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palavras-
have análise isogeométri
a, elemento sólido-
as
a, método das deformações

assumidas, retenção, me
âni
a do 
onta
to, algoritmo ponto-para-seg-

mento.

resumo O presente trabalho fo
a-se no desenvolvimento de ferramentas

numéri
as robustas para problemas não-lineares de me
âni
a dos

sólidos no 
ontexto de Análises Isogeométri
as. Com esse intuito,

um novo elemento do tipo sólido-
as
a, baseado no método das

Deformações Assumidas, é proposto para a análise de estruturas do

tipo 
as
a �na. A formulação proposta é validada re
orrendo a um


onjunto de problemas-tipo disponíveis na literatura, 
onsiderando

tanto regimes lineares 
omo não-lineares (geométri
o e de material). É

ainda apresentada uma formulação alternativa para aliviar o fenómeno

de retenção volumétri
a para problemas em regime linear elásti
o.

Adi
ionalmente, é apresentado um estudo introdutório da me
âni
a

do 
onta
to no 
ontexto de Análises Isogeométri
as, dando espe
ial

ênfase ao algoritmo de Ponto-para-Segmento. As metodologias

apresentadas no presente trabalho foram implementadas num 
ódigo

totalmente desenvolvido durante o de
orrer do mesmo, juntamente


om diversas ferramentas para pré- e pós pro
essamento. Foram ainda

implementadas rotinas do utilizador para o software 
omer
ial Abaqus.
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Abstra
t The present work deals with the development of robust numeri
al tools

for Isogeometri
 Analysis suitable for problems of solid me
hani
s in

the nonlinear regime. To that end, a new solid-shell element, based

on the Assumed Natural Strain method, is proposed for the analysis of

thin shell-like stru
tures. The formulation is extensively validated using

a set of well-known ben
hmark problems available in the literature, in

both linear and nonlinear (geometri
 and material) regimes. It is also

proposed an alternative formulation whi
h is fo
used on the alleviation

of the volumetri
 lo
king pathology in linear elasti
 problems. In

addition, an introdu
tory study in the �eld of 
onta
t me
hani
s, in

the 
ontext of Isogeometri
 Analysis, is also presented, with spe
ial

fo
us on the implementation of a the Point-to-Segment algorithm. All

the methodologies presented in the 
urrent work were implemented in

a in-house 
ode, together with several pre- and post-pro
essing tools.

In addition, user subroutines for the 
ommer
ial software Abaqus were

also implemented.
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Chapter 1

Introduction

In this chapter, the present research work is introduced. The motivation and

main objectives of the Thesis are presented, followed by a brief description of

the developed numerical tools. The general outline of the document is

described.

The analysis of shell-like structures in the geometric and material nonlinear regimes

still represents a challenge in the field of computational mechanics. The development of

reliable and computationally effective numerical formulations for this kind of applications

is, therefore, an important research topic in computational mechanics.

In the context of the Finite Element Method (FEM), the use of Lagrangian-based

formulations to solve structural problems has been the subject of a significant research

effort. When thickness values are relatively low, this kindof problems are often modelled

using shell finite elements. However, shell finite element formulations present some

drawbacks, specially when considering nonlinear regimes.For example, the use of rotational

degrees-of-freedom leads to a more complex treatment of large deformations when compared

with formulations based only on displacement degrees-of-freedom. As an alternative, solid

finite elements can be used, but these are known to lead to solutions that are often polluted by

spurious high stiffness values, leading to overly small displacement fields. This non-physical

phenomenon is often encountered when modelling straight and curved structures with high

length-to-thickness ratios.

In order to circumvent these difficulties, the so calledsolid-shellclass of elements was

proposed and received a great amount of attention in the lastyears. Solid-shell formulations

combine the advantages of both solid and shell formulations, leading to an approach that

relies uniquely in displacement degrees-of-freedom, but suitable for the numerical simulation

of thick and thin structures. Since in this kind of formulations only displacement degrees-of-

-freedom are employed, they can automatically account for 3D constitutive relations, being
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Chapter 1. Introduction

able to more accurately model through the thickness gradients of stress and strains. It is worth

mentioning that solid-shell formulations also present important advantages when considering

double-sided contact situations.

Departing from conventional FEM formulations for engineering problems, the recently

introduced Isogeometric Analysis (IGA) concept is a numerical method in which the basis

functions employed to (exactly) define the geometries involved are also used to determine

the unknown fields of the discretised system. This contrastswith FEM, in which the

geometry is always approximated. Instead of the standard shape functions based on

Lagrangian polynomials usually considered in FEM, IGA can employ as basis functions,

for instance, B-Splines, Non-Uniform Rational B-Splines (NURBS) or even T-Splines, the

latter developed in recent years by the Computed Aided Design community. This approach

allows for a direct connection between the Computer Aided Design (CAD) and the Computer

Aided Engineering (CAE) worlds. In the past few years, a significant amount of research

effort has been devoted to IGA due to its advantages over classical Finite Element Method.

However, recent studies also demonstrate that, although NURBS-based formulations present,

in general, a superior performance over standard Lagrangian-based ones, they can still

be affected by the same non-physical phenomena appearing inFEM, and leading to an

overestimation of some components of the stiffness matrix.This will then result in small

(spurious) displacement fields and, in these cases, the solution is said to belocked.

The present Thesis is related to the study, development and implementation of numerical

models and formulations in the context of Isogeometric Analysis. The main goal of the

current research work is then to develop and implement robust tools that can be applied

to problems of solid mechanics in both linear and nonlinear regimes. In this context,

an efficient NURBS-based solid-shell formulation suitablefor the analysis of thin-shell

structures is proposed. The methodology employs the Assumed Natural Strain (ANS)

technique that has been widely used in the context of FEM to alleviate locking pathologies.

In order to be validated in a generality of applications, theformulation is extensively

tested using well-known benchmark problems encompassing both linear and nonlinear

behaviours. It is also proposed in this work an extension of the Assumed Natural Strain

methodology in order to account for a material-based locking pathology which occurs in

near incompressible problems. Additionally, an introductory study of contact mechanics

problems in the context of Isogeometric Analysis is also presented. Due to the inherent

properties of B-Splines/NURBS basis functions (such as high inter-element continuity and

superior approximations of the contact stress) the use of NURBS-based formulations to

model contact mechanics problems can represent a very attractive alternative to classical

Lagrangian-based methodologies.
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In order to fulfil the objectives proposed, a set of numericaltools were developed

and implemented and anIsogeometric COde(ICO) was developed and written using the

programming language Fortran 90. The purpose of this code istwofold: (i) it serves as

an invaluable tool to implement, test and validate new methodologies, and (ii ) it was written

with the aim of becoming a solid foundation for future researchers to build upon. In addition,

several tools were developed for the pre- and post-processing steps of a typical engineering

analysis. In order to solve problems containing a high number of degrees-of-freedom and/or

requiring advanced solution techniques, a set of user subroutines for the commercial software

Abaquswas also implemented.

The Thesis is composed of 8 chapters. A description of the content of each chapter is

given in the following:

◦ Chapter 1: In this chapter, the present research work is introduced. The motivation

and main objectives of the Thesis are presented, followed bya brief description of the

developed numerical tools. The general outline of the document is described;

◦ Chapter 2: In this chapter, the fundamental concepts behind the Finite Element

Method are reviewed. A detailed description about the implementation of classical

displacement Lagrangian-based formulations is given. This chapter also serves

the purpose of introducing the nomenclature that will be employed throughout the

remainder of this work;

◦ Chapter 3: The concept of Isogeometric Analysis is presented and detailed. The first

part of the chapter is concerned with the introduction of B-Spline basis functions and

the definition of curves, surfaces and solids. This is followed by a description of Non-

-Uniform Rational B-Splines, as a general case of the B-Splines, and special attention

is given to their integration with Finite Element Analysis.Finally, a description of the

tools developed throughout this research work is provided;

◦ Chapter 4: A summary of nonlinear continuum mechanics is provided, with focus on

the main topics that have been studied and implemented throughout the current work.

The theoretical background of the adopted corotational approach is described, along

with a detailed description concerning the implementationof numerical models for

analysis including geometric nonlinearities, as well as the corresponding developed

algorithms;

◦ Chapter 5: In this chapter, the locking phenomena that can pollute numerical

analyses based on FEM and well as IGA are described. This is followed by a

state-of-the-art review of the main methodologies used to alleviate these non-physical
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phenomena in the context of both approaches. A special focusis given to the Enhanced

Assumed Strain (EAS) and Assumed Natural Strain (ANS) methods and their possible

application in Isogeometric Analysis. An innovative extension of the Assumed

Natural Strain method is proposed in the context of IGA, leading to the development

of high-order NURBS-based solid-shell elements, suitablefor the analysis of thin

structures. Finally, some insight into volumetric lockingin the context of IGA is also

provided;

◦ Chapter 6: A brief state-of-the-art review of the main developments in the context

of contact mechanics for Isogeometric Analysis is presented. The description of a

general two-dimensional frictionless contact problem is given, followed by a detailed

description of the Point-to-Segment algorithm where special attention is provided to

the main aspects of the implementation procedure;

◦ Chapter 7: The performance of the NURBS-based formulations proposedin Chapter

5 are assessed using a set of well-known benchmark problems in both linear and

nonlinear regimes. Additionally, in the context of contactmechanics, the validation

of the implemented Point-to-Segment algorithm described in Chapter 6 in the linear

elastic regime is performed, also by means of various benchmark problems;

◦ Chapter 8: The main conclusions of the work are presented, along with some

suggestions for future developments.
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Chapter 2

Formulation of the Finite Element

Method for Linear Analysis

In this chapter, the fundamental concepts behind the FiniteElement Method

are reviewed. A detailed description about the implementation of classical

displacement Lagrangian-based formulations is given. This chapter also

serves the purpose of introducing the nomenclature that will be employed

throughout the remainder of this work.

