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Chapter

Potential Therapeutic Applications 
of Exosomes in Bone Regenerative 
Medicine
Jiazhao Yang, Wanbo Zhu, Jinsen Lu, Kai Xie,  

Shiyuan Fang and Lixin Kan

Abstract

The ability of bone regeneration is relatively robust, which is crucial for fracture 
healing, but delayed healing and nonunion are still common problems in clinical 
practice. Fortunately, exciting results have been achieved for regenerative medicine 
in recent years, especially in the area of stem cell-based treatment, but all these 
cell-based approaches face challenging problems, including immune rejection. For 
this reason, exosomes, stem cell-derived small vesicles of endocytic origin, have 
attracted the attention of many investigators in the field of bone regeneration. One 
of the attractive features of exosomes is that they are small and can travel between 
cells and deliver bioactive products, including miRNA, mRNA, proteins, and 
various other factors, to promote bone regeneration, with undetectable immune 
rejection. In this chapter, we intend to briefly update the recent progressions, and 
discuss the potential challenges in the target areas. Hopefully, our discussion would 
be helpful not only for the clinicians and the researchers in the specific disciplines 
but also for the general audiences as well.
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1. Introduction

Fractures are common traumatic injuries during the entire human history. 
Both traditional and modern medicine have kept on exploring and researching on 
many potential treatments. Despite these efforts and relatively robust regenera-
tive capacity of bone, currently, there are still about 5–10% fracture patients face 
delayed fracture healing and even nonunion, which has a great negative impact 
on the quality of life of patients as well as their families [1]. Surgical intervention 
with autologous bone graft seems to be the preferred method for such complica-
tion, but the secondary trauma and the limited resources of grafting bone make 
this approach still unsatisfactory [2, 3]. Other methods, including active substance 
injection and bone marrow transplantation, are also used clinically but they face 
their own challenges, including the effectiveness, safety and immune rejection 
[4, 5]. Therefore, how to promote fracture healing efficiently and safely is still the 
major focus of recent research in regenerative medicine for bone.

Normal bone regeneration is a complex but well-orchestrated physiological 
process that includes the initiation of ossification, osteoinduction, and osteogenesis 
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[6–9]. Specifically, when bone injury occurs, a series of signaling pathways is 
activated, which, in turn, leads to angiogenesis and other downstream events, and 
these together establish a favorable microenvironment, which set the stage for 
stem cell based fracture healing/regeneration [10]. Within this microenvironment, 
abundant blood vessels accelerate the metabolism while bringing a large number 
of multipotential stem cells [11, 12]. On the other hand, the mononuclear phago-
cyte system from the blood differentiates into osteoclasts in the newly established 
microenvironment, and the bone resorption, in turn, specifically stimulates the 
bone re-modeling process [13, 14]. During the stereotyped osteogenesis process, 
stem cells proliferate and differentiate into osteoblasts and migrate to areas of bone 
defects and bone resorption, secreting collagen matrices [7, 15–17], and then imma-
ture osteoblasts produce bone matrix containing calcium and phosphate to promote 
mineralization [18]. Of note, new blood vessels in the fracture microenvironment 
can also bring essential nutrients and mineral salt for fracture healing, improving 
the efficiency of osteogenic differentiation and bone regeneration [19].

Embryonic stem cell transplantation was considered as a potential promising 
treatment for tissue repair; however, due to the limitation of donor cells and bio-
safety issues, its clinical application has not been widely accepted [20–23]. Recently, 
it has been recognized that adult bone marrow-derived mesenchymal stem cells 
(BMSCs) might be a better alternative, and moreover, researchers found that 
BMSCs play an important role in promoting tissue regeneration through paracrine 
signaling [24, 25], in addition to directly differentiation into bony tissue. This 
paracrine effect, mediated by signaling molecules, transcription factors, and other 
proteins, regulates a series of signaling pathways involved in bone regeneration.

