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Abstract

In the present study, analytic signal amplitude (ASA) or total gradient (TG) inversion of 
self-potential anomalies has been carried out using very fast simulated annealing (VFSA) 
global optimization technique. The results of VFSA optimization demonstrate the applica-
tion and efficacy of the proposed method for idealized synthetic hypothetical models and 
real single and multiple geological structures. The model parameters deciphered here are 
the amplitude coefficient (k), horizontal location (x

0
), depth of the body (z), and shape (q). 

Inversion of the model parameter suggests that constraining the horizontal location and the 
shape factor offers the most reliable results. Investigation of convergence rate, histogram, 
and cross-plot examination suggest that the interpretation method developed for the self-
potential anomalies is stable and the model parameters are within the estimated ambiguity. 
Inversion of synthetic noise-free and noise-corrupted data for single structures and mul-
tiple structures in addition to real field information exhibits the viability of the method. The 
model parameters estimated by the present technique were in good agreement with the 
real parameters. The method has been used to invert two field examples (Sulleymonkoy 
anomaly, Ergani, Turkey, Senneterre area of Quebec, Canada) with application of subsur-
face mineralized bodies. This technique can be very much helpful for mineral or ore bodies 
investigation of idealized geobodies buried within the shallow and deeper subsurface.

Keywords: self-potential, total gradient, idealized bodies, VFSA, uncertainty estimation, 
ore exploration

1. Introduction

The self-potential (SP) technique has an important significance in mineral and ore explora-

tions [1–8]. The method has an extensive range of application, viz., mining industries [9–12], 

sulfide, graphite exploration, and groundwater exploration [13, 14], study of groundwater 
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flow in pumping wells [15, 16], geothermal exploration [17–19], fluid flow in the vadose zone 
[20, 21], uranium mineralization [2–4], engineering and environmental applications [22–24], 

archeological investigations [25], cave detection [26], earthquake prediction [27], hydraulic 

fracturing [28], brine contamination [29], spring flow [30], delineation of buried paleochan-

nels [31], volcanic eruptions [32, 33], and paleoshear zones [34].

In general, most of the interpretation of SP anomaly is carried out assuming simple geometri-

cal shapes (for example, 3-D sphere, 2-D horizontal or vertical cylinder, and 2-D sheet) buried 

at variable depth generated by different mineral or ore bodies [2, 3, 7, 34–47]. Numerous 

interpretation techniques have been developed over the last two decades considering various 

interpretation methods [38, 40, 48–53]. For instance, graphical methods [42, 54], the nomo-

grams [42], logarithmic curve matching [41, 55], characteristic points, [43, 45, 56], least square 

method [38, 57], Fourier analysis [58], 3-D topography effect [59, 60], gradient and derivative 

study [61], moving average residual anomalies [62], modular neural networks [49], particle 

swarm optimization [63], depth from extreme point [64], differential evolution [65], Genetic-

Price algorithm [66], spectral and tomographic approach [67], second horizontal gradient [68], 

and spectral methods [69] were too applied for the elucidation of SP data. A detailed review of 

the SP background, theoretical modeling, inversion, and its application in mineral exploration 
can be found after Biswas [1].

Among various interpretation and inversion techniques mentioned above, for the most part, 

inverse modeling intends to do the best interpretation of the model parameters. It is very 

familiar in geophysical data that the nonuniqueness problem, nonlinearity, and ill-posed 

nature of the SP anomaly inversion make the processing and elucidation rather cumbersome. 
Also, in linear problems for SP data, the presence of less number of well-known numbers 
rather than the number of unidentified geological model parameters often shows an uncer-

tainty, which creates the interpretation quite difficult [70]. Subsequently, the inversion prob-

lems of SP anomaly firmly need a few limitations, a priori information with a specific aim to 
improve interpretable and reasonable model parameters [1]. However, in almost every case, 

the measured SP anomaly was interpreted without considering the analytical signals or total 

gradient derived from SP measurements.