2.1 The Principle of Virtual Work

Consider the generic three-dimensional body in the global reference systemOxyzwhich

is represented in Figure 2.1, involving a stress fieldσσσ and subject to a body forceb. In

multidimensional elasticity, the equilibrium of the system is given as [Timoshenko 51]

div(σσσ)+b = 0, (2.1)

in the entire volumeV, where div(·) is the divergence operator. Equation 2.1 is known as the

strong formulation of the problem. The volume domain is bounded by a surfaceS, where the

two subsetsSN andSD can be identified. In the boundarySN, tractionst can be prescribed

defining the natural (Newman) boundary conditions. Prescribed displacements represented

by essential (Dirichlet) boundary conditions can be definedas

u = uSD , (2.2)

on surfaceSD. SinceSD andSN are two subsets of the boundary surfaceS, it can be written

thatSD ∪SN = SandSD ∩SN = /0.

5



Chapter 2. Formulation of the Finite Element Method for Linear Analysis

x

z

V

SN

SD

n

y

Figure 2.1: General three-dimensional body.

In order to obtain the weak (variational) form of Equation 2.1, it is necessary to multiply

the previous equation by an arbitrary test functionδu and integrate over the whole domain.

This test function is also known as a virtual displacement field and must be consistent with

the given boundary conditions. Therefore, Equation 2.1 cannow be re-written as
∫

V
δu · [div(σσσ)+b] dV = 0, (2.3)

and, by means of the mathematical identity

div(δu ·σσσ) = δu ·div(σσσ)−grad(δu) : σσσ , (2.4)

it is possible to obtain

−
∫

V
grad(δu) : σσσ dV +

∫

V
div(δu ·σσσ) dV +

∫

V
δu ·b dV = 0, (2.5)

where grad(·) is the gradient operator. By applying the divergence theorem to the second

term of the previous equation, and taking into account thatδu = 0 in SD, the equation can

now be re-written as

−
∫

V
grad(δu) : σσσ dV +

∫

SN

δu · t dS+
∫

V
δu ·b dV = 0. (2.6)

Recalling that, due to symmetry, the strain in the whole volume can be expressed as

εεε =
1
2

[
grad(u)+grad(u)T]= grad(u), (2.7)

and the corresponding stress field given by

σσσ = C4 : εεε, (2.8)

whereC4 is the fourth-order constitutive tensor, then Equation 2.6can now be re-written,

after rearranging, as
∫

V
σσσ : δεεε dV =

∫

V
δu ·b dV +

∫

SN

δu · t dS, (2.9)
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which is the weak form of Equation 2.1, also known as the Principle of Virtual Work (PVW).

The PVW is the principle behind classical displacement-based Finite Element models.

Take now into account the body with volumeV depicted in Figure 2.2, before (solid line)

and after (dashed line) the application of infinitesimal virtual displacementsδu and a set

of forcesf i acting upon it. In the picture, it is assumed that the virtualdisplacements are

small enough to maintain the forcesf i unaltered. The virtual strainsδεεε coming from the

compatible virtual displacements can be then used to determine the internal virtual work as

δΠint =
∫

V
σσσ : δεεε dV. (2.10)

Additionally, the total external virtual work can be expressed as

δΠext =

∫

V
b ·δu dV +

∫

SN

t ·δu dS. (2.11)

The postulate of the PVW states that [Bathe 96], in the state of the equilibrium of the body,

the total internal virtual work is equal to the total external virtual work, which is the condition

given in Equation 2.9. The effect of concentrated forcesf i acting upon the body can also be

included in the PVW as

∫

V
σσσ : δεεε dV =

∫

V
b ·δu dV +

∫

SN

t ·δu dS+
nf

∑
i

δu · f i , (2.12)

wherenf is the total number of applied concentrated forces.

δu1

x

z

f2

f3

fi

f1

δu2

δu3

δui

y

Figure 2.2: Body with volumeV in equilibrium before and after the application of virtual

displacements and forces.
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2.2 Displacement-Based Finite Element Formulations

In order to obtain a Finite Element solution, a given continuous body must be subdivided in

a (finite) number of elements, which are resolved individually and subsequently assembled,

in order to obtain a global solution of the problem. On each ofthese elements, connected by

nodes, the governing equations can be formulated using variational methods, where, in the

case of displacement-based elements, the variational principle used is the PVW. By making

use of the upper index(·)h to denote a Finite Element approximation, the displacementfield

(u) on each individual element can be approximately interpolated as

u ≈ uh = Nd, (2.13)

wheredi = [ui vi wi ]
T (i = 1, ...,nn) represents the nodal displacement vector for a given

element withnn nodes andN is a matrix that contains the interpolating shape functionsas

N =
[
N1 N2 ... Nnn

]
, (2.14)

in which

Ni =




Ni 0 0

0 Ni 0

0 0 Ni


 , i = 1, . . . ,nn. (2.15)

In a general three-dimensional continuum analysis, the strain field can be expressed as

εεε =






∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y +

∂v
∂x

∂u
∂z +

∂w
∂x

∂v
∂z+

∂w
∂y






=




∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y









u

v

w





, (2.16)

or in a more compact way as

εεε =∇∇∇su. (2.17)

By combining Equations 2.13 and 2.16, the strain field can then be obtained in a discretised

form as

εεε =∇∇∇su ≈∇∇∇s(Nd) = Bd, (2.18)

whereB is known as the strain-displacement operator which contains the derivatives of the

element shape functions as

B = [B1 B2 . . . Bnn] , (2.19)
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with

Bi =




∂Ni
∂x 0 0

0 ∂Ni
∂y 0

0 0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂x 0

∂Ni
∂z 0 ∂Ni

∂x

0 ∂Ni
∂z

∂Ni
∂y




. (2.20)

By employing the constitutive tensorC4 it is then possible to obtain the elemental stress field

as

σσσ = C4 : εεε, (2.21)

where, in the case of an isotropic linear elastic material, the matrix form of theC4 tensor can

be defined as

C4 =
E (1−ν)

(1+ν)(1−2ν)




1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0
ν

1−ν
ν

1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)




, (2.22)

in whichE is the elastic modulus andν the Poisson’s coefficient.

Introducing the Equations 2.18 and 2.21 into Equation 2.12,for each finite element it is

possible to state that
∫

Ve
(δd)T BTC4Bd dVe−

∫

Ve
(δd)T NTbT dVe = (δd)T fe. (2.23)

Taking into account that the virtual nodal displacementsδd are constant and always non-

zero and the nodal displacementsd are also constant, Equation 2.23 can now be expressed

as (∫

Ve
BTC4B dVe

)
d−

∫

Ve
NTbT dVe= fe. (2.24)

From this equation, the elemental stiffness matrix can be defined as

Ke=

∫

Ve
BTC4B dVe, (2.25)

as well as the elemental body force vector

be =
∫

Ve
NTbT dVe. (2.26)

The elements’ stiffness matrices must then be assembled (element by element) in order to

obtain the global stiffness matrixK , leading to the global system of equations defined as

Kd = f, (2.27)

which must be solved to obtain the unknown nodal displacements.

9



Chapter 2. Formulation of the Finite Element Method for Linear Analysis

2.3 The Classical Displacement-Based Hexahedral Element

In the field of computational mechanics, very often a problemmust be modelled using a

three-dimensional geometry. In the current section, the classical displacement-based 3D

hexahedral (brick) Finite Element formulation is described is detail, in its simplest trilinear

form.

2.3.1 Shape Functions

When using finite elements, it is effective to employ the isoparametric concept. This concept

states that the interpolating functions adopted in the approximation of the degrees-of-free-

dom are also used in the description of the geometry. To that end, a normalized natural

coordinate systemOξ ηζ is defined. All points within a finite element are contained inthe

domain[−1,+1]× [−1,+1]× [−1,+1], and theξ , η andζ axis are assumed to have their

origin at the centre of the element, passing through the centre of opposite surfaces. The

use of a natural coordinate system is convenient for constructing the shape functions, as

well as to perform the numerical integrations by a Gauss-Legendre quadrature scheme. The

representation of the global and natural reference systemsfor a general linear brick element

can be seen in Figure 2.3.

x = x (ξ, η, ζ)
y = y (ξ, η, ζ)

ξ = ξ (x, y, z)
η = η (x, y, z)

ξ
η

ζ

z = z (ξ, η, ζ)

ζ = ζ (x, y, z)

1

2 3

4

5

6 7

8

1

2 3

4

5

6 7

8

x
y

z

Figure 2.3: Schematic representation of a linear hexahedral finite element in the global (left) and

natural (right) reference systems.

