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Chapter

Variational Principle for
Nonequilibrium Steady States
Tested by Molecular Dynamics
Simulation of Model Liquid
Crystal Systems
Sten Sarman, Yonglei Wang and Aatto Laaksonen

Abstract

The purpose of the work presented in this chapter is to test a recently proven
variational principle according to which the irreversible energy dissipation rate is
minimal in the linear regime of a nonequilibrium steady state. This test is carried out
by performing molecular dynamics simulations of liquid crystals subject to velocity
gradients and temperature gradients. Since the energy dissipation rate varies with the
orientation of the director of the liquid crystal relative to these gradients and is
minimal at certain orientations, this is a stringent test of the variational principle.
More particularly, a nematic liquid crystal model based on the Gay-Berne potential,
which can be regarded as a Lennard-Jones fluid generalized to elliptical molecular
cores, is studied under planar Couette flow, planar elongational flow, and under a
temperature gradient. It is found that the director of a nematic liquid crystal
consisting of rod-like molecules lies in the vorticity plane at an angle of about 20° to
the stream lines in the planar Couette flow. In the elongational flow, it is parallel to
the elongation direction, and it is perpendicular to the temperature gradient in a heat
flow. These orientations are the ones where the irreversible energy dissipation rate is
minimal, so that the variational principle is fulfilled in these three cases.

Keywords: liquid crystals, nonequilibrium molecular dynamics simulation, shear
flow, elongational flow, heat conduction, alignment phenomena, minimal energy
dissipation rate

1. Introduction

For a system in thermodynamic equilibrium, there is a variational principle
according to which the free energy is minimal, that is, the Helmholtz free energy
when the volume, temperature, and number of particles are constant, Gibbs free
energy when the pressure, temperature, and number of particles are constant, etc.
On the other hand, for systems driven away from equilibrium by an external
dissipative field such as a velocity gradient, temperature gradient, chemical poten-
tial gradient or an electrical potential gradient doing irreversible work that is
converted to heat, there has not been any variational principle to date. However, a
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theorem originally proposed by Ilya Prigogine stating that a quantity, known as the
irreversible energy dissipation rate, _wirr, is minimal in the linear regime of a
nonequilibrium steady state has recently been proven [1]. This quantity is defined
as the irreversible work per unit time and unit volume that is done by a dissipative
external field on the system [2]. Thus, there is a variational principle for
nonequilibrium steady states.

This theorem is not only of basic scientific interest but also of technological and
practical interest since shear fields, temperature gradients, concentration gradients,
or chemical potential gradients and electrical potential gradients are common
examples of external dissipative fields that are ubiquitous in industrial applications
and in everyday life. For example, in a lubricated bearing, a planar Couette flow
arises in the lubricant in the narrow space between two surfaces rotating at differ-
ent angular velocities, and _wirr is equal to the product of the shear rate and the shear
stress. Another example is the heat flow between a hot region and a cold region such
as the inside and the outside of a building. Then, _wirr is equal to the product of the
heat flow and the temperature gradient. Still another example is an electric heating
element where an electric potential difference or voltage drives an electric current,
and _wirr is equal to the product of the voltage and the current. Finally, chemical
potential gradients arise when various substances are mixed and they begin to
diffuse, and _wirr is equal to the product of the chemical potential gradients and the
matter currents.

One way of testing this principle is to perform molecular dynamics simulations
of microscopic model systems, but then it is hard to find a suitable model system
that is easy to analyze. However, liquid crystals are particularly interesting for this
purpose because the transport properties and thereby _wirr depend on the orientation
relative to the streamlines or the temperature gradient, and at certain orientations,
_wirr is minimal. Thus, it can be determined whether these orientations actually are
attained by the liquid crystal. Moreover, it is possible to orient the liquid crystal in
an experimental measurement by applying an electric or magnetic field and in
molecular dynamics simulations by applying a constraint torque. This means that
_wirr can be measured or calculated as a function of the orientation relative to the
dissipative field.

The simplest kind of liquid crystal is the nematic liquid crystal [3, 4]. It consists
of rod-like or plate-like molecules oriented in a certain direction—the director—but
there is no translational order, see Figure 1. A nematic liquid crystal cannot support
shear stresses, so it is by definition a liquid, but it can support torques, which is the
basis for various orientation phenomena relative to external fields. A special case of
a nematic liquid crystal is the cholesteric liquid crystal, where the director rotates in
space around an axis perpendicular to itself—the cholesteric axis or the optical axis.
The spatial rotation period or the pitch is of the order of 1 μm or about 500
molecular diameters. A cholesteric liquid crystal is different from its mirror image,
and it is formed by chiral molecules.

There is some theoretical and experimental evidence indicating that the director
comes to rest in an orientation where the irreversible energy dissipation rate is
minimal in accordance with the variational principle. More specifically, such orien-
tation phenomena have been observed in simulations of shear flow or planar
Couette flow [5, 6], in experimental measurements of the viscosity [7] in this flow
geometry, and in simulations of planar elongational flow [8]. In the latter case, it is
actually possible to prove that the energy dissipation rate must be either minimal or
maximal in a steady state in the linear or Newtonian regime by using the linear
phenomenological relations between the velocity gradient and the shear stress.

In the case of a nematic liquid crystal subject to a temperature gradient, there are
quite a few early experimental works [9–14] that might imply that the director of a
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liquid crystal consisting of rod-like molecules orients perpendicularly to this gradi-
ent. This means that the heat flow is minimized, since the heat conductivity is
minimal in this orientation. Unfortunately, the results of these works are not wholly
conclusive because the underlying experiments are very hard to carry out. On the
other hand, molecular dynamics simulation of nematic phases of calamitic and
discotic soft ellipsoids [15–17] clearly show that the directors orient perpendicularly
and parallel, respectively, to the temperature gradient, so that the heat flow and
thereby _wirr are minimized. However, one system, where the director definitely
orients perpendicularly to the temperature gradient, is the cholesteric liquid crystal,
where the cholesteric axis orients parallel to the temperature gradient, so that the
director becomes perpendicular to this gradient, and the heat flow is minimized
[3, 4, 18–20], which is in agreement with the variational principle.

This chapter is organized in the following way: in Section 2, the basic theory is
outlined, and in Sections 3, 4, and 5, molecular dynamics simulation results and
experimental measurements on the director orientation and the irreversible energy
dissipation rate are presented and discussed for shear flow or planar Couette flow,
planar elongational flow and heat conduction, respectively. In Section 6, the effects
of the thermostat are discussed, and finally in Section 7, there is a conclusion. Some
background theory is given in the Appendices.

