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Abstract

This chapter presents a four-wheel robot’s trajectory tracking model by an extended
Kalman filter (EKF) estimator for visual odometry using a divergent trinocular visual
sensor. The trinocular sensor is homemade and a specific observer model was developed
to measure 3D key-points by combining multi-view cameras. The observer approaches a
geometric model and the key-points are used as references for estimating the robot’s
displacement. The robot’s displacement is estimated by triangulation of multiple pairs of
environmental 3D key-points. The four-wheel drive (4WD) robot’s inverse/direct kine-
matic control law is combined with the visual observer, the visual odometry model, and
the EKF. The robot’s control law is used to produce experimental locomotion statistical
variances and is used as a prediction model in the EKF. The proposed dead-reckoning
approach models the four asynchronous drives and the four damping suspensions. This
chapter presents the deductions of models, formulations and their validation, as well as
the experimental results on posture state estimation comparing the four-wheel dead-
reckoning model, the visual observer, and the EKF with an external global positioning
reference.

Keywords: 4WD, visual odometry, trinocular sensor, EKF, visual observer,
trajectory estimation

1. Introduction

Autonomous robots obtain precise information about their surroundings by deploying their

sensing devices and developing perceptual tasks to accomplish useful missions. Intelligent robots

require to concurrently execute multiple functions such as path planning, collision avoidance,

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



self-localization, tasks scheduling, trajectory control, map building, environment recognition,

kinematic/dynamic control, and so forth. Autonomous robots depend on multisensor fusion,

which is the process of combining data from the physical sensors into a homogeneous data space.

This chapter presents robot’s visual odometry using sensor data obtained from a homemade

radial multi-view device (Figure 1a). For this case, trinocular sensing is divergent; hence, an

inherent problem refers to different perspectives in each camera. Besides, the partial overlap

between adjacent cameras allows sharing approximately 25% of the total sensing angles,

which is too reduced and limits extracting numerous relevant features for data fusion affecting

to infer consistent information. Besides perspective, radial cameras yield differences of scale,

skew, rotation, and lighting intensities. To cope with this problem, this chapter deduces a

geometric trinocular sensor model to directly measure 3D data by combining divergent pairs,

the central camera with one of the two lateral cameras (Figure 1b). The robot’s state vector

(posture) is recursively estimated by a visual odometry model that triangulates multiple pairs

of key-points. Thus, an EKF uses the 3D odometry model and estimates the robot’s position.

The mobile robot is a four-wheel drive (4WD) modeled by a differential control law involving

the four passive damping suspensions to infer accurate positions.

Parallel trinocular stereo systems had been deployed either to detect the ground [1], or to

estimate motion [2]. There are reported works on motion estimation with binocular divergent

systems [3], trinocular divergence for visual odometry [4], and divergent visual simultaneous

localization and mapping (SLAM) [5]. As a difference from the active sensing modalities for

localization [6], and concurrent localization and mapping with parallel multi-view [7], this

chapter intends to estimate the posture of a rolling vehicle by exploiting feedback of the rich

data fusion that a divergent trinocular sensor provides. Numerous visual odometry algorithms

had been reported, using stereo cameras [8], matching multi-frame features [9] and 3D point

cloud [10]. Some outdoor visual odometry approaches for urban [11] environments estimate

motion tracking by extraction of visual feature points. There are numerous works combining

the benefits of visual SLAM algorithms [12–14] with visual odometry [15], detecting geometri-

cal features [16].

Figure 1. Robot’s trinocular sensor. (a) Trinocular sensor onboard. (b) Camera’s geometric divergence (top view).
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This chapter is organized into to the following sections. Section 2 deduces the sensor

fusion observer modeling the trinocular system geometry. Section 3 models the 4WD

direct/inverse kinematic solutions. Section 4 deduces the visual odometry formulation

and EKF-based control state and estimation. Finally, conclusions are provided in Sec-

tion 5.

2. Trinocular sensing model

This section describes the divergent multi-view geometric model, which basically combines the

data of a pair of cameras radially arranged. In addition, this section presents an algebraic analysis

of the lateral cameras’ alignment and correction w.r.t. the central camera. The fundamental

geometrical relationship of the system divergence was experimentally studied by deploying a

homemade prototype onboard a mobile robot, see Figure 2a. Cameras with homogeneous

intrinsic parameters are assumed, and cameras are mechanically fixed epipolar. The sensor

model’s purpose is to determine the depth information of a point in the scene p ¼ x; y; zð Þ⊤,

which is projected onto the overlapping area of a divergent pair. The proposed multi-view

geometric model combines data using the central camera as the reference (Figure 1b). The focal

plane in cameras A,C are perspective transformed, in order to align them epipolar and coplanar

w.r.t. the central reference B. As seen in Figure 1b, a point p is projected over two focal planes, for

instance, at column xC of lateral camera C, and at xB of camera B. Thus, an isosceles triangle PBC

is formed. For the triangle OBC, let β be the angle between the cameras’ centers B and C, as

deployed by expression (1). Let ϕ=2 be the remaining angle ofOBC, where the inner angles’ total

sum is π. By expressing βþ ϕ ¼ π and dropping off ϕ ¼ π� β, we easily deduce that
ϕ
2 ¼

π
2 �

β
2.