The first step in developing an isoparametric hexahedral finite element is to define the

shape functions that will be used for the discretisation. The shape function for a given node

i, with i = 1, ...,nn, can be obtained by the Lagrange interpolation functions as

Ni (ξ ,η,ζ ) = Ni (ξ )Ni (η)Ni (ζ ) , (2.28)

10



2.3. The Classical Displacement-Based Hexahedral Element

where

Ni (ξ ) =
nξ

∏
j=1, j 6=i

ξ −ξ j

ξi −ξ j
, (2.29)

Ni (η) =
nη

∏
j=1, j 6=i

η −η j

ηi −η j
, (2.30)

and

Ni (ζ ) =
nζ

∏
j=1, j 6=i

ζ −ζ j

ζi −ζ j
, (2.31)

in which nξ , nη andnζ represent the number of nodes along theξ -, η- andζ -directions,

respectively. For the case of the trilinear brick element (eight nodes) depicted in Figure 2.3,

the shape functions defined in the natural domain are given as

Ni (ξ ,η,ζ ) =
1
8
(1+ξ ξi)(1+ηηi)(1+ζ ζi) , (2.32)

whereξi , ηi andζi are the components of the vectorsξξξ , ηηη andζζζ , respectively, defined as

ξξξ =






−1

1

1

−1

−1

1

1

−1






, ηηη =






−1

−1

1

1

−1

−1

1

1






, andζζζ =






−1

−1

−1

−1

1

1

1

1






. (2.33)

The shape functions derived in the previous equations are referred to the natural coordinate

systemOξ ηζ . In order to compute the stress and strain fields, it is required nevertheless to

write the interpolatory functions in the global coordinatesystemOxyz. The mapping between

the global and natural coordinate systems can be obtained bythe relation between the shape

functions’ derivatives in the global and natural spaces, obtained by the chain rule as






∂Ni
∂x
∂Ni
∂y
∂Ni
∂z





= J−1






∂Ni
∂ξ
∂Ni
∂η
∂Ni
∂ζ





, (2.34)

whereJ−1 is the inverse of the Jacobian matrix, defined as

J =




∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ


 . (2.35)
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Chapter 2. Formulation of the Finite Element Method for Linear Analysis

The Jacobian matrix can be obtained by making use of the derivatives of the shape functions

in the natural reference system and the coordinates of each nodexi = (xi ,yi ,zi), as

J =
nn

∑
i=1




∂Ni
∂ξ xi

∂Ni
∂ξ yi

∂Ni
∂ξ zi

∂Ni
∂η xi

∂Ni
∂η yi

∂Ni
∂η zi

∂Ni
∂ζ xi

∂Ni
∂ζ yi

∂Ni
∂ζ zi


 . (2.36)

Using the Jacobian operator, it is then possible to obtain the derivatives of the shape

functions with respect to the global coordinates, which canbe promptly used to build the

strain-displacement operatorB using Equations 2.19 and 2.20.

2.3.2 Elemental Stiffness Matrix and Load Vector

From the developments in Section 2.2, the elemental stiffness matrix can be calculated as

Ke=
∫

Ve
BTC4BdVe,

or, alternatively, in the natural domain as

Ke=

∫ +1

−1

∫ +1

−1

∫ +1

−1
BTC4B|J|dξdηdζ , (2.37)

where | · | is the determinant operator. An approximation of the stiffness matrix can be

obtained by numerical integration using the Gauss-Legendre quadrature as

Ke≈
nr

∑
i=1

ns

∑
j=1

nt

∑
j=1

(
BTC4B|J|

)
r,s,t wrwswt, (2.38)

wherer, s andt are the number of integration points alongξ , η andζ , respectively, andwr,

ws andwt the corresponding weights.

Similarly, the contribution of the volumetric loadb to the load vector is given as

be =

∫ +1

−1

∫ +1

−1

∫ +1

−1
NT

i b|J|dξdηdζ .

When considering traction loads, a different approach mustbe taken. Since this type of load

is applied to a face of the element, the normal vector of the face must be first determined. To

do so, the tangential directions of the natural axisξ , η andζ are required, as

g1 =





∂x
∂ξ
∂y
∂ξ
∂z
∂ξ




, g2 =





∂x
∂η
∂y
∂η
∂z
∂η




, andg3 =





∂x
∂ζ
∂y
∂ζ
∂z
∂ζ




. (2.39)
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2.3. The Classical Displacement-Based Hexahedral Element

Comparing the tangential vectors with Equation 2.36, it canbe seen that they correspond to

the columns of the transposed Jacobian operator. The normaldirections of the faces can now

be calculated as

n1 =
g2×g3

||v2×g3||
, (2.40)

n2 =
g3×g1

||g3×g1||
, (2.41)

n3 = n1×n2. (2.42)

The applied traction loadt can then be determined as

t = tn, (2.43)

wheren is the normal to the face where the traction with magnitudet is applied. Afterwards,

the equivalent nodal forces can be calculated as

fe
t,i =

∫ +1

−1

∫ +1

−1
NT

i (±1,η,ζ ) t1n1dηdζ , for directionOξ , (2.44)

fe
t,i =

∫ +1

−1

∫ +1

−1
NT

i (ξ ,±1,ζ ) t2n2dξdζ , for directionOη, (2.45)

fe
t,i =

∫ +1

−1

∫ +1

−1
NT

i (ξ ,η,±1) t3n3dξdη, for directionOζ . (2.46)

In Box 2.1, the general algorithm for the implementation of aLagrangian displacement-based

3D isoparametric finite element is presented.
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Chapter 2. Formulation of the Finite Element Method for Linear Analysis

Box 2.1: Algorithm for the implementation of a general Lagrangian displacement-based 3D

isoparametric element.

1. Initialise elemental stiffnessKe matrix and load vectorfe

2. DO integration points’ cycle

(a) Compute shape functionsNi in the natural frame (Equations 2.32 and 2.33) and its derivatives
∂Ni
∂ξ , ∂Ni

∂η and ∂Ni
∂ζ

(b) Calculate the Jacobian matrixJ as

J =
nn

∑
i=1




∂Ni
∂ξ xi

∂Ni
∂ξ yi

∂Ni
∂ξ zi

∂Ni
∂η xi

∂Ni
∂η yi

∂Ni
∂η zi

∂Ni
∂ζ xi

∂Ni
∂ζ yi

∂Ni
∂ζ zi




and its determinant|J| and inverseJ−1

(c) Map the derivatives of the shape functions into the global space






∂Ni
∂x
∂Ni
∂y
∂Ni
∂z





= J−1






∂Ni
∂ξ
∂Ni
∂η
∂Ni
∂ζ






and assemble the strain-displacement operatorB

(d) Perform the numerical integration of the stiffness matrix for the current integration point and

add it toKe

Ke = Ke+

∫ +1

−1

∫ +1

−1

∫ +1

−1
BTC4B|J|dξ dηdζ

(e) If the nodal displacements are available, compute the strain and stress fields

εεε = Bd

σσσ = C4εεε

3. END DO
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Chapter 3

B-Splines, NURBS and Isogeometric

Analysis

The concept of Isogeometric Analysis is presented and detailed. The first part

of the chapter is concerned with the introduction of B-Spline basis functions

and the definition of curves, surfaces and solids. This is followed by a

description of Non-Uniform Rational B-Splines, as a general case of the

B-Splines, and special attention is given to their integration with Finite

Element Analysis. Finally, a description of the tools developed throughout

this research work is provided.

In the field of Computer Aided Design (CAD), the use of Non-Uniform Rational B-

-Splines (NURBS) is very popular. This is due to the fact thatNURBS are very flexible and

accurate, allowing the exact representation of conic curves and surfaces, as well as free-form

entities. As a result, NURBS are the standard tools for geometric design and are used in

many graphic formats, such as IGES and STEP. However, duringthe pre-processing stage

of an analysis based on the Finite Element Method (FEM), the geometry must be discretised

into elements, inevitably leading to a change in the geometry, particularly when considering

curved structures discretised with low-order finite elements. This issue is the same even if

higher-order finite elements are chosen and, therefore, in ageneral sense, classical Finite

Element discretisations cannot exactly represent the geometry of the problem.

The concept of Isogeometric Analysis (IGA) was firstly introduced by Hugheset al.

[Hughes 05]. In IGA, B-Spline and NURBS basis functions primarily used to describe

the geometry are directly employed in the computation of theunknown fields. As a

consequence, it is then possible to perform a numerical simulation in a geometry that is

exactly represented, rather than in an approximate fashionas in the FEM. When compared

to standard Lagrange elements, NURBS-based formulations have shown to present a better
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Chapter 3. B-Splines, NURBS and Isogeometric Analysis

accuracy in structural applications when considering coarse meshes due to their higher-order

inter-element continuity [Echter 13].

More recently, and in order to overcome some restrictions ofthe NURBS basis, T-splines

have been used in the context of IGA. T-splines, which represent a generalisation of NURBS,

are specially attractive due to their ability to perform local refinement and can generate

models with complex geometry suitable for numerical analysis [Sederberg 03, Bazilevs 10,

Dörfel 10, Scott 11]. The use of T-splines for Isogeometric Analysis is not considered in the

current work.

3.1 B-Splines

In computational geometry, in order to create a curve, surface or volume, it is necessary to

have a correct mathematical description of such entity. In order to create free-form curves,

the Bézier curves were developed, which are a form of parametric functions that employ

Bernstein polynomials and a set of control points to define the desired curve. However, the

use of the Bernstein basis leads to limitations in the flexibility of the resulting curve with, for

example, high-order curves leading to numerical instabilities. In addition, due to the global

nature of the Bernstein basis, it is not possible to have a local control within the curve, which

turns to an inability to reproduce local changes [Rogers 01].

In order to overcome these limitations, B-Spline basis (which contains the Bernstein

basis as a special case) was introduced by Schoenberg [Schoenberg 46]. This basis presents

a non-global behaviour, meaning that each control point only affects the shape of the curve

in the range in which the associated basis function is non-zero. The description of B-Spline

curves and surfaces is given in more detail in the following.

