-deflection curves 
recorded during impact testing for all the different test conditions. From the curves, the 
relevant impact parameters were obtained: first failure load and energy, maximum load and 
energy, absorbed and penetration energy. The influence on the impact parameters, exer-

cised by the composite system, the material constituents, the thickness and the laminate 
stacking sequence as well as the constraint conditions and the tup diameter were evalu-

ated. Destructive and non-destructive testing were applied to investigate the failure modes, 
and the observed damage was correlated to the relative energies and the other relevant 
parameters.

Indentation was found to be a function of the impact energy on the basis of the perforation 
energy. The latter represents the minimum kinetic energy necessary to completely penetrate 
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the laminate and is evaluated as the area under the complete load-displacement curve at 

penetration [22]. This is a fundamental parameter to be known in order to gather information 
about the impact energy that causes the loss of material mechanical properties [16, 23].

2.2. Load-displacement curve analysis

The load-displacement curve recorded during experimental impact tests is a fundamental 
tool to obtain information about the impact response and behaviour of composite material 
samples or structures under service conditions. Some characteristic points on the recorded 
curve are correlated with the evolution of the impact damage inside the material. In cor-

respondence of these points, the first failure load and energy, the maximum load and energy, 
the absorbed and the penetration energy, were calculated. The influence of the thickness, the 
laminate stacking sequence, the matrix type and content, the fibre type and orientations and 
the impact conditions (impactor tup, diameter of sample support and load speed) was clearly 
evidenced by comparing the load-displacement curves obtained under the different test 
conditions. The examination of the load-displacement curves evidence that, notwithstanding 
the differences in thickness, material composition and reinforcement architecture, there are 
typical features common to all composite laminates subjected to impact testing [24]. Figure 1 

shows a schematic view of a typical load-displacement curve with the characteristic points 
identified by arrows and letters (“a”, “b”, “c”, “d”, “e”).

In Figure 2, four curves from low-velocity impact tests on carbon fibre reinforced polymer 
(CFRP) laminates with different thicknesses are overlapped: despite the thickness difference, 
common features can be clearly noted. Up to point “a”, the curve shows no evidence of dam-

age developing inside the material. A different behaviour between thin and thick laminates 
can be observed due to the increase of the initial laminate rigidity with increasing thickness 
(Figure 2). The thinner laminates display a clear non-linear response for very low displacement 

Figure 1. Schematic view of the impact load-displacement curve at penetration.
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values, due to the larger amount of displacement at low impact force in comparison with the 
thicker laminates [25]. At the end of the elastic phase, a load drop occurs, the more clearly 
when the material thickness is sufficiently high (point “a” in Figure 1). This behaviour is 
difficult to appreciate for the lowest thickness where the load remains substantially constant 
with increasing displacement or a different slope is evidenced. However, in both cases, a local 
rigidity variation happens, denoting damage in the laminate.

The successive load drop is an indication of fibre breakage and/or damage propagation in the 
form of matrix cracking, delamination, fibre breakage, fibre/matrix debonding and fibre pull 
out (point “b” on the curve). Matrix cracking in the resin pockets are the first type of damage 
developed during an impact [25] and the presence of matrix cracks does not affect the overall 
laminate stiffness [26]. However, matrix cracks represent the initiation point for delamination 
[4, 21] and fibre breakage which dramatically change the stiffness of the composite laminate 
[27]. All the energy exceeding the one necessary for these damage initiation phenomena is 
employed for damage propagation. After the first failure, the load increases again, although the 
laminate rigidity is reduced. Then, a series of load drops are noted, resulting in oscillations in 
the force-displacement curve, which correspond to extensive propagation of failures of fibres 
and in the resin through-the-thickness. In the range from points “b” to “d” (Figure 1), the dif-
ferent damages propagate through all the layers, until the complete perforation is achieved 
(point “d”). The slope of the load-displacement curve begins to rapidly decrease when compos-

ite material perforation occurs. The maximum force (point “c”) is generally achieved between 
points “b” and “d”, even for the thicker laminates (12 layers or more); point “b” is often found 
coincident with point “d”, which means that the first significant fibre failure frequently occurs 
at maximum force [24].

