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Chapter

Fatty Acids, Gut Microbiota, and 
the Genesis of Obesity
Patricia de Velasco, Amanda Ferreira, Louise Crovesy, 

Tarsis Marine and Maria das Graças Tavares do Carmo

Abstract

Obesity is a major public health problem, which is growing around the world. 
It is a multifactorial disease and a risk factor for other noncommunicable diseases 
(e.g., cardiovascular diseases, type 2 diabetes mellitus, and hepatic steatosis). 
Among the etiological factors, gut microbiota and diet, especially lipids, have 
been highlighted, which seem to have an important potential as a modulator of its 
composition, being the key factor in the link between microbiota and obesity. Gut 
microbiota interacts with the host metabolism in the development of this disease 
through dietary fatty acids or when produced by intestinal bacteria. Short-chain, 
saturated, and polyunsaturated fatty acids have an impact with respect to gut 
microbiota and health, presenting central and systemic effects associated with the 
genesis of obesity. Finally, gut microbiota seems to play a significant role in control-
ling the endocannabinoid system, and imbalance in this system can be associated 
with obesity.

Keywords: gut microbiota, obesity, saturated fatty acids, short-chain fatty acids, 
polyunsaturated fatty acids, endocannabinoid system

1. Introduction

Obesity currently affects around 600 million adults worldwide (13%), being more 
prevalent among women (15%) than men (11%) [1]. It is described as an increase in 
the adipose tissue that releases a wide variety of proinflammatory cytokines and che-
mokines, called adipokines, promoting inflammation, recruitment of macrophages, 
and insulin resistance [2]. This inflammatory process is manifested systemically 
and is characterized by a chronic low-intensity reaction [3], which is linked to the 
pathophysiology of several chronic diseases such as type 2 diabetes mellitus (DM2), 
cardiovascular diseases, and nonalcoholic fatty liver disease, among others [1, 4]. 
Although the etiology of obesity is multifactorial, there is often an energy imbalance 
with an increase in intake and/or absorption of calories and a decrease in energy 
expenditure or metabolic efficiency, which can be caused by several factors, such as 
genetics, environment, psychological factors, endocrine disorders, and some drugs. 
Recently, gut microbiota has been receiving attention [1, 4, 5].

The differences in gut microbiota between lean and obese animals or human 
subjects suggest a link between gut microbiota and energy homeostasis [7]. In fact, 
modifications in gut microbiota composition are associated with greater energy 
breakdown and absorption from food, greater efficiency in storing fat in adipose 
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tissue, as well as the stimulation of metabolic endotoxemia, low-grade inflamma-
tion, and dysbiosis that favors obesity [5, 6]. Dysbiosis leads to increased perme-
ability of the intestinal barrier, allowing for the translocation of lipopolysaccharides 
(LPSs), toxins that are responsible for the initiation of the inflammatory cascade, 
affecting mainly adipose tissue, liver, muscle, and brain, which reduce insulin sensi-
tivity in these organs. In addition, LPS also disrupts the endocannabinoid system, 
further increasing intestinal permeability and allowing greater LPS translocation. 
The increase in circulating LPS suppresses the fasting-induced adipose factor, thus 
modulating lipoprotein lipase (LPL) activity, which starts to exacerbate functions 
in adipose tissue and muscles, favoring the accumulation of triglycerides in these 
organs [7].

In cell membranes, fatty acids act as phospholipids constituents and may also 
be released as signaling molecules, regulating energy production and inflamma-
tion [8]. Fatty acids are also precursors of endocannabinoids and their structural 
congeners. The endocannabinoid (eCB) system plays a pivotal role in the regulation 
of eating behavior and modulation of the immune and inflammatory response [9]. 
Fatty acids contribute between 94 and 96% of the total weight of different fats and 
oils and can be classified as saturated fatty acids (SFAs), which contain no double 
bonds; monounsaturated fatty acids (MUFAs), which feature one double bond; and 
polyunsaturated fatty acids (PUFAs), which contain multiple double bonds [10]. 
There are two families of polyunsaturated fatty acids (PUFAs): n-3 (or omega-3 or 
n-3) and n-6 (omega-6 or n-6). An adequate balance in the dietary intake of n-6/n-3 
PUFA is a determining factor in the maintenance of gut microbiota balance, consid-
ering the role of this n-6/n-3 ratio in inflammatory response. Over the last decades, 
there has been a significant modification in the dietary pattern of the western diet, 
with the increased consumption of industrialized products, generating an increase 
in the dietary saturated fat and n-6/n-3 ratio [2]. This dietary pattern may increase 
gut permeability, which results in a greater translocation of LPS from the intestinal 
lumen to the bloodstream [11]. On the other hand, n-3 fatty acids, e.g., eicosapentae-
noic acid (EPA) and docosahexaenoic acid (DHA), have an anti-inflammatory effect, 
which attenuate the endocannabinoid receptor system tone and may contribute to 
microbiota balance [12]. Therefore, the quality of fatty acids in diet can modulate gut 
microbiota composition, which in turn may interfere in host metabolic health [10].