2. Basic theory

2.1 Order parameter, director, and director angular velocity

In order to describe transport properties of a liquid crystal, we must first define
the order parameter, the director, and the director angular velocity. In an axially
symmetric system such as a nematic or a smectic A liquid crystal, the order param-
eter, S, is given by the largest eigenvalue of the order tensor,

Q ¼
3
2

1
N

∑
N

i¼1
ûiûi �

1
3
1

� �

, (1)

Figure 1.
A nematic phase of the Gay-Berne fluid undergoing planar Couette flow. The velocity gradient is directed in the
vertical direction and the streamlines are directed in the horizontal direction. Note that the director forms an
angle with streamlines of about 18°.
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where N is the number of particles, and ûi; 1≤i≤Nf g is some characteristic
vector of the molecule; in the case of bodies of revolution, it can be taken to
be parallel to the axis of revolution but in a more realistic all atom model
some other vector in the molecule has to be defined as ûi, and 1 is the unit
second rank tensor. When the molecules are perfectly aligned in the same
direction, the order parameter is equal to unity, and when the orientation is
completely random, it is equal to zero. The eigenvector corresponding to the
order parameter is defined as the director, n, and it is a measure of the average
orientation of the molecules in the system. The order tensor can also be
expressed as

Q ¼
3
2
S nn�

1
3
1

� �

: (2)

The director angular velocity is given by Ω ¼ n� _n. In a macroscopic system,
the order tensor and the order parameter are functions of the position in space,
but in a small system such as a simulation cell with dimensions of the order of
some ten molecular lengths, there is only one director and one order parameter for
the whole system.

2.2 Director constraint algorithm

Since the molecules studied in the work presented in this chapter are
modeled by the Gay-Berne potential, which can be regarded as a Lennard-Jones
potential generalized to elliptical molecular cores, see Appendix 2, they are rigid
bodies. Therefore, the Euler equations are applied in angular space. Moreover,
since the purpose often is to find the stable orientations of the director relative
to an external dissipative field, it is interesting to calculate the torque exerted
on the liquid crystal, when the director attains various fixed angles relative to
this field. This can be done by adding Gaussian constraints to the Euler equa-
tions [21],

I _ωi ¼ Γi þ λx
∂Ωx

∂ωi
þ λy

∂Ωy

∂ωi
, (3)

where I is the moment of inertia around the axes perpendicular to the axis of
revolution, ωi is the angular velocity of molecule i, Γi is the torque exerted on
molecule i by the other molecules, Ωx and Ωy are the x- and y-components of the
director angular velocity, and λx and λy are Gaussian constraint multipliers keeping
the x- and y-components of the director angular acceleration equal to zero. These
multipliers are determined in such a way that the director angular acceleration
becomes a constant of motion. Then if the initial director angular acceleration and
angular velocity are equal to zero, the director will remain fixed in space for all
subsequent times and the time averages of the constraint multipliers will be equal to
the torque exerted on the director by the external field. Finally, note that the
difference between the director angular velocity, Ω, and the molecular angular
velocities ωi; 1≤i≤Nf g; the director angular velocity can be regarded as the angular
velocity of the average orientation of the molecules. If the director angular velocity
is constrained to be zero by applying Eq. (3), the molecular angular velocities are
still nonzero and the right hand side of Eq. (3) is nonzero. The Gaussian constraint
simply forces the molecules to rotate in such a way that average orientation stays
the same.
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3. Shear flow

3.1 The SLLOD equations of motion for shear flow

In order to study shear flow and to calculate the viscosity and director alignment
angles relative to the streamlines, it is convenient to apply the SLLOD equations of
motion [22]. The name SLLOD stems from the similarity to the Dolls equation of
motion derived from the Dolls tensor Hamiltonian. They are synthetic equations of
motion that can be used to calculate the viscosity in the linear regime. On the other
hand, the idea behind the SLLOD equations of motion is very simple: The velocity
of the molecules is divided into the streaming velocity and the thermal velocity. The
thermal velocity is related to the temperature, and the streaming velocity is the
macroscopic external velocity. The SLLOD equations of motion are an exact
description of adiabatic planar Couette flow and a very good approximation of shear
flow at constant temperature both in the linear and nonlinear regime. The SLLOD
equations are expressed in the following way:

_ri ¼
pi

m
þ γrziex (4a)

and

_pi ¼ Fi � γpziex � αpi, (4b)

where ri and pi are the position and peculiar momentum, that is, the momentum
relative to the streaming velocity, of molecule i,m is the molecular mass, γ ¼ ∂ux=∂z
is the shear rate, that is, there is a streaming velocity ux in the x-direction varying
linearly in the z-direction, see Figure 2, ex is the unit vector in the x-direction, Fi is
the force exerted on molecule i by the other molecules, and α is a thermostatting
multiplier given by the constraint that the linear peculiar kinetic energy is a con-
stant of motion,

α ¼
∑N

i¼1 Fi � pi � γpixpiz
� �

∑N
i¼1p

2
i

: (5)

Figure 2.
Planar Couette flow or shear flow arises when there is a streaming velocity in the x-direction, varying linearly in
the z-direction, u ¼ γzex, where γ ¼ ∂ux=∂z is the shear rate or velocity gradient. The expression for the relation
between the velocity gradient and the pressure tensor becomes simpler by using a director-based coordinate
system e1; e2; e3ð Þ, where the director n points in the e3-direction, obtained by rotating the ordinary laboratory-
based coordinate system e1; e2; e3ð Þ with an angle θ around the ey ¼ e2-axis. Reproduced from Ref. [6] with the
permission of AIP Publishing.
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This expression is obtained by applying Gauss’s principle of least constraint [22].
This principle is essentially the same as the Lagrange’s method for handling
constraints. However, Gauss’s principle is more general in that it in addition to
constraints involving the molecular coordinates also allows handling of some con-
straints involving the molecular velocities. This is very useful because it makes it
possible to keep the kinetic energy constant whereby the temperature also will be
constant. It is possible to show that the ensemble averages of the phase functions
and the time correlation functions are essentially canonical when a Gaussian ther-
mostat is applied.