Interestingly, extracellular vesicle derived from stem cells under specific stimula-
tion can carry specific substances produced by paracrine secretion and transmit to 
target organs/cells to act as an intercellular communicator [26, 27]. Among all the 
extracellular vesicles, the particles with the diameter around 40–100 nm are com-
monly called exosomes. Further study found, that in addition to stem cells, many 
other cells, such as osteoblasts, can also produce exosomes [28]. The key unanswered 
question is: could these different cell-derived exosomes promote bone regeneration 
and accelerate fracture healing? This chapter will focus on this important question.

2. A brief overview of exosome

In 1983, Harding found a lysosomal-like vesicle in reticulocytes of rats. It was 
found that transferrin was internalized by this vesicle and its receptors also recycled 
back to the plasma membrane through endocytosis [29]. In 1987, such vesicle-like 
structures were also found in the culture medium of sheep red blood cells cultured 
in vitro by Johnstone, and the vesicles were later named as exosomes [30]. It is now 
accepted that the extracellular vesicles secreted by cells could be generally classified 
as microvesicles, apoptotic bodies, and exosomes, on the basis of the size, cellular 
origin, content, and biological function [31, 32]. Currently, the exosomes  
are extensively studied. Exosomes, normally 40–100 nm in diameter, have been 
defined as a type of extracellular vesicles with unique biological features and 
morphology (flat or cup-shape under electron microscope) [33, 34](Figure 1). 
The formation of exosome is essentially the encapsulation of bioactive substances, 
including proteins and nucleic acids, into multivesicular bodies with the help of 
endosomal sorting complex in the cells [35, 36]. The newly formed exosomes 
inside the cell are transported and fused with the plasma membrane and eventually 
released into the extracellular matrix [37, 38].
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It is now known that numerous different type of cells, including dendritic cells, 
mast cells, lymphocytes, neurons, and endothelial cells secrete exosomes [39–43], 
which are found in blood, amniotic fluid, urine, malignant ascites, and other body 
fluids such as bile [44–47]. The key features of exosomes as intercellular communi-
cators is due to the fact that they are able to selectively carry the contents of the par-
ent cells and act on target cells [31, 38]. In 2007, Valadi found that exosomes contain 
RNA, which indicated exosomes might regulate genetic information flow [48]. In 
recent years, many studies have found that a variety of cell-derived exosomes con-
tain mRNA and miRNA and play an important role in cell-to-cell signaling [48–50]. 
Therefore, the transport of RNA and active proteins through exosomes provides a 
novel pathway for activating target cell and initiating and propagating downstream 
signaling pathways. For example, in 2012, Cantaluppi discovered that microvesicles 
from epithelial progenitor-derived cell initiated renal-regeneration procedures by 
carrying miRNAs and acting on target cells, reversing focal ischemic lesions [51].

The regenerative effects of exosomes have been validated in other tissues and 
organs, including the heart, lungs, kidneys, and brain [52–54]. For example, in a 
mouse model of myocardial infarction, treatment of exosomes can improve cardiac 
epicardial remodeling and increase left ventricular ejection fraction [55]. In hypoxic-
induced pulmonary hypertension, exosome treatment inhibits disease progression 
and protects the lungs from hypertension [56]. In addition, exosome treatment can 
improve renal function in a mouse model of acute kidney injury [57]. These stud-
ies indicate that exosomes have the capacity to promote tissue regeneration, which 
provides a basis for their potential application in bone regeneration [58].

3. Exosomes in bone regeneration

3.1 The exosomes derived from different cells promote bone regeneration

The mechanism of stem cells in the treatment of diseases has not been fully 
elucidated; however, it is now commonly accepted that there are two recognized 
mechanisms: differentiation and paracrine. In fact, it is becoming clearer that 

Figure 1. 
Electron-microscopic observation of whole-mounted exosomes purified from mouse dendritic cells. Arrows 
indicate exosomes, arrowheads point to smaller nonexosomal vesicles. Scale bar = 100 nm. (Quote from Théry 
et al. [33].)
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paracrine mechanism could be a more important mechanism; therefore, exosomes, 
as important mediators in paracrine mechanism, have attracted researchers.