Considering that all factors mentioned above are relevant in the context of 
obesity, the aim of this chapter is to describe the different mechanisms that link the 
consumption of SFA or PUFA to the composition of gut microbiota and the impact 
on the regulation of the target inflammation and, consequently, on the insulin 
resistance and possible risks of type 2 diabetes and cardiovascular disease, among 
obese individuals.

2. Gut microbiota composition

Microbiota is the set of microorganisms that inhabit the human body in a symbi-
otic relationship, which can intervene in the digestion process, metabolism, or in the 
regulation of fatty acid tissue composition. In the gastrointestinal tract of humans, 
there are approximately 100 trillion bacteria that make up the microbiota in this 
system. These bacteria are divided into phyla in which the main gut microbiotas are 
Firmicutes (60–65%) and Bacteroidetes (20–25%), followed in smaller quantities by 
Proteobacteria (5–10%), Actinobacteria (3%), and Verrucomicrobia (<1%) [13–15].

The colonization of the human body begins in uterine life, through contact 
with the bacteria belonging to the maternal microbiota, and is an important health 
factor for the mother, including nutritional, metabolic, and immunological status. 
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Both endogenous and exogenous effects can modify the composition of gut micro-
biota. Other elements that influence the formation of gut microbiota include host 
genetics, type of birth delivery (vaginal or cesarean section), diet (breastfeeding 
or infant formula, and dietary introduction), and use of medications (antibiotic, 
probiotic, prebiotic, and symbiotic) [16].

Gut microbiota composition seems to have different specificities between lean 
and obese individuals. Regarding the bacterial species, obese individuals present a 
greater amount of Lactobacillus reuteri and smaller concentrations of Bifidobacterium 
animalis, Lactobacillus casei, Methanobrevibacter smithii, and Escherichia coli, with 
the demonstrated association with adequate body weight only for L. casei and, with 
obesity, the combination of a decrease in B. animalis and an increase in L. reuteri 
[17]. Gut microbiota impacts body fat accumulation and insulin resistance in an 
experimental study with germ-free mice that received transplanted gut microbiota 
from wild-type mice. In 2005, the first study that identified the difference between 
the composition of the microbiota of obese and nonobese animals was published 
[18]. Obese mice (ob/ob) had a 50% decrease in Bacteroidetes and an increase, of 
equal percentage, in Firmicutes, when compared with the wild types [19]. Studies 
have also shown that this change in microbiota acts at the hypothalamic level, 
promoting a decrease in the secretion of anorectic hormones [peptide YY (PYY) and 
glucagon-like peptide-1 (GLP-1)], which, associated with low-insulin sensitivity in 
the hypothalamus, reduce satiety by increasing food intake [7].

Although studies with animal models have defined that with obesity there is an 
increase in the Firmicutes/Bacteroidetes ratio [18–20], in humans, this hypothesis has 
not yet been verified, as seen in the conflicting results specifically concerning this 
ratio [21]. A systematic review found 11 interesting studies on humans that connect 
gut microbiota composition and body mass index (BMI). Among the main find-
ings, a study reported high concentrations of B. fragilis and Lactobacillus sp. among 
obese and overweight children when compared with the lean children. In addition, 
a negative correlation was found between BMI and Bifidobacterium spp. The results 
suggest the differences between the microbial diversity in lean and obese individu-
als and thus influence the important metabolic pathways [22]. However, studies 
of differences in gut microbiota between obese and lean people have not always 
provided consistent results, which is one of the issues requiring further studies.

3. Fatty acids and gut microbiota

3.1 Short-chain fatty acids and gut microbiota

As lipid factors that influence the intestinal balance and the development of 
obesity, in this chapter, we will first highlight the short-chain fatty acids (SCFAs). 
SCFAs are metabolites produced by bacterial fermentation in the gut from dietary 
fermentable carbohydrates. The main SCFAs are acetate, butyrate, and propionate, 
which play important roles as nutrients for colon epithelium, modulating gut 
lumen, intracellular pH, cellular volume, and functions associated with ion trans-
port, proliferation, differentiation, gene expression, reduction of oxidative stress, 
inflammation recovery, and satiety [23].