The geometrical distance BC is calculated by triangulation using the law of sines, with known

distance l that converges to O. The linear distance between adjacent sensors BC commonly

oriented w.r.t. the center O is

BC ¼
l sin β

sin π
2 �

β
2

� � : (1)

Figure 2. 4WD kinematics. (a) Deployed robot. (b) Damping system. (c) Robot’s view from below.
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To calculate the Cartesian coordinates of p, let us state that the point p is projected through the

horizontal coordinate xB, and on camera B angle’s θB, and focal distance f B as expressed by

θB ¼ tan �1 xB
fB

� �

and θC ¼ tan �1 xC
fC

� �

: (2)

The complementary angles B and C are modeled by

∠B ¼
π

2
� θB þ

β

2
and ∠C ¼

π

2
� θC þ

β

2
: (3)

In the triangle BCO, the angle at point p is obtained by equivalence of similar triangles

∠P ¼ θB þ θC � β. Thus, to estimate the range of the radial system B and C w.r.t. p, the linear

distance is calculated by the law of sines:

BC

sin∠P
¼

CP

sin∠B
and CP ¼

BC sin∠B

sin∠P
: (4)

Thus, for the other cameras’ pair, similar expressions are stated

BC

sin∠P
¼

BP

sin∠C
and BP ¼

BC sin∠C

sin∠P
: (5)

Hence, the model to express depth information is given by zB ¼ BP cosθB. By substituting BP

and θB, the model is further specified by

Λ1 ¼
l sin β

sin
π�β
2

� �

sin θB � θC � β
� �

,

where,

zB ¼ Λ1 sin
πþ β

2
� θC

� �

cos tan �1 xB
fB

� �� �

: (6)

In addition, the range between camera C and p is defined by zC ¼ Cp cosθC. Thus, substituting

Cp and θC, we define

zC ¼ Λ1 sin
πþ β

2
� θB

� �

cos tan �1 xC
fC

� �� �

: (7)

Using the depth models zB and zC, the distances dB and dC w.r.t. p are estimated, such that

dB ¼ zB tan θBð Þ. Hence,

dB ¼ zB tan tan �1 xB
fB

� �� �

or dB ¼
zBxB
fB

(8)
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and being dC ¼ zC tan θCð Þ, by substituting θC from expression (2) we have

dC ¼ zC tan tan �1 xC
fC

� �� �

or dC ¼
zCxC
fC

: (9)

Furthermore, the algebraic deduction along the Y component for the equalities hBfB ¼ zByB
and hCfC ¼ zCyC, w.r.t p using distances hB and hC, is obtained by

hB ¼
zByB
fB

and hC ¼
zCyC
fC

,

thus the following term is stated as

Ψ ¼
1

fB

l sin β

sin π
2 �

β
2

� �

0

@

1

A cos tan �1 xB
fB

� �� �

:

Therefore, the geometry vector model for camera B w.r.t. camera C, with substitution of the

terms Ψ, zB, and zC in robot’s inertial frame R, produce the next expression:

pR
BC ¼

Ψ sin
πþβ
2 � θC

� �

sin θB þ θC � β
� �

xB

yB
fB

0

B

@

1

C

A
(10)

and the same model is enhanced for camera B, using the geometry of cameras A and B by

pR
AB ¼

Ψ sin
πþβ
2 � θA

� �

sin θA þ θB � β
� �

xB

yB
fB

0

B

@

1

C

A
: (11)

Hence, the arbitrary point pABC ∈ℝ
3 is projected onto cameras AB, or onto cameras BC. In

order to express a general formula, let us define the following theorem.

Theorem 1 (Trinocular depth model). Let camera B be the reference for either divergent camera A

or C. A point coordinates w.r.t. camera A is pAB ¼ xA; yA; z
� �Τ

, and w.r.t. camera C is pAC ¼

xC; yC; z
� �Τ

. Hence, the general depth coordinate model for x and y for any divergent pair is

x, yA,C ¼
ΨxB sin

πþβ
2 � θA,C

� �

sin θA,C þ θB � β
� � , (12)

for coordinate z,

zA,C ¼
Ψf 2B sin

πþβ
2 � θA,C

� �

sin θA,C þ θB � β
� � : (13)
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The four points shown by the three cameras may illustrate their transformation, experimen-

tally developed at 1-m distance between the robot and the marks.