Embryonic stem cells are considered to be the ideal materials for regenerative 
medicine because of their ability of pluripotent differentiation. But later study 
found that bone marrow mesenchymal stem cell (BMSC) could be a better alterna-
tive, i.e., BMSCs are self-renewing mesodermal pluripotent stem cells that can 
differentiate into osteoblasts, fat cells, nerve cells, and myoblasts [24, 59]. Recent 
study also found that BMSCs’ roles in inducing angiogenesis, regulating inflamma-
tion, inhibiting apoptosis, and regulating osteogenesis differentiation make them 
desirable for bone regeneration applications [59].

Similarly, the adipose-derived stem cells (ADSCs) can also be osteogenic dif-
ferentiated to promote bone regeneration, when they have been applied to the bone 
defects using a composite biological scaffold [60]. In addition, endothelial progeni-
tor cells (EPCs) can differentiate into vascular endothelial cells to generate blood 
vessels, and promote MSCs osteogenesis in a specific microenvironment [61, 62]. 
Also, differentiated cells, such as osteoblasts and osteoclasts, also have the ability to 
promote bone regeneration [15, 26].

More importantly, numerous studies suggest that the above-mentioned cell-
derived exosomes all have a certain ability to promote bone regeneration, through 
regulating bone regeneration procedures such as angiogenesis, osteogenic differ-
entiation, and bone mineral deposition. However, the capacities and regeneration 
mechanisms of exosomes from different derived cells are somewhat inconsistent, 
likely due to their different contents.

3.2 Genetic materials carried by exosomes regulate bone regeneration

It was reported that stem cell-derived exosomes can carry genetic materials such 
as miRNA and mRNA, and share these genetic information between mature bone 
cells and stem/progenitor cells, which is an important way to promote bone regen-
eration [63]. MicroRNAs (miRNAs) are thought to be important posttranscriptional 
regulators of osteoblast-associated osteogenesis and bone remodeling, enabling a 
range of bone regenerative responses [64, 65]. Interestingly, miRNAs, inside the 
lipid membrane of exosomes, can avoid the decomposition of immune system; 
therefore, they exert their effects more efficiently [66].

Many researchers reported that some stem cell-derived exosomal miRNAs have 
the ability to activate osteogenic differentiation and angiogenesis of target cells 
and promote bone formation. For example, Xu first found that exosomal miRNA 
is a regulator of osteoblast differentiation [67]. Similarly, a series of miRNAs, 
such as let-7a, which could enhance the osteogenic differentiation of stem cells 
and promote bone regeneration, are significantly upregulated [68]. These data all 
demonstrated that stem cell-derived exosomes could promote bone regeneration by 
carrying specific miRNAs (Table 1).

Furthermore, many recent studies focus on MSCs-derived exosomes (BMSC-Exo) 
for bone regeneration. For examples, in CD9−/− mice, BMSC-Exo isolated from cul-
ture medium can accelerate fracture healing compared with the control group [69]. In 
vitro analysis of the exosomes revealed that miR-21, miR-4332 and other osteogenic 
differentiation-related miRNAs are highly expressed compared to other cell-derived 
exosomes. Interestingly, mononuclear cell chemotactic protein MCP-1/-3 and stromal 
cell-derived factor SDF-1, were lower in BMSC-Exo than in the control group [70, 71].  
This might suggest that differential distribution of osteogenic differentiation and 
angiogenesis-related miRNAs in BMSC-Exo. In another study, BMSC-Exo group 
showed a significant increase in bone formation and repair rate in the model of 
mouse skull repair, compared with the control group. Similarly, in vitro experiments, 
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miRNA Derived 

cells

Express level Target 

cells

In vivo evaluation In vitro evaluation Involved 

pathway

Let-7a 

[67]