3.2 Shear flow of nematic liquid crystals

In a nematic liquid crystal undergoing shear flow, the alignment angle, θ,
between the director and the streamlines is determined by a mechanical stability
criterion, namely, that the antisymmetric pressure must be zero when no external
torques act on the system, that is, that the torques exerted by the vorticity and the
strain rate cancel out. This makes it possible to derive a relationship between the
alignment angle and the viscosity coefficients in the Newtonian regime by using the
linear relation between the pressure tensor and the strain rate, see Refs. [3, 4, 23]
and Appendix 1,

pa2
� �

¼ �~γ1
γ

4
� ~γ2

γ

4
cos 2θ ¼ 0, (6)

where ~γ1 is the twist viscosity, ~γ2 is the cross coupling coefficient between
the antisymmetric pressure and the strain rate, and pa2

� �

is the antisymmetric
pressure in the vorticity direction perpendicular to the streamlines and perpen-
dicular to the velocity gradient. The angular brackets denote that the pressure
tensor is the ensemble average of a phase function. Then, if pa2

� �

is equal to
zero, we obtain

cos 2θ0 ¼ �~γ1=~γ2, (7)

for the preferred alignment angle, θ0, provided that the ratio ~γ1=~γ2j
�

� is less
than one. Then the liquid crystal is said to be flow stable. This condition is
fulfilled in many liquid crystals, and θ0 is between 10 and 20° both in real
systems and in simplified coarse grained model systems such as the soft ellip-
soid fluid, see Refs. [5–7], Figure 1, and Appendix 2. Note, however, that for
some systems, often near the nematic-smectic A phase transition, the ratio
~γ1=~γ2j
�

� is greater than one. This means that there is no orientation angle where
the antisymmetric pressure is zero, so that no steady state is attained. Then the
liquid crystal is said to be flow unstable and the director will rotate forever
[3, 4, 23, 24].

The connection with the variational principle can be made by using the fact
that there is an algebraic expression for the irreversible energy dissipation rate,
_wirr, of a flow stable nematic liquid crystal, given by the dyadic product of the
symmetric traceless pressure, P, and the traceless strain rate, ∇u,

_wirr ¼ �P : ∇u ¼ ηþ
~η1
6
þ
~η3
2

sin 22θ þ
~η2
2

cos 2θ
� �

γ2, (8)
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where the definitions of the viscosity coefficients, η, ~η1, ~η2, and ~η3, and the
derivation are given in Appendix 1. If the values of the various viscosity coefficients
are inserted, it is found that the functional dependence of _wirr on θ is similar to that
given in Figure 3. This function (8) has been obtained by shear flow simulations
applying the SLLOD equations of motion [22] to a nematic phase of calamitic soft
ellipsoids, see Refs. [5, 6]. The energy dissipation rate is low close to the preferred
alignment angle and high when the director is perpendicular to the streamlines
and parallel to the velocity gradient. Then, if we study the distribution of the
director, we find that it is centered close to the minimum of _wirr. This minimum
has also been observed in simulations of shearing nematic phases of discotic soft
ellipsoids [5] and when experimentally measured, viscosity coefficients are inserted
in the Eqs. (7) and (8) and the resulting alignment angle is determined [7]. Thus the
system seems to select the alignment angle that minimizes the irreversible energy
dissipation rate in accordance with the variational principle. This also means that
the energy dissipation rate (8) must be minimal at the preferred alignment angle,
θ0, given by Eq. (7). Thus, the derivative of the function (8) with respect to θ must
be zero for θ0, giving an additional relation between the viscosity coefficients and
the alignment angle,

cos 2θ0� ¼
~η2
2~η3

(9)

or

2~η3~γ1 þ ~η2~γ2 ¼ 0, (10)

where θ0 has been eliminated by using Eq. (7). The Eqs. (7) and (9) do not
coincide but they must still give the same value of θ0. This provides an important
cross check for the correctness of the simulation algorithms and experimental
methods used to determine the viscosity coefficients and for the computer pro-
grams used to run the simulations.

Figure 3.
The irreversible energy dissipation rate, _w irr, Eq. (8), due to the strain rate of a nematic liquid crystal phase of
calamitic soft ellipsoids as a function of the director alignment angle, θ, is obtained by using the Gaussian
constraint algorithm (3) to fix the director at various angles relative to the streamlines. The preferred alignment
angle attained when no constraints are applied is equal to about 20° which is close to the minimum of _w irr.
Reproduced from Ref. [6] with the permission of AIP Publishing.
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4. Planar elongational flow

4.1 The SLLOD equations of motion for planar elongational flow

A planar irrotational elongational flow arises when an incompressible liquid
expands in the x-direction and contracts in the z-direction, see Figure 4.
Then, the velocity field and the strain rate are given by u ¼ γ xex � zezð Þ and
∇u ¼ ∇u ¼ γ exex � ezezð Þ. Planar elongational flow can be studied by applying
a special version of the SLLOD equations of motion. Then the problem is that,
if the simulation cell is elongated in the x-direction and contracted in the z-
direction, the simulation can only continue until the width in the z-direction
is equal to twice the range of the interaction potential. However, if the angle
between the elongation direction and the x-axis is set to an angle, φ, the
periodic lattice of originally quadratic simulation cells is gradually deformed
to a lattice of cells shaped like parallelograms. Then, it can be shown that for a
special value of this angle, φ0, the lattice of parallelograms can be remapped
onto the original quadratic lattice after a certain time period, so that the simu-
lation becomes continuous, that is, the Kraynik-Reinelt boundary conditions,
see Figure 5 and Refs. [8, 25–28] for details. Then, if the angle between the
elongation direction and the x-axis is equal to φ0, the velocity gradient becomes
∇u ¼ γ e0xe

0
x � e0ze

0
z

	 


, where e0x ¼ ex cosφ0 � ez sinφ0 and e0z ¼ ex sinφ0 þ ey cosφ0

are the elongation and contraction directions. Inserting this gradient in the
SLLOD equations of motion gives,

_ri ¼
pi

m
þ ri � ∇u ¼

pi

m
þ γri � e0xe

0
x � e0ze

0
z

	 


(11a)

and

_pi ¼ Fi � pi � ∇u� αpi � β ¼ Fi � γpi � e0xe
0
x � e0ze

0
z

	 


� αpi � β, (11b)

where ri and pi are the position and peculiarmomentum, that is, themomentum
relative to themacroscopic streaming velocity, ofmolecule i, Fi is the force exerted on
molecule i by the othermolecules,m is themolecularmass,u is the streaming velocity, γ
is the strain rate,α is a thermosttingmultiplier and β is a constraintmultiplier used to
conserve the linearmomentum.

Figure 4.
Schematic representation of a nematic phase of a soft ellipsoid fluid undergoing irrotational extensional flow.
The system is elongated in the horizontal direction and contracted in the vertical direction while the volume is
constant. The molecules tend to be aligned in the elongation direction.
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4.2 Planar elongational flow of nematic liquid crystals

The director alignment angle is in the first place determined by the mechanical
stability in the same way as in shear flow whereby the antisymmetric pressure must
be zero. In the linear or Newtonian regime, the alignment angle can be found by
using the following relation between the antisymmetric pressure and the strain rate,
see Appendix 1,

pa2
� �

¼ �~γ2
γ

2
sin 2θ, (12)

where θ denotes the angle between the director and the elongation direction, and
~γ2 is the cross coupling coefficient between the antisymmetric pressure and the
strain rate. From this expression, it is apparent that the alignment angle must be
either 0 or 90°, that is, where the torque exerted by the strain rate is equal to zero.
For a flow stable calamitic nematic liquid crystal, the cross coupling coefficient ~γ2 is
negative [6], so that the 0° orientation parallel to the elongation direction is
mechanically stable, and the 90° orientation is unstable.