Consider the representation of a B-Spline curve given by

C(ξ ) =
nc

∑
i=1

Ni,p(ξ )Bi , (3.1)

whereBi (with i = 1,2, ...,nc) represents the coordinates ofcontrol point i and Ni,p are

piecewise polynomial functions, known as B-Splines basis functions of orderp. As

a particular case, piecewise linear (p = 1) interpolations of the control points lead to

the so-calledcontrol polygon. Although there are different ways of defining the above

basis functions, the Cox-de Boor recursion formula (described in the following) is usually

employed since it is the most useful for computer implementations.

LetΞΞΞ=
[
ξ1,ξ2, ...,ξnc+p+1

]
be a non-decreasing sequence of real numbers known asknot

vector, whereξi is theith knot. The interval defined by two subsequent knots is then known

as aknot span, and therefore the knot vector divides the parameter space into knot spans. A
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3.1. B-Splines

given knot is said to have amultiplicity of m if it is repeatedm times inside the knot vector,

while a knot vector is considered to beopen if the first and last knots have multiplicity

m= p+ 1. An interesting property of open knot vectors is that theirbasis functions are

interpolatory at the ends of the parametric space. Finally,a knot vector is considered to be

uniformif, in the parameter space, the knots are equally spaced andnon-uniformotherwise.

3.1.1 Basis Functions

Using the Cox-de Boor recursion formula, theith B-Spline basis function can be defined as

Ni,0(ξ ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
, (3.2)

for a polynomial function of order zero, and

Ni,p(ξ ) =
ξ −ξi

ξi+p−ξi
Ni,p−1(ξ )+

ξi+p+1−ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ ), (3.3)

otherwise (i.e. for p≥ 1). The convention00 = 0 is adopted herein.

These basis functions have some important properties. First of all, they are non-negative

over the entire domain and constitute a partition of the unity, i.e.,

nc

∑
i=1

Ni,p(ξ ) = 1, ∀ ξ . (3.4)

Eachpth-order basis function hasp−mi continuous derivatives acrossξi , wheremi is the

multiplicity of knot ξi , and the support of apth-order basis function isp+ 1 knot spans.

When the multiplicity of a given knot is equal to the orderp, then the basis functions are

interpolatory at that knot. Accordingly, when the multiplicity is p+1, the basis becomes

discontinuous.

In Figure 3.1-(top) a quadratic basis function for an open, uniform knot vectorΞΞΞ =

[0,0,0,1/3,2/3,1,1,1] is depicted. At both ends of the interval, the multiplicity is p+1 =

3, which means that only at these points the basis are interpolatory and discontinuous.

Elsewhere, the functions areC1-continuous. Consider now that a new knotξ = 2/3 is

inserted into the knot vector, as shown in Figure 3.1-(bottom). The knot vector will now

be considered as non-uniform and the basis will be interpolatory at ξ = 2/3, since in this

point the multiplicity ism= p= 2. Also, it can be seen that the continuity of the basis has

now been decreased, at the repeated knot, toC0.

Another interesting property of B-Spline curves is that they lie within the convex hull of

its control polygon and exhibit a variation diminishing property, guaranteeing that the curve

will not oscillate about any straight line more often than its control polygon does. Moreover,
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2,5N

Figure 3.1: Basis functions for (top) open, uniform knot vector ΞΞΞ = [0,0,0,1/3,2/3,1,1,1] and

(bottom) open, non-uniform knot vectorΞΞΞ = [0,0,0,1/3,2/3,2/3,1,1,1] .

any affine transformation applied to the curve can be directly applied to the control points.

This property is essential for satisfying the patch tests [Cottrell 09].

Since the basis functions are recursively obtained using the Cox-de Boor formula, their

first derivatives can be represented in terms of lower order basis, as

∂Ni,p(ξ )
∂ξ

=
p

ξi+p−ξi
Ni,p−1(ξ )−

p
ξi+p+1−ξi+1

Ni+1,p−1(ξ ) . (3.5)

3.1.2 B-Spline Surfaces

A tensor product B-Spline surface can be defined as

S(ξ ,η) =
nc

∑
i=1

mc

∑
j=1

Ni,p(ξ )M j ,q(η)Bi, j , (3.6)

whereBi, j is the position of the control points in the(x,y) space, defining the so-called

control net. In the previous equation,Ni,p(ξ ) andM j ,q(η) are the univariate B-Spline basis

functions of orderp andq, corresponding to the knot vectorsΞΞΞ =
[
ξ1,ξ2, ...,ξnc+p+1

]
and

H =
[
η1,η2, ...,ηmc+q+1

]
, respectively. The properties of the B-Spline curves follow the

corresponding properties defined for the univariate basis functions described in the previous

section, as a result of its tensor product nature.

In the following, a simple example will be employed to introduce important concepts

related to Isogeometric Analysis. In addition, the examplewill also serve the purpose of

demonstrating some of the differences between B-Splines/NURBS-based and Lagrangian-

-based formulations. Consider a B-Spline surface defined bytwo uniform, open knot vectors

defined byΞΞΞ = [0,0,0,1/2,1,1,1] andH = [0,0,1,1], with control points forming the control

net given in Figure 3.2. Also, in the same figure themeshof the structure in the physical

18



3.1. B-Splines

space can be seen. In the present context, it is worth mentioning that the concept of mesh

refers to the non-zero knot spans, defined by the corresponding intervals of each knot vector.

Accordingly, the control points can be interpreted as the IGA equivalent to nodes in FEM.

However, due to the nature of the B-Splines basis functions,the control points are only

interpolatory in the corners, where the multiplicity of theunivariate basis functions arep+1

and q+ 1. Another key difference is that the elements defined using the B-Spline basis

are able to exactly describe the geometry (which can be seen in Figure 3.2), as opposed to

Lagrangian-based elements in which the geometry is only approximated.

Figure 3.2: Control net (left) and the mesh composed of two elements (right) for a B-Spline surface.

Consider now the concept (exclusive to IGA) ofindex spacewhich can be interpreted

as a space in which the axis are defined by all the knots of the knot vector, independently

of their value. In a two-dimensional parametric case (i.e. in a surface) this leads to a grid

as shown in Figure 3.3 for the current example. Each non-zeroknot span in a knot vector

will then define oneelementalong a coordinate direction. Analysing the given knot vectors,

it can be seen thatΞΞΞ contains two non-zero knot spans whileH contains only one, leading

to a total of 2×1 = 2 elements. Starting from the index space, it is now possibleto define

the parameter spacewhich contains only the non-zero knot spans (or elements). This set

of elements is known as apatch. The parameter space is also depicted in Figure 3.3, along

with the univariate basis functions along theξ andη directions. In a B-Spline surface, the

support of a given bivariate basis functionNi, j ;p,q(ξ ,η), is
[
ξi ,ξi+p+1

]
×
[
η j ,η j+q+1

]
. In

practical terms, this means that a given basis function willaffect a set of knot spans and,

consequently, it is possible to obtain high-order inter-element continuity. This differs from

standard Lagrangian-based formulation, in which the shapefunctions are onlyC0-continuous

between elements. In the example given, the basis will haveC1-continuity at the knotξ4, i.e.,

there existsC1-continuity between the two elements of the mesh.
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1 2 3 4 5 6 7

1

2

3

4

Non-zero
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Figure 3.3: B-Spline surface represented in the index and parameter spaces, along with the

corresponding basis functions.

3.1.3 B-Spline Solids

Analogously to B-Spline surfaces, it is possible to define a tensor product B-Spline solid.

Given acontrol latticeBi, j ,k (the three-dimensional equivalent of a control net) and knot

vectorsΞΞΞ =
[
ξ1,ξ2, ...,ξnc+p+1

]
, H =

[
η1,η2, ...,ηmc+q+1

]
andZ = [ζ1,ζ2, ...,ζkc+r+1], a

B-Spline solid can be expressed as

V (ξ ,η,ζ ) =
nc

∑
i=1

mc

∑
j=1

lc

∑
k=1

Ni,p(ξ )M j ,q(η)Lk,r (ζ )Bi, j ,k. (3.7)

The properties of B-Spline volumes can be obtained from generalizations of the properties

of B-Spline curves and surfaces [Piegl 97, Rogers 01, Hughes05].

3.1.4 Refinement

B-Spline basis can be enriched without changing the studiedgeometry and its parametri-

sation, which is an interesting feature when compared to conventional FEM. In CAD, the

refinement can be typically performed by the so-calledknot insertionandorder elevation

techniques. These two methods are closely related to the concepts of h- and p- refinements,

respectively, in traditional Finite Element analysis. However, the use of B-Spline basis

allows for a new type of refinement known ask-refinement. These refinement techniques

will be detailed in the following. Efficient algorithms for knot insertion and order elevation
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procedures, among many others, can be found in [Piegl 97].

Knot Insertion

The knot insertion procedure consists in enriching the basis functions by including additional

knot values into the knot vector. Considering, for the sake of simplicity a curve, when

using this procedure the curve is not changed, neither geometrically nor parametrically.