The main objective of the present work is to interpret the analytic signal amplitude (ASA) 
or the total gradient (TG) of SP anomaly over different idealized or causative body, which 
satisfies the Laplace’s condition. It is well known that the analytical signals derived from SP 
anomaly are correctly known as the TG [71–74]. The interpretation of ASA or TG derived 

from SP has been sparsely done in the present literature. It was only interpreted using ant 

colony optimization (ACO) [75]. In the current work, very fast simulated annealing (VFSA) 
was applied to decide the different model parameters associated with idealized subsurface 
bodies for ASA or TG from SP anomalies. The present inversion method has an advantage 

over other approaches for its pliability and its proficiency to converge toward global optima. 
The method has an ability to avoid from getting stuck in local minima and it has very high 
resolution, faster calculation as well as less memory without negotiating the resolution of the 

model parameters [2, 3, 35, 76–80]. Moreover, it does not need a priori information for the 

elucidation of SP anomalies.
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In this study, inversion using VFSA algorithm was performed with the help of synthetic 

noise-free and noise-corrupted synthetic data using single and multiple structures and two 

field data from Sulleymonkoy anomaly, Ergani, Turkey, Senneterre area of Quebec, Canada. 
The results from the present method were compared with other well-established SP anomaly 

interpretations, such as ACO techniques. The present method used as a comprehensive 
method for quantitative elucidation of SP anomalies derived after various subsurface ideal-

ized geobodies.

2. Methodology

2.1. Forward modeling

Following Nabighian [71], the 2-D analytical signal amplitude (ASA) or the total gradient 

(TG) of SP anomaly is given as.

  (1)

where V
x
 and V

y
 are the horizontal and vertical derivatives of the SP anomalies, respectively. 

The 2-D ASA of few of the idealized geobodies can be estimated following the general expres-

sion of SP anomaly ASA (x) for idealized causative bodies (horizontal/vertical cylinder, 

sphere, inclined sheet, etc.) at any point on the surface of the earth (Figure 1) [70, 71, 74, 75], 

which is given by the equation:

  (2)

where k is the amplitude coefficient/factor related to the physical properties of the source, z is 

the depth from the surface to the top of the body (sphere, cylinder, sheet, line of poles, point 

pole), x
0
 (i = 1, …,N) is the horizontal position coordinate on the surface, and q is the shape 

factor. The shape factors (q) for horizontal/vertical cylinder, sphere, inclined sheet, line of 

poles, and point poles are 1, 1.5, 1, 0.5, and 1, respectively. The total derivation of the ASA or 

TG anomaly can be found in various literatures [71–75, 81].

The above equation can be used to interpret single structure. However, in order to interpret 

the numerous structures, the expression (2) can be rewritten as [36]:

  (3)

where ASA
j
 (x

i
) is the SP anomaly at x

i
 location for jth body and M is the number of bodies.

2.2. Global optimization

Several global optimization approaches have been effectively used in interpretation of differ-

ent geophysical data (e.g., [35–37, 75, 77, 82–86]). In the present study, an alternative method 
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Figure 1. A diagram showing cross-sectional views, geometries, and parameters for (a) sphere, (b) cylinder, and (c) sheet-

type structure.

Minerals16



of simulated annealing (SA) which is called as very fast simulated annealing (VFSA) was 

applied in the present study to elucidate the total gradient SP anomaly. VFSA is different 
from SA in terms of faster cooling schedule due to its finer Cauchy probability distribu-

tion for the arbitrary selection of every model parameter. VFSA takes any value in a model 
space, whereas SA does it in a predefined model space and hence the resolution increases for 
VFSA. Moreover, in VFSA optimization process, it does not recall all models and hence needs 

very small memory [35, 87, 88]. In every geophysical inversion, the main objective is to mini-

mize the error function or the misfit. In the present work, the misfit (φ) between the observed 

and calculated/model response was used for SP data interpretation because of the fact that 

the objective function gets affected (increases) near zero crossing of SP anomaly (after [78]).

  φ =   1 __ 
N
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where N is the number of data point,  and  are the ith observed and model responses and 

 and  are the maximum and minimum values of the observed response, respectively.

For the present inversion of SP data using VFSA optimization process, different parameters 
such as initial temperature, cooling schedule, number of iterations, and number of moves per 

temperature were taken as 1.0, 0.4, 2000, and 50. To find out the global/optimum solution, 
probability density function (PDF) was taken within 60.65% limit and ambiguity study has also 
been carried out based on the techniques developed by Mosegaard and Tarantola [89], Sen and 

Stoffa [90]. The details of the inversion process can be found in different literatures such as Sen 
and Stoffa [77], Sharma [86], Sharma and Biswas [78], Biswas [82], and Biswas [5]. Because in 

the earlier studies, the VFSA algorithm has established a very good performance as a powerful 

optimization method for estimating multidimensional and multimodal error functions. Hence, 

this optimization strategy is applied for SP data enhancement and regularization. The present 

VFSA algorithm for interpretation of ASA or TG of SP anomaly was carried out in Windows 8 

environment using MS FORTRAN Developer studio on a simple desktop PC with Intel Core i7 

processor. For each step of optimization, an overall of 106 forward computations (2000 iteration 

× 50 number of moves × 10 VFSA runs) were accomplished and accepted models were stored in 

memory. The total time required (not CPU time) to compute a sole inversion is 35 s.