Figure 2. Load, F, versus displacement, d, curves for different CFRP laminate thickness, t.
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In Figure 3, examples of fibre failures are shown. The decrease in contact load between points 
“d” and “e” corresponds to the penetration process. Finally, beyond point “e”, the contact 
load decreases slowly: the cylindrical body of the impactor slides through the penetrated 
sample. The penetration energy necessary to completely penetrate the laminate, given by the 
area under the load-displacement curve at penetration, is conventionally calculated at point 

“e”. Both Figures 1 and 2 refer to impact test cases where complete perforation occurred. 
In case of non-perforating impacts, during the loading phase the maximum displacement is 
reached and then the displacement decreases during unloading (Figure 4). After the first load 
drop (arrows in Figure 4), the unloading part is different from the loading one since a fraction 
of the energy is stored in the material for damage formation.

Figure 4. Load-displacement curves for a not penetrated CFRP laminate (t = 3 mm): (a) impact energy level U = 5 J;  
(b) impact energy level U = 15 J.

Figure 3. Fibre failures indicated by the black arrows.
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In [5], it was demonstrated that an interaction between matrix cracking and delamination ini-
tiation exists. Delamination propagation starting from intralaminar cracks was found mainly 
in thin laminates [5, 28] where the membrane contribution is important. In Figure 5, low (a) 
and high (b) magnification micrographs of dynamically loaded CFRP samples are reported 
showing matrix cracks and delamination starting from the cracks in the resin pocket and con-

nected by intralaminar cracks [5].

As found in several research works by different authors [6, 21], the evolution of damage in 
a composite laminate subjected to a concentrated dynamic load is driven by intralaminar 
tensile and shear cracks occurring in the layers farther from and nearer to the contact point. 
From these cracks, delaminations were found to be generated at interfaces between differ-

ently oriented plies, mainly propagating in the direction of the fibres in the lower ply and 
extending the more sideways with respect to the contact point.

Figure 5. Low (a) and high (b) magnification micrographs of dynamically loaded CFRP laminate with thickness t = 2 mm.

Figure 6. Typical damage zone after impact (back laminate surface). Laminate thickness t = 1.92 mm. Impact energy 
U = 15.8 J.
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A different behaviour is noted for thin and for thick laminates. In thin laminates, bending 
stresses are more important whereas shear stresses predominate in thick laminates and 

delaminations without evidence of intralaminar cracks were found at mid-thickness.

In Figure 6, a typical impact damage, visually observed on to the back surface of the impacted 
laminate, is reported, where the classical visible diamond-shaped delaminated area has 
attained its maximum size. The delamination axes coincide with the warp-weft fibre direc-

tions of the surface fabric layer.

3. Ultrasonic non-destructive testing

During World War I, underwater detection systems using high-frequency acoustic waves and 
quartz resonators for submarine detection were developed by Langevin [29] as a consequence 

to the tragic sinking of the Titanic in 1912. In 1928, Sergei Y. Sokolov proposed the use of a 
through-transmission UT technique for flaw detection in metals [30]. Mulhauser firstly pat-
ented an UT device employing separate transmitter and receiver transducers to detect flaws 
in solids [29]. In 1940, Firestone was the first to realise the UT reflection or pulse-echo tech-

nique [31]. In 1948, extensive study of UT medical imaging started in the United States and 
Japan. One of the first UT testing apparatuses using piezoelectric crystal transducers for the 
detection of defects was patented by McNulty in 1962. This apparatus was capable of isolat-
ing defect signals from high level noise signals and providing an alarm upon occurrence of a 
defect signal [32]. Since those times, technology improvements led to remarkably enhanced 
UT non-destructive testing (NDT) allowing to detect surface, subsurface and internal flaws 
(cracks, delaminations, cavities, pores, inclusions and fractures) in diverse types of materials 
(metals, composite materials and plastics) [33]. In the manufacturing industries, UT NDT 
techniques are widely applied for the quality control of components and structures as well as 
for the characterisation of materials.