Propionate has a role as a substrate for hepatic gluconeogenesis, in addition 
to inhibiting the synthesis of hepatic cholesterol. Acetate is the most abundant 
SCFA, being absorbed and metabolized rapidly by the liver, where it serves as a 
substrate for cholesterol synthesis and lipogenesis [24]. It is also involved in the 
satiety process by inhibiting pro-opiomelanocortin (POMC) in the hypothalamus 
[25]. As acetate and propionate exert opposite functions in lipid metabolism in the 
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liver, the proportion of these two SCFAs is important to maintain lipogenic balance 
and cholesterol synthesis [26]. Butyrate is found in a lower quantity than the other 
SCFA in the blood circulation. It is the main source of energy for enterocytes. It 
acts mainly in cell regulation and proliferation, especially in colon intestinal cells, 
and plays a role in anomalous cell apoptosis. In addition, it has a function in the 
maintenance of tight junctions and is responsible for preserving the integrity of the 
intestinal barrier [27].

SCFA can also modulate the endocrine, immune, and nervous system responses. 
Propionate interacts mainly with G protein-coupled receptors (GPCR) 41 and 
GPCR43 in enteroendocrine cells, stimulating the secretion of PYY and GLP-1 hor-
mones, respectively, which has anorexigenic effects, thus contributing to the reduc-
tion of food intake. Both hormones promote satiety by acting on the hypothalamic 
arcuate nucleus, suppressing the neuropeptide Y (NPY), which has an orexigenic 
effect, and stimulating POMC, which is anorexigenic, in addition to delaying gastric 
emptying [28]. Binding of SCFA to GPCR43 is also related to increased insulin secre-
tion, improving insulin sensitivity and gut immune response. SCFA interacting with 
GPCR41 and GPCR43 in adipose tissue also stimulates the secretion of leptin, which 
suppresses adipogenesis. The interaction with GPCR41 can enhance energy expendi-
ture by increasing the activity of the sympathetic nervous system [29].

Propionate and butyrate induce gluconeogenesis in gut cells, thereby regulat-
ing food intake and increasing insulin sensitivity. The interaction of butyrate with 
GPCR109A expressed in the gut reduces the inflammation mediated by interleukin 
(IL) 8 and IL-10 and promotes lipolysis in adipose tissue. Acetate and propionate 
can regulate systemic blood pressure by binding to olfactory receptors located in 
blood and kidney vessels [29].

Acetate plays a role in appetite directly in the hypothalamus. In the brain, 
acetate is converted into acetyl coenzyme A (CoA) that participates in the cycle 
of citric acid leading to the accumulation of adenosine triphosphate, which 
leads to the reduction of the adenosine monophosphate–activated protein kinase 
(AMPK) and consequent inhibition of acetyl-CoA carboxylase, favoring the 
accumulation of malonyl-CoA. This, in turn, has been related to the activation 
of POMC and the suppression of NPY and peptide related to agouti in the hypo-
thalamus, which leads to a suppression of appetite and, consequently, a reduction 
in food intake [25].

The SCFAs appear to be involved in lipid oxidation and energy expenditure, 
increasing both and contributing to weight loss [30]. The mechanism by which 
SCFAs increase fat oxidation was studied in an animal model. Acetate activates 
AMPK in adipose tissue and skeletal muscles and regulates peroxisome proliferator 
gene (PPAR), stimulating lipid oxidation in these organs [31]. In addition, SCFAs 
are responsible for the increase in PYY and mitigation of lipolysis [32].

Acetate and propionate also appear to inhibit intracellular lipolysis. Propionate 
increases lipidic buffering in adipose tissue through an increase in the uptake of 
triglycerides by LPL in adipocytes, favoring the adipogenesis in adipose tissue and 
reducing the circulation of FFA. These effects improve the insulin sensitivity and 
reduce the accumulation of ectopic fat, especially in muscles and liver [33, 34]. The 
mechanisms involved in the prevention of fat stores in the liver occur through the 
inhibition of fatty acid synthesis by propionate and the increase in AMPK activity 
and PPAR genes by acetate and butyrate, which raise glycogenesis and FA oxidation 
in the mitochondria, thus reducing fat stores in hepatocytes [35].

In this context, it appears that these metabolites may be the key between the 
microbiota and the development of obesity, playing an important role in body 
weight control and insulin sensitivity. Studies in vitro and in vivo demonstrate 
that SCFAs regulate energy homeostasis, glucose, and lipid metabolism and have 
effects on adipose tissue [36, 37]. As discussed above, they act on appetite through 
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endocrine regulation, stimulating the secretion of leptin by adipocytes, and on 
neuronal receptors, modulating neural activity and visceral reflexes [26, 36].