3. Results and discussion

3.1. Parameter search range

An appropriate selection of initial guess values or the search range for every model param-

eters is a significant objective of any inversion approach. For the quantitative elucidation of SP 
anomaly from ASA, the horizontal position of the source is found from the highest anomaly, 

the depth from half width [71], and the size of the amplitude from highest amplitude and 

depth. Srivastava and Agarwal [70] stated that the most stable parameter for interpretation of 
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SP anomaly is the horizontal location, which changes very little. Moreover, it was discussed 
earlier that limiting the shape factor also gives the consistent results in terms of ambiguity 

and error [35]. Hence, in order to find the accurate or the true value of each model parameter, 
initially the search ranges for each model parameters were kept wide so as to find out the 
most probable solution. Next, the search spaces were reduced to find the more appropriate 
results. When the model parameter gives the utmost results and very least error, the location 

(x
0
) and the shape factor (q) were fixed to their real/true values to further reduce the error in 

the amplitude and the depth so as to find the actual depth of the subsurface bodies and reduce 
ambiguity in the final interpretation.

3.2. Synthetic examples

The VFSA inversion technique was utilized considering synthetic noise-free and noise-corrupted 

data (10 and 20% random noise) for self-potential anomaly for various subsurface structures 
derived from the ASA anomaly. At first, every model parameter was inverted for every data. 
Synthetic hypothetical data were produced utilizing Eq. (2) for different idealized geobodies, 
and 10 and 20% random noise is corrupted to the synthetic data. VFSA inversion was applied 
utilizing noise-free and noisy data to retrieve the genuine model parameters and analyze the 

impact of noise on the deciphered model parameters. In general, a reasonable search range/

space for every model parameter was chosen and one VFSA run was performed. Thereafter, 

the best possible convergence of every model parameter was studied (k, x
0
, z, and q) and misfit.

Next, to acquire the mean model, 10 VFSA runs were executed. At that point, histograms were 

constructed from the retrieved models whose misfit error was lesser than 10−4. Then, a statisti-

cal mean model was calculated utilizing models that have misfit lesser than 10−4, which also 

exist inside one standard deviation. Besides, cross-plots were also developed and analyzed 

to check whether the model parameters were inside the high PDF region (60.65%). Further, 
noises were also added in the data and the process was repeated again where the misfit error 
was lower than 10−2. Finally, the comparison between the observed and model responses was 

shown for every model. This process was applied for each hypothetical synthetic noise-free, 

noisy, and field cases.

3.2.1. Model 1 (sphere)

Inversion of the SP data was performed as said above utilizing synthetic noise-free data 

for sphere-like structure. Figure 2 demonstrates the convergence example for every model 

parameter. Figure 3a demonstrates the histogram for every model parameter (k, x
0
, and z). The 

histogram uncovers that all the parameters of the body can be very much interpretable after 

inversion. Moreover, very less ambiguity in the interpretation of the main three model param-

eters was found. The cross-plots analysis (Figure 4a) demonstrated that the model parameters 

were near their true value (green). The final estimated model parameters were within the 
ambiguity limits and inside the high PDF region (red). The fittings between the observed and 
model response are shown in Figure 6a. The deduced model parameters and mean model 

are shown in Table 1. Next, another model was also selected to see the variation in the ampli-

tude, location, and depth. Inversion was repeated the same way as discussed above. Figure 3b 
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shows the histogram for the three model parameters. Figure 5a demonstrates the cross-plots 

for this model as well. The fittings between the observed and model response are shown in 
Figure 6b, and the elucidated parameters and mean model are shown in Table 2.

3.2.2. Model 2 (horizontal and vertical cylinder)

Another synthetic example for horizontal and vertical cylinder-like body was taken for inver-

sion of the SP data. Figure 7a shows the histogram for every model parameter (k, x
0
, and z). 