3.1. Basic principles

UT NDT is based on the measurement of the energy variations associated with mechanical 
waves, with frequencies ranging between 50 kHz and 25 MHz, generated by a piezoelectric 
transducer. The UT beams are introduced into the material by a coupling medium (oil, grease 
and water) and the variations of the reflected and/or transmitted UT energy are used to identify 
defects within the material which represent discontinuities in the UT path. When an atomic or 
molecular particle is displaced from its equilibrium position due to UT waves propagation in the 
material, the internal (interatomic or intermolecular) forces tend to bring it back to its original 
position. The displacement of a particle causes the dislocation of those placed in the neighbour-

hood, and thus the propagation of the UT waves in all the material is determined [8, 34].

In Figure 7, the basic parameters of a continuous UT wave are shown. The distance between 
two consecutive peaks of an UT wave is the wavelength, λ, while the number of UT oscilla-

tions per unit time is the frequency, f. The time required to complete a full cycle is the period 
T. The relation between frequency and period in a continuous wave is given by:
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  f =   1 __ 
T

    (1)

UT velocity, v, in a perfectly elastic material at a given temperature and pressure is constant. 
The relationship between v, f and λ is given by Eqs. (2) and (3).

  λ =   v __ 
f
    (2)

  λ = vT  (3)

In UT NDT, the shorter wavelength resulting from an increase in frequency will usually pro-

vide for the capability to detect smaller discontinuities. As a general rule, a discontinuity 
must be larger than one-half the wavelength in order to be detected.Based on the particle 
displacement mode, UT waves are classified as longitudinal, shear, surface, and Lamb waves. 
Longitudinal waves are compressional waves where the particle motion is parallel to the 

propagation direction of the wave. Shear waves are present when the oscillation direction is 
perpendicular to the propagation direction. Surface (Rayleigh) waves have an elliptical par-

ticle motion and travel across the surface following the profile of the material. Plate (Lamb) 
waves have a complex vibration occurring in materials where the thickness is less than the 
wavelength of the UT waves introduced into it.

UT propagation velocity in a medium and UT wave attenuation (loss of amplitude and energy) 
depend on the medium itself. In solids, the velocity of longitudinal waves, V

L
, is given by:

   V  
L
   =  √ 

__________

    
E (1 − υ) 

 __________  ρ (1 + υ)  (1 − 2υ)       (4)

where E = Young's modulus; ν = Poisson's ratio; ρ = density of the material.

Figure 7. Basic parameters of an UT wave.
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The speed of transverse (or shear) waves, V
T
, depends on the shear deformation under shear 

stress (shear modulus) and the density of the medium, defined by the following formula:

   V  
T
   =  √ 

__

   G __ ρ      (5)

where G = shear modulus of elasticity.

In isotropic materials, the elastic constants are the same for all directions within the material. 
However, most materials are anisotropic and the elastic constants differ with each direction.

ASTM E494 - 15: “Standard Practice for Measuring Ultrasonic Velocity in Materials” covers 
a test procedure for measuring UT velocity in materials with conventional UT pulse-echo 
flaw detection equipment. In this practice, tables with longitudinal and shear velocities are 
reported for metal and ceramic materials [35].

UT attenuation is the decay rate of the UT wave as it propagates through a material. It is 
mainly due to absorption (conversion of sound energy into other forms of energy) and scatter-

ing (reflection of sound in directions other than the original propagation direction) phenom-

ena. The amount of attenuation through a material is a critical parameter for the selection of 
the appropriate UT transducer for an application.

3.2. UT inspection system

The basic equipment of an UT inspection system consists of diverse functional units: pulser/
receiver, transducer and display devices. A pulser/receiver is an electronic device generat-
ing short, high amplitude electric pulses which are converted by the transducer into high-
frequency UT energy. The sound energy is introduced into the test material and propagates 
through the material in the form of UT waves. If there is a discontinuity (e.g. a crack) in the UT 
wave path, part of the energy is reflected back from the flaw surface. The reflected UT wave 
signal reaches the transducer which transforms it into an electrical signal that can be recorded 
and/or displayed on a screen [36].