Thus, it is possible to assert that SCFAs, produced by gut bacteria, have an 
impact with respect to gut microbiota and health, presenting central and systemic 
effects that may contribute to the maintenance of adequate metabolism, in addi-
tion to regulating mechanisms that can prevent the development of obesity and its 
morbidities [36].

3.2 Long- and medium-chain saturated fatty acids and gut microbiota

Based on their structure, saturated fats can be subclassified into short-chain, 
medium-chain, and long-chain fatty acids. Medium-chain fatty acids have 8–10 
carbon atoms, and long-chain fatty acids have, in general, 12 or more carbon atoms 
[37]. Animal sources are the main sources of saturated fatty acids in the diet: dairy 
products, meat, butter, margarine, and hydrogenated vegetable oils. These fatty 
acids are quite heterogeneous in nature, and their potential effects may also vary in 
relation to their health effects.

A high-fat diet (HFD), predominantly SFA, has been associated with changes in 
gut microbiota composition and a reduction in diversity [38, 39], independently of 
the host genotype [40]. A study conducted with subjects at risk of metabolic syn-
drome showed that SFA intake increased the composition of pathogenic bacteria [41]. 
A decrease in Bacteroidetes and an increase in Firmicutes and Proteobacteria after the 
consumption of HFD have also been reported [42]. A HFD significantly reduced lev-
els of Bacteroidetes spp., Eubacterium rectale/Clostridium coccoides, and Bifidobacterium 
spp. These results reflected in insulin resistance, low-grade systemic inflammation, 
and higher concentrations of endotoxins in plasma [43]. The levels of Bilophila 
wadsworthia, associated with increased gut inflammation, were elevated when mice 
were fed with a milk fat–enriched diet [44]. Likewise, higher levels of B. wadsworthia 
were observed in mice that were fed a lard diet than fish oil as a lipid source [39].

As previously reported, an imbalance in bacterial population may lead to 
an increase in intestinal permeability, with a high translocation of bacteria into 
systemic circulation, inducing an elevation in circulating LPS and metabolic endo-
toxemia [45]. HFDs are also associated with a reduction in proteins of the narrow 
junction [45], whose function is to block the intercellular space, preventing the 
passage of substances through the intestinal epithelium. Additionally, it is relevant 
to consider that SFAs represent an essential component of the lipid portion of LPS 
derived from pathogenic bacteria [46].

Studies also demonstrate that SFA can bind to Toll-like receptor 4 (TLR4) 
and activate inflammatory signaling pathways [47, 48]. The signaling pathway of 
the TLR4 is recognized as one of the main triggers of the inflammatory response 
induced by obesity [2]. Subsequent in vitro and in vivo studies suggest that fatty 
acids are able to activate proinflammatory signaling pathways mediated by TLR4 
and TLR2, leading to insulin resistance [3]. In addition, a normal weight individual 
who consumed high-calorie meals (910 Kcal), with high lipid (51 g) and carbohy-
drate content (88 g), demonstrated distinguishable changes in the TLR postprandial 
stage, implying a greater activation of TLR2 and TLR4 on blood mononuclear cells. 
A high-fat meal also resulted in a greater activation of NF-κβ in the postprandial 
stage and an increase in leukocytes’ activation, evaluated by surface expression of 
CD11a, CD11b, and CD62L [49].

The palmitic acid binding to TLR4 also activates the c-jun N-terminal kinase 
(JNK) and the inhibitor of nuclear factor kappa-B kinase subunit beta (IKK-β) 
proteins and increases the expression and secretion of pro-inflammatory cytokines 
[50], also causing damage in insulin signaling [51]. It also impairs insulin signaling 
pathways, inducing the phosphorylation of IRS-1 at the position of the serine residue 
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307 [52]. This process reduces the interaction with the insulin receptor and, conse-
quently, decreases its action. In addition, SFAs induce insulin resistance due to the 
antagonistic action of peroxisome proliferator-activated receptor-1 alpha coactiva-
tor, promoting the expression of mitochondrial genes that are involved in oxidative 
phosphorylation and glucose uptake, which is mediated by insulin [51, 53, 54].

Lauric and palmitic FA activates an inflammatory response through TLR4 sig-
naling pathways [55]. It was reported that the lauric, palmitic, and stearic FA could 
induce inflammation from cyclooxygenase-2 expression by means of a dependent 
mechanism of NF-κβ in a macrophage cell line, through a TLR4 connection [56]. It 
was observed that TLR4 was the main signaling pathway to stress the endoplasmic 
reticulum caused by a high-fat diet among obese mice, increasing inflammation 
of the adipose tissue even more [57]. NF-κβ can also be activated by the binding of 
lauric acid with TLR2, as other studies have demonstrated [47, 56]. Mice fed with a 
high-fat diet (palmitic) demonstrated a greater expression of TLR2 and inflamma-
tory reduction when TLR2 was inhibited [58]. When palmitic acid binds with TLR4, 
it also activates JNK and IKK-β kinase protein and also increases the expression of 
NF-κβ [50], impairing insulin signaling [59].