3. 4WD dead-reckoning controller

Since the visual trinocular approach uses an exteroceptive sensor, we decided to challenge its

detection and tracking capabilities with a robot having high holonomic properties. A 4WD

robot’s locomotion is prone to experience frequent swift turns resulting in numerous slippages.

Thus, a 4WD has to depend more on exteroceptive rather than inner measurements. Compar-

atively, inner 4WD odometry differs greatly from external visual measurement to infer pos-

ture. The proposed dead-reckoning system obtains speed measurements by deploying

odometer readings of the four asynchronous drives (Figure 2). A 4WD system is considerably

different from a conventional differential dual approach. Moreover, four passive mass-spring-

damper suspensions are included in this system (Figure 2b), which varies the inter-wheel

distances over time. Particularly, the robot’s 4WD and passive suspensions make the posture

observations challenging.

The robot’s dead-reckoning model is fundamental to sense and control position used as

feedback, providing motion description as a kinematic reference to match the visual observa-

tions when estimating the robot’s motion. The positioning and trajectory control [17], as well

as the type of kinematic analysis [18] and the dynamic suspension [19] in this type of robot

have been previously reported. The robot’s instantaneous speed vt (m/s) and yaw rate ωt (rad/s)

depend on the four wheels’ asynchronous rolling motion, _φ1, _φ2, _φ3, _φ4. For a wheel’s encoder,

the velocity model approaches measurements by high-precision numerical derivatives (central

divided differences) of the rotary angle φ
t
(rad) w.r.t. time t, such that

_φ
t
¼

π

6Rt
η
tþ2 þ 7η

tþ1 þ 7φ
t�1 � η

t�2

� 	

, (14)

where the wheel’s angular speed _φ is measured through pulse detection η (dimensionless) of

encoder’s resolution R (pulses/rev); thus, the robot’s instantaneous velocity is modeled by the

averaged wheel speed, with wheels of nominal radius r (m)

vt ¼
r

4

X

4

i¼1

_φ
i
: (15)

Further, the differential velocity v̂t expresses the lateral speeds’ difference that yields ωt. Thus,

v̂t is formulated by the expression

v̂t ¼ r _φ1 þ _φ2 � _φ3 � _φ4

� �

: (16)

This model describes that the rotary motion of _φ1 and _φ2 contributes to robot’s þωt (counter-

clockwise sense). Likewise, _φ3 and _φ4 contribute to robot’s �ωt (clockwise sense). Therefore,

ωt is yielded by the lateral speed component v̂t cos αið Þ (see Figure 2b) modeled by
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ωt ¼
v̂ cos cos αið Þð Þ

li
: (17)

The previous equation expresses the conservation of angular motion, and the wheel’s contact

point turns w.r.t. the robot’s center,

cos αið Þ ¼
W

2li
, (18)

where for each length li there is an asynchronous model,

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ L1 þ L4ð Þ2
2

q

2
, l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ L2 þ L3ð Þ2
2

q

2
,

as well as

l3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ L3 þ L2ð Þ2
2

q

2
, l4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ L4 þ L1ð Þ2
2

q

2
:

Thus, substituting cos αið Þ and li into ωt and by considering both clockwise and counterclock-

wise motions, the robot’s angular speed is

ωt ¼
X

2

i¼1

rW _φi

l2i
�
X

4

i¼3

rW _φi

l2i
: (19)

The longitudinal contact point’s distance li (m) takes as reference the robot’s geometric center.

When li varies, the contact point’s position Li changes.

Li ¼ d cos arcsin γi

� �� �

, (20)

where γi represents the vertical motion along the suspension,

γi ¼ arcsin
Δy

d1

� �

: (21)

From Figure 2a, the vertical motion yd is modeled assuming critical damping motion for a

general spring-mass-damper system. The suspension is modeled by the following second-

order homogeneous differential equation:

m€yd þ κ2 _yd þ κ1yd ¼ 0, (22)

where the elastic spring restitution coefficient is κ1 (kg/s
2). The damping coefficient is κ2 (kg/s).

