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Abstract

In view of the problem that notable flexible displacement will occur for parallel manipulators
when operating at high speed, the composite controller based on the integral manifold and
high-gain observer is proposed for trajectory tracking and the 3RRR parallel manipulator is
taken as the object. Based on the stiffness matrix, the small variable is introduced to decom-
pose the rigid-flexible coupling dynamic model into slow and fast subsystem. For the slow
subsystem, the backstepping control is applied for rigid motion tracking. In order to account
for the links’ flexible displacement the corrective torque is deduced, and the compensation
for the flexible displacement is realized. For the fast subsystem, the sliding mode control is
utilized to suppress the vibration. The high-gain observer is designed to avoid the measure-
ment of the curvature rate of flexible links. Also, the stability of the overall system is proven
with the Lyapunov stability theorem and the upper bound of the small variable is obtained.
At last, the proposed composite controller together with the singular perturbation control
and the rigid body model-based backstepping control are simulated, and vibration suppres-
sion and tracking performances are compared to validate the proposed control scheme.

Keywords: parallel manipulator, integral manifold, high-gain observer,
composite control, sliding mode control, backstepping control, vibration suppression

1. Introduction

Parallel manipulators (PMs) possess advantages of high precision, high stiffness, and large load-

to-weight ratio; they have attracted wide attention and have been widely used in industries such

as high-speed handling, motion simulation, and electronic manufacturing [1]. However, in order

to increase efficiency, PMs are increasingly used in high-speed and heavy-duty operations. In

order to reduce costs and energy consumption, the lightweight design of the mechanical body

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



will be the inevitable choice. However, in the high-speed or heavy-duty application, the light-

weight mechanical body will produce significant elastic deformation and vibration. Therefore,

the end-effector’s movement consists of the rigid-body motion and the elastic displacement

caused by elastic deformation and vibration. Using conventional control methods for rigid-body

manipulators will not guarantee good tracking accuracy of flexible manipulator’s end-effector.

Therefore, it is of great significance to improve the tracking accuracy of high-speed lightweight

PMs by considering the flexibility of members to establish the dynamic model for rigid-flexible

coupling and carrying out research on high-precision control algorithms.

Many scholars have conducted extensive and in-depth studies on modeling methods for

manipulators with flexible links. Dwivedy et al. [2] reviewed the dynamic modeling of robots

with flexible links. Due to the presence of link flexibility, the system will exhibit nonminimum

phase characteristics when selecting the end-effector of the manipulator as the output. The

literature [3–5] redefines the output of the manipulator’s end position by taking the link

elasticity into account, and uses the control algorithm for the rigid-body manipulator to

control the new output; however, this method can only realize the point-to-point position

control and cannot guarantee tracking control of the end trajectory [6]. The singular perturba-

tion method is another effective method to deal with the nonminimum phase characteristics of

manipulators with elastic links. The small parameters are introduced to reduce the order of

rigid-flexible coupling models, which are decomposed into two subsystems, the fast and the

slow, and two subcontrollers are designed using compound control algorithm. The controller

of the system realizes the control of the rigid body motion and the rapid suppression of the

elastic vibration. However, as the deformation increases, the singularity perturbation algo-

rithm shows a deficiency and the algorithm cannot compensate for the elastic displacement

[7–9]. Khorasani [10] proposed an integral manifold method by high-order approximation of

fast subsystem variables, which greatly improved the vibration suppression effect. By intro-

ducing the elastic displacement into the end of the manipulator and designing the corrective

torque, Moallem et al. [11] realized the trajectory tracking precision control and vibration

suppression of the two-degree-of-freedom serial robot. Based on the above method, Fotouhi

et al. [12–16] studied the trajectory tracking control of the flexible joint robot, the flexible robot

with the single link, the rigid-flexible hybrid robot, and the two-bar flexible robot by simplify-

ing the selection of correction moments, and show good results.

Due to the existence of the closed-chain structure, the dynamic model of PMs is complex when

considering the flexibility of the links. Therefore, the research on the vibration suppression and

trajectory tracking control is very limited. Zhang et al. [7] used assumption mode method and

Lagrange equation to model 3PRR PMs with flexible passive links, and adopted singular

perturbation compound control to suppress vibration. However, the influence of the elastic

displacement of the links on the moving platform is not considered in the model, and the

elastic displacement compensation and the rate of change of the elastic links are not processed

when the algorithm is designed. Therefore, the trajectory tracking effect needs to be improved.

Existing research has not yet been found for the above issues. In the research of trajectory

tracking control based on integral manifold, no relevant research has been found for PMs. The

control algorithms for the slow subsystem in the existing research are feedback linearization

methods, and the fast subsystem is PD control or pole placement. In order to taking into

accounts of the elastic deformation and vibration of high-speed PMs due to the flexibility of
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links and improve the tracking accuracy and dynamic performance, this chapter introduces the

integral manifold based on the rigid-flexible coupling model of the 3RRR PM, the hypothesis

of small deformation and the velocity mapping in the previous paper [17], and the high-order

rigid-flexible coupling model is transformed into two subsystems, then a composite control

algorithm based on sliding mode variable structure control and backstepping control is pro-

posed. At the same time, a high-gain observer is introduced to the curvature rate caused by the

flexibility. Finally, simulation studies are conducted to verify the feasibility of the algorithm.