From another perspective, a recent study argues that long-chain saturated fatty 
acids (lcSFAs) are not direct agonists of TLR4. The authors suggest that the activa-
tion of the inflammatory cascade by saturated fats depends on an initial sensitiza-
tion of the TLR4-dependent macrophages, which can be generated, for example, by 
a metabolic endotoxemia resulting from LPS infiltration. The authors justify that 
lcSFAs take several hours to initiate inflammatory signaling, while LPS activates it in 
minutes. Macrophages of an insulin-sensitive healthy adipose tissue, in the absence 
of a priming or a sensitizing signal, do not respond to the inflammatory effects of 
lcSFA. These data demonstrate that further studies are still needed to elucidate, in 
detail, the signaling pathways involved in this inflammatory process but highlight 
the interesting interaction of the intestine-inflammation-obesity axis [60].

Medium-chain saturated fatty acids (mcSFAs) are present in coconut oil and 
breast milk and are known for their antimicrobial properties, preventing LPS-
mediated endotoxemia [61]. Rats fed with mcSFA for 1 week prior to an acute intra-
venous dose of LPS presented a significant improvement of intestinal permeability 
compared to rats fed with corn oil, which showed increased gut permeability [62]. 
Medium-chain fatty acids have also been shown to have a direct impact on the gut 
bacteria of Gram-positive (low LPS) and Gram-negative (high LPS) subdivisions. A 
change was observed in the population distribution of Bacteroidetes/Porphyromonas/
Prevotella phyla and in the genus Clostridia/Streptococcus with mcSFA consumption 
[68]. McSFAs also specifically modulated bacterial populations in specific regions, 
such as jejunum and colon, promoting the growth of Escherichia/Hafnia/Shigella 
bacteria and the genus Clostridia [63].

Given this, it is understood that saturated fats play an important role in the 
development of obesity, either from their influence on the profile of gut microbiota 
or from their performance in inflammatory processes. The understanding that 
the immune system and the different metabolic pathways are closely related and 
functionally dependent is essential for studies that focus on obesity and the possible 
metabolic repercussions (Table 1).

3.3 Polyunsaturated fatty acids and gut microbiota

Linoleic acid (C18:2 n-6; LA) and α-linolenic acid (C18:3 n-3; ALA) are the par-
ent compounds of the n-6 and n-3 polyunsaturated fatty acid families, respectively. 
Humans do not have enzymes to insert a double bond in the n-6 or n-3 position, 
which makes n-3 and n-6 fatty acids essential [64]. Many vegetable oils, such as 
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corn, sunflower, and soybean oils, are rich in n-6 fatty acids, mainly as LA, but 
linseed is also a rich source of ALA. In humans, dietary LA can be metabolized to 
arachidonic acid (lcPUFA—AA, 20:4, n-6), and dietary ALA can be metabolized 
to long-chain n-3 as eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), 
mainly in the liver [65]. LcPUFAs are synthesized from dietary LA and ALA by 
microsomal desaturase and elongation enzymes that metabolize both the n-6 and 
n-3 families of PUFA, and the delta-6 (delta-6) desaturase is the rate-limiting 
enzyme in this process [66]. Binding affinity for delta-6 desaturase is highest for 
ALA, high for LA, and lowest for oleic acid [64], and, for this reason, desaturation 
and elongation of n-9 PUFA are only observed when combined n-3 and n-6 EFA 
deficiency occurs. This conversion of the dietary ALA to lcPUFA is limited, and, in 
humans, it is estimated that only 8% of ALA is converted to EPA and even less to 
DHA (less than 4%) [67].

Dietary sources of preformed n-3 lcPUFA can provide large amounts of these 
fatty acids and are primarily derived from certain species of fish (and fish oils 
or marine lipids). These lcPUFAs are part of the structural components of cell 
membranes and so affect many aspects of membrane functions such as membrane 
permeability, receptor functions, and membrane-associated enzyme activities [67].

Dietary intake of n-3 PUFA and its role in inflammatory responses is discussed 
extensively in the literature and is usually associated with fewer inflammatory 
effects, while PUFA n-6 effects are more inflammatory. PUFAs have the ability to 
change the composition of gut microbiota [68]. Intestinal dysbiosis has been impli-
cated in obesity pathogenesis, and the supplementation with n-3 led to the increase 
in Lactobacillus species and decrease in Bacteroidaceae family bacteria by improving 
dysbiosis. On the other hand, supplementation with n-6 had a negative association 
with the abundance of Akkermansia muciniphila [69].