The control functions associated with the pulser circuit include the pulse length or damping 
and the pulse energy, whereas the control functions in the receiver phase are related to the 
refinement, filtering and amplification of the return signals.

Selection of the appropriate UT transducer is the first significant step to be considered for UT 
inspection of a part. Two main categories of transducer are available: contact and immersion trans-

ducers. The first category refers to transducers utilised for direct contact inspections which are 
generally hand manipulated by a skilled operator. Diverse contact transducers are commercially 
available and their selection depends on the characteristics of the contact surface and the thickness 
of the part as well as on the aims of the UT inspection. The most common contact transducers are: 
flat contact, dual element and angle-beam transducers. Immersion transducers are designed to 
operate in a liquid environment and consequently are typically utilised inside a water tank or as 

part of a squirter system for UT NDT scanning applications. These transducers can be equipped 
with cylindrically or spherically focused lens. A focused transducer has the property to concen-

trate the sound energy onto a small area in order to improve sensitivity and axial resolution.
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Two basic quantities are measured in UT testing: the time-of-flight (TOF) corresponding to 
the amount of time for the sound to travel through the sample, and the amplitude of the 
received signal. Based on velocity and round trip time-of-flight through the material, the 
material thickness, S, can be calculated as follows:

  S =   
v  t  

s
  
 ___ 

2
    (6)

where v = material sound velocity; t
s
 = time-of-flight.

Measurements of the relative change in UT signal amplitude can be used for sizing flaws or 
measuring the material attenuation properties.

3.3. Variables in UT inspection for defect detection

The major variables to be considered in UT NDT include the characteristics of the utilised UT 
waves and the proprieties of the part being inspected. UT equipment type and capability inter-

act with these variables; often, different types of equipment need be selected to accomplish 
different inspection objectives. Generally, a compromise must be made between favourable 
and adverse effects to achieve an optimum balance and to overcome the limitations imposed 
by equipment and test material [37].

The frequency of the utilised UT waves affects the inspection capability in several ways:

• Sensitivity, or the capability of an UT inspection system to detect a very small discontinu-

ity, is generally increased by using high frequencies (short wavelengths).

• Resolution, or the ability of the UT system to generate simultaneous and distinct indications 
from discontinuities located close to each other within the material or located close to the 
front surface of the part, is directly proportional to the frequency bandwidth and inversely 
related to the pulse length; resolution usually improves with increasing frequency.

• Penetration, or the maximum depth in a material from which useful indications can be 
detected, is reduced by the use of high frequencies; this effect is most pronounced in the 
inspection of metals with coarse grain structure or inhomogeneous materials, such as com-

posites, due to the resultant scattering of the UT waves.

• Beam spread, or the divergence of an UT beam from its central axis, is also affected by frequency: 
as frequency decreases, the shape of an UT beam increasingly departs from the ideal of zero 
beam spread. This characteristic is observed at almost all frequencies used in UT inspection. 
Other factors, such as transducer diameter and the use of focusing lens, also affect beam spread.

Sensitivity, resolution, penetration and beam spread are largely determined by the selection 
of the transducer and are only slightly modified by changes in other test variables.

3.4. UT inspection methods and data representation

A first difference between UT inspection techniques can be made with reference to the trans-

ducer or probe position [34, 36, 37]:
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Figure 8. UT waveform generated during UT pulse-echo inspection of a defective part.

• Contact technique, where the probe is placed directly on the surface of the part to be 
examined.

• Immersion technique, where the probe is immersed in a liquid substance that separates it 
from the part surface.

The main operating techniques of UT NDT are the through-transmission method and the 
pulse-echo (or reflection) method.