Just as in planar Couette flow or shear flow, the connection to the variational
principle can be made by considering the algebraic expression for the irreversible
energy dissipation rate in the linear regime,

_wirr ¼ �P : ∇u ¼ 4ηþ 2
~η1
3
þ 2~η3 cos

22θ
� �

γ2: (13)

If the viscosity coefficient ~η3 is positive, this expression is minimal when θ is
equal to 45° but this orientation is excluded because of the mechanical stability (12).
If ~η3 on the other hand is negative, this expression attains the same minimal value
when θ is equal to 0 or 90°, that is, the elongation or contraction direction. Simula-
tions of a nematic phase of calamitic soft ellipsoids have shown that ~η3 is less than
zero [8], so that the energy dissipation rate is minimal in the stable orientation also
in this case of planar elongational flow. This is in agreement with the variational
principle [1]. See also Figure 6 where the angular distribution of the director
around the elongation direction is displayed.

Figure 5.
The Kraynik-Reinelt boundary conditions. The original simulation cell is square 1. When the angle between the
elongation direction and the horizontal direction is equal to φ0, square 1 is deformed to a parallelogram, which,
after a given time interval, becomes the dashed parallelogram, partially covering the squares (1–6). Then the
triangles a’, b’, and c’ in the parallelogram are periodic copies of the triangles a, b, and c in square 1. If the
primed triangles are moved to the corresponding unprimed triangles, a square is recovered and the simulation
can continue. Reproduced from Ref. [8], with permission from the PCCP Owner Societies.
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5. Heat conduction

5.1 Heat flow algorithm

A temperature gradient can be maintained by keeping different regions, 1 and 2,
of a system at different temperatures, see Figure 7. Mathematically, this can be
brought about by adding thermostatting terms for each of the regions 1 and 2 to the
ordinary Newtonian equations of motion [29],

m€ri ¼ Fi � ŵ1iα1m _ri � ŵ2iα2m _ri � ζ, (14)

Figure 6.
The angular distribution, p θð Þ, of the director of a calamitic nematic liquid crystal consisting of soft ellipsoids
around the elongation direction where the angle between the director and the elongation direction is denoted by
θ. Reproduced from Ref. [8], with permission from the PCCP Owner Societies.

Figure 7.
A temperature gradient is maintained by thermostatting one region (dark gray) of the system at a high
temperature and another region (light gray) at a low temperature, whereby heat will flow from the high
temperature region to the low temperature region. Reproduced from Ref. [15], with permission from the PCCP
Owner Societies.
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where m is the molecular mass, _ri and €ri are the velocity and the acceleration of
molecule i, and Fi is the force exerted on molecule i by the other molecules. The
thermostatting terms are ŵ1iα1m _ri and ŵ2iα2m _ri where ŵ1i and ŵ2i are two normal-
ized weight functions. These terms are actually similar to the thermostatting term in
Eq. (4b), but here region 1 and region 2 are thermostatted separately at different
temperatures. This is achieved by letting the weight functions be Gaussian func-
tions centered in region 1 and 2, respectively, and with decay lengths that are
considerably shorter than the distance between these two regions. In this way, only
the molecules in region 1 contribute to the temperature in region 1, and only the
molecules in region 2 contribute to the temperature in region 2. The molecules far
away from the centers of these regions move according to the ordinary Newtonian
equations of motion. Note that, it is not necessary to use Gaussian weight functions;
it is possible to use any function with a maximum and a rather short decay length.
The parameters α1 and α2 are thermostatting multipliers in the same way as the
multiplier α in Eqs. (4b) and (5), but here, they thermostat the regions 1 and 2
separately. They are determined by applying Gauss’s principle of least constraints
using the fact that the weighted kinetic energies are constant:

1
2
∑
N

i¼1
ŵ1im _r2i ¼ Ek1 (15a)

and

1
2
∑
N

i¼1
ŵ2im _r2i ¼ Ek2, (15b)

where Ek1 and Ek2 are the weighted kinetic energies for region 1 and 2, respectively.
The algebraic expressions for the thermostatting multipliers are given in Ref. [15]. The
parameter ζ is a multiplier determined in such a way that the linear momentum of the
whole system is constant. It goes to zero in the thermodynamic limit.

5.2 Heat flow in nematic liquid crystals

The heat flow in an axially symmetric system such as a nematic liquid crystal or
a cholesteric liquid crystal is given by

JQ
� �

¼ � λk knnþ λ⊥⊥ 1� nnð Þ
� �

�
∇T

T
, (16)

where JQ
� �

is the heat current density, λk k is the heat conductivity parallel to the
director of an ordinary achiral nematic liquid crystal or parallel to the cholesteric
axis of a cholesteric liquid crystal, λ⊥⊥ is the heat conductivity perpendicular to the
director of a nematic liquid crystal or perpendicular to the cholesteric axis of a
cholesteric liquid crystal,T is the absolute temperature, and n is the director. Then,
the irreversible energy dissipation rate of the system due to the heat flow becomes,

_wirr ¼ � JQ
� �

�
∇T

T
¼

1
T2 λ⊥⊥∇T � ∇T þ λk k � λ⊥⊥

	 


n � ∇Tð Þ2
h i

¼ ∂zT
T

�

�

�

�

2
λ⊥⊥ þ λk k � λ⊥⊥

	 


cos 2θ
� �

,

(17)

where the last equality has been obtained by assuming that the director lies in
the zx-plane forming an angle θ with the temperature gradient, see Figure 8. When
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λk k>λ⊥⊥, as in a nematic liquid crystal consisting of calamitic molecules, the heat
current density and thereby _wirr are maximal when the temperature gradient and
the director are parallel and minimal when they are perpendicular to each other.
Conversely, when λk k < λ⊥⊥, as in a nematic liquid crystal consisting of discotic
molecules, the heat current density and the irreversible energy dissipation rate are
maximal when the director is perpendicular to the temperature gradient and mini-
mal when it is parallel to the temperature gradient.