2. The dynamic model of the 3RRR PM

The structure of the 3RRR parallel manipulator was shown in Figure 1, which consists of three

branches, and each branch composed of one active link and passive link, the end of which is

the moving platform. The coordinates and the parameters are given in Figure 2, O� XY and

G� xGyG are the coordinate frames attached with the base and moving platform, withO and G

as the origin, respectively. θi and βi are the angles of the active and passive links, i ¼ 1, 2, 3, the

position and attitude of the moving platform are depicted as η ¼ x y ϕ
� �T

in the base frame.

According to our previously published paper [17], the flexibility of passive links can be

neglected, so only the deformation of active links is considered here, which can be expressed

as δi ¼
Pn

k¼1 α
k
im

k
i , i ¼ 1, 2, 3, where αk

i and mk
i are the shape function and the curvature of the

kth point in the ith active link, respectively, where k ¼ 1. According to [17], after ignoring

the deformation of the passive links and adding the parameters of the motors and reducers,

the dynamic model of the PM can be expressed as:

M11ð Þ0 þ M11ð Þ1 M12

MT
12 M22

� �

€η

€m

� �

þ
0 0

0 K

� �

η

m

� �

þ
f 1
� �

0
þMf 1mþMf 2 _m

f 2
� �

0
þMf 3 _m

" #

¼
JTpθτ

0

" #

(1)

Figure 1. The 3RRR PM.
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where Jm and Jg are the moment of inertia of the motor and the reducer, and K ¼ diag ks; ks; ks½ �ð Þ

is the stiffness matrix, while ks and ig are the link’s stiffness and the reduction ratio, respectively,

τ represents the driving torque, M 0
11

� �

0
and f 01

� �

0
are the mass matrix and quadratic terms in the

dynamic equation derived from [17], while the item corresponding to m is neglected.

3. Integral manifold-based model reduction of the high-speed PM

From the dynamic model (1), the state variables are defined as below [15],

X1 ¼ η,X2 ¼ _η

z1 ¼ m=ε2, z2 ¼ _m=ε

�

(2)

where z ¼ z1 z2½ �T and X ¼ X1 X2½ �T are state variables of the slow subsystem, ε∈R is the

small parameter larger than zero, which are used for subsequent model reduction and time

scale transformation. From the state variables (2) and the system Eq. (1), the state equation of

the perturbed form can be expressed as:

_X 1 ¼ X2,

_X 2 ¼ J11J
T
pθτ � J11f 1 � J12f 2 � J12

~kz1;

(

(3)

ε _z1 ¼ z2,

ε _z2 ¼ JT12J
T
pθτ � JT12f 1 � J22f 2 � J22

~kz1:

(

(4)

where ~k ¼ ksε
2 is the stiffness coefficient, J ¼ J11 J12; JT12 J22

� �

is the inverse matrix of the

mass matrix M.

For Eq. (4), the integral manifold is defined as [15, 18],

Figure 2. Coordinates of the 3RRR PM.
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z t∗; εð Þ ¼ h X1 t∗; εð Þ;X2 t∗; εð Þ; τ t∗ð Þ; εð Þ ) z t; εð Þ ¼ ha X1 t; εð Þ;X2 t; εð Þ; τ tð Þ; εð Þ (5)

Eq. (5) can be interpreted that if the fast subsystem variables arrive at the integral manifold

trajectory at the moment t*, then for the moment ∀t > t∗, the variable will always remain on the

manifold trajectory. In order to ensure the above conditions valid, the additional control vari-

ables are added in the control system.

Due to the small variable ε close to 0, the integral manifold h and the moment τ are all

functions of ε, Taylor expansion of the above variables is available as,

ha1 ≈ h1 ¼ h10 þ εh11 X1;X2; tð Þ þ…þ ε
ph1p X1;X2; tð Þ

ha2 ≈ h2 ¼ h20 þ εh21 X1;X2; tð Þ þ…þ ε
ph2p X1;X2; tð Þ

τ ≈ τ0 þ ετ1 X1;X2; tð Þ þ…þ ε
p
τp X1;X2; tð Þ:

8

>

<

>

:

(6)

where h1 and h2 are the approximations of h1
aand h2

a, and hij ¼
∂
jhai

j!∂εj ε¼0j is the derivative of the

integral manifold with respect to the small variable ε, while i ¼ 1, 2 j ¼ 0, 1, 2,…p, and p∈Nþ

is the approximation order. Since the elastic displacement of the link is ε
2 times of the state

variable z of the fast subsystem, so p should be at least 2 when the elastic displacement can be

accounted in the end trajectory, the p is selected 2 here.