In the through-transmission technique, two probes, positioned at opposite sides with respect 
to the part, are used: one probe transmits the UT beam into the part and the other probe 
receives it. A defect, reflecting a part of the incident beam, causes a decrease in the UT energy 
detected by the receiving probe. The presence of the defect is highlighted by comparing the 
received signal with a reference signal obtained from a standard, flaw-less sample. In this 
technique, two opposite surfaces of the part under examination must be accessible to the 
transducers.

The pulse-echo technique is based on the property of the UT beam to be reflected whenever 
it encounters a discontinuity or a defect in its path. The amount of reflected energy highly 
depends on the reflecting surface size, that is, on the dimensions of the encountered dis-

continuity perpendicularly to the UT beam propagation direction. To perform the test, it is 
sufficient that only one surface of the part is accessible, since a single probe is used to send 
the incident UT beam and, at the same time, receive the reflected UT signal. In Figure 8, the 

typical UT waveform generated during UT pulse-echo inspection of a defective part is shown. 
The UT waveform enters the material and a first echo, called interface or front echo, is visual-
ised. The back echo corresponds to the final (last) surface of the part under examination. If a 
discontinuity is encountered inside the material, a defect echo is visualised between the front 
and the back echoes.

Pulse-echo UT inspection can be accomplished with longitudinal, shear, surface or Lamb 
waves. Straight-beam or angle-beam techniques can be used, depending on the part shape 
and the inspection objectives. The detected UT data can be analysed to obtain the required 
information on defect characteristics, such as type, size, location and orientation.

Diverse representations of UT data are available. The most common formats utilised are: 
A-scan, B-scan, C-scan, D-scan and FV-scan [8, 9, 34, 36, 37].

Characterizations of Some Composite Materials56



• A-scan. It provides a quantitative display of UT signal amplitudes (y axis) and time-of-
flight information (x axis) obtained by UT material interrogation at a single point on the 
part surface. The A-scan can be used to analyse the type, size and location (chiefly depth) 
of flaws. A discontinuity in the material is indicated by a peak (echo) the distance of which 
from the zero of the time axis is proportional to the path that the UT beam performs before 
encountering the discontinuity itself. The amplitude of this defect peak is proportional to 
the acoustic energy reflected by the discontinuity.

• B-scan. This format provides a quantitative display of time-of-flight data reported along 
the y axis obtained during a linear scan (x axis) of the part. A B-scan provides information 
about the part thickness and the depth of a defect for a single plane that normally intersects 
the part arranged along the scan direction.

• C-scan. A semi-quantitative or quantitative display of UT signal amplitudes obtained over 
an area of the part surface is represented using a C-scan. The information can be used to 
map out the position of flaws in an UT image representing the plan view of the part. A 
C-scan format also records time-of-flight data, which can be converted and displayed by 
image processing techniques to provide information on flaw depth.

• D-scan. It is similar to a C-scan, but in this case the time-of-flight data obtained over an area 
of the part is utilised for UT image generation instead of the signal amplitude data.

• FV-scan. Full volume scan (FV-scan), or volumetric scan, is based on the detection and 
storage of the entire UT waveform in the propagation direction (z-direction) during x-y 
scanning of the part surface. FV-scan provides for the 2½ D representation of the material 
internal structure, based on the generation of C-scans at any depth along the z-axis for any 
portion of the material thickness.

3.5. UT inspection of composite materials

Due to the non-homogeneous and anisotropic nature of composites materials, the frequency 
range utilised in UT NDT of composites is markedly reduced due to the high damping and 
attenuation of the high-frequency signals. Usually, the employed frequency in industrial appli-
cations is 5 MHz or less, limiting the possibility to detect small flaws. The typical defects present 
in composite materials are: delamination, cracks, fibre-matrix debonding and fibres fractures 
[6, 12–15]. Delamination is probably the most investigated failure mode in composite material 
laminates [1, 4, 5, 16]. During UT NDT of a composite part, the presence of an extended delami-
nation corresponds to a UT waveform with a reduction of the back echo amplitude together 
with the appearance of a defect echo located at the delamination depth. Other smaller defects 
such as voids and inclusions cause a loss of the UT back echo amplitude and/or can be weakly 
reflected [38, 39]. Flaws (e.g. delamination) lying parallel to the surface of the part subjected to 
UT inspection can be easily detected utilising normal incidence probes, whereas defects (e.g. 
cracks and fibre fractures) lying perpendicular to the surface are difficult to detect due to their 
small reflecting surface (this problem can be solved using angle-beam transducers) [40].