Taking into account a given knot vectorΞΞΞ =
[
ξ1,ξ2, ...,ξnc+p+1

]
, with control pointsBi ,

and inserting a single knot into it will lead to an extended (refined) knot vectorΞΞΞ∗ =[
ξ ∗

1 = ξ1,ξ ∗
2 , ...,ξ

∗
nc+p+2 = ξnc+p+1

]
. The representation of the B-Spline curve onΞΞΞ∗ can

be expressed as

C(ξ ) =
nc+1

∑
i=1

N∗
i,pB∗

i , (3.8)

in whichN∗
i,p is the enriched basis function. Considering thatξ ∗ ∈ [ξk,ξk+1], the new control

pointsB∗
i can be obtained from a linear combination ofBi as

B∗
i = αiBi +(1−αi)Bi−1, (3.9)

where

αi =





1 i ≤ i ≤ k− p
ξ̃−ξi

ξi+p−ξi
k− p+1≤ i ≤ k

0 k+1≤ i ≤ nc+ p+2

. (3.10)

Inserting knot values that are already present in the original knot vector will increase

their multiplicity and, consequently, the continuity of the basis will be decreased. An

example of knot insertion can be seen in Figure 3.4 for an initial knot vector ΞΞΞ =

[0,0,0,0.25,0.5,0.75,1,1,1]. It can be seen that, after inserting the knotsξ ∗ = 0.325 and

ξ ∗ = 0.75, the obtained curve is geometrically and parametricallyidentical to the original

one. It can also be seen that at knotξ ∗ = 0.75 the basis is nowC0, since the multiplicity

at this location was increased. Since the knotξ ∗ = 0.75 was already present in the original

knot vector, a new element was not generated. The process of knot insertion can then be

compared with the standard h-refinement in FEM, in which a given mesh is divided into

smaller elements.

Order Elevation

The order elevation procedure consists in raising the polynomial order of the basis functions

without changing the geometry and parametrisation of the original curve. In this process,

the multiplicity of each knot is increased, but no new knots are added. The order elevation

procedure can be seen as an extraction of Bézier segments from the curve by replicating
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Figure 3.4: Knot insertion example: (left) original curve and (right) the curve after insertion of

additional knots.

existing knots, order elevating this segment and, finally, removing unnecessary knots in order

to obtain a final B-Spline curve of higher order. An advantageof this method is that the

differentiability of the curve at the knots is not reduced, as in the case of the knot insertion

procedure.

The mathematical details of the order elevation process arecomplex and will not be

reproduced for the sake of simplicity. With this approach, when elevating the order of a

B-Spline curve, the new curve must remain identical to the original. Thus, the order elevation

of a B-Spline curve from orderp to p+1 can be written as

C(ξ ) =
p+1

∑
i=1

BiNi,p(ξ ) =
p+2

∑
i=1

B∗
i N∗

i,p+1(ξ ) , (3.11)

whereB∗
i are the control points defining the new (order elevated) curve. The original knot

vector

ΞΞΞ = [0, ..., 0︸ ︷︷ ︸
p+1

, ξ1, ..., ξ1︸ ︷︷ ︸
m1

, ..., ξs, ..., ξs︸ ︷︷ ︸
ms

, ..., ξnc+p+1, ..., ξnc+p+1︸ ︷︷ ︸
p+1

], (3.12)
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3.1. B-Splines

will now take the form

ΞΞΞ∗ = [0, ..., 0︸ ︷︷ ︸
p+2

, ξ1, ..., ξ1︸ ︷︷ ︸
m1+1

, ..., ξs, ..., ξs︸ ︷︷ ︸
ms+1

, ..., ξnc+p+1, ..., ξnc+p+1︸ ︷︷ ︸
p+2

], (3.13)

wheremi represents the multiplicity of any of thes internal knots in the original basis. It can

be seen from the previous equations that, when a B-Spline curve is order elevated, the curve

at a knot of multiplicitymi remainsCp−mi continuous,i.e., both the original and the order

elevated curves have the same continuity at that knot.

A simple example demonstrating the order elevation procedure can be seen in Figure 3.5.

The original curve of orderp= 2 with a knot vector

ΞΞΞ = [0,0,0,0.25,0.5,0.75,1,1,1],

is order elevated top= 3, leading to the enriched knot vector

ΞΞΞ∗ = [0,0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1,1],

showing that the multiplicity of each knot was increased by one, but no new knots were

added. The order elevated curve is geometrically and parametrically identical to the original

one. The order elevation procedure can be seen as the IGA equivalent of p-refinement in

FEM, where the order of the polynomial basis is increased.

K-refinement

In the context of IGA, there is one very important characteristic in the refinement procedures:

the processes of order elevation and knot insertion do not commute. This property gives rise

to an alternative refinement technique with no analogous in FEM.

Consider, for instance, the example given in Figure 3.6. Starting from a basis of order

p= 1 and with a knot vectorΞΞΞ = [0,0,1,1], a single knotξ ∗ = 0.5 is inserted. Therefore, a

refined two element mesh with a new knot vectorΞΞΞ∗= [0,0,0.5,1,1] is obtained. Afterwards,

an order elevation of one is performed, leading to an increase in the multiplicity of each knot.

Thus, the final knot vector will be given asΞΞΞ∗ = [0,0,0,0.5,0.5,1,1,1]. As can be seen, at

ξ ∗= 0.5 the basis still hasC0 continuity due to the multiplicity of 2, although the polynomial

order is nowp= 2.

Consider now the alternative case represented in Figure 3.7. In this example, and starting

from the same knot vectorΞΞΞ = [0,0,1,1] as before, the basis of orderp = 1 is firstly order

elevated to an orderp = 2, leading to the refined knot vectorΞΞΞ∗ = [0,0,0,1,1,1]. In the

second step, a knotξ ∗ = 0.5 is inserted, leading to the knot vectorΞΞΞ∗ = [0,0,0,0.5,1,1,1].

The basis (with the same polynomial order as in the previous example) will now present

C1 continuity atξ ∗ = 0.5, since the multiplicity of the knot is only one. This procedure
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Figure 3.5: Order elevation example: (left) original curveof order p = 2 and (right) after order

elevation top= 3.

is known as k-refinement. Comparing Figures 3.6 and 3.7, it can be clearly seen that the

k-refinement procedure leads to a basis in which the continuity at the location of the inserted

knot is superior. Moreover, the control polygon resulting from this procedure contains one

less control point and is, therefore, computationally moreefficient.

3.2 Non-Uniform Rational B-Spline

Despite being a powerful tool, B-Spline are not able to represent some geometries, such

as circles and ellipsoids. However, this problem can be circumvented by employing a

generalised form of B-Spline known as Non-Uniform RationalB-Spline (NURBS). NURBS

provide a single precise mathematical form capable of representing common analytical

shapes such as lines, planes, conic curves, free-form curves and quadric surfaces that are

used in computer graphics and CAD [Rogers 01].
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3.2. Non-Uniform Rational B-Spline

Figure 3.6: Example of successive refinements: (left) original curve, control polygon and basis,

(centre) after knot insertion and (right) followed by orderelevation.

In an analogous way to Equation 3.1, a NURBS curve of orderp can be defined as

C(ξ ) =
nc

∑
i=1

Rp
i (ξ )Bi , (3.14)

whereRp
i (ξ ) are rational basis functions. These functions are defined as

Rp
i (ξ ) =

Ni,p(ξ )wi

W (ξ )
=

Ni,p(ξ )wi

∑nc

ĵ=1
N ĵ ,p(ξ )w ĵ

, (3.15)

where, as seen before,Ni,p(ξ ) represents theith basis function of orderp and wi are

selected weights. The choice of appropriate values of the weights wi allows for a proper

representation of different types of curves, such as circular arcs. A simple example to

illustrate the influence of the weight in a NURBS curve is presented in Figure 3.8. In this

example, the weightw2 of the middle control pointB2 is varied within the range[0.25,2.0].

As can be seen, as the weight’s value increases, the obtainedNURBS curve tends to come

closer to the control point.

As seen before for B-Splines, it is possible to define the NURBS basis functions for

surfaces and volumes by means of the tensorial product feature, as

Rp,q
i, j (ξ ,η) =

Ni,p(ξ )M j ,q(ξ )wi, j

∑nc

î=1∑mc

ĵ=1
Nî,p(ξ )M ĵ,q(η)wî, ĵ

, (3.16)
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Figure 3.7: Example of k-refinement: (left) original curve,control polygon and basis, (centre) after

order elevation and (right) followed by knot insertion.

2w

1B 2B

3B

Figure 3.8: Influence of the weight of the middle control point in the NURBS curve (control polygon

represented by dashed line).

and

Rp,q,r
i, j ,k (ξ ,η,ζ ) =

Ni,p(ξ )M j ,q(ξ )Lk,r (ξ )wi, j ,k

∑nc
î=1∑mc

ĵ=1 ∑lc
k̂=1

Nî,p(ξ )M ĵ,q(η)Lk̂,r (ζ )wî, ĵ ,k̂

, (3.17)

respectively.

By applying the quotient rule to Equation 3.15, one can obtain the first derivative of the

NURBS basis function as

∂Rp
i (ξ )
∂ξ

= Rp
i,ξ = wi

N′
i,p(ξ )W (ξ )−Ni,p(ξ )W′ (ξ )

(W (ξ ))2
, (3.18)
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whereN′
i,p(ξ ) =

∂Ni,p(ξ )
∂ξ and

W′ (ξ ) =
nc

∑
i=1

N′
i,p(ξ )wi . (3.19)

The NURBS basis functions inherit many of the properties of the B-Splines basis

functions, such as the partition of unity and pointwise non-negativity. The algorithms

described for order elevation and knot insertion can also beemployed for the case of NURBS.

It can be seen that if all points have the same weight, thenRp
i (ξ ) =Ni,p(ξ ) and, therefore, B-

Splines can be interpreted as a special case of NURBS, with Equation 3.14 being simplified

to 3.1.