FA Sources Effects on 

microbiota and Ref.

Systemic effects and 

Ref.

Saturated fatty acids

Short chain (<8 carbon 

atoms)

Bacterial 

fermentation 

(fermentable 

carbohydrates)

Integrity of the 

intestinal barrier 

[27]

Regulate energy 

homeostasis, glucose, 

lipid metabolism, and 

appetite [26, 36, 37]

Medium chain (8–10 

carbon atoms)

Coconut oil and milk Preventing 

LPS-mediated 

endotoxemia [61, 62]

Regulate energy 

homeostasis and satiety 

[64]

Long chain (>12 carbon 

atoms)

Meat Increased pathogenic 

bacteria [39, 41, 44]

Increased inflammation 

and insulin resistance 

[43, 47–49]

Polyunsaturated fatty 

acids

n-6 Polyunsaturated Vegetable oils (e.g., 

corn, sunflower, and 

soybean)

Increased 

endotoxemia [69]

Inflammatory precursors 

[69]

n-3 Polyunsaturated Fish oil Regulate the tight 

junction functioning, 

intestinal balance 

[69, 70, 73]

Anti-inflammatory 

precursors [70]

FA, fatty acids; LPS, lipopolysaccharide; Ref., references.

Table 1. 
Studies in vivo and in vitro about the effects of saturated and polyunsaturated fatty acids in gut microbiota.
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Thus, gut integrity appears to be an important factor for n-3 PUFA action because 
increased permeability is associated with several disorders (e.g., obesity, DM2, and 
inflammatory bowel disease). n-3 PUFAs are capable of maintaining the integrity of 
the intestinal epithelium and thus influence inflammatory bowel status. They serve 
as precursors to anti-inflammatory substances or even regulate the functioning of 
tight junctions [70]. In a HFD model (high in saturated fat), an increase was observed 
in the number of Bacteroides, which could lead to decreased gut permeability [71]. 
Using the same diet protocol, a study reported an increase in Enterobacteria that 
elevate gut permeability, and this phenomenon would lead to a systemic elevation of 
LPS and endotoxemia and also dysbiosis [72]. Furthermore, an imbalance in the gut 
microbiota environment (dysbiosis) could lead to a low-grade systemic inflammation 
by increasing gut permeability to LPS and endocannabinoid system activity [6].

Animal studies have demonstrated that n-3 PUFA protects against dysbiosis, 
reversing bacterial overgrowth induced by n-6 PUFA dietary intake [73]. On the 
other hand, among healthy humans, the effects of PUFA, especially n-3, on micro-
biota are less established, and the literature is limited. However, in a study among 
patients with inflammatory bowel disease, the supplementation with n-3 was able 
to revert the microbiota to a healthier composition, with a decrease in the genus 
Faecalibacterium and an increase in the Lachnospiraceae family, and the Roseburia 
and Bacteroidetes genus. In addition, n-3 PUFAs increase the production of anti-
inflammatory compounds like SCFA acids that could be associated with disease 
reversal [74]. Based on the well-established anti-inflammatory effects of n-3 PUFAs 
(as EPA and DHA) that are related to a reduction in metabolic endotoxemia and 
positive changes in gut microbiota, further studies are needed to better understand 
the role of n-3 PUFA dietary intake in preventing diseases associated with dysbiosis, 
such as obesity (Table 1).

4. Endocannabinoid system

The endocannabinoids (eCBs) are a family of biologically active lipids—deriva-
tives of arachidonic acid, an omega-6 PUFA—that bind to and activate CB1- and 
CB2-cannabinoid receptors, widely distributed throughout the brain areas, in 
the central nervous system and in peripheral tissues such as liver, adipose tissue, 
pancreas, and gut. The main types of eCB are anandamide [N-arachidonoyl etha-
nolamine (AEA) and 2-arachidonoyl glycerol (2-AG)]. This eCB system is a signal-
ing system with a variety of physiological functions, such as the modulation of the 
immune and inflammatory response, synaptic plasticity and learning, and regula-
tion of metabolism and energy homeostasis [75]. There is growing evidence that the 
eCB system, high-fat diets, inflammation, and obesity are interconnected [76, 77].