BMSCs Upregulated MSCs Promote bone formation Promote osteogenesis and suppress adipogenesis [68] AXIN2

HMGA2

miR-218 

[67]

BMSCs Upregulated SMSCs None Inhibit osteogenic differentiation None

miR-203 

[67]

BMSCs Upregulated BMSCs None Promote osteoblastic differentiation None

miR-196a 

[59]

BMSCs Upregulated BMSCs Stimulate bone formation Positively regulated osteogenic genes and osteoblastic 

differentiation but did not inhibit proliferation

None

miR-27a 

[59]

BMSCs Upregulated MSCs Overexpression promoted osteogenic 

differentiation

None PPARγ

miR-206 

[59]

BMSCs Upregulated None None None None

miR-21 

[69]

BMSCs Upregulated BMSCs/

MSCs

Accelerate fracture healing Promote osteogenic differentiation PI3K/AKT

miR-125b 

[69]

BMSCs Upregulated BMSCs None Suppresses the proliferation and osteogenic 

differentiation of BMSCs

None

miR-10b 

[72]

BMSCs Upregulated MSCs None Promote the migration of MSCs None

miR-221 

[72]

BMSCs/

MSCs

Downregulated MSCs Anti-miR-221 enhances bone healing Downregulation of miR-221 triggers osteogenic 

differentiation

None

miR-155 

[67]

BMSCs Downregulated None None None None

miR-31 

[72]

MSCs Downregulated BMSCs Inhibition of miR-31 in MSCs increased bone 

volume and bone mineral density

Inhibit the osteogenic differentiation of MSCs Wnt

miR-144 

[72]

MSCs Downregulated MSCs None Inhibit the osteogenic differentiation of MSCs None

Table 1. 
Summary of Exosomal miRNAs and their potential effects on bone metabolism.
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BMSC-Exo was showed to activate osteogenic differentiation, increase osteoblast 
activity, and promote bone formation without inhibiting stem cell proliferation [59].

Further study found that the ability of exosomes to promote bone formation is 
different even when the parent cells are in different differentiation stages. For example, 
in vitro experiments demonstrated that the human mesenchymal stem cell-derived 
exosomes (hMSCs-Exo) from the late differential stage have the strongest osteogenic 
differentiation ability [67, 72]. Consistently, MiR-31, miR-221, and miR-144 that inhibit 
osteogenic differentiation have significant decreased levels in late differential stage of 
hMSCs-Exo, while miR-21, miR-10b, and other miRNAs that contribute to osteogenesis 
is significantly upregulated [73–76]. It should be noted that the exosome miRNA’s ability 
to regulate cell function could be context dependent, especially in the present of inhibi-
tory miRNAs [67, 77]. Therefore, to promote bone regeneration using stem cell-derived 
exosomes, silencing inhibitory miRNAs may be a problem to be solved.

In addition, some miRNAs carried by other cell-derived exosomes also have the 
ability to promote bone regeneration. For example, the mineralization-related miR-
503-3p is highly expressed in the miRNAs carried by osteoblast-derived exosomes. 
Interestingly, miR-503-3p also inhibits osteoclast differentiation by mediating 
RANK expression [78]. Osteoblast-derived exosomes and pre-osteoblasts-derived 
cells can also carry miRNAs such as let-7a and miR-96a, which have been previ-
ously confirmed to be involved in bone remodeling [79]. Similarly, the miR-27a-3p 
carried by myogenic cell-derived exosomes can also enhance osteogenic differentia-
tion of pre-osteoblasts [80]. In contrast, osteoclast-derived exosomes can carry 
miRNAs such as miR-214 that inhibit osteogenic differentiation of osteoblasts [81]. 
Interestingly, in vitro experiments have found that human adipose stem cell-
derived exosomes (ASCs-Exo) can increase the osteogenic capacity of target cells 
by upregulating the mRNA expression of osteogenesis-related genes RUNX2, ALP, 
and COL1A1, and promote bone formation [82]. In addition, the mRNA of RAB13, 
an osteoclastic membrane trafficking protein required for bone resorption, is also 
overrepresented in osteoblast-derived exosome [49].

