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Abstract

Saltwater intrusion in the Changjiang Estuary and the impacts of river discharge, tide,
wind, sea level rise, river basin, and major estuary projects on saltwater intrusion are
studied in this chapter. There is a net landward flow in the NB (North Branch) when river
discharge is low during spring tide, resulting in a type of saltwater intrusion known as the
SSO (saltwater-spilling-over from the NB into the SB (South Branch)), which is the most
striking characteristic of saltwater intrusion in the estuary. A three-dimension numerical
model with HSIMT-TVD advection scheme was developed to study the hydrodynamic
processes and saltwater intrusion in the Changjiang Estuary. Saltwater intrusion in the
estuary is controlled mainly by river discharge and tide, but is also influenced by wind,
sea level rise, river basin, and estuary projects. Saltwater intrusion is enhanced when river
discharge decreases. There is more time for the reservoir to take freshwater from the
river when river discharge is larger. The fortnightly spring tide generates greater saltwater
intrusion than the neap tide. The saltwater intrusion in the SP (South Passage) is stronger
than that in the NP (North Passage), and the intrusion in the NP is stronger than that in
the NC (North Channel). The northerly wind produces southward currents along the
Subei coast as well as the landward Ekman transport, which enhances the saltwater
intrusion in the NC and NB and weakens the saltwater intrusion in the NP and SP.
Saltwater intrusion becomes stronger as the sea level rises and is much stronger when
river discharge is much small. The DWP (Deep Waterway Project) alleviates the saltwater
intrusion in the NC and the lower reaches of the NP and enhances the saltwater intrusion
in the SP and in the upper reaches of the NP. The Three Gorges Dam (TGD) increases river
discharge in winter, which weakens saltwater intrusion, and is favorable for reducing the
burden of freshwater supplement in the highly populated estuarine region. The Water
Diversion South to the North Project (WDP) decreases river discharge, enhances saltwater
intrusion, and is unfavorable for freshwater supply in the estuary.
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freshwater resource

© 2018 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.



1. Introduction

The Changjiang, also known as the Yangtze River, is one of the largest rivers in the world. The

Changjiang Estuary has a 90-km-wide river mouth, which is characterized by multiple bifur-

cations (Figure 1). First, the estuary is divided by Chongming Island into the South Branch

(SB) and North Branch (NB). The SB and its lower reaches form the main channel of the

Changjiang and discharge most of the river discharge, while the NB is heavily silted. Second,

the lower SB is bifurcated into the South Channel (SC) and North Channel (NC) by Changxing

Island and Hengsha Island. Finally, the SC is bifurcated into the South Passage (SP) and North

Passage (NP) by Jiuduansha Island [1]. The Changjiang Estuary is unique among well-studied

estuaries, has an extremely dynamic hydrological environment due to runoff, tide, wind,

mixing, topography, and continental shelf current outside the river mouth, which are the main

dynamic control factors on hydrodynamic processes in the estuary [2–4].

Saltwater intrusion in the Changjiang Estuary is controlled mainly by the river discharge and

tide [2, 5–8], but is also influenced by wind [4], topography [9], river watershed and estuary

projects [10–12], and sea level rise [13]. The natural evolution and artificial reclamation of the

intertidal zone from the 1950s to the 2000s have severely narrowed the upper reaches of the NB

[14]. As a consequence, the upper reaches of the NB have become almost orthogonal to the SB,

while the lower reaches have become funnel shaped. The evolution of river regime of the NB

helps to prevent runoff from entering the NB, especially during the dry season; meanwhile, it

makes the tidal range larger in the NB than in the SB. Strong tidal forcing in the NB induces

significant subtidal circulation, resulting in a net landward flow when river discharge is low

during spring tide [1]. This residual transport forms a type of saltwater intrusion known as the

saltwater-spilling-over (SSO) from the NB into the SB, which is the most striking characteristic

of saltwater intrusion in the estuary. During spring tide, the water level rises considerably in

the upper reaches of the NB due to its funnel shape, leading to a massive amount of saline

water spilling over the shoals into the SB [1]. The saline water that spilled into the SB is then

transported downstream forced by runoff and arrives in the middle reaches of the SB during

Figure 1. Map of the Changjiang Estuary and the pathways of saltwater intrusion (arrows). Key geographic locations and

hydrologic stations are marked. The red dots indicate the locations of Baozhen (BZ) and Chongxi (CX) hydrologic

stations. The black dots indicate the locations of water intakes of the reservoirs. W is the location of the weather station

at the Chongming eastern shoal. DWP stands for the deep waterway project.

Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline50



the subsequent neap tide. This process impacts the water intakes of the Dongfengxisha,

Chenhang, and Qingcaosha reservoirs and threatens the freshwater supply to Shanghai, a

megacity in China.

The Changjiang Estuary has been themost important freshwater resource for Shanghai. The huge

QCSR (Qingcaosha reservoir) was built in 2010 along northwestern Changxing Island, supplying

more than 70% of the freshwater for the 13 million people in Shanghai. The QCSR takes the water

from the Changjiangwhen the salinity is lower than 0.45 (the salinity standard of drinkingwater),

but it suspends its operation when the saltwater intrusion influences the water intake. In order to

understand the dynamic processes and mechanism of saltwater intrusion in the Changjiang

Estuary, we studied the impacts of tide, river discharge, wind, sea level rise, river basin, and

major estuary projects on saltwater intrusion, which not only has important scientific significance,

but also has great application meaning for safety of freshwater resource in Shanghai.

Estuarine saltwater intrusion is a common phenomenon, which can produce estuarine circula-

tion [15] and change stratification [16], thereby influencing sediment transport, producing peak

estuarine turbidity [17], and degrading the safety of freshwater intake of estuarine reservoirs.