By employing UT through-transmission or pulse-echo techniques, it is possible to locate and 
size the defects based on the measurements of UT signal amplitude and/or time-of-flight. 
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The pulse-echo technique allows to characterise the matrix material proprieties (volume frac-

tion, moisture content and porosity) of a composite by evaluating the UT velocity and/or 
attenuation. Knowing the composite thickness, the attenuation coefficient can be evaluated 
by measuring the amplitude reduction of the multiple back echoes, and the UT velocity by 
determining the time spacing between them.

A limitation of UT inspection consists of the difficulty to identify defects located very close to the 
front surface of the part (known as “dead zone”) where the pulse length is approximately equal to 
the time period. This problem can be limited by using shorter pulses or immersion testing proce-

dures. The anisotropic and inhomogeneous properties of composite laminates cause high attenu-

ation of the UT waves, internal UT reflections and UT velocity variations due to the presence of 
different materials (fibres and matrix) and interfaces (fibre-matrix and inter-ply interfaces).

4. Applications

In the last several years, numerous studies were carried out on the application of UT NDT for 
defect detection in low-velocity impacted composite material laminates.

In 1998, the estimation of impact induced damage under low-velocity impact (impact energy: 
from 3 to 30 J) in carbon fibre reinforced polymer (CFRP) laminates was investigated in [41] 

through UT C-scans using the pulse-echo immersion method. Delamination areas were accu-

rately quantified by processing the UT image data and the correlation between impact energy 
and delamination extension was established.

In [42], an UT NDT system for delamination evaluation in CFRP, glass fibre reinforced plastic 
(GFRP) and aramid fibre reinforced plastic (AFRP) laminates subjected to low-velocity impact 
tests (impact energy: 2, 3, 5 J) is described. The UT NDT analysis was performed using two 
different probes (5 and 15 MHz) to evaluate the influence of frequency on the reliable evalua-

tion of delamination in these composites. The results confirmed the NDT system capabilities 
in terms of damage detection, location and evaluation.

In [40], the authors demonstrated that a combination of normal and oblique incidence pulse-
echo UT techniques provide highly detailed volumetric images of the damage (matrix cracks 
and delaminations) induced in composite laminates by low-velocity and low-energy impacts. 
The tested specimens (quasi-isotropic carbon/polyetheretherketone (PEEK) laminates) were 
immersed in water and scanned at normal (to detect delaminations) and oblique (to identify 
matrix cracks) incidence using a focussed broadband transducer (3.2 mm diameter, 18 mm 
focal length) with a centre frequency of 22 MHz.

A comparative analysis of two different NDT techniques, UT air-coupled C-scan and X-ray 
radiography, applied to thin carbon/epoxy composite laminates, utilised in naval structures, 
for the detection of low-energy impact damage was carried out by [43]. The damage area was 
identified by the two NDT techniques but the UT inspection provided for an easier, faster and 
more accurate damage characterisation.

In [44], the response of CFRP laminates with different stacking sequences (unidirectional, cross-
ply, quasi-isotropic and woven laminates) at low impact velocity and under low-temperature 
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conditions was examined. Low-velocity impact tests at different temperatures were carried 
out using an impact energy range from 1 to 13 J. After the impact tests, the damage extension 
was measured by UT C-scan inspection and the damage mechanisms were studied by opti-
cal and scanning electron microscopy. The results showed the influence of temperature, ply 
reinforcement architecture and stacking sequence on the mechanical behaviour of the CFRP 
laminates subjected to low-velocity impulsive loads.