The temperature gradient exerts a torque on the molecules around an axis
perpendicular to itself and perpendicular to the director, see Figure 8. This torque
must be zero in the parallel and perpendicular orientations due to the symmetry,
but it is impossible to determine whether these orientations are stable or unstable.
Unfortunately, there is no linear relation between the torque and the temperature
gradient since they are pseudovectors and polar vectors, respectively, due to the
axial symmetry of the system. However, a quantitative relation between them can
be obtained by noting that a cross coupling between a pseudo vector and a sym-
metric second rank tensor is allowed. The latter quantity can be obtained by
forming the dyadic product of the temperature gradient, giving the following
relation [15],

Γ ¼ με : nn �
∇T

T

∇T

T
¼ μn �

∇T

T
n�

∇T

T
¼ μ

∂zT

T

�

�

�

�

�

�

�

�

2

cos θ sin θey ¼
1
2
μ
∂zT

T

�

�

�

�

�

�

�

�

2

sin 2θey,

(18)

where Γ is the torque density, μ is a cross coupling coefficient, and ε is the Levi-
Civita tensor. The third equality is obtained by assuming that the temperature
gradient points in the z-direction, and the director lies in the zx-plane, see Figure 8,
whereby θ becomes the angle between these two vectors. This relation fulfills the
symmetry condition according to which the torque must be zero when the director
is parallel or perpendicular to the temperature gradient. Moreover, the torque is
proportional to the square of the temperature gradient for given angle θ. Note also
that, this relation is analogous to the relation between the strain rate and the
antisymmetric pressure in planar elongational flow (12).

Figure 8.
A schematic view of a nematic liquid crystal subject to a temperature gradient is shown. The temperature
gradient ∇T points in the z-direction, and the director n lies in the zx-plane forming an angle θ to the z-axis.
Then a torque Γ arises in the direction of the y-axis. Reproduced from Ref. [15], with permission from the
PCCP Owner Societies.
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The director orientation can be determined by simulating systems, where a
temperature gradient and a heat flow are maintained by thermostatting different
parts of the system at different temperatures by using the above simulation algo-
rithm (14). Such simulations have shown that the director of nematic liquid crystals
consisting of soft calamitic ellipsoids tends to align perpendicularly to the tempera-
ture gradient, see Figure 9, whereas the director of nematic liquid crystals
consisting of discotic ellipsoids tends to align parallel to the temperature gradient.
Thus, the energy dissipation rate is minimal in both cases. Moreover, if the director
is constrained to attain a fixed orientation between the perpendicular and parallel
orientation relative to temperature gradient by applying the Lagrangian constraint
algorithm (3), the torque exerted can be obtained. Then, it is found that this torque
turns the director of a calamitic system toward the perpendicular orientation and
the director of a discotic system toward the parallel orientation. The same orienta-
tion behavior of the directors of calamitic and discotic nematic liquid crystals
relative to the temperature gradient was observed in an earlier work [21]. However,
then the Evans heat flow algorithm [22] was applied where a fictitious external field
under non-Newtonian equations of motion rather than a real temperature gradient
drives the heat flow. Therefore, it was not possible to determine whether the
orientation phenomena were a real effect or a consequence of the non-Newtonian
synthetic equations of motion.

There are also some early experimental works on the orientation of the director
of nematic liquid crystals relative to temperature gradients [9–14] that probably
support the conclusions of these heat flow simulations. Unfortunately, it is very
difficult to carry out these experiments because if the temperature gradient is too
large, there will be convection in the system, and if the temperature gradient is too
small, it will not be strong enough to overcome the elastic torques or the surface
torques. Therefore, these experiments are not fully conclusive.

Finally, one example where the director orientation relative to a temperature
gradient definitely is the one that minimizes the irreversible energy dissipation rate
is a cholesteric liquid crystal. In this system, the director rotates in space around the
cholesteric axis forming a spiral structure. Then experimental studies, where a
temperature gradient is applied, have shown that the cholesteric axis orients parallel
to the temperature gradient, whereby the energy dissipation rate is minimized since
the heat conductivity is greater in the direction perpendicular to the cholesteric axis
than in the parallel direction. Moreover, the whole spiral structure starts rotating in
time. This phenomenon is known as thermomechanical coupling [3, 4, 18–20, 30, 31].

Figure 9.
The angular distribution, p θð Þ, of the director of a nematic liquid crystal consisting of soft calamitic ellipsoids
around the temperature gradient where the angle between the director and the temperature gradient is denoted
by θ. Reproduced from Ref. [15], with permission from the PCCP Owner Societies.
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There are quite a few experimental studies available on this phenomenon, where it
has been found in a conclusive way that the cholesteric axis remains parallel to the
temperature gradient, so this orientation seems to be stable, and thus the irrevers-
ible energy dissipation rate is minimal.

We can consequently conclude that the orientation of the director relative to the
temperature gradient is consistent with the variational principle [1] even though the
coupling between the torque and the temperature gradient is quadratic rather than
linear and the system is inhomogeneous. However, the temperature gradient is
rather weak, so we still remain in the linear regime.

6. Effects of the thermostat

In the above simulations of shear flow and elongational flow, the velocity gradi-
ent does work on the system that is converted to heat, which must be removed in
order to keep the temperature constant and to maintain a steady state. In a real
macroscopic system, this takes place by heat conduction to the system boundaries
and this could in principle be arranged in a microscopic simulation cell as well.
Unfortunately, this is inconvenient because a temperature gradient of molecular
dimensions would make the system inhomogeneous, and thus make it difficult to
define the thermodynamic state. Therefore, the temperature is kept constant by
forcing the kinetic energy to be a constant of motion by applying a Gaussian
thermostat, see Eq. (5). This thermostat was originally devised independently by
Hoover et al. [32–34] and by Evans [22]. The equilibrium ensemble averages of the
phase functions and time correlation functions generated when this thermostat is
applied are essentially canonical [35]. Away from equilibrium, it can be shown that
the effect of the Gaussian thermostat on the ensemble averages is proportional to
the square of the external field, whereas the thermodynamic fluxes driven by the
field are directly proportional to the field in a linear transport process. Thus, the
corresponding linear transport coefficients that are equal to the ratio of the flux and
the field in the limit of zero field are independent of the thermostat. Therefore,
transport coefficients obtained from the simulations of shear flow and elongational
flow are independent of the thermostat since there is a linear relation between the
velocity gradient and the shear stress in the Newtonian regime and since we are
interested in the limit of zero velocity gradient. Neither is the correctness of the
variational principle affected by the thermostat since it is valid in the linear regime.

The situation is different in the heat flow simulations because here we actually
want a temperature gradient. This gradient is obtained by applying two bar ther-
mostats at different temperatures acting over a limited range and separated by a
distance that is long compared to this range, see Figure 7 and Eq. (14). Therefore,
the movements of only a small fraction of the molecules are affected by the ther-
mostats, whereas the movements of the majority of the molecules away from the
bar thermostats are governed by the ordinary Newtonian equations of motion.
Thus, it is reasonable to assume that the influence of the details of the thermostat on
the ensemble averages of the phase functions is limited in this case too.