The inverse matrix of the mass matrix, the Coriolis force and the centrifugal force terms are

functions of the small variable ε, the Taylor expansion of the inverse matrix about ε can be

expressed as,

J11 ¼ J11ð Þ0, J12 ¼ J12ð Þ0
J22 ¼ J22ð Þ0 þ J22ð Þ2ε

2=2

�

(7)

The centrifugal and inertial force after the expansion of Eq. (1) can be expressed as,

f 1 ¼ f 1
� �

0
þ f 1

� �

20
h10 þ f 1

� �

21
_h10

	 


ε
2=2,

f 2 ¼ f 2
� �

0
þ ε

2 f 2
� �

21
_h10=2:

8

<

:

(8)

Substituting Eqs. (6) through (8) into Eq. (4), we can obtain,

h10 ¼ J22
~k

	 
�1

0
JT12J

T
pθτ0 � JT12 f 1

� �

0
� J22ð Þ0 f 2

� �

0

	 


,

h11 ¼ J22
~k

	 
�1

0
JT12J

T
pθτ1 �

_h20

	 


,

h12 ¼ J22
~k

	 
�1

0
JT12J

T
pθτ2 �

_h21 � JT12 f 1
� �

20
h10 þ f 1

� �

21
_h10

	 


=2�
	 


J22ð Þ2 f 2
� �

0
þ h10

	 


=2� J22ð Þ0 f 2
� �

21
_h10=2




,

h20 ¼ 0, h21 ¼ _h10, h22 ¼ _h11:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(9)

When the flexibility of the links is ignored, the small variable ε ¼ 0 is valid. Substituting h1 into

Eq. (3), the differential equation of the slow subsystem can be obtained as,
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_X 1 ¼ X2

_X 2 ¼ M11ð Þ�1
0 JTpθτ0 � Mð Þ�1

110 f 1
� �

0

(

(10)

where X1 and X2 represent variables of the slow subsystem, for the convenience of description,

X1 and X2 are replaced by X1 and X2 in the following expressions,

According to the integral manifold, the deviation of the fast subsystem variable can be

expressed as,

X f 1 ¼ z1 � h10 � εh11 � ε
2h12

X f 2 ¼ z2 � h20 � εh21 � ε
2h22

(

(11)

Multiply the Eq. (11) with ε, derive and substitute it into Eq. (6). According to Eq. (9), the fast

subsystem equation can be obtained by substituting hij,

ε _X f 1 ¼ X f 2,

ε _X f 2 ¼ JT12J
T
pθτf � J22ð Þ0

~kX f 1 � ε
2 J22ð Þ2 þ JT12 f 1

� �

20

	 


X f 1=2�

ε JT12 f 1
� �

21
þ J22ð Þ0 f 2

� �

21

� �

X f 2=2:

8

>

>

<

>

>

:

(12)

For the slow and fast subsystems represented by Eqs. (10) and (12), the composite control

algorithm is designed as shown in Figure 3. For the slow subsystem, the backstepping control

is used to achieve the tracking control of the rigid body motion. At the same time, according to

the velocity mapping relationship, the mapping relationship between the elastic deformation of

the links and the elastic displacement of the moving platform is established. The motion of the

moving platform is obtained according to the rigid-body motion and the elastic displacement,

and the elastic torque compensation is realized by designing the correction torque τ1 and τ2. For

fast subsystems, the sliding mode control is used to ensure the manifold valid. Considering the

difficulty of measuring the rate of curvature change of the links, a high-gain observer will be

designed to estimate the rate of curvature change based on the curvature value. The algorithm

design will be based on the control structure shown in Figure 3.

Figure 3. Scheme of the controller.
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4. The backstepping algorithm-based slow subsystem control

The backstepping control is a recursive control algorithm for complex nonlinear systems. The

original system is decomposed into subsystems that do not exceed the system order. The

control design is realized by establishing Lyapunov functions step by step for each subsystem,

and the stability of the system is ensured [19]. First, define the position error as,

ð13Þ

where Xd is the command signal, define the amount of virtual control as,

ð14Þ

where c1 is a constant greater than zero and the velocity error e2 can be defined as,

ð15Þ

Based on the position error, define the Lyapunov function as,

ð16Þ

Deriving Eq. (16) can be obtained,

ð17Þ

According to the velocity error (15) in conjunction with Eq. (17), the Lyapunov function is

defined as,

ð18Þ

Deriving the above formula and substituting the relevant parameters, the derivative of the

Lyapunov function can be expressed as,

_V 2 ¼ �c1e
T
1e1 þ eT1e2 þ eT2 _e2 ¼ eT2 M11ð Þ�1

0 JTpθτ0 � M11ð Þ�1
0 f 1
� �

0
þ c1 _e1 � €X d

�

� c1e
T
1e1 þ eT1e2

	

(19)