3.3 NURBS as Basis for Finite Element Analysis

As in classical FEM, Isogeometric Analysis also employs theisoparametric concept in

the sense that the same parametrisation is used for the discrete solution variables and the

geometry. However, one major difference can be identified between both approaches. In

the case of FEM, the basis used to interpolate the unknown solution fields are also used to

approximate the geometry. On the other hand, in IGA, the B-Splines/NURBS basis used

to exactly interpolate the geometry are also employed to approximate the unknown solution

variables.

In an Isogeometric Analysis, as introduced before, one can distinguish three domains:

the physical space, the parametric space and the parent element space. In the single patch

case presented in Figure 3.9, elements in these domains are represented by the volumesV, Ṽ

andV̄, respectively. For the sake of simplicity, a two-dimensional representation is adopted

in Figure 3.9, where the extension to 3D volumes is straightforward.

The physical space represents the actual geometry under analysis. This geometry is

defined by the basis functions and the control points. The physical model can be divided into

multiple patches, which can be seen as macro elements. Some geometries can be modelled

using a single patch. In the parametric space, each patch is represented as a rectangle (or

cuboid in a 3D case). The construction of the parametric space was detailed in Section

3.1.2. Finally, the numerical quadrature is performed at each parent element (represented by

non-zero knot spans along each direction in the parent element domain) exactly as happens

with FEM. The structure of an Isogeometric code is thereforevery similar to the structure of

a FEM code. Aside from the data input and results output, the major change resides in the

computation of the basis functions (and their derivatives), which will replace the classical

Finite Element shape functions. A detailed procedure on howto obtain the basis function for

a general three-dimensional Isogeometric Analysis is given in the following.

Consider that the physical domainV is subdivided intone elementsVe (Figure 3.9).
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Physical space
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Parametric space
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1,1

e
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Figure 3.9: Representation of the different domains in Isogeometric Analysis.

Using a geometric mapping, the integrals in the physical domains can be pulled back to

the parametric spacẽVe, which can then be pulled back to the parent element domainV̄e.

Mathematically, this can be expressed by successive mappings as
∫

V
f (x,y,z)dV =

ne

∑
e=1

∫

Ve
f (x,y,z)dVe =

=
ne

∑
e=1

∫

Ṽe
f (ξ ,η,ζ ) |φφφ |dṼe = (3.20)

=
ne

∑
e=1

∫

V̄e
f
(
ξ̄ , η̄ , ζ̄

)
|φφφ ||ψψψ|dV̄e.

The integral can be evaluated using a standard(p+ 1) × (q+ 1) × (r + 1) Gaussian

quadrature, wherep, q, andr are the order of the NURBS basis in theξ , η andζ directions,

respectively. However, it must be noted that this quadrature rule is not optimal when

considering IGA and a number of studies have been carried outin order to propose alternative

and optimal quadrature rules suitable for IGA [Hughes 10, Auricchio 12, Schillinger 14].

Starting from the parent element domainV̄e, the transformation to the parametric space

[ξi ,ξi+1]×
[
η j ,η j+1

]
× [ζk,ζk+1] can be obtained from the knot vectors and parent element

coordinates as

ξ =
(ξi+1−ξi) ξ̄ +(ξi+1+ξi)

2
, (3.21)

η =

(
η j+1−η j

)
η̄ +

(
η j+1+η j

)

2
, (3.22)
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and

ζ =
(ζk+1−ζk) ζ̄ +(ζk+1+ζk)

2
, (3.23)

where
(
ξ̄ , η̄, ζ̄

)
are the integration point coordinates, which are the same asthe integration

point coordinates in the natural system in a Finite Element code, if a standard Gaussian

quadrature is employed.

The Jacobian matrix representing the mapping between the parent and parametric

domains can then be seen as a simple scaling of the element, given as

ψψψ =




∂ξ
∂ ξ̄

∂ξ
∂ η̄

∂ξ
∂ ζ̄

∂η
∂ ξ̄

∂η
∂ η̄

∂η
∂ ζ̄

∂ζ
∂ ξ̄

∂ζ
∂ η̄

∂ζ
∂ ζ̄


=

1
2




ξi+1−ξi 0 0

0 η j+1−η j 0

0 0 ζk+1−ζk


 , (3.24)

and the determinant for this transformation matrix can be easily calculated as

|ψψψ|= 1
8
(ξi+1−ξi)

(
η j+1−η j

)
(ζk+1−ζk) . (3.25)

Defining nc = (p+1)(q+1)(w+1) as the number of control points that belongs to the

element connectivity, and using the parametric coordinates obtained from Equations 3.21 to

3.23, the NURBS basis functions

R =




R1

R2
...

Rnc



, (3.26)

and its derivatives

R,ξ =




∂R1
∂ξ
∂R2
∂ξ
...

∂Rnc
∂ξ



, R,η =




∂R1
∂η
∂R2
∂η
...

∂Rnc
∂η



, andR,ζ =




∂R1
∂ζ
∂R2
∂ζ
...

∂Rnc
∂ζ



, (3.27)

can be calculated using the procedures from Sections 3.1 and3.2.

Once the derivatives of the basis functions with respect to the parametric coordinates are

computed, and together with the coordinates of the control points, it is possible to determine

the Jacobian matrix representing the geometry mapping between the parametric and physical

spaces in the form

φφφ =




∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ


=

nc

∑
i=1




∂Ri
∂ξ xi

∂Ri
∂η xi

∂Ri
∂ζ xi

∂Ri
∂ξ yi

∂Ri
∂η yi

∂Ri
∂ζ yi

∂Ri
∂ξ zi

∂Ri
∂η zi

∂Ri
∂ζ zi


 . (3.28)
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It is also possible to compute the Jacobian matrix representing the mapping between the

parent domain and the physical space as

J = φφφψψψ . (3.29)

Finally, the derivatives of the basis functions with respect to the physical coordinates can be

obtained as

[R,x R,y R,z] =
[
R,ξ R,η R,ζ

]
φφφ−1. (3.30)

These derivatives can be employed to build the strain-displacement operatorB, which has the

same structure as the one presented for three-dimensional displacement-based finite elements

in Section 2.2. The procedures to determine the stress and strain fields, as well as the

elemental stiffness and load vectors, are also the same as for a general 3D Finite Element

code, but with the difference that NURBS basis functions areused, instead of Lagrangian

shape functions. The algorithm for the implementation of a NURBS-based finite element for

linear elastic analysis can be seen in Box 3.1.

3.4 The Developed Tools for Isogeometric Analysis

Being a relatively recent research subject, commercial numerical simulation codes em-

ploying Isogeometric Analysis and NURBS-based formulations are not available. At the

time of the writing of this Thesis, LS-DYNA provides an initial approach to IGA, by

means of a generalised element concept and some adaptation of the input files used for

FEM [Benson 10]. Also, the Finite Element Analysis Program (FEAP) [Zienkiewicz 05,

Taylor 13] provides a beta version, under request, with someinitial implementations

of NURBS-based finite elements. There are also some available open-source packages

based on IGA. For instance,GeoPDEs1 is an Octave/Matlab code for solving partial

differential equations for linear elasticity, fluid mechanics and electromagnetism. More

recently, igatools2, an isogeometric analysis library, was also released. ThisC++ code

supports parallel processing and presents a higher computational efficiency for solving

partial differential equations. Another open-source Matlab code is theigafem3 software

which allows to solve linear elastic problem in one, two and three dimensions, as well as

inclusion and crack modelling.

Since the present research work is devoted to the analysis ofsingle and multipatch solid

mechanics problems in the nonlinear regime, it was necessary to develop and implement a

software which would be suitable for these kind of problems.TheIsogeometric COde(ICO)

1TheGeoPDEssoftware is available at http://geopdes.apnetwork.it/
2The igatoolssoftware is available at http://code.google.com/p/igatools/
3The igafemsoftware is available at http://sourceforge.net/projects/cmcodes/
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Box 3.1: Algorithm for the implementation of a general displacement-based 3D NURBS-based

element.

1. Initialise elemental stiffnessKe matrix

2. DO integration points’ cycle

(a) Compute parametric coordinates(ξ ,η ,ζ ) from parent element coordinates
(
ξ̄ , η̄ , ζ̄

)
as

ξ =
(ξi+1− ξi) ξ̄ +(ξi+1+ ξi)

2

η =

(
η j+1−η j

)
η̄ +

(
η j+1+η j

)

2

ζ =
(ζk+1− ζk) ζ̄ +(ζk+1+ ζk)

2

(b) Compute the Jacobian for the transformation between theparent element and the parametric

spaces

ψψψ =
1
2




ξi+1− ξi 0 0

0 η j+1−η j 0

0 0 ζ j+1− ζ j




(c) Compute the NURBS basis functionsR (Equation 3.15) and derivativesR,ξ , R,η andR,ζ

(Equation 3.18)

(d) Compute the Jacobian for the transformation between theparametric and physical space

φφφ =
nc

∑
i=1




∂Ri
∂ξ xi

∂Ri
∂η xi

∂Ri
∂ζ xi

∂Ri
∂ξ yi

∂Ri
∂η yi

∂Ri
∂ζ yi

∂Ri
∂ξ zi

∂Ri
∂η zi

∂Ri
∂ζ zi




(e) Usingφφφ , compute the basis functions derivativesR,x, R,y andR,z

[R,x R,y R,z] =
[
R,ξ R,η R,ζ

]
φφφ−1

(f) Build the strain-displacement operatorB

(g) Compute the Gauss point contribution to the elemental stiffness matrix

(h) If control points’ displacements are available, compute the stress and strain fields

3. END DO
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is an in-house developed code written in Fortran 90. The codeis built in a modular fashion,

allowing to easily include additional element formulations, material and contact models,etc.