Overall, cell-derived exosomal miRNAs and mRNAs likely play important roles 
in bone regeneration, through promoting osteogenic differentiation, angiogenesis 
and other processes. However, it is unclear whether protein factors are eventually 
needed to mediate their final effects.

3.3 Key protein factors carried by exosomes regulate bone regeneration

Key factors in stem cell-derived exosomes are known to mediate a series of 
conserved signaling pathways.

RUNX2 is an important transcription factor that can regulate osteogenesis 
differentiation, through promoting the differentiation of pluripotent stem cells into 
osteoblasts and inhibit osteoblast maturation [83]. Consistently, in vivo experiment 
found that human induced pluripotent mesenchymal stem cell-derived exosomes 
(hiPS-MSC-Exo) stimulated osteogenic differentiation, promoted angiogenesis, 
and improved fracture healing rate in animals with the upregulated transcription 
factors such as RUNX2 [84]. It was also reported that cell derived exosomal miRNAs 
are critical for upregulation of RUNX2 [85, 86]. Interestingly, RUNX2 directly 
represses miR-31 expression, which significantly inhibits expression of the osteo-
genic transcription factors OPN, BSP, Osterix (OSX), and OCN [87].

PI3K-AKT signaling pathway is thought to play an important role in exosomes-
mediated bone regeneration because it stimulates osteogenic differentiation and 
promotes osteogenesis [88, 89]. Consistently, Shabbir et al. found that BMSCs-Exo 
activates multiple signaling pathways including Akt, Erk1/2, and STAT3 to induce 
angiogenic responses in fibroblasts [90]. In vitro experiment also found that 
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hiPS-MSC-Exo downregulates inhibitory factor (GSK3β and PTEN) by upregulating 
PI3K-AKT target genes PDGFA and FGFR1 [91], and activation of PI3K-AKT cascade 
induces stem cell proliferation and differentiation into osteoblasts, and enhances 
ALP expression and calcium salt deposition, promoting bone regeneration. In the 
context of long-term nonunion of the femoral neck fracture or intertrochanteric 
fracture induces femoral head necrosis, Liu et al. found that iPS-MSCs-Exo activates 
the PI3K/Akt signaling pathway to increase angiogenesis and reduce bone loss [94].

miRNAs are also important molecules that regulate the PI3K-AKT signaling 
pathway. For example, miR-21, highly expressed in BMSCs-Exo, is one of the major 
regulators in stem cell-derived exosomes, which promotes osteogenic differentia-
tion not only by inhibiting SOX2 [92], but also regulating the PI3K-AKT-GSK3β 
signaling pathway, which, in turn, activates the transcription of RUNX2, and 
stimulate osteogenic differentiation [93].

Wnt pathway is an important signaling pathway related to bone repair. In this 
regard, ASCs-Exo pretreated with TNF-α could upregulate Wnt3 expression in stem 
cells and promote bone regeneration [95, 96]. Zhang et al. also found that human 
umbilical cord stem cell-derived exosomes induce Wnt4-mediated β-catenin nuclear 
transport, and induce endothelial cell proliferation, differentiation, and neovascu-
larization [97]. Similarly, BMSCs-Exo also activates the Wnt3a-β-catenin pathway 
and induces angiogenic capacity of fibroblast [98].