A multi-functional non-linear UT testing approach was presented in [45] for in-situ and ex-
situ detection of diverse defects (micro-cracking, delamination and disbonding) generated by 
different damage inducing loads (stress, impact and heat) in CFRP materials and structures 
for aeronautical applications. The impact tests were conducted using several impact loadings 
ranging from 4 to 69 J impact energy. The applied UT methodology proved to be a useful tool 
for the identification of damage for impact energy below 30 J where the visual evidence of 
damage is lacking.

The effect of temperature on low-velocity impact resistance properties and post-impact flex-

ural performance of CFRP laminates was studied in [46] using UT C-scan and micro-focus 
X-ray computed tomography. A correlation between the impact temperature and the damage 
area was validated by the results obtained with the two NDT techniques.

A sparse digital signal model was presented in [47] as an efficient model for the estimation of 
UT measurements obtained from multi-layered composites. A CFRP laminate with stacking 
sequence [0/90]

4S
 was impacted in a drop weight tower with 3.8 J impact energy. The laminate 

was excited by a low-frequency UT sine-burst with central frequency 5 MHz. The UT response 
signals were utilised for the validation of the developed digital signal model in order to obtain 
the damage identification. In [48], a multi-level Bayesian method was utilised to identify the 
through-the-thickness position and the effective mechanical properties of the damaged layers 
in the same composite laminates using through-transmission UT measurements.

In [49], the authors experimentally tested three composite structures with barely visible impact 
(BVI) damage and delaminations, using different NDT techniques including UT scanning, 
piezoelectric sensing, thermography and vibration-based inspection in order to analyse their 
applicability in the environmental conditions of aircraft elements inspection. The applied UT 
technique provided a detailed damage evaluation in terms of damage depth, size and location.

Infrared thermography and phased array UT techniques were employed in [50] to detect the 

impact damage in CFRP composites. Three values of impact energy (18, 29 and 39 J) were cho-

sen for the tests. Both NDT methods presented advantages and limitations. Thermography is 
fast in detecting the impact damage over large panels, but it is affected by loss of contrast in 
case of deep defects. The UT technique is more effective in the estimation of thickness and in 
the inspection of thick parts, but it can be applied only over smooth surfaces and requires a 
coupling medium.

A laser-ultrasound (LU) scanner was used in [51] to obtain high-quality images of damage 
in CFRP composites subjected to low-velocity impact with energies 25 and 50 J. X-ray tomo-

grams were also carried out for comparison with the results of the LU study. The high-speed 
and high-resolution LU scanning method proved to be efficient for in-situ non-contact imag-

ing of the internal materials structure with resolution higher than 1 ply.
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In [52], the response to repeated low-velocity impacts was studied for two types of hybrid 
laminates made of metal and composite layers specifically designed for aircraft structural 
applications. The damage was evaluated using visual inspection and UT C-scan procedures. 
Three categories of impact damage were observed: visible deformation without internal or 
external damage, visible internal damage (C-scan) without external damage and visible inter-

nal and external damages.

An UT technique was used in [53] to investigate the delamination caused by low-velocity 
impact tests on poly(lactic acid)/jute woven fabric composite laminates obtained by conven-

tional film stacking and compression moulding techniques. Square specimens, 100 × 100 mm, 
were impacted in a falling dart test machine using 5 impact energy values: 2, 5, 10, 12 and 
15 J. Delamination damage was evaluated through an UT technique employing a linear 
phased array probe. The delaminated area was correlated with both the impact energy and the 
measured indentation depth. The results allowed to identify a threshold energy value beyond 
which internal damage was detected. Moreover, a linear relationship between delaminated 
area, energy and indentation depth was found.

A delamination prediction method for composite laminates, utilised for application in 
unmanned aerial vehicles, subjected to low-energy impact was presented in [54]. UT C-scan 
tests were carried out with UT beam propagation direction from the bottom laminate surface 
to the top laminate surface that received the impact. Numerical models were built to simulate 
the delamination behaviour of the composite laminates, showing a good correlation with the 
experimental UT results. Delamination prediction can contribute to the evaluation of compos-

ite residual strength and the optimization of aircraft structures.