The restitution force m€yd counteracts the vertical oscillatory damping effects. The oscillatory

velocity and acceleration are denoted by _yd and €yd, respectively. Thus, solving the second-

order differential equation as a first-order equation such that κ2 _yd ¼ �κ1yd,
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ð

yd

dyd
yd

¼ �
κ1

κ2

ð

t

dt, (23)

hence

ln yd
� �

¼ �
κ1

κ2
tþ c, ζ ¼ �

κ1

κ2
, (24)

with integration constant c ¼ 0 for analysis purpose. The suspension’s elongation derivatives

as functions of time are

yd ¼ eζt, _yd ¼ ζeζt, €yd ¼ ζ
2eζt: (25)

Substituting the previous expression in (22),

mζ
2eζt þ κ2ζe

ζt þ κ1e
ζt ¼ 0, (26)

and by algebraically simplifying, the characteristic equation is

ζ
2 þ

κ2

m
ζþ

κ1

m
¼ 0, (27)

and its analytic solution is

ζ1,2 ¼
�κ2

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ1
m

� �2
� 4 κ1

m

2

q

2
: (28)

As we assume a critically damped system, κ2
m

� �2
¼ 4 κ1

m

� �

and there is only one real root solution,

such that

ζ ¼ �
κ2

2m
: (29)

Therefore, the damping motion is analytically solved by

yd tð Þ ¼ Aeζt, (30)

where A (m) is the elongation amplitude (m) parameter for the suspension system. Moreover,

in this type of robotic platform, the four asynchronous drives simultaneously produce slip/

skid motions that are advantageously used to maneuver the robot. This approach proposes

inferring the instantaneous Z-turn axis location xR; yR
� �

⊤
. The Z-turn axis is movable in the

square region bounded by the wheels’ contact point. The Z-turn axis is expressed by the first-

order derivatives
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_xR ¼
rW

4vmax

€φ1 � €φ2 � €φ3 þ €φ4

� �

(31)

and

_yR ¼
rL

4vmax
� €φ1 � €φ2 þ €φ3 þ €φ4

� �

: (32)

There is a maximal allowable Z-turn displacement speed vmax. Hereafter, with four indepen-

dent equations, the control positioning system is instantaneously computed. The robot

control vector is _uR ¼ _vt; _ωt; _xR; _yR
� �

⊤
, and the control transition matrix Λt has the elements

λ1 ¼ r=4, λ2i ¼ rW=l2i , λ3 ¼ rW= 4vmaxð Þ, and λ4 ¼ rL= 4vmaxð Þ. Thus, the forward kinematics

solution is _uR ¼ Λt � _Ω or

_vt

_ωt

_xR

_yR

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼

λ1 λ1 λ1 λ1

λ21 λ22 �λ23 �λ24

λ3 �λ3 �λ3 λ3

�λ4 �λ4 λ4 λ4

0

B

B

B

B

B

@

1

C

C

C

C

C

A

�

€φ1

€φ2

€φ3

€φ4

0

B

B

B

B

B

@

1

C

C

C

C

C

A

: (33)

In addition, to inversely solve this matrix system, the analytical solution represents the vector

of independent control rotary variables _Ωt ¼ €φ1; €φ2; €φ3; €φ4

� �

⊤
. Thus, let us define λw ¼

λ1λ3λ4, λA ¼ λ23 � λ24, λB ¼ λ22 � λ21, λC ¼ λ21 � λ23, λD ¼ λ24 � λ22, λE ¼ λ21 þ λ24, and

λF ¼ λ22 � λ23.

€φ1 ¼
λ3λ4λD _v þ 2λw _ω � λ1λ4λA _xR þ λ1λ3λF _yR

2λw λ21 � λ22 � λ23 þ λ24ð Þ
, (34)

€φ2 ¼
λ3λ4λC _v � 2λw _ω þ λ1λ4λA _xR � λ1λ3λE _yR

2λw λ21 � λ22 � λ23 þ λ24ð Þ
, (35)

€φ3 ¼
λ3λ4λD _v þ 2λw _ω þ λ1λ4λB _xR þ λ1λ3λE _yR

2λw λ21 � λ22 � λ23 þ λ24ð Þ
(36)

and

€φ4 ¼
λ3λ4λC _v � 2λw _ω � λ1λ4λB _xR � λ1λ3λF _yR

2λw λ21 � λ22 � λ23 þ λ24ð Þ
: (37)

The matrix form of the inverse analytical solution for all wheels’ speed under damping

variations is stated as _Ω ¼ Λ
�1
t � _ut or
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_Ωt ¼

λ3λ4λD

2λwλG

2λw

2λwλG

�λ1λ4λA

2λwλG

λ1λ3λF

2λwλG

λ3λ4λC

2λwλG

�2λw

2λwλG

λ1λ4λA

2λwλG

�λ1λ3λE

2λwλG

λ3λ4λD

2λwλG

2λw

2λwλG

λ1λ4λB

2λwλG

λ1λ3λE

2λwλG

λ3λ4λC

2λwλG

�2λw

2λwλG

�λ1λ4λB

2λwλG

�λ1λ3λF

2λwλG

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

�

_vt

_ωt

_xR

_yR

0

B

B

B

@

1

C

C

C

A

, (38)

where λG ¼ λ21 � λ22 � λ23 þ λ24.