Figure 2. Convergence pattern for various model parameters and misfit.
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The histogram shows that all the parameters of the cylindrical structure can be very much 

elucidated. The cross-plots analysis (Figure 8a) demonstrates that the model parameters were 

near their true value (green) and the final expected model parameters were within the ambi-
guity limits and within high PDF region (red). Observed and model response fits are shown 
in Figure 10a. The elucidated parameters and mean model are shown in Table 3. Similarly, 

for the sphere-like structure, another model was selected to see the variation in the model 
parameters. Figure 7b demonstrates the histogram for the three model parameters. Figure 9a 

Figure 3. (a and b) Histograms of all accepted models having misfit <10−4 for noise-free synthetic data for sphere and 
(c and d) histograms of all accepted models having misfit <10−2 for noisy synthetic data (10 and 20% random noise) for 
sphere.
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demonstrates the cross-plots of this model. Observed and model responses are shown in 
Figure 10b, and the elucidated parameters and mean model are shown in Table 4.

3.2.3. Model 3 (inclined sheet)

A synthetic example for 2-D inclined sheet-type body was also taken for inversion of the SP 
data. Figure 11a shows the histogram for every model parameter (k, x

0
, and z). The cross-plots 

(Figure 12a) also demonstrate that the model parameters are near their actual value (green) and 

the final plausible model parameters lie inside the estimated ambiguity limits and inside high 
PDF region (red). Observed and model response fits are shown in Figure 14a. The elucidated 

Figure 4. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x
0
) for all models having misfit 

< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x

0
) for all models having misfit < threshold (10−2 for noisy 

data) (green), and models with PDF > 60.65% (red) for noisy (10% random) data for sphere.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) −5000 −10,000 to 0 −5002.2 ± 27.4 −4907.7 ± 152.2

x
0
 (m) 200 0–300 200.0 ± 0.0 200.0 ± 0.0

z (m) 20 0–50 20.0 ± 0.0 19.9 ± 0.3

q 1.5 0–2 1.5 ± 0.0 1.5 ± 0.0

Misfit 6.6 × 10−9 9.4 × 10−5

Table 1. Actual model parameters, search range, and interpreted mean model for noise-free, 10% random noise with 
uncertainty for sphere.
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Figure 6. Fittings between the observed and model responses for sphere—(a) noise-free synthetic data; (b) noise-free 
synthetic data; (c) 10% random noisy synthetic data; and (d) 20% random noisy synthetic data.

Figure 5. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x
0
) for all models having misfit 

< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x

0
) for all models having misfit < threshold (10−2 for noisy 

data) (green), and models with PDF > 60.65% (red) for noisy (20% random) data for sphere.
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Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) −7500 −10,000 to 0 −7497.4 ± 34.6 −7037.4 ± 151.6

x
0
 (m) 250 0–300 250.0 ± 0.0 250.0 ± 0.0

z (m) 30 0–50 30.0 ± 0.0 29.9 ± 0.3

q 1.5 0–2 1.5 ± 0.0 1.5 ± 0.0

Misfit 4.2 × 10−8 7.1 × 10−4

Table 2. Actual model parameters, search range, and interpreted mean model for noise-free, 20% random noise with 
uncertainty for sphere.

Figure 7. (a and b) Histograms of all accepted models having misfit < 10−4 for noise-free synthetic data for cylinder and 

(c and d) histograms of all accepted models having misfit < 10−2 for noisy synthetic data (20 and 10% random noise) for 
cylinder.
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parameters and mean model are given in Table 5. Another model was selected to see the varia-

tion in the model parameters. Figure 11b displays the histogram for the three model param-

eters. Figure 13a shows the cross-plots of this model. Observed and model response fits are 
shown in Figure 14b, and the elucidated parameters and mean model are shown in Table 6.

3.3. Noise analysis

To see the effectiveness of the present inversion results, the synthetic noise-free data must be 
corrupted with different degrees of noises and reinterpreted using the inversion method to 
check its performance and robustness of the method. Hence, 10 and 20% random noise was 
added to the data for sphere, cylinder, and sheet-type structure, and the procedure was repeated 

again to examine the effect of noise. Figure 3c and d displays the histogram for noise-corrupted 

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) −7500 −10,000 to 0 −7497.9 ± 23.7 −7357.3 ± 122.8

x
0
 (m) 200 0–300 200.0 ± 0.0 200.0 ± 0.0

z (m) 30 0–50 30.0 ± 0.0 31.1 ± 0.4

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 5.2 × 10−11 9.8 × 10−4

Table 3. Actual model parameters, search range, and interpreted mean model for noise-free, 20% random noise with 
uncertainty for horizontal/vertical cylinder.