In this chapter, we analyze and simulate the saltwater intrusion in the Changjiang Estuary. In

Section 2, we describe the numerical model used to simulate the saltwater intrusion in the

estuary. In Section 3, we first simulate the saltwater intrusion in a climatological state under

various dynamic factors, and then analyze the impacts of river discharge, tide, wind, sea level

rise, river watershed, and artificial estuary projects on the saltwater intrusion by numerical

experiments. In Section 4, a summary is provided.

2. Numerical model

ECOM-si was developed based on the Princeton Ocean Model (POM; [18, 19]) with several

improvements [20] to address the demand for numerical simulations of water body bounded

by complicated coastlines. This model incorporates the Mellor-Yamada level-2.5 turbulent clo-

sure scheme to provide a time and space dependent parameterization of vertical turbulent

mixing [21–23]. This model was further developed by Wu and Zhu [24] using the third HSIMT-

TVD scheme for the advection term in the mass transport equation. This scheme is flux-based,

with third order accuracy in space, second order accuracy in time, and no numerical oscillation.

Under the assumption of incompressibility, Boussinesq and hydrostatic approximations, and

using the horizontal nonorthogonal curvilinear and vertical stretched sigma coordinate sys-

tem, the governing equations of ocean circulation and water mass (consisting of momentum,

continuity, temperature, salinity, and density equations) are as follows [25]:
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∂D

∂ξ
þ V̂

∂D

∂η

� �

� 1þ σð Þ
∂ζ

∂t
þ Û
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In the above equations, the new coordinate (ξ, η, and σ) is defined as: ξ ¼ ξ x; yð Þ, η ¼ η x; yð Þ,

σ ¼ z�ζ
Hþζ.

The vertical coordinate σ varies from �1 at z = �H to 0 at z = ζ, where, x, y and z are the east,

north, and vertical axes of the Cartesian coordinate, respectively; ζ is the sea surface elevation;

and H is the total water depth. The ξ and η components of velocity (defined as u1, v1) can be

expressed in the forms of u1 ¼
h2
J xξuþ yξv
� �

, v1 ¼
h1
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[25], in which, u and v are
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, in which, h3 ¼ yξyη þ xξxη, where θ

is the water temperature, s is the salinity, f is the Coriolis parameter, g is the gravitational

acceleration, Km is the vertical eddy viscosity coefficient, and Kh is the thermal vertical eddy

friction coefficient. Fu, Fv, Fθ, and Fs represent the two horizontal momentum terms, thermal

term, and salt diffusion term, respectively. r and ro are the perturbation and reference density,

which satisfy rtotal ¼ r þ ro. Fu, Fv, Fθ, and Fs are calculated by using Smagorinsky’s [26]

formula in which horizontal diffusion is directly proportional to the product of horizontal grid

sizes. Km and Kh are calculated using the modified Mellor-Yamada level-2.5 turbulent closure

scheme [20–22].
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The surface and bottom boundary conditions for the momentum and heat equations are given by:

where (τoξ, τoη) and τbξ; τbη
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are the ξ and η components of surface

wind and bottom stresses; Qnet is the net surface heat flux; is the precipitation flux; and is

the evaporation flux. The surface wind stress was calculated based on the neutral steady state

drag coefficient developed by Large and Pond [27]. The drag coefficient Cd at the bottom is

determined by matching a logarithmic bottom layer to the model at a height zab above the

bottom, that is, Cd ¼ max k
2=ln zab

z0

� �2
; 0:0025

� �

.

where k = 0.4 is the Karman’s constant and z0 is the bottom roughness parameter [25].

Eqs. (1)–(7) are solved prognostically as initial value problems of oceanic motion. The initial

velocity takes the form and the water elevation is also set to ζ = 0. The initial

temperature and salinity are specified using observational data.

Figure 2. The numerical model mesh (a), an enlarged view of the model mesh around the bifurcation of the NB and the

SB (b), and an enlarged view of the model mesh in the NP (c).
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The model domain covered the entire Changjiang Estuary, Hangzhou Bay, and adjacent seas

from 117.5�E to 125�E and from 27.5�N to 33.7�N (Figure 2a). The model was composed of

307 � 224 cells horizontally and 10 uniform σ levels vertically. The horizontal mesh was

designed to fit the coastline, with high-resolution grids near the Changjiang mouth, especially

near the bifurcation of the SB and NB (Figure 2b), and near the NP where a deep waterway

was maintained for navigation (Figure 2c). A lower-resolution grid was used in open water.

The grid resolution ranged from 300 to 600 m in proximity to the river mouth and was 15 km

near open water. A wet/dry scheme was included to characterize the intertidal zone due to

tidal excursion, and the critical depth was set to 0.2 m.

Derived from the NaoTide dataset (http://www.miz.nao.ac.jp/), the open sea boundary

included 16 astronomical constituents: M2, S2, N2, K2, K1, O1, P1, Q1, MU2, NU2, T2, L2, 2N2,

J1, M1, and OO1. The river boundary in the model was specified by the measured daily river

discharge at the location of Datong Hydrographic Station, which is 630 km upstream from the

river mouth. Wind field used to calculate the sea surface momentum was simulated by

the WRF (Weather Research Forecast) Model, or from the observed data of weather station at

the Chongming eastern shoal.

The velocities and elevation were initially set to zero. The initial salinity distribution was

derived from the Ocean Atlas in the Huanghai Sea and East China Sea (Hydrology) (Editorial

Board for Marine Atlas [28]) outside the Changjiang mouth and from observed data inside the

river mouth in recent years. Because salinity dominates the density variability in the

Changjiang Estuary, water temperature was set to a constant value of 10�C in the model. We

have been applying the model in the Changjiang Estuary to study the hydrodynamic processes

and saltwater intrusion and have done a lot of work on model validation. The numerical

model has been validated many times using data in the Changjiang Estuary, and the results

suggest that the model can successfully simulate the hydrodynamic processes and saltwater

intrusion in the estuary. A detailed description of the model validation can be found in Wu and

Zhu [24], Li et al. [4], and in Qiu and Zhu [12].