According to Eq. (19), the control torque of the slow subsystem is

τ0 ¼ JTpθ

	 
�1
f 1
� �

0
þ M11ð Þ0 �c1 _e1 þ €X d � c2e2 � e1

� �

	 


¼ JTpθ

	 
�1
f 1
� �

0
þ M11ð Þ0

€X d � c1 þ c2ð Þ _e1 � c1c2 þ 1ð Þe1ÞÞ
�

	

(20)

where c2 is a positive real number, and substitute Eq. (20) into Eq. (19), the derivative of the

Lyapunov function of the slow subsystem can be expressed as:

_V ¼ �c1e
T
1e1 þ c2e

T
2e2 ≤ 0 (21)
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Therefore, according to the Lyapunov stability principle, the slow subsystem is stable with the

torque τ0. Due to the existence of the elasticity, the end position of the PM can be expressed as:

r ¼ X1 þ f 3 η; h10; h11; h12; εð Þ: (22)

where f 3 is the elastic displacement of the center G of the moving platform induced by the

elastic deformation and vibration of the links, which is the elastic displacement of the end-

effector of the moving platform.

According to the velocity mapping relationship, the acceleration of the moving platform

generated by the elastic motion can be expressed as,

€f 3 ¼ ε2J�1
pθϕl h10 þ εh11 þ ε2h12

� �

=l1 þ ε2J�1
pθ

�

ϕl
_h10 þ ε _h11 þ ε2 _h12

	 


=l1: (23)

where J�1
pθ

�

is the time derivative of J�1
pθ .

The flexibility examined in this chapter is within a small deformation range, and the elastic

displacement f 3 of the end-effector of the moving platform due to the elastic displacement of

the rod can be simplified as,

ð24Þ

Make the second derivative of Eq. (22), when considering the rigid-flexible coupling motion,

the acceleration of the end-effector of the moving platform can be expressed as,

€r ¼ €X d þ c1 þ c2ð Þ _X d � _η
� �

þ c1c2 þ 1ð Þ Xd � ηð Þ þM�1
11 J

T
pθ ετ1 þ ε2τ2
� �

þ ε2 J�1
pθϕl

€h10 þ J�1
pθ

�

ϕl
_h10

 !

=l1 �M�1
11 f 1
� �

20
h10 þ f 1

� �

21
_h10

	 


ε2=2

þ J12 J22ð Þ�1
0 J22ð Þ2 f 2

� �

0
þ h10

	 


ε2=2þ J12 J22ð Þ�1
0

€h10ε
2 þ J12 f 2

� �

21
_h10ε

2=2:

(25)

Defining the position error e3 ¼ Xd � r and velocity error e4 ¼ _e3 of the end-effector of the

moving platform, Eq. (25) can be transformed as,

_e3 ¼ e4

_e4 ¼ � c1 þ c2ð Þe4 � c1c2 þ 1ð Þe3 �M�1
11 J

T
pθ ετ1 þ ε2τ2
� �

� ε2J12 J22ð Þ�1
0

€h10

� ε2 J�1
pθϕl

€h10 þ J�1
pθ

�

ϕl
_h10

 !

=l1 þ ε2M�1
11 f 1
� �

20
h10 þ f 1

� �

21
_h10

	 


=2� ε2 c1c2 þ 1ð ÞJ�1
pθϕlh10=l1

� ε2J12 J22ð Þ�1
0 J22ð Þ2 f 2

� �

0
þ h10

	 


=2� ε2 c1 þ c2ð ÞJ�1
pθϕl

_h10=l1 � ε2J12 f 2
� �

21
_h10=2

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(26)

According to Eq. (26), define the Lyapunov function,
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ð27Þ

Derivative of Eq. (27) with respect to time can be obtained as,

ð28Þ

Let the coefficient of ε and ε2 be zero, and the corrective torque is,

τ1 ¼ 0,

τ2 ¼ � JTpθ

	 
�1
M11

	

c1 þ c2ð Þ J�1
pθϕl

_h10

	 


=l1 þ c1c2 þ 1ð ÞJ�1
pθϕlh10=l1 �M�1

11 f 1
� �

20
h10 þ f 1

� �

21
_h10

	 


=2

þ J12 J22ð Þ�1
0 J22ð Þ2 f 2 þ h10

� �

=2þ J12 J22ð Þ�1
0

€h10 þ
	

J�1
pθϕl

€h10 þ J�1
pθ

�

ϕl
_h10




=l1 þ J12 f 2
� �

21
_h10=2




(29)

At this time, _V ¼ �eT4 c1 þ c2ð Þe4 ≤ 0 is valid, and the system is stable, which means the elastic

displacement compensation for theend-effector’spose is realizedbydesigning the corrective torque.