4. State estimation and feedback position control

This section formulates a deterministic geometric model for visual odometry and the state

estimation by an EKF. The proposed model combines pairs of key-points at times t and t� 1.

The robot’s displacements are deduced by inverse geometric triangulations to feed forward an

EKF and estimate the robot’s posture.

In Figure 3a, the instantaneous angle αt�1 is formed by a pair of key-points defined by

αt�1 ¼ ∣θa
t�1∣þ ∣θb

t�1∣ (39)

and such key-points’ distance ct�1 is defined by

ct�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δat�1

� �2
þ δbt�1

� �2
� 2δat�1δ

b
t�1 cosαt�1

q

: (40)

The angle βa,bt�1 of either key-point a or b is calculated by the law of sines,

Figure 3. Robot’s visual odometry. (a) Robot’s key-point pair observed at t� 1. (b) Same pair observed at t. (c) Robot’s

displacement Δs by triangulation of key-points pa .
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βa,bt�1 ¼ arcsin
δb,at�1 sinαt�1

ct�1

 !

: (41)

However, at time t in Figure 3b, the instantaneous angle αt is obtained by

αt ¼ ∣θa
t ∣þ ∣θb

t ∣, (42)

with the key-point’s distance ct as

ct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δat
� �2

þ δbt
� �2

� 2δatδ
b
t cos αtð Þ

q

, (43)

which is used to obtain the angle βa,bt of the key-point a or b at actual time

βa,bt ¼ arcsin
δb,at sinαt

ct

 !

: (44)

Further, the differential angle β̂ is defined by triangulation of previous and actual poses and an

arbitrary 3D point pa,b (Figure 3c),

β̂ ¼ βa,bt�1 � βa,bt : (45)

Proposition 1 (Triangulation odometric displacement). The robot’s displacement Δs (Figure 3c)

that is inferred by triangulation of visual key-points over time is

Δs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δat�1 þ δat � 2δat�1δ
a
t cos β̂

� �

q

: (46)

The triangulation angle λ is calculated by the law of sines,

λa,b ¼ arcsin
δa,bt sin β̂

� �

Δ
a,b
s

 !

(47)

and the orientation angle for each reference a is

ϕa,b ¼ λa,b þ
π

2
� θa,b

t�1

� �

, (48)

which is required to know the X displacement

Δx ¼ Δ
a,b
s cos ϕa,b

� �

, (49)

as well as the Y displacement

Δy ¼ Δ
a
s sinϕ

a
: (50)

When obtaining numerous key-point pairs simultaneously, the total robot’s displacement is an

averaged value of the displacements yielded by all key-point pairs,
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Δxt ¼

Pn
i¼1 Δxi

n
and Δyt

¼

Pn
i¼1 Δyi

n
: (51)

Therefore, without loss of generality, for state estimation, let us assume a nonlinear robot’s

model state vector

xk ¼ f xk�1;uk;wkð Þ, (52)

where the state vector is x ¼ x; y;θ; v;ωð Þ, and combined with a nonstationary state transition

matrix At, such that xk ¼ At � xk�1 or

xk ¼

1 0 0 cos θð ÞΔt 0

0 1 0 sin θð ÞΔt 0

0 0 1 0 Δt

0 0 0 1 0

0 0 0 0 1

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

�

x

y

θ

v

ω

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

, (53)

by developing the dot product from previous expression, we obtain

xk ¼

xk�1 þ v cos θð ÞΔt

xk�1 þ v sin θð ÞΔt

θk�1 þ ωΔt

v

ω

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: (54)

The measurement model requires the displacements that were inferred through key-point

triangulation

zk ¼ h xk; vkð Þ, (55)

wherewk and vk are the process and measurement noise models, respectively. These are statisti-

cally independent and supposed to have a Gauss distribution with zero average value and

known variance. To approximate the nonlinear robot’s measurement model, a linearized first-

order approximation by the expansion of the Taylor series is used, and a linear approximation of

a function is built, with slope obtained through partial derivatives by

f 0 ut; xt�1ð Þ ¼
∂f ut; xt�1ð Þ

∂xt�1
: (56)