Figure 8. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x
0
) for all models having misfit 

< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x

0
) for all models having misfit < threshold (10−2 for noisy 

data) (green), and models with PDF > 60.65% (red) for noisy (10% random) data for cylinder.
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sphere-like structure. Figures 4b and 5b show the cross-plots for noisy data. Tables 1 and 2 

show the interpreted mean model for noisy data and the fits between the observed and model 
response for noisy model are shown in Figure 6c and d. For horizontal and vertical cylinder-like 
structure, again noise was corrupted with the two models mentioned above. Figure 7c and d  

shows the histogram for noise-corrupted horizontal/vertical-like structure. Figures 8b and 9b 

show the cross-plots for noisy data. Tables 3 and 4 show the interpreted mean model for noisy 

data and the fits between the observed and model response for noisy model are shown in 
Figure 10c and d. Also, for 2-D inclined sheet-type structure, the same amount of noise was 

Figure 9. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x
0
) for all models having misfit 

< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x

0
) for all models having misfit < threshold (10−2 for noisy 

data) (green), and models with PDF > 60.65% (red) for noisy (20% random) data for cylinder.

Figure 10. Fittings between the observed and model responses for cylinder—(a) noise-free synthetic data; (b) noise-free 
synthetic data; (c) 10% random noisy synthetic data; and (d) 20% random noisy synthetic data.
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Figure 11. (a and b) Histograms of all accepted models having misfit < 10−4 for noise-free synthetic data for cylinder 

and (c, d) histograms of all accepted models having misfit < 10−2 for noisy synthetic data (10 and 20% random noise) 
for sheet.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) −1000 −2000 to 0 −999.6 ± 3.3 −963.1 ± 22.6

x
0
 (m) 250 0–300 250.0 ± 0.0 250.0 ± 0.0

z (m) 20 0–50 20.0 ± 0.0 19.6 ± 0.4

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 5.9 × 10−9 1.6 × 10−4

Table 4. Actual model parameters, search range, and interpreted mean model for noise-free, 10% random noise with 
uncertainty for horizontal/vertical cylinder.
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corrupted in the models mentioned above. Figure 11c and d shows the histogram for noise-

corrupted inclined sheet-type structure. Figures 12b and 13b illustrate the cross-plots for noisy 

data. Tables 5 and 6 show the interpreted mean model for noisy data and the fits between 
the observed and model response for noisy model are shown in Figure 14c and d. It can be 

seen from the study of histogram and cross-plots that the model parameters are interpreted 

very precisely, and it also advocates that the appraised model parameters for all structures are 

inside the ambiguity limits and within high PDF region. This also suggests that the inversion 

methodology developed for the elucidation of SP anomalies can precisely decide every model 

parameter and even if the data are highly corrupted with different degrees of noises.

3.4. Effect of complicated structure

It is significant to mention that that, in nature (field examples), it is very difficult to get an 
idealized geobody or structure. Moreover, the structures are mostly corrupted with different 

Figure 12. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x
0
) for all models having misfit 

< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x

0
) for all models having misfit < threshold (10−2 for noisy 

data) (green), and models with PDF > 60.65% (red) for noisy (10% random) data for sheet.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) 100 0–200 100.1 ± 0.4 96.3 ± 1.2

x
0
 (m) 250 0–300 250.0 ± 0.0 250.0 ± 0.0

z (m) 40 0–50 40.0 ± 0.0 40.6 ± 0.4

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 4.7 × 10−7 8.1 × 10−5

Table 5. Actual model parameters, search range, and interpreted mean model for noise-free, 10% random noise with 
uncertainty for sheet.
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degree of noises. Also, there might be multiple structures within the subsurface of different 
types. In those cases, the anomaly from multiple structures will be very difficult to interpret. 
To test whether the inversion method can accurately identify the multiple structures, three 

different structures were taken and forward responses have been computed using Eqs. (2) 

Figure 14. Fittings between the observed and model responses for sheet—(a) noise-free synthetic data; (b) noise-free 
synthetic data; (c) 10% random noisy synthetic data; and (d) 20% random noisy synthetic data.