5. Sliding mode variable structure-based fast subsystem control

Define a new time scale tf ¼ t=ε, and the fast subsystem differential Eq. (12) can be expressed as,

dX f 1

dtf
¼ X f 2,

dX f 2

dtf
¼ JT12J

T
pθτf � J22ð Þ0X f 1 � ε2 J22ð Þ2 þ JT12 f 1

� �

20

	 


X f 1=2� εJT12 f 1
� �

21
X f 2=2

8

>

>

>

<

>

>

>

:

(30)

The latter two terms of the second equation contain small parameter ε, and the control amount

is small compared to other terms, which can be regarded as the disturbance, so the disturbance

term can be expressed as,

Δ1 ¼ ε2 J22ð Þ2 þ JT12 f 1
� �

20

	 


X f 1=2� ε JT12 f 1
� �

21
þ J22ð Þ0 f 2

� �

21

� �

X f 2=2: (31)

Due to the existence of the disturbance term, the fast subsystem adopts sliding mode variable

structure control, and the sliding mode surface is selected as,

S tð Þ ¼ KfX f 1 þ X f 2: (32)

where K1 is a positive number, the derivation of the upper sliding surface can be obtained,
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_S tð Þ ¼ KfX þ JT12J
T
pθτf � J22ð Þ0X f 1 � Δ1: (33)

According to the sliding surface, the Lyapunov function is defined as,

V4 ¼ 1=2STS: (34)

Derivative of the above equation with respect to time can be obtained as,

_V 4 ¼ ST _S ¼ ST KfX f 2 þ JT12J
T
pθτf � J22ð Þ0X f 1 � Δ1

�

	

(35)

According to Eq. (35), the fast subsystem control law designed as,

τf ¼ JT12J
T
pθ

	 
�1
�KfX f 2 þ J22ð Þ0X f 1 � KfSþ Δ1 sgn Sð Þ

�

:
�

(36)

where sgn �ð Þ is the sign function, substituting Eq. (36) into (35) can be obtained,

_V 4 ¼ ST KfX þ JT12J
T
pθτf � J22ð Þ0X f 1 � Δ1

	 


¼ �Δ1 Sj j � Δ1S� STKfS ≤ � STKfS ≤ 0 (37)

Therefore, according to the Lyapunov stability principle, the fast subsystem is convergent with

torque of (36). The symbolic function will cause jitter to the system. To reduce the generation of

jitter, the saturation function sat �ð Þ is substituted for the symbol function. The saturation

function can be defined as [20],

sat s1ð Þ ¼

1, s1 > Δ2;

s1=Δ2, s1j j ≤Δ2;

�1, s1 < �Δ2:

8

>

<

>

:

(38)

where Δ2 is the buffer layer.

6. The high-gain observer for the curvature change rate

The curvature can be obtained by strain gage measurement of the stress of the links, and the

change rate of curvature is directly related to the rate of change of stress, and generally cannot

be directly measured. In order to avoid direct measurement of the change rate of curvature,

this chapter will design a high-gain observer to observe the curvature change rate by measur-

ing the curvature. It can be known from Eq. (11) that the fast subsystem variable X f 1 corre-

sponds to the curvature, which can be directly converted by measuring the stress. X f 2

corresponds to observed curvature change rate. According to the literature [21, 22] and the

formula (4), the observer can be expressed as,

Manifolds II - Theory and Applications110



ε
_̂
X f 1 ¼ X̂ f 2 þ

1

ε1
Hp X f 1 � X̂ f 1

	 


,

ε
_̂
X f 2 ¼

1

ε21

Hv X f 1 � X̂ f 1

	 


:

8

>

>

>

<

>

>

>

:

(39)

where X̂ f 1 and X̂ f 2 represent the estimated values of X f 1 and X f 2, respectively, ε1 is the

minimum positive number, Hp and Hv are the constant matrix, the observer tracking error is

defined as,

~X f 1 ¼ X̂ f 1 � X f 1,

~X f 2 ¼ X̂ f 2 � X f 2:

8

<

:

(40)

To prove the stability of the system, new variables of error are defined as,

~Zf 1 ¼
~X f 1,

~Zf 2 ¼ ε1
~X f 2:

8

<

:

(41)

Substitute the above equation into (39), the state observer can be expressed as,

εε1
_~Z f 1 ¼ ~Z f 2 �Hp

~Z f 1,

εε1
_~Z f 2 ¼ �Hv

~Z f 1 þ εε
2
1 JT12J

T
pθτf � J22ð Þ0X f 1 � Δ1

	 


8

>

<

>

:

(42)

The Eq. (42) can be rewritten as,

εε1
_~Z f ¼ A0

~Zf þ εε
2
1B0 JT12J

T
pθτf � J22ð Þ0X f 1 � Δ1

	 


: (43)

where A0 ¼
�Hp I3�3

�Hv 03�3

� �

and B0 ¼
03�3

I3�3

� �

. All eigenvalues of A0 can be guaranteed negative

by selecting Hp and Hv, which means that A0 is the Hurwitz matrix. Define a new Lyapunov

function as,

V6 ¼ ~Z
T

f P1
~Zf : (44)

where P1 is the positive definite symmetry matrix, the derivation is expressed as,