Thus, the linearized models of the process and measurement are defined next in (54) and (55),

such that
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f xð Þ ¼ f x̂ð Þ þ f 0 x̂ð Þ
|ffl{zffl}

¼J

x� x̂ð Þ (57)

and

h xð Þ ¼ h x̂ð Þ þ h0 x̂ð Þ
|ffl{zffl}

¼H

x� x̂ð Þ: (58)

In addition, the EKF’s prediction models (56) and the correction models (57) are formulated

and linearized as

x̂�k ¼ f xk�1;uk�1; 0ð Þ (59)

and

P�
k ¼ AkPk�1A

⊤

k þWkQk�1W
⊤

k : (60)

Moreover, the recursive Kalman gain for system convergence is

Kk ¼ P�
k H

⊤

k HkP
�
k H

⊤

k þVkRkV
⊤

k

� ��1
(61)

and the state vector of the system is described by

x̂k ¼ x̂�k þKk zk �Hxkð Þ, (62)

with covariance matrix of the system

Pk ¼ I�KkHkð ÞP�
k : (63)

Thus, hereafter, the vector and matrix models describing the proposed robot’s system are

formulated and incorporated into the conventional EKF. Let us define the robot’s pose vector

x ¼ xt; yt;θt

� �
⊤
. The control vector is comprised of the robot’s absolute and angular speeds,

uk ¼ υ;ωð Þ⊤. Furthermore, the observation vector with sensor measurement zk ¼ Xp;Yp;Zp

� �
⊤
.

Eventually, the process noise vector wk ¼ wx;wy;wθ

� �
⊤
. The measurement noise vector vk ¼

vXp
; vYp

; vZp

� �
⊤

.

Therefore, from the displacement equation (46), which arises from exteroceptive observations,

the robot’s Cartesian displacements are

Δx ¼ Δsð Þ cos θk�1 þ λþ
π

2
� θ

a
t�1

� �� �

(64)

and
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Δy ¼ Δsð Þ sin θk�1 þ λþ
π

2
� θ

a
t�1

� �� �

, (65)

as well as Δθ is given by

Δθ ¼ λþ
π

2
� θ

a
t�1

� �

: (66)

By substituting an averaged Cartesian displacement, one considers n key-point observations to

calculate the recursive noisy state vector xk.The Jacobian matrix Jk of the robot’s temporal

matrix state transition Ak � xk, where xk ¼ xk�1 þ v cos θð ÞΔt, yk ¼ yk�1 þ v cos θð ÞΔt, and θk ¼

θk�1 þ ωΔt is stated by

J ¼
∂Ak � xk
∂xk�1

¼

∂x

∂x

∂x

∂y

∂x

∂θ

∂x

∂v

∂x

∂ω

∂y

∂x

∂y

∂y

∂y

∂θ

∂y

∂v

∂y

∂ω

∂θ

∂x

∂θ

∂y

∂θ

∂θ

∂θ

∂v

∂θ

∂ω

∂v

∂x

∂v

∂y

∂v

∂θ

∂v

∂v

∂v

∂ω

∂ω

∂x

∂ω

∂y

∂ω

∂θ

∂ω

∂v

∂ω

∂ω

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

¼

1 0 �v sin θð ÞΔt cos θð ÞΔt 0

0 1 v cos θð ÞΔt sin θð ÞΔt 0

0 0 1 0 t

0 0 0 1 0

0 0 0 0 1

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: (67)

Thus, a measurement is a 3D point arising from either divergent pair Eq. (10) or (11) and

deployed by Proposition 1.1. Thus, the robot’s measurement vector model z includes noise

measurements. The Jacobian matrix H of the expected state model w.r.t. measurements is

defined by

H ¼
∂h

∂x
¼¼

∂Δx

∂xk�1

∂Δx

∂yk�1

∂Δx

∂θk�1

∂Δy

∂xk�1

∂Δy

∂yk�1

∂Δy

∂θk�1

∂Δθ

∂xk�1

∂Δθ

∂yk�1

∂Δθ

∂θk�1

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

: (68)

The process noise covariance matrix Qk is defined by

Qk_2πΣj j�1=2exp 0:5 z� μð Þ⊤Σ�1 z� μð Þ
n o

: (69)

Let us define the nonstationary covariance matrix P,

P ¼

σ
2
x 0 0

0 σ
2
y 0

0 0 σ
2
θ

0

B

@

1

C

A
, (70)
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the matrix diagonal variances are experimental measurements that describe the trend of the

robot motion’s error.