The CB1 appears to be the key factor in this eCB system for the genesis of 
obesity. Stimulation of CB1 increases the food intake, enhances the reward aspects 
of eating, and promotes the energy conservation [78]. In fact, obesity is character-
ized by increased endocannabinoid system tone and the altered expression of CB1 
mRNA, accompanied by increased eCB levels in adipose tissues [79]. On the other 
hand, evidence also suggests that a high-fat diet increases hepatic AEA levels and 
CB1 density, which leads to increased fatty acid synthesis and contributes to diet-
induced obesity [80]. AEA and 2-AG levels are also increased in adipose tissue and 
pancreas in diet-induced obese mice [76]. At the same time, studies on animals lack-
ing CB1 receptors (CB1−/− mouse model) demonstrate that they are hypophagic, 
leaner, and lighter in relation to wild types. Another study showed that when CB1 
receptor activity is blocked in obese mice induced by diet, an improvement in the 
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gut barrier and metabolic endotoxemia was observed, including an alteration in gut 
microbiota composition, a reduction in body fat, and an improvement in obesity-
associated parameters [81].

Studies have emphasized that gut microbiota modulates the intestinal eCB 
system tone, which, in turn, regulates gut permeability and plasma LPS, and is 
able to stimulate peripheral endocannabinoids in the gut and adipose tissue [76]. 
This hyperactivity of the CB1 receptor increases the permeability of the gut barrier, 
favoring the translocation of more LPS into the bloodstream, which will further 
stimulate the eCB system, generating a cycle in which both remain altered. In 
adipose tissue, eCB disturbance leads to adipogenesis, contributing to the accumu-
lation of body fat and, consequently, obesity [82]. LPS and eCB regulate, in differ-
ent ways, the apelinergic system in adipose tissue, reducing the secretion of apelin 
and the expression of its AP1 receptor. The apelinergic system plays a role in energy 
and glycemic homeostasis [83]. Thus, gut microbiota seems to play a significant role 
in controlling the endocannabinoid system and, consequently, as modulators of 
obesity and energy homeostasis.

A sham-feeding protocol in rats used to identify fatty-acid profile of dietary fat 
components that could trigger small-intestinal endocannabinoid signaling. Results 
have shown that sham-feeding emulsions containing oleic acid (18:1) or linoleic acid 
(18:2) induce a nearly twofold accumulation of jejunal endocannabinoids, whereas 
emulsions containing stearic acid (18:0) or linolenic acid (18:3) had no such effect 
[79]. In a mice model, it was observed that increasing the percentage of linoleic acid 
(18:2 n-6) in the diet led to increased levels of 2-AG and AEA, which are derived 
from arachidonic acid (20:4 n-6), which, in turn, is formed from linoleic acid in the 
body. Interestingly, this was associated with a higher body weight but not with an 
increased food intake [76]. Studies with rodents and human subjects have also shown 
that increasing the relative proportion of n-3 long-chain PUFA in the diet can lead to 
a decrease in the formation of the n-6 (arachidonic acid)-derived endocannabinoids 
AEA and 2-AG [79, 80]. Thus, dietary lipids can modulate eCB system tone.

5. Modulation of gut microbiota and inflammation by fatty acids: the 
role of diet

As previously discussed, there are several actions of different types of FA in 
inflammatory pathways and in gut microbiota. Changes in the dietary quality of lip-
ids can improve inflammatory markers and provide an intestinal balance, prevent-
ing the development of diseases [84]. In general, therapeutic protocols suggest that 
a lower intake of foods rich in saturated fats, trans fats, and sugars and an increase 
in dietary sources of bioactive fiber and lipids are considered beneficial [92]. Also, 
the intake of bioactive lipids, which include monounsaturated and PUFA, phytos-
terols, and medium-chain lipids is beneficial [85].

Regarding fat consumption, it has been reported that postprandial endotoxemia 
is influenced by the fatty acid composition of the diet and not by the fat content as a 
whole. Subjects consuming meals rich in omega-3 decreased serum levels of endotox-
emia, unlike those who consumed omega-6-rich foods. The omega-6 fatty acids can 
increase serum triglyceride levels and also cause gut hyperpermeability, favoring the 
accumulation of fat in adipose tissue and stimulating the inflammatory processes [86].

The consumption of sardines and fish enriched in omega-3 caused a decrease in 
the Firmicutes filo and in the Firmicutes/Bacteroidetes ratio in patients with no DM2 
treatment [87]. The adoption of a Mediterranean diet or low-fat and carbohydrate 
diet by obese individuals resulted in different changes in gut microbiota, with high 
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levels of the genus Roseburia and F. prausnitzii, respectively, demonstrating the 
protective effects of both diets on the development of DM2 [88]. The consumption 
of extra virgin olive oil enriched with phenolic compounds has been shown to have a 
cardio-protective effect, which could be mediated by the increase in the population 
of bifidobacteria, together with the increase in microbial metabolites and phenolic 
compounds, which has antioxidant activities [89].