This was one of the main concerns when writing ICO, since the code intends to serve as

a robust and easy to learn/modify tool, upon which future researchers can further use and

improve. The code is currently composed of one main program and over 30 subroutines. In

Appendix A the User’s Manual of the Isogeometric COde is given.

3.4.1 ICO Pre-Processing Step

In order to perform a numerical analysis in ICO, an input file containing all the necessary

data must be constructed. To create the mesh for the geometry, a mesh creation tool was

developed using the Matlab programming language. As an input, the user must define the

dimension, knot vectors and control points coordinates of the initial geometry. The user

is then able to perform the refinement of the mesh using both the knot insertion and order

elevation procedures. An example of a mesh refinement of a circular plate can be seen

in Figure 3.10. The code then provides as an output the knot vectors and control points

corresponding to the refined mesh. This information is then copied to the ICO input file,

where all the information regarding boundary conditions, element types, material properties

and analysis parameters are also defined.

Figure 3.10: Windows of the mesh creation tool.

3.4.2 ICO Analysis Step

The code architecture of the Isogeometric Code is very similar to that of a standard Finite

Element code. The program starts by reading an input file containing all the information

relative to the model. After the necessary matrices are allocated, the code then starts
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the analysis. The general flowchart of ICO can be seen in Figure 3.11. In a first step

the connectivities of the elements are defined and all the global arrays are initialised and,

afterwards, the code will enter the increment and iterationloops. In each iteration a element

cycle is considered where the contributions of each elementis added to the global system

of equations. Iterations are performed until the solution is able to converge. In the end, all

relevant data is written to an output file.

When considering a multipatch simulation, an additional cycle is introduced inside the

iteration loop in order to allocate all the data relevant to the patch, with the remaining

structure of the code being left unchanged. In the current version of the code, only

compatible discretisations for the geometry can be employed in multipatch analyses of

a single structure. Therefore, each control point on a face must be in a one-to-one

correspondence with a control point from the adjoining face.

3.4.3 ICO Post-Processing Step

After performing the analysis, the displacements of the control points can be used to

create the deformed geometry of the problem. To that end, a simple code was written in

Matlab to read the displacement field and plot the deformed geometry of the structure under

consideration.

3.4.4 Implementing NURBS-Based Elements in Abaqus

The developed software ICO is a valuable tool for implementing and testing different

methodologies and formulations in the context of Isogeometric Analysis. However, the

implementation of these methodologies within a commercialFinite Element code presents

several advantages, such as lower computational costs for problems involving a high number

of degrees-of-freedom and the possibility to use advanced solution techniques (as the Riks

arc-length method) in nonlinear analysis and advanced material models.

In addition to the developed Isogeometric COde, a set of NURBS-based elements were

also implemented in the commercial software Abaqus by meansof developing User ELement

(UEL) subroutines. The procedure to implement a NURBS-based formulation in Abaqus is

similar to the one followed by standard Lagrangian-based formulations. In the Abaqus input

file, all the information about the control points coordinates, elements connectivities and

boundary conditions are defined. The UEXTERNALDB subroutine is then used in order

to open and read external files with the objective of importing all the data relative to the

numerical model which cannot be added to the input file (such as the knot vectors). This

information is stored in a global module which is accessed whenever necessary. The UEL

subroutine is afterwards responsible for the definition of the elemental stiffness matrix and
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Figure 3.11: Workflow of the Isogeometric COde for a single patch analysis.
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internal force vectors. Since all the NURBS data are available in the global module, these

computations can be promptly performed.

The implementation in Abaqus was carried out in a way to make it possible to deal with

multiple patches. To that end, each patch must be associatedwith different element types

(U1, U2, ..., Un). When the UEL subroutine is called, the corresponding type of the element

is read and all the data corresponding to the current patch isallocated and used to compute

the elemental contribution. As in the ICO code, the multipatch methodology implemented in

Abaqus is limited to compatible geometry discretisations,and the coincident control points

are constrained using theMultiple Point Constraint(MPC) methodology.

In more recent versions, Abaqus also provides the possibility of codding user-defined

elements with access to the entire material library of the software. The procedure to

implement this subroutine (known as UELMAT) is similar to the standard UEL. The key

difference resides in the fact that the user does not need to code the material subroutine

by himself/herself, being the utility subroutine MATERIAL_LIB_MECH called instead.

However, and considering for instance small strain plasticity, the UELMAT subroutine leads

to higher computational costs when compared with the equivalent UEL. Nevertheless, the

availability of using UELMAT subroutines opens up the very interesting possibility of using

more advanced material models without the necessity of coding by the user. In Appendix B

a detailed description of the implemented procedure using asingle-patch UEL is given,

together with examples of the necessary input files and the subroutine coding in Fortran.
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Chapter 4

Topics in Nonlinear Formulations

A summary of nonlinear continuum mechanics is provided, with focus on the

main topics that have been studied and implemented throughout the current

work. The theoretical background of the adopted corotational approach is

described, along with a detailed description concerning the implementation of

numerical models for analysis including geometric nonlinearities, as well as

the corresponding developed algorithms.

In general nonlinear analyses, a body subjected to a set of externally applied loads can

undergo large rotations and/or deformations. In this situation, the final configuration of the

body can significantly differ from the configuration at the start of the analysis. In order to

solve this kind of problems, an incremental procedure is generally employed. This procedure

consists in dividing the problem into small increments(. . . , n−1, n, n+1, . . .), where for

each increment the equilibrium of the system is satisfied in an iterative way. The difficulty

arises from the fact that, since the body can undergo large displacements and strains, the

deformed configuration for the solution of stepn+ 1 is not known (assuming that the

solution is known up to stepn). A solution can be nevertheless obtained by referring all

the variables to a previously known equilibrium configuration. If the employed equilibrium

configuration corresponds to the last converged incrementn, then the formulation is termed

Updated Lagrangian (UL). In contrast, if the initial configuration is assumed as the reference

one, then a Total Lagrangian (TL) formulation is achieved. In the current work, an Updated

Lagrangian formulation is considered for the nonlinearities’ description.

4.1 Coordinate Systems

In a nonlinear analysis employing the UL formulation, a given particle can be referred

to different coordinate systems. In the current work, four reference systems can be

distinguished:
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(i) A global coordinate system, defined by the coordinates(nx,ny,nz) and
(

n+1x,n+1y,n+1z
)
,

in the (updated) reference and current configurations, respectively. Note that the left

upper index explicitly refers to the considered configuration (step);

(ii) A natural or parent coordinate system for integration purposes;

(iii) A parametric coordinate system, employed in Isogeometric Analysis to define the

parametric space of a NURBS patch, as mentioned in the previous chapter;

(iv) A convective system, defined bygi =
∂x
∂ξi

, whereξ1 = ξ , ξ2 = η andξ3 = ζ .

The components of the convective frame can be used to define a corotational reference

system based on the vectorsr1 andr2 as [Valente 04a]

r1 =
g1

|g1|
, r2 =

g2

|g2|
, (4.1)

which can then be used to computer3 as

r3 = r1× r2. (4.2)

This procedure can be used to determine an initial local coordinate system in the undeformed

(n= 0) configuration. A representation of the different coordinate systems in the reference

and current configurations can be seen in Figure 4.1.
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η
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n
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n
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n
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n+1zi

Figure 4.1: Coordinate systems in the (left) reference and (right) current configurations.
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4.2 Nonlinear Continuum Mechanics

In the following, some concepts regarding stress and straintensors are summarised. The

analysis is far from being exhaustive and only focus on the fundamentals used in this work.

In order to describe the macroscopic deformation of a body, it is necessary to define

a configuration at the start of the analysis (known as the reference configuration), with

cartesian coordinatesX and the configuration at an increment(n+ 1) (assumed as the

current configuration) with cartesian coordinatesx (see Figure 4.2). For the sake of

simplicity, the upper left indexes, shown in Figure 4.2 and defining the coordinates

at each configuration, were dropped in the following equations, allowing to present a

more general case and to adopt the nomenclature employed in many classical textbooks

[Simo 98, Doghri 00, Belytschko 00]. The indexes will be recovered later on for the stress

update procedure between statesn andn+1.

x

y

z

Configuration at increment n+ 10V

n+1V

(X,Y, Z)

(x, y, z)

Reference configuration

Figure 4.2: Position of a material particle at different configuration.

The deformation of a solid can be described by the mapping between the reference

and current configurations by means of the so-called deformation gradient, which can be

expressed as

F =
∂x
∂X

, (4.3)

or, alternatively,

F = I +
∂u
∂X

, (4.4)

whereu is the displacement field andI the unit tensor. By making use of the deformation

gradient, it is also possible to define, for instance, the right and left Cauchy-Green strain

tensors as

C = FTF, (4.5)
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and

b− = FFT, (4.6)

respectively. These strain tensors are important since they allow the definition of relevant

strain measures, as presented in the following.

Since the deformation of a solid is described by the deformation gradient, this means that

F contains the information about rigid body rotations as wellas the stretches. To obtain this

information in a decoupled way, the deformation gradient can be decomposed using the polar

decomposition theorem. This theorem states that any non-singular, second-order tensor can

be decomposed uniquely into the product of an orthogonal rotation tensor and a symmetric

and positive definite stretch tensor [Dunne 06]. Applying the polar decomposition theorem

to F results in

F = RU, (4.7)

whereR is the orthogonal rotation tensor andU is the symmetric right stretch tensor. With

this theorem it is therefore possible to obtain the rigid body rotation for any motion. This

rotation tensor is especially useful in situations where a corotational coordinate system must

be updated at each increment. SinceR is an orthogonal tensor, it follows that

R−1 = RT. (4.8)

The algorithm for the polar decomposition of the the deformation gradientF can be found in

Box 4.1 [Valente 04a].