3. Dynamic mechanism of saltwater intrusion

The saltwater intrusion in the Changjiang Estuary is controlled mainly by the runoff and tide,

but is also influenced by wind, topography, sea level rise, and various projects in the river

watersheds and estuary. Using the numerical model described above, we first simulated the

saltwater intrusion considering various dynamic factors in a climatological state and then

analyzed the impacts of various dynamic factors on the saltwater intrusion using sensitivity

experiments.

3.1. Simulation of saltwater intrusion

We considered the monthly mean river discharge and wind in winter to simulate the climato-

logical saltwater intrusion. The river discharge was set at 11,800 m3/s, which was the mean

value measured at Datong Station in January and February from 1950 to 2015. The surface
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wind was set to a northerly wind with a constant speed of 5 m/s, which is roughly the mean

wind condition in the estuary in winter. The model was run for 60 days from January 1 to

March 1, and the analysis was carried out on the outputs of the last spring-neap tidal cycle, or

15 days for salinity spatial distribution, and of the last two spring-neap tidal cycles, or 30 days

for temporal variation of salinity at the water intakes of the reservoirs.

To describe the subtidal movement of water in the Changjiang Estuary, we filtered out the tidal

current to obtain the residual current during spring and neap tides. In this study, six semidiur-

nal tidal cycles were used as an averaging time window to remove the semidiurnal and

diurnal tidal signals.

The residual water current in the Changjiang Estuary is influenced by several dynamic factors,

including runoff, tide, wind, and density gradient. Abundant water discharge drives the

residual current to flow seaward, and most is diverted into the SB because of the nearly

orthogonal bifurcated channel (Figure 3). During spring tide, the surface residual current in

the upper reaches of the NB is landward, whereas the residual current is seaward in the middle

and lower reaches (Figure 3a). Compared to that in the NB, the surface residual current in the

SB is much larger. The surface residual currents in the NC, NP, and SP all flow seaward [12].

Figure 3. Distribution of residual currents during spring tide (left panel) and neap tide (right panel) under the river

discharge of 11,800 m3/s. (a and b) Surface layer; (c and d) bottom layer.
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Moreover, the water overflows across the DWP (Deep Waterway Project) from the SP into the

NP and even into the NC, and this acts as one-way transport because the water can cross the

dike during flood tide and cannot return to the SP due to the lower elevation during ebb tide.

In the bottom layer, the pattern of the residual current is similar with that in the surface layer,

but the current is much weaker due to the bottom friction (Figure 3c).

During neap tide, the residual current in the surface layer of the upper reaches of the NB is

seaward, that is, the net water transport is from the SB into the NB (Figure 3b), just opposite of

the situation in spring tide. The residual current on the east side of Chongming Island flows

eastward and then flows southeastward under the force of northerly wind, rather than flowing

northeastward in spring tide, because the wind can easily change the weaker tidal current in

neap tide. The overflow across the DWP vanishes in neap tide due to the smaller tidal range. In

the bottom layer, the residual currents in neap tide in the SP, middle and lower reaches of the

NP, and in the sandbar of the NC are all landward flow because the vertical mixing becomes

weaker, which results in stronger landward baroclinic pressure force (Figure 3d).

The NB is totally occupied by high-saline water, and the isohaline 5 is close to the bifurcation of

the NB and SB. There exist salinity fronts in the upper reaches of the NB, sandbar areas of the

NC, NP, and SP (Figure 4). At flood slack during spring tide, the saltwater spills over from

the NB into the SB, resulting in the water mass with salinity greater than 0.45 appearing in the

upper reaches of the SB (Figure 4a). As suggested by Wu and Zhu [29], the SSO is mainly

caused by the Lagrangian residual and tidal pumping. There exists fresh water in the SB.

Around the river mouth, high-salinity water intrudes, and salinity differs among the channels.

The distance that isohaline 15 moves upstream in the SP is pronounced compared to that in the

NP and is pronounced in the NP compared to that in the NC. The saltwater intrusion in the SP

is stronger than that in the NP and is stronger in the NP than that in the NC. In the bottom

layer, due to the gravity force, the salinity in the sandbar areas of the NC, NP, and SP is higher

Figure 4. Distribution of salinity at flood slack during spring tide (left panel) and neap tide (right panel) under the river

discharge of 11,800 m3/s. (a and b) Surface layer; (c and d) bottom layer. The green isohalines are 0.45; the red isohalines

1.00; the orange isohalines 2.00; and the black isohalines begin at 5.00 with an interval of 5.00. The reference site of flood

slack is Baozhen hydrologic station (red dot, labeled in Figure 1), similarly hereinafter.
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than that in the surface layer (Figure 4c). In other water areas, the salinity in the bottom layer is

almost the same as that in the surface layer, due to strong vertical mixing in spring tide.

At flood slack during neap tide, the salinity at the upper reaches of the NB becomes lower, and

the isohalines extend downstream due to the lower tidal range (Figure 4b). There is no SSO;

the saline water induced by the SSO in spring tide moves downstream under the runoff force

in the SB. Consistent with the change of residual current, the northward extension of the

diluted water on the east side of Chongming Island, which appears in spring tide, vanishes,

and the distance of eastward freshwater transport in the NC is pronounced. Compared with

the saltwater intrusion in the NC, NP, and SP during spring tide, the intrusion becomes

weaker in the surface layer due to weaker tide, but becomes stronger in the bottom layer due

to weaker vertical mixing and stronger landward baroclinic pressure force and stratification in

neap tide.