Figure 13. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x
0
) for all models having misfit 

< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x

0
) for all models having misfit < threshold (10−2 for noisy 

data) (green), and models with PDF > 60.65% (red) for noisy (20% random) data for sheet.
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and (3). Single structure and multiple structures from the forward modeling are shown in 

Figure 15a. Inversion of the synthetic data was carried out the same way as for the single 

model examples. Fits between the observed and model response are also shown in Figure 15a. 

Moreover, to investigate the effect of noisy data, only 20% random noise was corrupted in 
the data and inversion was repeated. Figure 15b displays the fits between the observed and 
model response for noisy data. Table 7 shows the interpreted model parameters for each 

structure derived from the multiple anomalies. Both noise-free and noisy data are shown 

in Table 7. It can be seen from Table 7 that the misfit is quite less for noise-free and noise-
corrupted data. Histogram and cross-plots show alike as revealed in other examples for single 
structures. However, it is not presented here for brevity.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) 500 0–1000 500.0 ± 1.6 493.5 ± 10.5

x
0
 (m) 200 0–300 200.0 ± 0.0 200.0 ± 0.0

z (m) 20 0–50 20.0 ± 0.0 19.5 ± 0.3

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 2.0 × 10−9 6.2 × 10−4

Table 6. Actual model parameters, search range, and interpreted mean model for noise-free, 20% random noise with 
uncertainty for sheet.

Figure 15. Fittings between the observed and model responses for multiple structure—(a) noise-free synthetic data; (b) 
20% random noisy synthetic data.
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3.5. Field example

To demonstrate the efficiency of the present method, two field examples from Turkey and 
Canada were taken for interpretation. The field anomaly of ASA/TG from SP anomaly was 
taken from the earlier published literatures as described below:

3.5.1. Sulleymonkoy anomaly, Ergani, Turkey

This field example was taken from the Sulleymonkoy SP anomaly, Ergani, Turkey [91]. The 

ASA or TG anomaly was derived following Srivastava and Agarwal [70] (Figure 18). The 

anomaly was interpreted by many workers using different interpretation methods [38, 92–96]. 

The SP anomaly data were interpreted using the VFSA global optimization technique in this 

study. The TG anomaly shows a large magnitude peak anomaly with two small anomalies. 
In the present case, initially the main peak anomaly was interpreted considering a single 
structure. The depth obtained by the present study for single body was found to be 34.5 m 

on the horizontal location of 66.3 m, and the structure was interpreted as a cylindrical body. 

Histogram plot for single body (Figure 16a) also shows that the model parameters were pre-

cisely determined. Analysis of cross-plots (Figure 17a) also shows that the assessed model 

parameters were within the ambiguity limits. Next, considering multiple structures, the 

inversion process was repeated again for three different structures considering three peak 
values. Analysis of histogram plot for multiple bodies (Figure 16b–d) also shows that the 

model parameters were precisely determined. Investigation of cross-plots (Figure 17b–d) 

also shows that the estimated model parameters were within the uncertainty limits and 

Model 

parameters

Actual 

value

Search 

range

Sheet Actual 

value

Search 

range

Sphere Actual 

value

Search 

range

H/V cylinder

Multiple bodies—noise-free

k (mV) 200 0–500 200.2 ± 0.6 6000 1000–

10,000

6003.5 ± 26.2 500 100–1000 500.3 ± 1.6

x
0
 (m) 100 0–200 100.0 ± 0.0 200 0–300 200.0 ± 0.0 300 50–200 300.0 ± 0.0

z (m) 30 0–50 30.0 ± 0.1 40 0–50 40.0 ± 0.0 30 0–100 30.0 ± 0.1

q 1.0 0–2 1.0 ± 0.0 1.5 0–2 1.5 ± 0.0 1.0 0–2 1.0 ± 0.0

Misfit 7.4 × 10−8 3.3 × 10−7 1.6 × 10−8

Multiple bodies—20% random noise

k (mV) 200 0–500 205.4 ± 4.3 6000 1000–

10,000

6316.9 ± 133.6 500 100–1000 485.4 ± 11.0

x
0
 (m) 100 0–200 100.0 ± 0.0 200 0–300 200.0 ± 0.0 300 50–200 300.0 ± 0.0

z (m) 30 0–50 30.5 ± 0.5 40 0–50 41.4 ± 0.4 30 0–100 29.7 ± 0.5

q 1.0 0–2 1.0 ± 0.0 1.5 0–2 1.5 ± 0.0 1.0 0–2 1.0 ± 0.0

Misfit 7.8 × 10−4 9.9 × 10−4 1.2 × 10−3

Table 7. Actual model parameters, search range, and interpreted mean model for noise-free and 20% random noise with 
uncertainty for multiple structure.