RANKL-RANK signaling is known to be responsible for homeostasis of bone 
metabolism, which is determined by a dynamic balance between osteoclasts and 
osteoblast [99]. Interestingly, Nuclear factor kappaB ligand (RANKL) can be 
encapsulated into osteoblast exosomes, while osteoclast exosomes are enriched with 
RANK [100]. When RANKL binds to RANK in pre-osteoclasts, TNF receptor-related 
factors (TRAF) 2, 3, 5, and 6 are recruited, leading to activation of multiple signaling 
pathways including MAPK and NF-κB, promoting osteoclast differentiation and 
bone resorption [101]. Moreover, level of RANK-containing exosomes increases in 
the late stage of osteoclast differentiation, which negatively feedbacks on RANKL-
RANK signaling to inhibit osteoclast differentiation [99]. Therefore, RANKL-RANK 
loop contributes to the homeostasis of bone metabolism and bone regeneration.

Other proteins and cytokines in the exosomes are also involved in promoting 
bone regeneration process. For example, Martins et al. found that hBMSCs-Exo 
induced BMP2 upregulation, and BMP2 in turn, promoted stem cell osteogenic 
differentiation and osteogenesis by cascade activation of transcription factor OSX 
instead of RUNX2 [65]. Similarly, SPE1 (secreted phosphoprotein 1), integrin-
binding sialoprotein and bone gland protein BGLAP (bone g-carboxyglutamate (gla) 
protein) were also upregulated, which facilitated bone mineralization and other 
bone regeneration processes. MSCs-Exo is also known to induce high expression of 
BMP9, transforming growth factor β1 (TGFβ1), vascular endothelial growth factor 
(VEGF), and platelet-derived growth factor (PDGF) [102]. BMP9 is considered to be 
an osteogenic factor stronger than BMP2. TGFβ1 and PDGF are known to play roles 
both in osteogenic differentiation and angiogenesis [103–105]. Qi et al. also found 
that hiPSC-MSC-Exo induced high expression of osteopontin, osteocalcin, and type 
I collagen (COL1), and enhanced bone mineralization [84, 106]. Meanwhile, high 
expression of phosphorylated protein and bone matrix acidic protein (DMP1) was 
found in the extracellular matrix (ECM) containing MSCs-Exo, suggesting MSCs-
Exo promotes calcium phosphate recruitment and bone mineralization [107].

In addition, exosomes from osteoblast carry transforming growth factor beta 
receptor II interacting protein1 (TRIP-1), a regulator of osteoblast function. TRIP-1 
from the exosomes can bind to type I collagen and promote its mineralized extracel-
lular matrix, therefore bone mineralizing [108]. Sema4D is an osteoclast membrane 
protein that can be carried in exosomes derived from osteoclasts and acts on the 
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receptor Plexin B on osteoblasts [81]. The Sema4D-Plexin B interaction promotes 
the release the content of exosomes and accelerates bone formation.

It is worthy to mention that some proteins, though are highly expressed in 
stem cell-derived exosomes and have the potential for bone regeneration, do not 
seem to play important roles in exosomes mediated osteogenic or chondrogenic 
differentiation in different contexts. For example, heat-shock protein 70 (HSP70), 
which can be used as a marker of BMSCs-Exo, is downregulated in human MSC-
Exos and negatively affects osteogenic and chondrogenic differentiation. Similarly, 
down-regulation of heat shock protein B8 (HSPB8) can reduce the formation of 
dental pulp stem cells, and osteogenic differentiation ability [109-111]. Overall, the 
specific biological mechanisms of some functional proteins to promote fracture 
healing are not fully understood, and further detailed researches will be needed.

4. Clinical therapeutic applications and limitations

Many studies have shown that stem-derived exosomes in vitro and in vivo activate 
a series of bone regeneration programs through their selective bioactive substances, 
which are mainly through osteogenic differentiation, angiogenesis, and bone miner-
alization. In these applications, the high extracellular matrix binding affinity of stem 
cell-derived exosomes is a big plus for their clinical application. Recently, some scholars 
have found that human adipose-derived stem cell-derived exosomes promote fracture 
healing in animals by binding to polylactic acid-glycolic acid scaffolds [82]. At the same 
time, the immunomodulatory and anti-inflammatory properties of stem cell-derived 
exosomes have also attracted the attention of researchers, which could be the potential 
biological mechanisms for clinical treatment to promote bone regeneration [112, 113].