_V 6 ¼
1

εε1

~Z
T

f AT
0P1 þ P1A0

� �

~Zf þ 2εε21 � JT12J
T
pθτf � J22ð Þ0X f 1 � Δ1

�T
BT
0P1

~Z f




:

		

(45)

Since A0 is a Hurwitz matrix, there is a positive definite matrix P1, which makes,
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AT
0P1 þ P1A0 ¼ �I3�3: (46)

_V 6 can be rewritten as,

_V 6 ≤ �
1

εε1

~Z f

�

�

�

�

2
þ 2ε1 JT12J

T
pθτf � J22ð Þ0X f 1 � Δ1

�T
BT
0P1

�

�

�

~Z f

�

�

�

�:
	�

�

� (47)

According to Eq. (47), when ε21 satisfied the following relationship, _V 6 ≤ 0 is established, which

means the high-gain observer gradually converges,

ε21 ≤

2 JT12J
T
pθτf � J22ð Þ0X f 1 � Δ1

	 
T
BT
0P1

�

�

�

�

�

�

�

�

ε ~Z f

�

�

�

�

: (48)

Therefore, according to Eq. (48), the upper bound of the small parameter can be obtained, and

the fast subsystem torque can be expressed as,

τf ¼ JT12J
T
pθ

	 
�1
�Kf X̂ f 2 þ J22ð Þ0X̂ f 1 � Kf Ŝ þ Δ1sat Ŝ

	 



:
	

(49)

where Ŝ ¼ Kf X̂ f 1 þ X̂ f 2. According to Eq. (12) and (42), the error equation of the fast

subsystem can be expressed as,

ε _ξ ¼ Aξξ þ hξ (50)

where

ξ ¼ X f
~Zf �

T
h

, X f ¼ X f 1 X f 2

� �T
, Aξ ¼

Aξ11 Aξ12

0 A0=ε1

� �

,Aξ11 ¼
03�3 I3�3

�K2
f �2Kf

" #

,

Aξ12 ¼
03�3 03�3

J22ð Þ0 � K2
f �2Kf

" #

, hξ ¼
Δ1sat Ŝ

	 


� Δ1

εε1B0 JT12J
T
pθτf � J22ð Þ0X f 1 � Δ1

	 


2

6

4

3

7

5
:

According to Eq. (50), the Lyapunov function can be defined as:

V5 ¼ εξTPξξ (51)

where Pξ is the symmetric positive definite matrix, Eq. (51) is derived as,

V5 ¼ εξT AT
ξPξ þ PT

ξAξ

	 


ξ þ 2hTξPξξ þ εξT _Pξξ: (52)

Since Aξ11 and A0 are Hurwitz matrix, for a given symmetric positive definite matrix Sξ, there

is a symmetric positive definite matrix Pξ that satisfies the following conditions,

AT
ξPξ þ PT

ξAξ ¼ �Sξ: (53)
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According to the Rayleigh-Ritz inequality,

�ξTSξξ ≤ � λmin Sξð Þ ξk k2, (54)

hTξPξξ

�

�

�

�

�

� ≤ χ0 þ χ1ε1ð Þ ξk k, _Pξ

�

�

�

� ≤χ2: (55)

where λmin �ð Þ represents the minimum eigenvalues of the corresponding matrix. χ0, χ1, and χ2

are positive real numbers. According to Eqs. (53) through (55), Eq. (52) can be expressed as,

_V 5 ≤ � λmin Sξ
� �

ξk k2 þ εχ2 ξk k2 þ 2 χ0 þ χ1ε1ð Þ ξk k: (56)

According to Eq. (56), when _V 5 ≤ 0, the small parameters in the high-gain observer satisfied

0 ≤ ε1 ≤ ε1max, the fast subsystem based on the high-gain observer is stable, and the upper

bound of the small parameter satisfies the following requirements,

ε1max ≤ λmin Sξð Þ ξk k � εχ2 ξk k � 2χ0ð Þ=χ1: (57)

7. Stability proof of the system

The abovementioned integral manifold is used to reduce the rigid-flexible coupling system of

high-speed PM, and the complex high-order system is decomposed into a slow subsystem

describing the rigid body motion and a fast subsystem of elastic deformation, and the

backstepping control and slidingmode variable structure control are adopted for two subsystems,

respectively, and designed a high-gain observer to solve the problem that the elastic displacement

change rate is difficult to measure, and proved the stability of each subsystem. However, the

stability of each subsystem does not guarantee the stability of the overall system. Therefore, it is

necessary to synthesize the subsystems to prove the stability of the overall system. Substituting

Eqs. (9), (20), and (29) into kinetic Eq. (3), the systematic error equation can obtained,

_es ¼ Ases þ hs, ε _ξ ¼ Aξξ þ hξ: (58)

where

es ¼ X1 � Xd
_X 1 � _X d

� �T
, hs ¼

0

hs1

� �

, As ¼
03�3 I3�3

� c1c2 þ 1ð ÞI3�3 � c1 þ c2ð ÞI3�3

� �

,

hs1 ¼ J11J
T
pθτf � J12X f 1 � ε2J11M11 c1 þ c2ð ÞJ�1

pθϕl
_h10=l1 þ c1c2 þ 1ð ÞJ�1

pθϕlh10=l1

	

þ J�1
pθϕl

€h10 þ J�1
pθ

�

ϕl
_h10

 !