7. Conclusion

The purpose of this work has been to test a recently proven variational princi-
ple according to which the irreversible energy dissipation rate is minimal in the
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linear regime of a nonequilibrium steady state. Therefore, we have reviewed
molecular dynamics simulations and experimental work on director orientation
phenomena in nematic liquid crystals and in cholesteric liquid crystals under
external dissipative fields such as velocity gradients and temperature gradients.
A general observation that we have made is that in all the examples studied, the
director of the liquid crystals seems to attain precisely that alignment angle
relative to the external dissipative field that minimizes the irreversible energy
dissipation rate.

In a nematic liquid crystal, the director orientation is in the first place deter-
mined by a mechanical stability criterion, namely, that the external torques acting
on the system must be zero at mechanical equilibrium. This makes it possible to
derive an exact relation between the alignment angle relative to the streamlines and
the viscosity coefficients in the linear or Newtonian regime of planar elongational
flow and of planar Couette flow. Both simulations and experimental measurements
imply that the irreversible energy dissipation rate is minimal at this mechanically
stable orientation.

It can be shown that the elongation direction is the stable orientation of flow
stable calamitic nematic liquid crystals undergoing elongational flow in the linear
regime. It can also be shown that the value of the energy dissipation rate is the same
in the contraction direction and in the elongation direction, and that this value is
either the maximal or the minimal value by using the linear phenomenological
relations between the strain rate and the pressure. Simulations of the calamitic soft
ellipsoid fluid have shown that the irreversible energy dissipation rate is minimal in
the elongation direction.

In calamitic nematic liquid crystals, the heat conductivity is larger in the direc-
tion parallel to the director than in the perpendicular direction, and the reverse is
true for discotic nematic liquid crystals. Thus, the irreversible energy dissipation
rate due to the heat flow depends on the angle between the director and the
temperature gradient. When a nematic liquid crystal is subjected to a temperature
gradient, a torque is exerted on the molecules. Due to symmetry, this torque must
be proportional to the square of the temperature gradient and it must be zero when
the director is parallel or perpendicular to this gradient.

In simulations of nematic phases of soft ellipsoids under a temperature gradient,
it turns out that the director of a calamitic nematic liquid crystal aligns perpendic-
ularly to the temperature gradient, whereas the director of a discotic nematic liquid
crystal attains the parallel orientation. In both cases, the irreversible energy dissi-
pation rate is minimal. These simulation results are probably supported by some
experimental measurements, but they are difficult to carry out in practice so they
are not fully conclusive.

Finally, one system where there is definitely a conclusive experimental evidence
for the fact that the director attains the orientation that minimizes the energy
dissipation rate due to a temperature gradient is the cholesteric liquid crystal. The
cholesteric axis of droplets of cholesteric liquid crystals orient parallel to a temper-
ature gradient and the director rotates. This is a well-established phenomenon
observed in studies of thermomechanical coupling, and since the heat conductivity
is lower in the direction of the cholesteric axis than in the perpendicular direction,
the energy dissipation rate is minimal in this case.

Thus, the director orientation relative to a temperature gradient also follows the
variational principle even though there is a quadratic coupling between the torque
and the temperature gradient. However, the temperature gradients are rather low
so we are still in the linear regime.
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A. Appendix 1: Relation between the pressure tensor, velocity gradient,
and viscosity coefficients

The relation between the velocity gradient, ∇u, and the pressure tensor, P, is
more complicated in an axially symmetric system such as nematic liquid crystal
than in an isotropic fluid due to the lower symmetry. In order to derive the linear
phenomenological relations between the velocity gradient and the pressure, it is
appropriate to begin by identifying the thermodynamic forces and fluxes in the
expression for the irreversible entropy production [3, 4, 23, 36]:

σ ¼ �
1
T

P : ∇uþ 2Pa� ½∇� u�Ωð Þ þ
1
3
Tr Pð Þ � peq

� �

∇�u

� �

, (A.1)

where T is the absolute temperature, and u is the streaming velocity. The various
parts of the second rank tensor are denoted in the following manner: the symmetric
traceless part is given by A ¼ ½ AþAT

	 


� 1=3ð ÞTr Að Þ1 and the pseudovector dual
of the antisymmetric part is denoted by Aa ¼ �½ε:A ¼ �½εαβγAγβ, where ε is the
Levi-Civita tensor. Three pairs of thermodynamic forces and fluxes can be identi-
fied by inspection of the irreversible entropy production, namely, the symmetric
traceless pressure tensor and the traceless strain rate, P and ∇u, the antisymmetric
pressure and the difference between the rotation and the director angular velocity,
Pa and ½∇� u�Ω, and the difference between the trace of the pressure tensor and
the equilibrium pressure of a quiescent liquid crystal, and the trace of the strain
rate, 1=3ð ÞTr Pð Þ � peq and ∇�u. Note that the strain rate is defined as

½ ∇uþ ∇uð ÞT
h i

, and it is always symmetric. In a uniaxially symmetric nematic

liquid crystal, the relations between the pressure and the velocity gradient can be
deduced by symmetry arguments, and they can be expressed in a few different
equivalent ways [23, 36]. It has been found that a notation due to Hess [36] is the
most convenient one for deducing Green-Kubo relations and NEMD-algorithms:

P
� �

¼ �2η∇u � ~η1nn � ∇u � 2~η3nn nn:∇u þ 2~η2nn � ε � ½∇� u�Ωð Þ � ζnn∇ � u,

(A.2a)

Pah i ¼ �
~γ1
2

½∇� u�Ωð Þ �
~γ2
2
ε : nn � ∇u

	 


, (A.2b)

and

1
3

Tr Pð Þh i � peq ¼ �ηV∇ � u� κnn:∇u, (A.2c)
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where the products involving the Levi-Civita tensor ε are defined in the
following way: ε : A ¼ εαβγAγβ and A � ε � B ¼ AαβεβγδBδ. The quantities η, ~η1, and
~η3 are shear viscosities, ~γ1 is the twist viscosity, ηV is the volume viscosity, ~η2 is
the cross coupling coefficient relating the difference between the rotation and
the director angular velocity, and the symmetric traceless pressure. According
to the Onsager reciprocity relations (ORR), this coefficient is equal to ~γ2=2, the
cross coupling coefficient relating the traceless strain rate and the antisymmet-
ric pressure. The trace of the strain rate and the symmetric traceless pressure
are related by the cross coupling coefficient, ζ, which, according to the ORR, is
equal to the cross coupling coefficient κ between the traceless strain rate and
the difference between the trace of the pressure tensor and the equilibrium
pressure.