However, so far there are few examples of clinical trials using exosomes as clinical 
treatments. At present, exosome clinical application has only been reported in the 
fields of treatment of chronic kidney disease, type 1 diabetes mellitus (clinical tri-
alNCT02138331), and skin damage (clinical trial NCT02565264) [114]. In the field of 
bone regeneration, to our best knowledge, there is not any clinical trial, either ongo-
ing or finished. The main reasons for this delay could be logistic, since the separation, 
acquisition, purification, and identification of exosomes are still in the laboratory 
stage, and large scale manufacture is still a major practical challenge. In addition, the 
healing of the fracture will take several months, and how to make the exosomes avail-
able constantly in the fracture site for such a long time is also a problem.

Cell culture: The acquisition of a large number of exosomes requires a large 
number of cells [115]. However, large scale stem cells culture may alter the cell 
phenotype [116]. Existing cell culture techniques such as bioreactors have expanded 
the surface area of cell growth, but it is still difficult to perfectly control the condi-
tions of cell growth [117]. As mentioned above, exosomes from different stages of 
derived cells have different bone regeneration capabilities. However, there are still 
limitations on how to obtain batch production from the specific stage of the cells.

Purification: Ultracentrifugation and ultrafiltration can be used to obtain puri-
fied exosomes in the laboratory, but this technology is difficult to apply on a large 
scale [118]. The nonspecific precipitation method using polyethyleneglycol (PEG) 
can solve this problem well, but PEG needs to be removed again in the product, 
which is technical challenging [119]. The tangential-flow filtration technology based 
on cell size separation is currently considered promising; however, it is expensive to 
use and does not separate some biological materials such as DNA [118, 120].

Identification and quality control: Current laboratory identification and 
quality control methods include direct observation under electron microscopy and 
biomarkers observation, but none of them can be scaled up easily. The identifica-
tion and quality control using immunomagnetic capture of exosomal biomarkers 
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through microfluidic technology can speed up the identification process, but it also 
has a long way to go before this method can be commonly accepted [118, 121].

In summary, the existing technology still has great challenges for large-scale 
acquisition of purified exosomes.

5. Existing disputes and problems

Whether promoting bone regeneration will indirectly lead to tumor production 
is a controversy that needs to be tested seriously. In fact, there are some studies have 
shown that exosomes can promote tumor growth and malignant transformation 
or inhibit tumor survival [122, 123]. For example, Qi et al. found that BMSCs-Exo 
can induce osteosarcoma growth by activating the Hedgehog signaling pathway 
[124]. BMSCs-Exo can induce drug resistance even on the basis of promoting the 
proliferation and differentiation of myeloma cells and the survival of migration 
[125, 126]. How to limit the potential tumor-promoting ability of stem cell-derived 
exosomes is a problem that must be solved before clinical application. However, 
miR-340 carried by early BMSCs-Exo can inhibit the angiogenic ability of myeloma 
thus significantly limiting tumor growth [127].

In clinical applications, while the short term activity of pro-osteogenic dif-
ferentiation in vitro or promotion of bone regeneration is observed by exosomes 
treatment, the long-term activity that affects the quality of fracture healing or 
osteophyte formation is unknown. It is also unclear how to stop the biological 
effects of exosomes when the satisfactory therapeutic effect is achieved. To clarify 
these issues, at present, it is urgently needed to test exosomes in animal model 
before we can move on to clinical study.

6. Conclusion

In summary, exosomes with their carried bioactive contents have a capacity 
to promote bone regeneration through osteogenic differentiation, angiogenesis, 
and bone mineralization (Figure 2). Hence, exosomes are identified as potential 

Figure 2. 
Main biological mechanism of therapeutic application exosomes in bone regenerative medicine.
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