The robot’s motion covariance matrix was obtained experimentally through 500 tests—straight

motion, right turns, left turns, clockwise and counterclockwise rotations, withN ¼ 100 tests for

each type of motion. Exteroceptive sensing devices onboard are tied to the robot’s geometry

of motion, and with their observations the robot’s posture can be estimated and therefore

matched with the robot’s deterministic kinematic model. From Section 3, the inverse (38) and

direct (33) models were used experimentally to obtain the following statistical covariance

about the measurement model

σ
2
x ¼

1

N

X

N

i¼1

ð

t

λ1;λ1;λ1;λ1ð Þ⊤ � _Ωdt � cos

ð

t

rW

l21

rW

l22

�rW

l23

�rW

l24

 !

⊤

� _Ωdt

 !

� x

!20

@ (71)

and

σ
2
y ¼

1

N

X

N

i¼1

ð

t

λ1;λ1;λ1;λ1ð Þ⊤ � _Ωdt � sin

ð

t

rW

l21

rW

l22

�rW

l23

�rW

l24

 !

⊤

� _Ωdt

 !

� y

!2

,

0

@ (72)

as well as the robot’s yaw statistical measurement model

σ
2
θ
¼

1

N

X

N

i¼1

ð

t

rW

l21

rW

l22

�rW

l23

�rW

l24

 !

⊤

� _Ωdt� θ

 !2

: (73)

Furthermore, the measurement noise covariance matrix is

Rk ¼

σ
2
xp

0 0 0 0 0

0 σ
2
yp

0 0 0 0

0 0 σ
2
yp

0 0 0

0

B

B

@

1

C

C

A

, (74)

and the matrix Wk which is the partial derivative of the process model w.r.t. the process noise

vector is

Wk ¼
∂f

∂wk
¼

∂xk
∂wx

∂xk
∂wy

∂xk
∂wθ

∂yk
∂wx

∂yk
∂wy

∂yk
∂wθ

∂θk

∂wx

∂θk

∂wy

∂θk

∂wθ

:

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

: (75)

The matrix Vk ¼ ∂h=∂vk is the partial derivative w.r.t. the measurement noise vector,
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Vk ¼

∂xk
∂vXp

∂xk
∂vYp

∂xk
∂vZp

∂yk
∂vXp

∂yk
∂vYp

∂yk
∂vZp

0

B

B

B

@

1

C

C

C

A

: (76)

Let us summarize the 3D points pAB and pBC obtained by Theorem 1.

4.1. State feedback position control

This section describes in six general steps the combined use of the visual observers and the

EKF geometric odometer as a recursive feedback for the robot’s positioning control. The

robot’s deterministic kinematic model conveys predictions about the robot’s geometry of

motion and its observations. Therefore, the deterministic model is used to infer the robot’s

motion observations implicitly by the trinocular sensor. The following formulation illustrates

how the EKF and the visual odometry model are fed back for the 4WD kinematics.

4.1.1. Kalman gain

The initial estimate of Kalman gain is

kk ¼ PkH
⊤
k HkPkH

T
k þVkRxV

T
k

� ��1
(77)

4.1.2. Observation

From Proposition 1.1, the visual observers provide m 3D key-points from Theorem 1, pAB,BC

Δs pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∥pt�1∥þ ∥pt∥� 2∥pt�1∥∥pt∥ cos βt�1 � βt
� �

2

q

The angle of each key-point p or q w.r.t. to the robot in actual time is

λt ¼ arcsin
∥pt sin β̂

� �

∥

Δs

 !

,

and the local angle of the robot w.r.t. the robot’s previous position is

ϕ ¼ λt þ
π

2
� θt�1

� �

,

thus the inferred displacement is

xk ¼

1

mþ n

X

i
Δsai pð Þ cos ϕa

i

� �

1

mþ n

X

i
Δsai pð Þ sin ϕa

i

� �

λþ
π

2
� θa

t�1

� �

0

B

B

B

B

B

@

1

C

C

C

C

C

A

: (78)
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Therefore, the observation vector with Gauss noise w is

zk ¼ H � xk þ

wx

wy

wθ

0

B

@

1

C

A
: (79)

4.1.3. Update estimate

The update estimate is obtained by

x̂k ¼ x̂�k�1 þKk zk �Hxk�1ð Þ: (80)

4.1.4. Update error covariance

The covariance matrix error dispersion of the system is updated

P̂k ¼ Pk �KkHkPk: (81)

4.1.5. Deterministic control model

Therefore, the prediction is firstly obtained through the robot’s inverse position control model,

from the inverse kinematics equation, Eq. (38)

Ωtþ1 ¼ Ωt þΛ
�1
t � u

ref
R � x̂k

� �

,

where, in the previous expression, uR ¼ s;θ; xR; yR
� �

⊤
. Thus, Ω̂t ¼

2π
R Δη1;

2π
R Δη2;

2π
R Δη3;

2π
R Δη4

� �

⊤

is the vector of the wheels’ instantaneous measurements

utþ1 ¼ ut �Λ
�1
t � Ωtþ1 � Ω̂t

� �

:

This step converges until u
ref
R � ût

� �

< εu, where εu is the convergence error. Then, the robot’s

prediction model is

xk ¼ xk�1 þ B � utþ1

B being a control transition matrix.