Application of a planar Couette velocity gradient, ∇u ¼ γ ezex, where γ ¼ ∂zux is
the shear rate and fixation of the director in the zx-plane at an angle θ relative to the
stream lines, see Figure 2, by application of an electric or a magnetic field gives the
following relations between the pressure tensor components and the strain rate in a
director based coordinate system e1; e2; e3ð Þ where the director points in the e3-
direction:

p11
� �

¼ ηþ
~η3
3

� �

γ sin 2θ, (A.3a)

p22
� �

¼
1
3

~η1 þ ~η3Þγ sin 2θ,
	

(A.3b)

p33
� �

¼ � ηþ
~η1
3
þ 2

~η3
3

� �

γ sin 2θ, (A.3c)

p31
� �

¼ ηþ
~η1
6

� �

γ cos 2θ þ ~η2
γ

2
, (A.3d)

and

2 pa2
� �

¼ λ̂2
� �

¼ �~γ1
γ

2
� ~γ2

γ

2
cos 2θ, (A.3e)

where λ̂2 is the external torque density acting on the system. From these equa-
tions, it is apparent that the various elements of the pressure tensor are linear
functions of sin 2θ and cos 2θ, so the various viscosity coefficients can be evaluated
by fixing the director at a few different angles relative to the stream lines and
calculating the averages of the pressure tensor elements.

In a planar elongational flow [8, 26–28], where the elongation direction is paral-
lel to the x-axis, the contraction direction is parallel to the negative z-axis, and the
velocity field is equal to u ¼ γ xex � zezð Þ, so that the velocity gradient becomes
∇u ¼ γ exex � ezezð Þ. Then the linear relations between the velocity gradient and the
pressure become the following in a director-based coordinate system e1; e2; e3ð Þ
where the director points in the e1-direction, and θ is the angle between the director
and the elongation direction or x-axis, e2 ¼ ey and e3 ¼ e1 � e2,

p11
� �

¼ �2 ηþ
~η3
3

� �

γ cos 2θ, (A.4a)

p22
� �

¼ �
2
3

~η1 þ ~η3Þγ cos 2θ,
	

(A.4b)
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p33
� �

¼ 2 ηþ
~η1
3
þ 2

~η3
3

� �

γ cos 2θ, (A.4c)

p31
� �

¼ 2ηþ
~η1
3

� �

γ sin 2θ, (A.4d)

and

2 pa2
� �

¼ λ̂2
� �

¼ �~γ2γ sin 2θ: (A.4e)

If these expressions for the pressure tensor are inserted in the expression for
energy dissipation rate (A.1), we obtain

_wirr ¼ P : ∇u ¼ � 1
2 ps33 � ps11
	 


sin 2θ � p
s

31 cos 2θ
D E

γ

¼ ηþ
~η1
6
þ
~η3

2
sin 22θ þ

~η2
2
cos 2θ

� �

γ2,
(A.5)

for planar Couette flow and

_wirr ¼ 4ηþ 2
~η1
3
þ 2~η3 sin

22θ
� �

γ2 (A.6)

for planar elongational flow. The subscript γ denotes that the average is evalu-
ated in a nonequilibrium ensemble at a finite shear rate.

B. Appendix 2: The Gay-Berne potential

In order to evaluate the above expressions for the irreversible work in shear
flow, elongational flow, and heat flow, we have simulated a coarse grained model
system composed of molecules interacting via a purely repulsive version of the
commonly used Gay-Berne potential [16, 17, 21],

U r12; û1; û2ð Þ ¼ 4ε r̂12; û1; û2ð Þ
σ0

r12 � σ r̂12; û1; û2ð Þ þ σ0

� �18

, (A.7)

where r12 ¼ r2 � r1 is the distance vector from the center of mass of molecule 1
to the center of mass of molecule 2, r̂12 is the unit vector in the direction of r12, r12 is
the length of the vector r12, and û1 and û2 are the unit vectors parallel to the axes of
revolution of molecule 1 and molecule 2. The parameter σ0 is the length of the axis
perpendicular to the axis of revolution, that is, the minor axis of a calamitic ellipsoid
of revolution and the major axis of a discotic ellipsoid of revolution. The strength
and range parameters are given by

ε r̂12; û1; û2ð Þ ¼ ε0 1� χ2 û1 � û2ð Þ2
h i�1=2

1�
χ0

2
r̂12 � û1 þ r̂12 � û2ð Þ2

1þ χ0û1 � û2
þ

r̂12 � û1 � r̂12 � û2ð Þ2

1� χ0û1 � û2

" #( )2 (A.8a)

and
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σ r̂12; û1; û2ð Þ ¼ σ0 1�
χ

2
r̂12 � û1 þ r̂12 � û2ð Þ2

1þ χû1 � û2
þ

r̂12 � û1 � r̂12 � û2ð Þ2

1� χû1 � û2

" #( )�1=2

,

(A.8b)

where the parameter χ is equal to κ2 � 1ð Þ= κ2 þ 1ð Þ and κ is the ratio of the
axis of revolution and the axis perpendicular to this axis, χ0 is equal to

κ0
1=2 � 1


 �

= κ0
1=2 þ 1


 �

and κ0 is the ratio of the potential energy minima of the side

by side and end to end configurations of calamitic ellipsoids or the ratio of the edge-
to-edge and face-to-face configurations of discotic ellipsoids, and ε0 denotes the
depth of the potential minimum in the cross configuration, where r̂12, û1, and û2 are
perpendicular to each other. The parameters κ and κ0 have been given the values 3
and 5, respectively, for the calamitic ellipsoids and 1/3 and 1/5 for the discotic
ellipsoids.

The denominators in Eqs. (A.8a) and (A.8b) are never equal to zero because the
absolute value of the scalar product û1 � û2 is less than or equal to one since û1 and
û2 are unit vectors, and the absolute values of the parameters χ and χ0 are less than
one. The ordinary Lennard-Jones potential is recovered in the limit when κ and κ0 go
to one. Note that, the potential is purely repulsive, so there are no potential minima
but the value of κ0 optimized for the attractive Gay-Berne potential has been
retained. The transport properties of this system of purely repulsive soft ellipsoids
are similar to those of a system where the molecules interact according to the
conventional Gay-Berne potential with attraction as well, so the results are still
relevant.