At present, approximately 70% freshwater supply in Shanghai is taken from the water

resources in the Changjiang Estuary. The saltwater intrusion in winter threatens the freshwater

safety of the city. There are three reservoirs in the estuary, that is, the QCSR, Chenhang

Reservoir, and Dongfengxisha Reservoir (locations marked in Figure 1). During saltwater

intrusion, the salinity is higher than 0.45 (the salinity standard of drinking water) at water

intakes, and the reservoirs can no longer take water from the Changjiang Estuary. Under the

river discharge of 11,800 m3/s during a period of spring-neap tide in February, approximately

two-thirds of the time water is taken from the Chenhang Reservoir; approximately half the

time, from the Dongfengxisha Reservoir; and more than half the time, from the QCSR

(Figure 5). Therefore, it is not a problem for the reservoirs in the Changjiang Estuary to receive

fresh water from the river to meet the supply demand of drinking water under the climatolog-

ical mean value of river discharge.

3.2. Impact of river discharge

River discharge is one of the most important dynamic factors determining estuarine saltwater

intrusion. The measured river discharge at Datong Station, which accounts for 94.7% of the

total river basin discharge, is the upper tidal limit in dry season and is generally used as an

Figure 5. Temporal variation of salinity at the water intakes of the reservoirs under the river discharge of 11,800 m3/s.

Dashed curve: Dongfengxisha reservoir; thin curve: Chenhang reservoir; and thick curve: Qingcaosha reservoir. The

horizontal dashed line is the salinity of 0.45, which is the salinity standard of drinking water, similarly hereinafter.
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upper boundary of the estuary in modeling. The river discharge has seasonal variation, which

increases from January to July, and then decreases from July to December. The monthly mean

river discharge has the minimum of 11,500 m3/s in January and reaches the maximum of

49,800 m3/s in July (Changjiang Water Resources Commission, based on the data from 1950 to

2016). The river discharge has interannual variation with higher or lower values in some

winters. In this subsection, we analyze the impact of river discharge on the saltwater intrusion

based on the measured data and numerical experiments.

The Chongxi Hydrologic Station is located southwest of Chongming Island (red dot in

Figure 1). The measured salinity shows that the saltwater intrusion was stronger during spring

tide, with salinity higher than 1.0 in March 2009 when the river discharge at Datong Station

was lower, and the intrusion was very weak in the whole month of September in 2009 when

the river discharge at Datong Station was higher (Figure 6). Therefore, seasonal variation of

river discharge has significant influence on the saltwater intrusion in the estuary.

Salinity at the Chongxi Hydrologic Station was higher during spring tide when the river

discharge at Datong Station was lower in April 2009 and was also higher during the first 5 days

in April 2010 when the river discharge was close to that in April 2009. In contrast, salinity was

much lower, and there was no saltwater intrusion from 6 to 30 in April 2010 when the river

discharge was distinctly higher (Figure 7). These observational results indicate that annual

variation of the river discharge has evident impact on the saltwater intrusion in the estuary.

Besides the numerical experiment with the climatological value of river discharge in January

and February, we performed twomore experiments with a higher river discharge of 14,000 m3/

s and a lower river discharge of 8000 m3/s to compare their impacts on the saltwater intrusion.

Under the river discharge of 14,000 m3/s, the salinity in the upper reaches of the NB is

obviously decreased (Figure 8); there is no saline water with salinity greater than 0.45 in the

SB, that is, no SSO occurs. At flood slack during spring and neap tides, there is fresh water in

both surface and bottom layers at the three water intakes of the reservoirs. Compared with the

results under the river discharge of 11,800 m3/s, the isohalines near the river mouth under the

Figure 6. Temporal variation of observed salinity at Chongxi hydrologic station. Red line: March 2009; black line:

September 2009.
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river discharge of 14,000 m3/s move downstream distinctly, indicating that the saltwater

intrusion is weakened due to larger river discharge. In spring tide, more diluted water is

transported from the NC into the NB (Figure 8a and c). Compared with the locations of the

isohalines in spring tide, the isohalines of 0.45 in the NC and SC move downstream in neap

Figure 7. Temporal variation of observed salinity at Chongxi hydrologic station. Red line: April 2009; black line: April

2010.

Figure 8. Distribution of salinity at flood slack during spring tide (left panel) and neap tide (right panel) under the river

discharge of 14,000 m3/s. (a and b) Surface layer; (c and d): bottom layer.
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tide (Figure 8b and d), meaning that the saltwater intrusion in neap tide is weaker than that in

spring tide.

Under a larger river discharge of 14,000 m3/s, the salinity during a period of spring-neap tides

in February at the water intakes of the Qingcaosha and Chenhang reservoirs is lower than 0.45

at any time, that is, there is no saltwater intrusion influencing the water intakes of the two

reservoirs (Figure 9). Approximately, two-thirds of the time the salinity at the water intake of

the Dongfengxisha Reservoir is lower than 0.45. Therefore, there is sufficient time for the

reservoirs to take fresh water from the river when the river discharge is larger.

Under the lower river discharge of 8000 m3/s, the salinity in the upper reaches of the NB is

obviously increased (Figure 10). There is saline water with salinity greater than 1.0 in the SB,

that is, SSO becomes stronger. At flood slack during spring and neap tides, there is no fresh

water in both surface and bottom layers at the three water intakes of the reservoirs. Compared

with results under the river discharge of 11,800 m3/s, the isohalines near the river mouth move

upstream clearly, indicating that the saltwater intrusion is enhanced due to the lower river

discharge. Compared with the locations of the isohalines in spring tide, the isohaline 5 in the

NC and the SC moves downstream in neap tide, meaning that the saltwater intrusion in neap

tide is weaker than that in spring tide. Salinity is higher than 20 in most areas of the SP, that is,

the saltwater intrusion there is very strong.