Saturated fats, such as palmitic, lauric, and stearic acids, may be related to the 
activation of inflammatory processes. A study with healthy young people showed 
that a reduction in the palmitic acid/oleic acid ratio in the diet resulted in lower 
secretion of IL-1β, IL-18, IL-10, and tumor necrosis factor alpha stimulated by  
LPS [90]. A study conducted with subjects at risk of metabolic syndrome showed 
that the consumption of saturated fat increased the composition of pathogenic 
bacteria [41].

In infants, the percentage of fat in the complementary diet has been reported to 
be negatively correlated to the diversity of gut microbiota [91]. In infant formulas, 
lipids are typically added as vegetable oils, with long-chain fatty acids predominat-
ing [92]. However, human milk has a low content of n-6 fatty acids and a high 
content of medium-chain fatty acids, acting as a prebiotic [93]. Sources of SCFA 
may be useful for remodeling gut microbiota and reducing obesity.

The beneficial role of the fibers in a high-fat (HF) diet on inflammatory markers 
and gut microbiota was also verified [94]. A decrease in adipocyte size and IL-6 
levels was observed when the fibers were administered as part of a HF diet over a 
period of 6 weeks. These fibers were able to alter gut microbiota and increase fer-
mentation rates, mainly by stimulating the production of SCFA, demonstrating its 
role in the prevention of intestinal inflammation, and may increase the beneficial 
forms of microbiota diversity.

6. Conclusion and recommendations

Determination of the fatty acid composition in the diet is essential for two rea-
sons: first, to understand the pathogenesis and responsiveness of some diseases, such 
as obesity, and second, to address potential therapeutic interventions. In this chapter, 
we have demonstrated that there is a direct relationship between excessive fat con-
sumption and microbiota composition. Obesity is closely associated to microbiota 
composition as well. In other words, an overconsumption of fat induces changes in 
microbiota composition, which, by its turn, becomes influential to obesity. These 
connections have been demonstrated both in obese people and in rodent models, that 
consume an excess of fat, have shown alteration in their microbiota composition. 
Increased intake of saturated fatty acids and LPS is negatively associated with this 
process, while a higher intake of food sources of short- and medium-chain fatty acids 
and n-3 PUFA has shown positive effects (Figure 1). It is evidently observed the 
relevant roles of these lipids in inflammatory processes, in the endocannabinoid sys-
tem, brain functioning, and behavior, influencing the composition of gut microbiota 
and, therefore, the functioning of the gut-brain axis. All of these factors have signifi-
cant implications for the reduction of meta-inflammation and, consequently, insulin 
resistance and the risk of DM2 and cardiovascular diseases in obese individuals.

As most studies have been conducted on animals and cell culture, we strongly 
recommend well-controlled, long-term clinical studies in humans, so that we 
can better understand this complex interaction among dietary fatty acids, gut 
microbiota, and obesity. Due to the strong anti-inflammatory activities of n-3 
PUFA, as well as dietary fibers stimulating the production of SCFA and, therefore, 
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influencing the composition of gut microbiota and the host health, we also recom-
mend that dietary fiber and n-3 PUFA should be part of the diet of obese individu-
als and that dietary SFA and n-6 PUFA should be under control.

Acknowledgements

This work was supported by grants from Coordenação de Aperfeiçoamento de 
Pessoal de Nível Superior, Fundação de Amparo à Pesquisa do Estado do Rio de 
Janeiro, and Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Conflict of interest

The authors declare no conflicts of interest.

Abbreviations

2-AG 2-arachidonoylglycerol
AEA anandamide
AMPK adenosine monophosphate-activated protein kinase
BMI body mass index
CB1 type 1 cannabinoid receptor
CB2 type 2 cannabinoid receptor
CoA coenzyme A
DM2 type 2 diabetes mellitus

Figure 1. 
Impact of dietary fatty acids in the gut microbiota composition and health. A healthy microbiota is associated 
with the balance between pathogenic and nonpathogenic bacteria that may reflect on systemic consequences. 
Dietary lipid profile can modulate its composition (yellow arrows). Excessive consumption of SFA (right 
yellow arrow) will cause negative outcomes to the metabolism and microbiota content (red boxes and 
arrows). On the other hand, SCFA and PUFA (left yellow arrow) reveal positive effects in inflammation, 
fat deposition, and microbiota (green boxes and arrows). The two-way arrow (in yellow) represents changes 
in gut microbiota ecology, depending on what type of FA has been consumed. The equilibrium among these 
factors seems to be another way to explain the obesity development. FIAF, fasting-induced adipose factor; LPS, 
lipopolysaccharides; TLR4, Toll-like receptor 4.
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