Author details

Sten Sarman*, Yonglei Wang and Aatto Laaksonen
Department of Materials and Environmental Chemistry, Arrhenius Laboratory,
Stockholm University, Stockholm, Sweden

*Address all correspondence to: sarman@ownit.nu

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

19

Variational Principle for Nonequilibrium Steady States Tested by Molecular Dynamics…
DOI: http://dx.doi.org/10.5772/intechopen.80977



References

[1] Evans DJ, Searles DJ, Williams SR.
Fundamentals of Classical Statistical
Thermodynamics: Dissipation,
Relaxation and Fluctuation Theorems.
Berlin: Wiley-VCH; 2016

[2] deGroot SR,Mazur P.Nonequilibrium
Thermodynamics. New York: Dover;
1984

[3] Chandrasekhar S. Liquid Crystals.
Cambridge: Cambridge University
Press; 1992

[4] de Gennes PG, Prost J. The Physics of
Liquid Crystals. Oxford: Clarendon
Press; 1993

[5] Sarman S. Microscopic theory of
liquid crystal rheology. The Journal of
Chemical Physics. 1995;103:393

[6] Sarman S. Nonequilibrium molecular
dynamics of liquid crystal shear flow.
The Journal of Chemical Physics. 1995;
103:10378

[7] Jadzyn J, Czechowski G. The shear
viscosity minimum of freely flowing
nematic liquid crystals. Journal of
Physics: Condensed Matter. 2001;13:L261

[8] Sarman S, Laaksonen A. Molecular
dynamics simulation of planar
elongational flow in a nematic liquid
crystal based on the Gay–Berne
potential. Physical Chemistry Chemical
Physics. 2015;17:3332

[9] Stewart GW. X-Ray diffraction
intensity of the two liquid phases of
para-azoxyanisol. The Journal of
Chemical Physics. 1936;4:231

[10] Stewart GW, Holland DO, Reynolds
LM. Orientation of liquid crystals by
heat conduction. Physics Review. 1940;
58:174

[11] Picot JJC, Fredrickson AG.
Interfacial and electrical effects on

thermal conductivity of nematic liquid
crystals. Industrial and Engineering
Chemistry Fundamentals. 1968;7:84

[12] Fisher J, Fredrickson AG. Transport
processes in anisotropic fluids II.
Coupling of momentum and energy
transport in a nematic mesophase.
Molecular Crystals and Liquid Crystals.
1969;6:255

[13] Patharkar MN, Rajan VSV, Picot JJC.
Interfacial and temperature gradient
effects on thermal conductivity of a
liquid crystal. Molecular Crystals and
Liquid Crystals. 1971;15:225

[14] Currie PK. The orientation of liquid
crystals by temperature gradients.
Rheologica Acta. 1973;12:165

[15] Sarman S, Laaksonen A. Director
alignment relative to the temperature
gradient in nematic liquid crystals
studied by molecular dynamics
simulation. Physical Chemistry
Chemical Physics. 2014;16:14741

[16] Gay JG, Berne BJ. Modification of
the overlap potential to mimic a linear
site–site potential. The Journal of
Chemical Physics. 1981;74:3316

[17] Bates MA, Luckhurst GR. Computer
simulation studies of anisotropic
systems. XXVI. Monte Carlo
investigations of a Gay–Berne discotic at
constant pressure. The Journal of
Chemical Physics. 1996;104:6696

[18] Éber N, Jánossy I. An experiment on
the thermomechanical coupling in
cholesterics. Molecular Crystals and
Liquid Crystals Science and Technology.
Section A. Molecular Crystals and
Liquid Crystals. 1982;72:233

[19]Oswald P, Dequidt A. Measurement
of the continuous Lehmann rotation of
cholesteric droplets subjected to a

20

Non-Equilibrium Particle Dynamics



temperature gradient. Physical Review
Letters. 2008;100:217802

[20]Oswald P. Microscopic vs.
macroscopic origin of the Lehmann
effect in cholesteric liquid crystals.
European Physical Journal E: Soft
Matter and Biological Physics.
2012;35:10

[21] Sarman S. Molecular dynamics of
heat flow in nematic liquid crystals.
The Journal of Chemical Physics.
1994;101:480

[22] Evans DJ, Morriss GP. Statistical
Mechanics of Nonequilibrium Liquids.
London: Academic Press; 1990

[23] Leslie FM. Some constitutive
equations for anisotropic fluids. The
Quarterly Journal of Mechanics and
Applied Mathematics. 1966;19:357

[24] Sarman S, Laaksonen A. Flow
alignment phenomena in liquid crystals
studied by molecular dynamics
simulation. The Journal of Chemical
Physics. 2009;131:144904

[25] Kraynik AM, Reinelt DA.
Extensional motions of spatially
periodic lattices. International Journal
of Multiphase Flow. 1992;18:1045

[26] Baranyai A, Cummings PT.
Nonequilibrium molecular dynamics
study of shear and shear‐free flows in
simple fluids. The Journal of Chemical
Physics. 1995;103:10217

[27] Todd BD, Daivis PJ. Nonequilibrium
molecular dynamics simulations of
planar elongational flow with spatially
and temporally periodic boundary
conditions. Physical Review Letters.
1998;81:1118

[28] Todd BD, Daivis PJ. Homogeneous
non-equilibrium molecular dynamics
simulations of viscous flow: Techniques
and applications. Molecular Simulation.
2007;33:189

[29] Ikeshoji T, Hafskjold B. Non-
equilibrium molecular dynamics
calculation of heat conduction in liquid
and through liquid-gas interface.
Molecular Physics. 1994;81:251

[30] Leslie FM. Some thermal effects in
cholesteric liquid crystals. Proceedings
of the Royal Society of London. Series A,
Mathematical and Physical Sciences.
1968;307:359

[31] Leslie FM. Thermo-mechanical
coupling in cholesteric liquid crystals.
Symposium of the Faraday Society.
1971;5:33

[32]Hoover WG, Ladd AJC, Moran B.
High-strain-rate plastic flow studied via
nonequilibrium molecular dynamics.
Physical Review Letters. 1982;48:1818

[33] Evans DJ, Hoover WG, Failor BH,
Moran B, Ladd AJC. Nonequilibrium
molecular dynamics via Gauss’s
principle of least constraint. Physical
Review A. 1983;28:1016

[34]Hoover WG. Computational
Statistical Mechanics. Burlington, MA:
Elsevier; 1991

[35] Evans DJ, Sarman S. Equivalence of
thermostatted nonlinear responses.
Physical Review E. 1993;48:65

[36]Hess S. Transport phenomena in
anisotropie fluids and liquid crystals.
Journal of Non-Equilibrium
Thermodynamics. 1986;11:175

21

Variational Principle for Nonequilibrium Steady States Tested by Molecular Dynamics…
DOI: http://dx.doi.org/10.5772/intechopen.80977