Under the lower river discharge of 8000 m3/s during a period of spring-neap tides in February,

fresh water can be taken from the river approximately one-thirds of the time for the

Dongfengxisha Reservoir, half the time for the Chenhang Reservoir, and shorter time for

the QCSR (Figure 11). Therefore, there is less time for the reservoirs to take fresh water from

the river when the river discharge is lower.

Based on the analyses of observed data and numerical experiments, we can conclude that the

effect of river discharge on the saltwater intrusion in the Changjiang Estuary is significant.

When the river discharge decreases, SSO and saltwater intrusion are enhanced in each channel.

3.3. Impact of tide

The tides in the estuary exhibit semidiurnal, diurnal and fortnightly spring-neap signals [5, 25].

The tide is medium with mean tidal range of 2.66 m at the mouth, and is the most energetic

Figure 9. Temporal variation of salinity at the water intakes of the reservoirs under the river discharge of 14,000 m3/s.

Dashed curve: Dongfengxisha reservoir; thin curve: Chenhang reservoir; and thick curve: Qingcaosha reservoir.
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source of water movement in the Changjiang Estuary. On the intertidal timescales, the semidi-

urnal tide drives saltwater into the estuary during flood tide and out of the estuary during ebb

tide. The fortnightly spring tide generates a greater saltwater intrusion than the neap tide does.

The saltwater intrusion is also enhanced by the seasonal variability of tides, with the maximum

tidal range in March [8, 25].

Figure 11. Temporal variation of salinity at the water intakes of the reservoirs under the river discharge of 8000 m3/s.

Dashed curve: Dongfengxisha reservoir; thin curve: Chenhang reservoir; and thick curve: Qingcaosha reservoir.

Figure 10. Distribution of salinity at flood slack during spring tide (left panel) and neap tide (right panel) under the river

discharge of 8000 m3/s. (a and b) Surface layer; (c and d) bottom layer.
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The results of numerical experiments in Subsections 3.2 and 3.3 clearly show that the saltwater

intrusion in spring tide is stronger than that in neap tide. In this subsection, we further analyze

the impact of tide on saltwater intrusion based on the observed data. We conducted an

observation in the SP in January 2010 and selected one measured site located in the upper

reaches of the SP to illustrate the variation of currents and salinity with tides (Figure 12). The

observed data show that the current was a rectilinear current inside the river mouth rather

than a rotational current as that outside the river mouth. The current speed was larger in the

spring tide than in the neap tide. The current speed in the surface layer was larger than that in

the bottom layer due to the bottom friction. The current duration in ebb current was longer

than that in flood current. The salinity in the surface layer was higher than that in the bottom

layer. The semidiurnal and fortnightly variations of salinity were evident, which were certainly

caused by tides.

The observed salinity at the Chongxi Hydrological Station in January 2010 also distinctly

shows semidiurnal and fortnightly variations with tides (Figure 13). Therefore, tides are one

of the important dynamic factors determining the saltwater intrusion in the estuary.

3.4. Impact of wind

Wind over the Changjiang Estuary is primarily the monsoon, which is weak southerly in

summer and strong northerly in winter. Li et al. [4] studied the impact of wind on the saltwater

intrusion in the Changjiang Estuary. The observation at the Chongxi Hydrologic Station

indicated the salinity increased abnormally during strong northerly wind. It was confirmed

Figure 12. Temporal variations of observed current speed (upper), current direction (middle), and salinity (lower) at the

upper reaches of the SP during spring tide (left panel, from 23:00 on January 18 to 5:00 on January 20, 2010) and the neap

tide (right panel, from 23:00 on January 25 to 5:00 on January 27, 2010). Red line: surface layer; green line: middle layer;

and purple line: bottom layer.

Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline62



that the abnormal increments of salinity at the Chongxi Hydrologic Station during the neap

and moderate tides were caused by strong northerly wind.

Numerical experiments were carried out to study the effects of different wind speeds and

directions on wind-driven currents and saltwater intrusion. In the control experiment, the river

boundary was specified using a discharge of 11,000 m3/s, which was roughly the monthly

averaged value in January and February; wind was set to the northerly wind of 5 m/s, which

represented the general wind condition in January and February. Two additional numerical

experiments were run without wind (Experiment A) or with stronger northerly wind of 10 m/s

(Experiment B), to represent weaker and stronger wind stress cases. In addition, two more

experiments with a northeasterly wind of 5 m/s (Experiment C) and a northwesterly wind of

5 m/s (Experiment D) were conducted to explore the effect of wind direction on the saltwater

intrusion.

When driven by the northerly wind of 5 m/s, southward currents along the Subei Coast formed

and landward Ekman transport appeared due to the Coriolis force (Figure 14a). In the lower

reaches of the NB, the wind-driven circulation was landward on the north side and seaward on

the south side to ensure the mass conservation. In the SC and NC, a significant horizontal

circulation is formed, which flowed landward in the NC and seaward in the SC. In the SP and

NP, this circulation was seaward. Such patterns of wind-driven circulation can increase the

flood current and decrease the ebb/net water current in the NC, thereby restricting the exten-

sion of the fresher water there and weakening the saltwater intrusion in the SC, SP, and NP. In

addition, the wind-induced circulation in the upper and middle reaches of the NB flowed into

the SB and discharged seaward in the upper reaches of the SB [4].