Minerals30



more precise than considering single body using the whole TG anomaly. However, the depth 

obtained for the peak anomaly was found to be 28.5 m on the location of 63.9 m consider-

ing multiple structures. The depth obtained by other workers such as Yungul [91] as 38.8 m, 

Bhattacharya and Roy [94] as 40.0 m, Agarwal [92] as 30.1 m, Sundararajan and Srinivas [96] 

Figure 16. (a) Histograms of all accepted models having misfit < 10−2 for field data—single body and (b–d) histograms 
of all accepted models having misfit < 10−2 for field data—multiple bodies—Sulleymonkoy anomaly, Ergani, Turkey.
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as 36 m, and Srivastava and Agarwal [95] as 28.9 m. Moreover, the estimated uncertainty was 

less considering multiple structures rather than a single body. Table 8 shows a comparison 

between the different model parameters and misfit. Figure 18 shows the comparison between 

the observed TG anomaly and the model response.

Figure 17. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x
0
) for all models having misfit < 

threshold (10−2 for noise-free data) (green), and models with PDF > 60.65% (red) for field data—single body, (b–d) cross-
plots between amplitude coefficient (k), depth (z), shape location (x

0
) for all models having misfit < threshold (10−2 for 

noise-free data) (green), and models with PDF > 60.65% (red) for field data—multiple bodies—Sulleymonkoy anomaly, 
Ergani, Turkey.
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Model parameters Single body Multiple bodies

Search range Present method

B1

Search range Present method

B1

Search range Present method

B2

Search range Present method

B3

k (mV) 1000–200,000 81281.0 ± 957.5 1000–100,000 60888.2 ± 574.0 100–50,000 24244.9 ± 442.6 1000–1,000,000 935524.0 ± 12801.3

x
0
 (m) 50–100 66.3 ± 0.2 50–100 63.9 ± 0.2 50–200 115.8 ± 0.2 50–200 152.3 ± 0.2

z (m) 0–50 34.5 ± 0.3 0–50 28.5 ± 0.2 0–50 30.3 ± 0.3 0–100 40.0 ± 0.2

q 0–2 1.0 0–2 1.0 0–2 1.0 0–2 1.0

Misfit 5.6 × 10−3 9.8 × 10−4 8.5 × 10−5 1.4 × 10−3

Table 8. Search range and interpreted mean model for Sulleymonkoy anomaly, Ergani, Turkey.
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3.5.2. Senneterre area of Quebec, Canada

A total gradient of SP anomaly (Figure 6a) over a massive sulfide ore deposits in the Senneterre 
area of Quebec, Canada [97], was considered for this study. The anomaly was interpreted using 

enhanced local wave number technique by Srivastava and Agarwal [95] and regularized inver-

sion by Mehanee [7] without considering TG. However, the anomaly was reinterpreted by 

Srivastava et al. [75] using ACO technique. Srivastava et al. [75] considered six anomalies from 

the TG. This anomaly was also elucidated using the present inversion method to retrieve the 

model parameters considering four peak anomalies, which were quite distinct. Investigation of 
histogram plot for multiple bodies (Figure 19a–d) also shows that the model parameters were 

precisely determined. Examination of cross-plots (Figure 20a–d) also shows that the appraised 

mean model parameters were within the ambiguity limits. The depth obtained by using the 

VFSA method was found to be 10.5, 4.6, 3.7, and 4.3 m, respectively. The depths obtained by 

Srivastava et al. [75] for the four bodies are 5, 4.2, 3.8, and 4.3 m, respectively. The assessed 

parameters in this study are in respectable agreement with the other work. Moreover, in the 
present work, all four anomalies were interpreted as multiple structures and not indepen-

dently. The estimated model parameters are shown in Table 9 along with misfit. A comparison 
between the observed anomaly and model responses are shown in Figure 21.