In [55], an UT NDT system was utilised to carry out the metrological characterisation of 
quadriaxial non-crimp fabric (NCF) CFRP composite laminates subjected to low-velocity 
impact. The scopes of the UT inspection were thickness estimation, stacking sequence and 
fibre orientation verification, and composite quality assessment in terms of impact damage 
development within the whole material volume. The same UT NDT system was considered in 
[33, 55, 56] for diverse UT testing procedures. Figure 9 illustrates the specially designed hard-

ware and custom-made software of the UT system operating as follows: the UT oscillator/
detector excites the piezoelectric immersion UT probe which is displaced by a 6-axis robotic 
arm. After interacting with the tested material, the reflected UT pulses return to the oscillator/
detector which forwards them to a digital oscilloscope for visualisation and digitisation of the 
UT waveforms. The digitised UT waveforms are then transferred to a PC where a custom-
made software code provides for UT waveform signal storage and analysis.

Low-velocity impact tests were performed on rectangular composite specimens under a fall-
ing weight machine using a cylindrical indenter with hemispherical nose at different impact 
energies: 9, 12, 16, 20, 25, 30 and 40 J.

After impact testing, pulse-echo immersion FV-UT scanning was carried out on the impacted 
specimens with a focused high-frequency transducer (15 MHz) over a 110 × 155 mm area 
with scan step 1 mm. The delaminated area was measured through UT image processing. 
In Figures 10–12, four UT images of the impacted quadriaxial laminates are reported for 
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drop weight low-velocity impact tests with energy 9, 20 and 40 J, respectively. Each of the 
four images represents the internal structure of 1/4 (i.e. 1 mm) of the NCF laminate thickness 
starting from the upper surface (first image on the left) down to the opposite lower surface 
(last image on the right). In particular, in every figure, image (a) represents the surface dam-

age, images (b) and (c) the internal damage and image (d) the in-plane projection of the total 

Figure 9. Specially designed UT NDT system.

Figure 10. Four UT images for low-energy (9 J) impacted NCF laminate. Each image reports the internal structure of 
1 mm thickness from upper (a) to lower laminate surface (d).
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Figure 11. Four UT images for medium energy (20 J) impacted NCF laminate. Each image reports the internal structure 
of 1 mm thickness from upper (a) to lower laminate surface (d).

Figure 12. Four UT images for high energy (40 J) impacted NCF laminate. Each image reports the internal structure of 
1 mm thickness from upper (a) to lower laminate surface (d).

internal damage. The analysis of the UT images shows that: (i) the impact damage develops 
differently at interfaces between layers characterised by diverse fibre orientations; (ii) the 
delamination area increases with rising distance (depth) from the impact surface as well as 
with growing impact energy and (iii) the delamination outline exhibits the well-known hat-
shaped configuration [20]. The UT analysis also reveals the absence of delamination in a small 
zone directly below the impact surface contact point.

5. Conclusions

In low-velocity impacted composite materials, damages due to this type of loading usually 
develop inside the material structure and are difficult to detect. Delamination, arising from 
dynamic loading, is seemingly the most investigated impact failure mode due to its high 
criticality. However, other damage types such as matrix cracking, fibre-matrix debonding and 
fibre breakage can also occur due to impact loads. These damage mechanisms can interact 
with each other and lead to considerable reduction of the load-carrying capability of compos-
ite structures. Thus, the thorough material damage characterisation is essential to assess the 
impact damage criticality. This chapter focussed on the non-destructive characterisation and 
assessment of low-velocity impact damage in composite material laminates through ultra-
sonic testing and inspection. A general description of low-velocity impact damage genera-
tion in composite materials was presented. Ultrasonic testing methodologies for composite 
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materials were illustrated and compared in terms of accuracy, resolution and performance. 
Applications were presented and discussed for industrial areas where composite materials 
usage is highly relevant.
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