The difference of depth-averaged salinity between Experiment A (no wind) and the control

experiment during spring tide is shown in Figure 15a. In Experiment A, because there is no

wind-driven southward current along the coast and the landward Ekman water transports, the

salinity in the mouth of the NB was significantly decreased by 3–10, and decreased by 1 off

the SP and NP. In addition, without considering the wind-driven circulation, the saltwater

intrusion in the upper reaches of the NB was weakened with salinity decreasing by 1–5, and

the intensity of SSO was abated, which caused a slight decrease of salinity in the SB. Without

the effects of wind-driven circulation in the SC and NC, the saltwater intrusion in the NC was

Figure 13. Temporal variation of observed salinity at Chongxi hydrological station in January 2010.
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weakened with salinity decreasing by 0.2–1.0, whereas that in the SC, SP, and NP was

enhanced with salinity increasing by 1–3. During neap tide, there was larger variation of

salinity in the mouth of the NB, the eastern of the Chongming Island and the SP compared to

that during spring tide (not shown) [4].

The wind-driven current was enhanced greatly by the northerly wind of 10 m/s, but the

current pattern remained the same as that in the control experiment (Figure 14b). Under the

interaction of river discharge and tide, when including the northerly wind of 10 m/s (Experi-

ment B), the wind driven circulation during the spring tide off the Changjiang Estuary brought

more seawater to the mouth, and the salinity off the NB increased by 1–5 compared to the

control experiment. The salinity in the upper reaches of the NB increased by 5 and thereby

enhanced the SSO, which further increased the salinity with a range of 1–2 in the SB. The

salinity in the east of Chongming Island increased by more than 20, and the saltwater intrusion

was pronounced in the NC with salinity increase of 5–20. The salinity in the SC increased by

�1, which was due to the stronger SSO. The saltwater intrusion in the SP and NP were

weakened, and the salinity decreased by a maximum value of 5 in the SP. During neap tide

(not shown), the difference of salinity in the NC and SP was more significant compared to that

during spring tide, whereas it was almost the same in the rest of the study area [4].

Figure 14. Pure wind-driven net unit width water flux under the northerly wind of 5 m/s (a), the northerly wind of 10 m/s

(b), the northeasterly wind of 5 m/s (c), and northwesterly wind of 5 m/s (d).

Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline64



When driven by the northeasterly wind of 5 m/s, the wind-driven circulation in the lower

reaches of the NB as well as that in the SC and NC was significantly weakened (Figure 14c).

Under the interaction of river discharge and tide, when including the northeasterly wind of

5 m/s (Experiment C), a weaker saltwater intrusion in the NB was detected during the spring

tide (Figure 15c), compared to the control experiment, and their difference was more than 5 at

the mouth and decreased gradually to 1 in the upper reaches. The salinity at the mouth of the

NC decreased by 1–3, while it decreased by �1 in the middle and lower reaches of the NP and

SP, and in the areas off the SP and NP. In addition, the salinity in most areas of the SB, the

upper reaches of NC, the SC, and the upper reaches of the NP is similar to that in the control

experiment. In Experiment C, the relatively weak circulation in the NC led to fresher water

there exchanging with the high-saline water off the NB and further decreased the salinity in the

NB with strong tide [4].

When driven by the northwesterly wind of 5 m/s, the features of wind-driven circulation in the

SC and NC are similar to those under the northerly wind of 5 m/s. Along the southeast-ward

channel in the middle and lower reaches of the NB, the seaward water transport driven by local

wind stress is greater than that induced by landward Ekman transport, and the wind-driven

Figure 15. Salinity difference distribution of depth-averaged salinity in experiment a (a), experiment B (b), experiment C

(c), and experiment D (d) with respect to depth-averaged salinity in the control experiment during spring tide. Zero

contour is bold, solid contours denote positive values, and dashed ones denote negative values.
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circulation was from the SB to the NB (Figure 14d) to ensure the continuity of water mass [4].

Under the interaction of river discharge and tide, when including the northwesterly wind of

5 m/s (Experiment D), the salinity in the middle and lower reaches of the NB decreased by 0.2

during spring tide (Figure 15d), while it decreased by 2 in the upper reaches. The local effects

of the northwesterly wind in the middle and lower reaches of the NB restrict flood tidal

currents, and thereby weaken the saltwater intrusion in this channel. The salinity decreased

by 0.2 in the middle and upper reaches of the SB and in the upper reaches of NC, while it

increased by 0.5 in the mouth of the NC, SP, and NP [4].

3.5. Impact of sea level rise

Global sea level rise has been of great concern by governments and societies with its impacts

on saltwater intrusion and material transports in estuaries, which threaten freshwater habitats

and drinking water supplies. Sea level rise deepens water depth and changes currents and

saltwater intrusion in estuaries. Qiu and Zhu [13] simulated the variations of saltwater intru-

sion according to different sea level rise scenarios in a typical year and a dry year. Three sea

level rise scenarios were considered. Scenario 1: 2.90 mm/a, total sea level rise around 0.290 m

in future 100 years; Scenario 2: 4.83 mm/a, total sea level rise around 0.483 m in future

100 years; and Scenario 3: 10.00 mm/a, total sea level rise around 1.000 m in future 100 years.

The river discharge record from 1990 to 2013 at Datong Station showed that a severe drought

occurred in January 1999, with an average discharge of 9480 m3/s, while the discharge is

13,463 m3/s in the same month of 2012, which was a typical year. The saltwater intrusion

generally occurs from the mid-December and keeps on influencing the Changjiang Estuary

until the following March. The river discharge reduces to its minimal value in January, during

which the saltwater can intrude farther upstream and the saltwater intrusion becomes the most

serious in the whole year. Thus, the period of model simulation was set from October to the

following May to present the whole process of saltwater intrusion and focus on the monthly

mean salinity during January. The river discharges from 1998 to 1999 (dry year) and from 2011

to 2012 (typical year) were used [13].