4.1.6. State prediction

It follows that state prediction is

xkþ1 ¼ Φk þ xk þ qk (82)

and the error dispersion covariance matrix is also predicted at tþ 1
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Pkþ1 ¼ Pk þ AþA⊤
� �

PkΔtþ APkA
⊤ � ΣW

� �

Δt
2 (83)

From the previous step, the estimation process repeats again, going to step one. The previous

Kalman process is performed until the robot reaches the goal and the estimation error con-

verges by numerical approximation according to xk � x̂kð Þ ≤ εx.

Therefore, Figure 4a shows the robot’s trajectory obtained by the different comparative

approaches conducted in this study. The postures measured by an external visual global

reference system are the main references to be compared with. The EKF estimation was

obtained by the use of Theorem 1, Proposition 1.1, and Eqs. (71)–(77). In addition, the trinoc-

ular key-points used as inputs of the visual odometry model inferred the robot’s displace-

ments, which are shown in same Figure 4a. Furthermore, the dead-reckoning robot system

was deployed to infer the robot’s postures and is also shown in Figure 4a. Raw odometry

refers to the robot’s dead-reckoning kinematic model used as a mean for direct posture

observation through direct kinematics (33) and inverse kinematics (38), but using direct

encoder readings by (14).

Figure 4. Positions and errors. (a) Cartesian positions. (b) Errors vs. global reference. (c) EKF’s Cartesian errors’ conver-

gence. (d) EKF’s angle error convergence.
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Figure 4b shows the dead-reckoning and the EKF Cartesian absolute errors, taken as main

reference for the visual global reference system. As for the direct dead-reckoning measure-

ments, the absolute error grows exponentially, where the position observation starts diverging

before the robot reaches the third turn. As for the EKF model, the Cartesian error w.r.t. the

global reference does not diverge but preserves bounded error magnitudes.

As for Figure 4c and d, the EKF’s Cartesian and angular absolute errors w.r.t. the global visual

tracker are shown. In Figure 4d, the local minimums and maximums determine the Cartesian

regions where the robot performed its turns.

Finally, Figure 5a shows the covariance error behavior obtained at each control loop during the

EKF recursive calculations. Figure 5b is a mapping of the measured key-points registered

using the state vector (posture) of a robot’s turn to illustrate the map’s divergence.

5. Conclusion

This chapter presented a visual odometry scheme for a trinocular divergent visual system that

was combined with an EKF for visual odometry estimation. The proposed trinocular geometric

model observer geometrically combined adjacent radial views. About 20% of adjacent multi-

view overlapping data allowed inference of small volumes of depth information. In measuring

3D key-points, the X-axis metrical error was reported to be lower than 7 cm, with error less

Figure 5. Errors’ convergence behavior. (a) EKF variances over time. (b) Key-point map’s divergence using state vectors.
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than 10 cm in þY component and less than 3 cm in �Y (vertical). Likewise, we found an

averaged Z-axis error less than 5 cm (depth). Such errors were mostly produced by the angular

divergence of the object w.r.t. the central camera, rather than linear distances. Indoor experi-

ments, measuring distances up to 10 m were developed. In addition, a set of experimental

results in convergent robot’s course gave closed loops, and as the robot moved, the trinocular

sensor incrementally stored environmental 3D key-points.

The robot’s trajectory was obtained by different comparative approaches conducted in this

study. The postures were measured by an external visual global reference system, which was

the main reference system to be compared with. The robotic platform’s kinematics was

modeled in terms of a dead-reckoning approach. The direct and the inverse solutions were

combined to produce a recursive linearized control model and this was used as the prediction

model for EKF estimator. The dead-reckoning robot system was deployed to infer the robot’s

postures using directly the four encoders’ readings, with good results obtained only for very

short paths. As a comparative perspective, using only the 4WD dead-reckoning system the

posture exponentially diverged.

We found bounded Cartesian error for this 4WD robot by deploying the EKF. The trinocular

3D key-points were used as inputs of the visual odometry model that inferred the robot’s

displacements by geometrical triangulations.
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