3.6. Conclusions

It is well known that the local search inversion or the optimization has faster convergence rate. 
However, while trying to search the global optima, it can be trapped in the local minima. Hence, 

selection of initial guess is very important for global optimization studies. In case of compli-

cated structure, absence of a priori information also hampers the final solution. However, global 
optimization methods search the best possible solution and try to find out the exact solution 

Figure 18. Fittings between the observed and model responses for Sulleymonkoy anomaly, Ergani, Turkey.
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within a multidimensional model space. Moreover, apart from global optimization method, a 

statistical method can also be applied to find out the ambiguity associated with the final results.

In this study, an effort was made to examine the relevance and adequacy of VFSA on the 
parameter appraisals from ASA or TG of SP anomalies. In this method, the experimental 

studies were executed utilizing hypothetically derived data and field data. The elucidation 
of the amplitude coefficient, location, depth, and shape of a subsurface structure from TG 

Figure 19. (a) Histograms of all accepted models having misfit < 10−2 for field data—single body and (b–d) histograms of 
all accepted models having misfit < 10−2 for field data—multiple bodies—Senneterre area of Quebec, Canada.
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anomaly can be very much established utilizing the present technique. Synthetic data tests 

were performed utilizing both noise-free and noisy information sets derived from ideal-

ized geobodies. The present work reveals, while interpreting every single model parameter 

(amplitude coefficient, location, depth, shape) together, the VFSA method produces excellent 
results. Moreover, multiple model bodies were interpreted very efficiently.

Figure 20. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x
0
) for all models having misfit  

< threshold (10−2 for noise-free data) (green), and models with PDF > 60.65% (red) for field data—single body, (b–d) cross-
plots between amplitude coefficient (k), depth (z), shape location (x

0
) for all models having misfit < threshold (10−2 for noise-

free data) (green), and models with PDF > 60.65% (red) for field data—multiple bodies—Senneterre area of Quebec, Canada.
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Model parameters Search range Present method

B1

Search range Present method

B2

Search range Present method

B3

Search range Present method

B4

k (mV) 10–500 122.1 ± 0.7 100–2000 1568.4 ± 13.9 0–100 85.4 ± 0.6 0–100 69.5 ± 0.3

x
0
 (m) 100–200 147.2 ± 0.1 100–200 166.1 ± 0.1 200–250 232.0 ± 0.1 200–250 240.9 ± 0.1

z (m) 0–20 10.5 ± 0.1 0–10 4.6 ± 0.1 0–10 3.7 ± 0.1 0–10 4.3 ± 0.1

q 0–2 0.5 0–2 1.0 0–2 0.5 0–2 0.5

Misfit 3.6 × 10−3 2.2 × 10−3 3.4 × 10−3 5.5 × 10−3

Srivastava et al. [75] (ACO) x
0
 and z

0
 are the coordinate of the source location in unit of data spacing (0.61 m).

Search space TGM peak 1 Search space TGM peak 3 Search space TGM peak 5 Search space TGM peak 6

k (mV) 1–6250 157 ± 17 1–42,000 6998 ± 72 1–15,000 2201 ± 36 1–13,000 944 ± 11

x
0
 (m) 220–240 143.2 ± 2.0 265–285 167.4 ± 2.1 370–390 231.2 ± 1.2 380–410 242.5 ± 3.1

z (m) 1–50 5.0 ± 0.2 1–50 4.2 ± 0.2 1–50 3.8 ± 0.3 1–50 4.3 ± 0.1

β (=2q) 0.2–4 1.3 ± 0.1 0.2–4 2.2 ± 0.3 0.2–4 2.2 ± 0.3 0.2–4 2.3 ± 0.3

Table 9. Search range and interpreted mean model for Senneterre area of Quebec, Canada.
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The subsequent histogram and cross-plots investigation proposes that the acquired param-

eters were within the high probability and less uncertainty. This is also supported by the 

rapid and stable convergence rate of the present inversion method. The viability of this 

approach has been effectively demonstrated employing noise-free and noisy data. The suit-
ability of this technique for useful application in mineral investigation has been addition-

ally shown on two field cases (Sulleymonkoy anomaly, Ergani, Turkey, Senneterre area of 
Quebec, Canada). The field data were presumed to be formed due to different idealized 
geological bodies as mentioned in the published literature. The technique can be utilized 

to understand numerous structures from the anomaly. The assessed inverse parameters for 

the field examples were observed to be in fair agreement with other alternate techniques 
such as PSO.

It is noteworthy to mention that the present work does not get affected by wide search range. 
Other studies suggested that the search range must be carried out by the workers to under-

stand the effect of search range and the solution.
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