To evaluate the influence of sea level rise on the saltwater intrusion in the Changjiang Estuary,

both present-day sea level and future scenarios with sea level rise were used in the simula-

tions. In the base case, the model results for the dry year and typical year were simulated by

using the present-day sea level. In each sea level rise scenario, the increased sea level was

added to the mean sea level used in the base case. We named the cases as Experiment S1, S2,

and S3 to indicate the situations after sea level rising by 0.290, 0.483 and 1.00 m, respectively

[13]. All other set-ups in these cases were identical to the base case.

In a dry year, the saltwater near the river mouth intrudes more landward than that in a typical

year, and the distance that isohaline 1 moves upstream in the upper NC and the SC is distinctly

farther (Figure 16a and b). The NB is generally occupied by saline water in both dry and

typical years, while the SSO is pronounced in a dry year due to the lower river discharge [13].

Figure 16C–H shows pronounced variation, that is, salt content increases obviously as sea

level rises in both dry year and typical year. Due to the difference of river discharge, the change
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of saltwater intrusion has an interannual variation, namely, the salinity increase in the NC, NP,

and SP is larger in a dry year than that in a typical year as sea level rises. However, because

the salt content in the NB is higher in a dry year than in a typical year in the base case

(Figure 16a and b), salinity increase is lower in a dry year in all sea level rise scenarios. Wu

et al. [2] showed a relationship between runoff and semi-monthly water flux in the upper NB,

which suggests that the SSO may impact the SB more severely under a lower river discharge.

The SSO, together with the enhanced saltwater intrusion from the NC, increases the salt

content in the upper SB in both dry and typical years with rising sea level (Figure 16C–H).

Under the lower river discharge, the salinity increase in a dry year is more pronounced in the

upper SB as sea level rises, and the enhanced SSO is one of the important factors for this

Figure 16. Distributions of depth-averaged salinity in the base case in dry year (a) and typical year (b), respectively. White

lines indicate the salinity isohalines from 1 to 31 with an increment of 2, and the dashed lines indicate the isohaline of 0.5.

(c–h) Distributions of depth-averaged salinity difference in numerical experiments S1, S2, and S3 with respect to the base

case during January in dry year (c, d, e) and typical year (f, g, h), respectively. White lines indicate the salinity difference

isohalines with an interval of 0.50. All the results are monthly mean in January in the corresponding year [13].
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increase [13]. Then, the increased SSO will move downstream under runoff and impact the

lower reaches.

3.6. Impact of major projects in the river basin and estuary

There have been many man-made projects in the river basin and estuary. In this subsection, we

consider the impacts of one major project in the estuary and two major projects in the river

basin on the saltwater intrusion. The three projects are the DWP in the estuary (labeled in

Figure 1), the Three Gorges Dam (TGD), and the Water Diversion South to the North Project

(WDP) (Figure 17).

Zhu et al. [10] analyzed the impact of the DWP on the saltwater intrusion in the Changjiang

Estuary. In the NC, the saltwater intrusion was alleviated distinctly after the DWP, because the

dykes of the project blocked off the southward drift of the brackish water plume under the

northerly monsoon and the Coriolis force. The saltwater intrusion in the project area was

intensified at the upper section and alleviated at the lower section. In the SP, the saltwater

intrusion was intensified as the background salinity increased and the river discharge

decreased. The DWP had an obvious impact on the saltwater intrusion in the Changjiang

Estuary [10].

The TGD is the largest water conservancy project in the world. It significantly regulates the

discharge of the Changjiang on a seasonal scale [10]. It stores water in autumn and releases

it during the following dry season. Qiu and Zhu [12] used the numerical model to simulate

the seasonal saltwater intrusion around the Changjiang Estuary under the scenarios with

and without the TGD regulation. The seaward residual water transport was augmented

during the dry season after the TGD began operating, which means that more fresh water

was discharged into the sea, resulting in a weaker saltwater intrusion in each channel.

During spring tide (Figure 18a), the salinity generally decreased in the estuary. The net

water flux increased in the NB and diluted the high-salinity water in its upper reaches [12].

This led to a decline in the salt flux that spilled over into the SB. Around the river mouth, the

salinity in the NP and SP generally decreased to about 1. In the NC, the salinity also

decreased. During neap tide (not shown), the salinity difference reached �2.5 in the upper

Figure 17. Sketch of the Changjiang Basin and the locations of the Three Gorges Project and Water Diversion South to the

North Project.
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NB that was mainly caused by the seaward movement of the salinity front. The value of

salinity difference was about 1 in the SP and NP, and it decreased slightly in the NC. These

results showed that as the TGD supplemented river discharge during the dry season, the

saltwater intrusion was suppressed. They also showed that the operation of the TGD was

favorable for reducing the burden of freshwater supplement in the highly populated estua-

rine region.

The WDP is a strategic project to ease the shortage of water resources in northern China. China

has been enduring floods in the south and droughts in the north. The water resources will be

reallocated by the WDP through the inter-basin water transfer to mitigate the shortage of water

resources in northern China. The WDP has three water transfer plans, namely, the Western

Route Project, Middle Route Project, and Eastern Route Project. The Eastern Route Project

draws water from Yangzhou, which is in the lower reaches of the Changjiang, and conveys

the drawn water to northern China through the Grand Canal and the parallel rivers. Two

numerical experiments before and after the eastern WDP were set up with the monthly mean

river discharge of 11,200 m3/s in January, and 10,400 m3/s (reduced by 800 m3/s due to the third

phase eastern WDP), respectively. The eastern WDP caused a decrease of river discharge,

resulting in an enhancement of the saltwater intrusion, especially around the sand bars at the

river mouth where the salinity experienced a notable increase. This project enhanced the SSO

and increased the net seaward salt flux in the SB. During spring tide (Figure 18b), the salinity

in the upper SB was mainly affected by the SSO, while that around the sand bars at the river

mouth where the salinity fronts existed was mainly impacted by the seawater intrusion.