=l1

!

:

According to the error equation, define the Lyapunov function that contains the overall system

as,

V6 ¼ eTs Pses þ εξTPξξ: (59)
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where Ps and Pξ are the symmetric positive definite matrix, the derivative of Eq. (59) can be

obtained,

_V 6 ¼ e
T
s A

T
s Ps þ P

T
sAs

� �

es þ ξT A
T
ξPξ þ P

T
ξAξ

	 


ξ þ 2hTs Pses þ 2hTξPξξ þ εξT _Pξξ: (60)

Since As is a Hurwitz matrix, for a given symmetric positive definite matrix Ss, there is a

symmetric positive definite matrix Ps that satisfies the following conditions,

A
T
s Ps þ P

T
sAs ¼ �Ss: (61)

According to Eqs. (53) and (61), _V 6 can be rewritten as,

_V 6 ¼ �e
T
s Sses � ξTSξξ þ 2hTs Pses þ 2hTξPξξ þ εξT _Pξξ (62)

According to the Rayleigh-Ritz inequality, we can obtain,

�e
T
s Sses ≤ � λmin Ssð Þ esk k2, (63)

�ξTSξξ ≤ � λmin Sξð Þ ξk k2, (64)

h
T
s Pses

�

�

�

� ≤ χ3 þ χ4εþ χ5ε
2

� �

esk k ξk k, (65)

h
T
ξPξξ

�

�

�

�

�

� ≤ χ6 þ χ7εþ χ8ε
2

� �

ξk k2: (66)

where χi i ¼ 0; 1;…6ð Þ is positive. According to the inequality relationship shown by Eqs. (63)

to (66), _V 6 satisfied the following relationship,

_V 6 ≤ � esk k ξk k½ � �
λmin Ssð Þ

� χ3 þ χ4εþ χ5ε
2

� �

� χ3 þ χ4εþ χ5ε
2

� �

λmin Sξð Þ � 2 χ6 þ χ7εþ χ8ε
2

� �

� χ2ε

#

esk k

ξk k

" #

:

"

(67)

The condition that the closed-loop system is asymptotically stable is _V 6 ≤ 0, from the above

equation, the condition of _V 6 ≤ 0 is that the coefficient matrix is positive, that is,

λmin Ssð Þ λmin Sξð Þ � 2 χ6 þ χ7εþ χ8ε
2

� �

� χ2εÞ � χ3 þ χ4εþ χ5ε
2

� �2
≥ 0:

	

(68)

Ignoring the influence of high-order terms of O ε2
� �

, when the maximum value of the small

parameter ε satisfied,

εmax ¼
�λb þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2
b þ 4λaλc

q

2λa

: (69)

_V 6 ≤ 0 is valid, where
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λa ¼ λmin Ssð Þχ8 þ χ2
4 þ 2χ3χ5,

λb ¼ �2λmin Ssð Þχ7 � λmin Ssð Þχ2 � 2χ3χ4,

λc ¼ λmin Ssð Þλmin Sξð Þ � 2λmin Ssð Þχ6 � χ2
3:

8

>

<

>

:

(70)

According to Eq. (67), when the value of ε satisfied 0 < ε ≤ εmax, the overall system is stable.

8. Algorithm simulations

When the Taylor expanding order p ¼ 0 is valid, the integral manifold (IM) is equivalent to the

singular perturbation (SP). In order to verify the composite control proposed in this chapter,

this section compares it with the singular perturbation control and the backstepping (BS)

control considering only the rigid-body dynamic model. The above algorithm simulation will

be carried out under the SIMULINK module of the MATLAB software, and the ode15s integral

will be selected. According to formula (29), in the composite control algorithm based on the

integral manifold and observer, the desired trajectory of the end-effector of the moving plat-

form needs to satisfy the fourth derivative continuous, and at the same time to reduce the

impact to the system at the beginning and end point of the desired trajectory. The nine-order

polynomial shown in Eq. (71) is used to ensure that the velocity, acceleration, and the third and

fourth derivatives at the start and end points are zero.

px ¼ A0 125t5=t5d � 420t6=t6d þ 540t7=t7d � 315t8=t8d þ 70t9=t9d
�

þ px0,
�

py ¼ py0,

ϕ ¼ 0:

8

>

<

>

:

(71)

where the running time td is 0.06 s, the starting position px0 ¼ 187:5, py0 ¼ 187:5=
ffiffiffi

3
p

, and the

amplitude A0 ¼ 30 of the desired trajectory. Take ε2 ¼ 1=ks, Δ1 ¼ 1� 10�3, c1 ¼ c2 ¼ 50,

Δ2 ¼ 0:05, Hp ¼ diag 40; 40; 40½ �ð Þ, Hv ¼ diag 400; 400; 400½ �ð Þ, Kf ¼ diag 60; 60; 60½ �ð Þ. According

to Eq. (57), take ε1 ¼ 0:001. The parameters added andmodified in [17] are as follows: the height

and thickness of the links are 30 and 5 mm, respectively, the reduction ratio is 20, and the

moment of inertia between the motor and the reducer is 284:1 kg �mm2.

To describe the control performance of the end-effector, an average error is introduced, and is

defined as,

tM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

td

ð

td

0

CR 1ð Þ2 þ CR 2ð Þ2
	 


dt

v

u

u

u

t

rM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

td

ð

td

0

CR 3ð Þ2dt

v

u

u

u

t

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(72)
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where CR represents the performance index of the three directions of the moving platform, trM
and rM are the average error of the translation direction and the rotation direction.

According to Eq. (24), the elastic displacement f 3 of the moving platform can be calculated. vi
and vm represent the maximum elastic displacement and the average elastic displacement in all

directions of the moving platform during operation, vend indicates the elastic displacement at the

end point (residual vibration). For the same expected input, the magnitude of the elastic dis-

placement of the moving platform can reflect the vibration suppression effect of the three control

algorithms. The elastic displacements in all directions are shown in Figures 4 and 5, which shows

that the maximum elastic displacement amplitude in all directions is reduced by more than 28%

compared with the backstepping control, and the composite control is reduced by 4.75, 33.42,

and 33.52% compared with the singular perturbation. The average elastic displacement for the

translational direction decreases from 1.579 and 1.112 mm for backstepping control and singular

perturbation to 0.970 mm for composite control. For the rotational direction, 0.0014 and

9.863 � 10�4 rad from backstepping control and singular perturbation drops to 6.872� 10�4 rad

of the composite control. Compared with the above algorithm, the elastic displacement of the

composite control decreases by more than 14% in both directions. Compared with the

backstepping control, when the composite control and the singular perturbation algorithm are

used, the residual vibration is greatly reduced, and both algorithms are close to zero.

Figure 4. Flexible displacement of moving platform. (a) Displacement of X direction. (b) Displacement of Y direction. (c)

Displacement of rotational direction.
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The tracking error is the difference between the actual output and the desired output of the end

of the moving platform. tr indicates the maximum tracking error in all directions of the

moving platform during the whole running process, trm indicates the average tracking error

of the translational and rotational directions, tend is the tracking error at the end point. As

shown in Figures 6 and 7, compared with the singular perturbation and backstepping control,

Figure 5. Vibration of the moving platform. (a) Flexible displacement of all directions. (b) Residue vibration of all directions.

Figure 6. Trajectory error of directions. (a) Trajectory error of X direction. (b) Trajectory error of Y direction. (c) Trajectory

error of rotational direction.
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the composite control based on the integral manifold and the observer has obvious advantages

in trajectory tracking. For the maximum tracking error, the X direction decreased by 85.56 and

91.41%, and the Y direction decreased by 57.55 and 90.57%, while the rotation direction

decreased by 53.34 and 61.5%, respectively. For the average tracking error, the translation

direction decreased by 88.2 and 92.62%, the rotational direction decreased by 37.26 and

49.57%, respectively; in the tracking error of the end point, the X direction decreased by 92.8

and 72.34%, and the Y direction decreased by 89.73 and 83.62%, respectively, while the rota-

tional direction decreased by 85.96 and 70.85%, respectively. For the tracking error at the end

point, the singular perturbation method is significantly worse than the backstepping controller

in all directions. This is mainly because the singular perturbation algorithm only considers the

vibration suppression, and the cost of the vibration suppression is at the cost of sacrificing the

trajectory tracking due to the delay of the adjustment. It can be seen from the above analysis

that in the aspect of trajectory tracking accuracy, the composite control based on integral

manifold and observer has significant advantages.

9. Conclusions

1. Decompose the rigid-flexible coupling dynamic model into fast and slow subsystems

based on the integral manifold, and employ the sliding mode control and backstepping

control to design the fast and slow subsystem controllers, respectively, and compensate the

elastic displacement at the end of the manipulator. A high-gain observer estimates the rate

of change of curvature, which in turn enables trajectory tracking control of high-speed PM.

2. The Lyapunov function is selected to prove the asymptotic stability of the slow subsystem,

fast subsystem, high-gain observer, and the overall system. The conditions for selecting the

integral manifold and the small parameters of the observer are given.

3. Apply MATLAB-SIMULINK to establish a comparison simulation to verify the performance

of the proposed compound control algorithm. The simulation results show that the composite

control algorithm has obvious advantages in vibration suppression and trajectory tracking.

Figure 7. Tracking error of the moving platform. (a) Trajectory error of directions. (b) Residue error of directions.
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