During neap tide (not shown), the saltwater intrusion was weaker due to weaker tides.

Accordingly, the SSO was much weaker and had a weaker effect on the salinity in the upper

Figure 18. Tidally averaged surface salinity difference between after and before the project during spring tide. (a) TGR;

(b) eastern WDP. A positive value means salinity increase after the projects and the negative value indicates salinity

decrease after the projects.
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SB. After the eastern WDP, the enhancement of the saltwater intrusion during neap tide was

weaker in the NC and greater in the SP and the NP, compared to that during spring tide.

4. Summary

The Changjiang is one of the largest rivers in the world, with three bifurcations and four

outlets into the sea. Its discharge exhibits pronounced seasonal variation, with the lowest

monthly mean value of 11,200 m3 s�1 in January and the highest of 49,700 m3 s�1 in July. The

tide has semidiurnal, diurnal, and fortnightly spring-neap signals with a moderate tidal range.

Winds are controlled primarily by the monsoon, which brings weaker southerly wind in

summer and stronger northerly wind in winter. There is a net landward flow in the NB when

river discharge is low during spring tide, resulting in a type of saltwater intrusion known as

the SSO, which is the most striking characteristic of saltwater intrusion in the estuary.

A three-dimensional numerical model was developed to study the hydrodynamic processes

and saltwater intrusion in the Changjiang Estuary. A third-order spatial interpolation at a

moderate temporal resolution coupled with a TVD limiter (HSIMT-TVD) advection scheme

was used in this model to solve the transport equation and prevent numerical oscillations. The

model was validated many times in the Changjiang Estuary, and the results suggested that

the model can successfully simulate the hydrodynamic processes and saltwater intrusion in

the estuary.

With combined effect of river discharge, tide, wind, and baroclinic force induced by the

density gradient, the simulated winter residual currents during spring tide in the SB, SC, NC,

and NP flow seaward mainly due to the runoff and have a higher magnitude in these channels

than over the tidal flats. In the sandbar areas between the SP and NP, water is transported

northward across the tidal flats. The residual current over the tidal flat east of Chongming

Island is northward. In the NB, the residual current is weaker, and there is a net water

transport toward the SB.

The saltwater intrusion in the Changjiang Estuary is controlled mainly by river discharge and

tide, but is also influenced by wind, sea level rise, river basin, and estuary projects. The saltwater

intrusion is enhanced when river discharge decreases. There is sufficient time for the reservoirs

to take fresh water from the river when river discharge is large. On the intertidal timescale, the

semidiurnal tide drives saltwater into the estuary during flood tide and out of the estuary during

ebb tide. The fortnightly spring tide generates a greater saltwater intrusion than during neap

tide. The model reproduced the phenomenon of SSO. The saltwater intrusion in the SP is

stronger than that in the NP, and the intrusion in the NP is stronger than that in the NC.

Considering wind, sea level rise, and major projects in the river basin and estuary, we simu-

lated and analyzed their impacts on the saltwater intrusion in the Changjiang Estuary. The

northerly wind produced southward currents along the Subei Coast as well as the landward

Ekman transport, which brought seawater into the Changjiang Estuary. A significant horizon-

tal wind-driven circulation was formed in the SC and NC, which flowed landward in the NC
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and seaward in the SC, SP, and NP. The saltwater intrusion was enhanced by the landward

circulation, while it was weakened by the seaward circulation. With increasing northerly wind

speed, the saltwater intrusion was enhanced in the NB and NC, while it was weakened in the

SC, SP, and NP. When driven by the northeasterly wind, the wind-driven circulation in the SC

and NC was significantly decreased, and the saltwater intrusion was weakened in the NB and

NC compared to the same speed of northerly wind. In the upper reaches of the NB, the water

was directly dragged by the local wind, causing an increment of water spilling over the flats

from the NB into the SB. However, the SSO was weakened during spring tide, because the

fresher water extended from the NC into the NB was more pronounced. When driven by the

northwesterly wind, the patterns of the wind-driven circulation in the SC and NC were almost

the same as those driven by the northerly wind of the same speed. In the middle and lower

reaches of the NB, the water was directly dragged by the local wind, causing a weakened

saltwater intrusion there, which decreased the salinity in the upper reaches of the NB and

weakened the SSO. The saltwater intrusion was slightly weakened in the upper reaches of the

SB and NC and was enhanced in the mouth of the NC, SP, and NP. The influence of wind

stress was more pronounced during neap tide than during spring tide. The river discharge and

tide mainly determined the features of the saltwater intrusion in the Changjiang Estuary,

though the wind also played a key role.

The saltwater intrusion becomes stronger as sea level rises and is much stronger when river

discharge is much smaller. The SSO, together with the enhanced saltwater intrusion from the

NC, increases the salt content in the upper SB with the rising sea level. Under a lower river

discharge, the salinity increase in dry year is more pronounced in the upper SB as the sea level

rises, and the enhanced SSO is one of the important factors for such increase.

The impact of the DWP is that the saltwater intrusion was alleviated distinctly in the NC

because the dykes of the project blocked off the southward drift of the brackish water plume

under the northerly monsoon and the Coriolis force. The saltwater intrusion in the NP was

intensified at the upper section and alleviated at the lower section. In the SP, the saltwater

intrusion was intensified as the background salinity increased and the river discharge

decreased. The TGD increased river discharge in winter and weakened the saltwater intrusion.

The operation of the TGD is favorable for reducing the burden of freshwater supplement in the

highly populated estuarine region. The WDP deceased river discharge, enhanced the saltwater

intrusion, especially around the sand bars at the river mouth where the salinity experienced a

notable increase, and was unfavorable for freshwater supply in the estuary.
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