In analyses where large rotations and/or large strains are involved, it is necessary to

employ a strain measure that must vanish in the presence of a rigid body motion (which is

not the case of the left Cauchy-Green strain tensor). In the Finite Element Method (FEM),

the Green-Lagrange strainE and the rate of deformationD tensors are the most widely used

[Belytschko 00]. By means of the right Cauchy-Green strain tensor, it is possible to define

the Green-Lagrange strain tensor in the form

E =
1
2
(C− I) . (4.9)

If a given body is subjected only to a rigid body motion, the deformation gradient results in

F = R, which introduced into Equation 4.9 leads to

E =
1
2

(
RTR− I

)
=

1
2
(I − I) = 0, (4.10)

proving that theE vanishes in the presence of rigid body motion only.

Substituting Equation 4.4 into 4.9 leads to

E =
1
2

[
∂u
∂X

+

(
∂u
∂X

)T
]
+

1
2

(
∂u
∂X

)T ∂u
∂X

, (4.11)
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showing thatE is therefore composed by two terms. The first term is the infinitesimal (linear)

strain tensor and the second term corresponds to the nonlinear part. The Green-Lagrange

strain tensor can show the variation of length with respect to the reference configuration. If

one requires the variation of the length with respect to the current configuration, the Almansi-

-Euler strain tensor can be employed, for example, which is defined as

eA =
1
2

[
I −

(
b−)−1

]
=

1
2

[
∂u
∂x

+

(
∂u
∂x

)T
]
−
(

∂u
∂x

)T ∂u
∂x

. (4.12)

The Almansi-Euler strain tensor is usually applied in Eulerian approaches, which is not

focused in the current work.

4.2.1 Stress Measures

As happens with strain tensors, in nonlinear mechanics there are also different stress

measures that can be employed. These stress measures can relate the deformed or

undeformed configurations to the applied forces. Two of the most common stress measures

in a nonlinear analysis are the Cauchy (σσσ ) and the second Piola-Kirchhoff (S) stresses. Since

they are adopted in the present work, they will be detailed inthe following.

The Cauchy stress can be interpreted as the ratio of the current force per unit of deformed

area,i.e, it can be seen as a measure of the true stress in the deformed structure [Hinton 00].

Consider the body represented in Figure 4.3 in which the normal vectorn of the surface of

an elemental area dA is represented. The surface traction can then be expressed as

t =
f

dA
, (4.13)

wheref is an elemental internal force which acts in the elemental area dA. The Cauchy stress

tensorσσσ is then the projection of the surface traction into/over theunit normal vectorn, as

t =σσσn. (4.14)

On the other hand, the first Piola-Kirchhoff stress relates forces in the present configu-

ration with the (previous) undeformed configuration, and can be obtained from the Cauchy

stress tensor as

P= JσσσF−T, (4.15)

whereJ = |F| is the determinant of the deformation gradient. Finally, itis possible to define

the second Piola-Kirchhoff stress tensor as

S= JF−1σσσF−T. (4.16)

The second Piola-KirchhoffS can be interpreted as the transformed current force which

acts upon the undeformed area, being the work conjugate of the Green-Lagrange strainE,
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Box 4.1: Polar decomposition algorithm.

1. Compute the right Cauchy-Green strain tensor

C = FTF

2. Compute the invariants of the right Cauchy-Green strain tensor

IC = tr(C) , IIC =
1
2

[
I2
C− tr

(
C2)] , III C = |C|

3. Compute variablek as

k= I2
C−3IIC

4. IF k≤ 10−5

(a) Computeγ as

γ =

√
IC
3

(b) ComputeU andU−1

U = γI

U−1 = γ−1I

ELSE

(a) Directly compute the largest eigenvalueγ

l = I3
C−

9
2

ICIIC+
27
2

III C

θ = cos−1
(

l

k
3
2

)

γ2 =
1
3

[
IC+2

√
kcos

(
θ
3

)]

(b) Compute the invariants ofU

III U =
√

III C

IU = γ +

√
−γ2+ IC+

2III U

γ

IIU =
I2
U − IC

2

(c) ComputeU andU−1

U =

(
1

IUIIU− III U

)[
IUIII UI +

(
I2
U − IIU

)
C−C2]

U−1 =
1

III U
(IIUI − IUU+C)

END IF

5. Compute the rotation tensor

R = FU−1
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x
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z

n+1V
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f

dA

Figure 4.3: Body subject to elemental forces.

defined before. This stress measure is of extreme importancewhen considering an Updated

Lagrangian formulation.

If the polar decomposition theorem is applied to the deformation gradient tensor in

Equation 4.16, the following relation can be obtained:

S= J(RU)−1σσσ (RU)−T . (4.17)

When considering small strains but large displacements andarbitrary rotations, the stretch

tensor can be approximately given asU ≈ I , while the determinant of the deformation

gradient turns to be equal toJ = |F| = 1. Also, from the property of the rotation tensor

given in Equation 4.8, the second Piola-Kirchhoff stress can be approximated as

S≈ RTσσσR. (4.18)

Equation 4.18 shows that when considering small strains butlarge displacements and

arbitrary rotations, the second Piola-Kirchhoff stressS is approximately equal to the rotated

Cauchy stressσσσ . For this reason,S is often known by thematerial or co-rotational

stress [Doghri 00].

4.2.2 Constitutive Update

In the following, the constitutive update for small strainsbut arbitrarily large displacements

and/or rotations is described. Consider the time derivative of the deformation gradientF as

given by

Ḟ =
∂
∂ t

(
∂x
∂X

)
=

∂v
∂X

=
∂v
∂x

∂x
∂X

= LF , (4.19)

where

L =
∂v
∂x

= ḞF−1 (4.20)

is known as the velocity gradient tensor. Applying the polardecomposition theorem to the

Equation 4.20 leads to

L = ḞF−1 =
(
RU̇+ ṘU

)
·U−1R−1 = ṘRT +RU̇U−1RT. (4.21)
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The tensorL can, on the other hand, be additively decomposed into a symmetric tensorD

and an antisymmetric rotation tensorW as

L = D+W, (4.22)

in which

D =
1
2

(
L +LT) , (4.23)

is known as the rate of deformation, and

W =
1
2

(
L −LT) (4.24)

is the spin tensor, representing the rate of deformation of the principal axes of tensorD. By

substituting Equation 4.20 in 4.24, it comes that

W =
1
2

[
ḞF−1−

(
F−1)T

ḞT
]
. (4.25)

Applying the polar decomposition theorem of Equation 4.7 and after some manipulation, the

spin tensor can now be written as [Dunne 06]

W = ṘRT +
1
2

R
[
U̇U−1(U̇U−1)RT] , (4.26)

whereΩΩΩ = ṘRT is known as the rotation rate tensor.

In a corotational approach, a coordinate system is constructed for each point of the body.

This coordinate system is rotated with the material by usingthe rotation tensorR coming

from the polar decomposition of the deformation gradientF. In this situation, the principal

material lines ofU are assumed to be kept constant, while the productU̇U−1 is then equal to

its symmetric part [Yoon 99a, Valente 04a, Alves de Sousa 06a]. Consequently, the rate of

deformation and the spin tensors can be re-written as

D = RU̇U−1RT, (4.27)

and

W =ΩΩΩ = ṘRT, (4.28)

respectively. From Equation 4.27 it is now possible to definethe corotational rate of the

deformation tensor as

D̂ = RTDR =
1
2

(
U̇U−1+U−1U̇

)
, (4.29)

which is energy conjugated with the corotational (rotated)Cauchy stress tensor, defined as

σ̂σσ = RTσσσR. (4.30)
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The constitutive update between states(n) and(n+1), now recovering the upper left indexes,

can be written as
n+1σ̂σσ = nσ̂σσ +∆t

dσ̂σσ
dt

. (4.31)

In an hypoelastic-plastic model, in which the elastic strains are small when compared to the

plastic strains, it is possible to additively decompose therate of deformation tensor into its

elastic and plastic parts as [Belytschko 00]

D = Del+Dpl, (4.32)

and, by making use of Equation 4.29, the corotational rate ofdeformation tensor comes as

D̂ = D̂el+ D̂pl. (4.33)

The incremental rotated strain between states(n) and (n+1) can now be calculated as

[Yoon 99a, Yoon 99b]
n+1

nêA =
∫ tn+1

tn
D̂dt ≡ n+ 1

2
nD̂∆t. (4.34)

The use of amid-point ruleensures that a second-order accuracy in the stress update is

achieved [Key 82, Hughes 84, Masud 00b]. This rule is based ona mid-point configuration,

that can be obtained simply by dividing the incremental displacements by two. The

constitutive update of the corotational (rotated) Cauchy stress tensor can now be obtained

as
n+1σ̂σσ = nσ̂σσ + n+1

nσ̂σσ = nσ̂σσ + Ĉ4

(
n+1

nêA − n+1
nêA,pl

)
, (4.35)

which is formally identical to a constitutive update typically employed within an infinitesimal

strain framework. By employing the relation defined in Equation 4.18, which is only valid for

the case of small strains, the incremental corotational second Piola-Kirchhoff stress tensor

can now be introduced, finally leading to [Masud 00b, Doghri 00]

n+1σ̂σσ = nσ̂σσ +
n+1

nŜ= nσ̂σσ + Ĉ4

(
n+1

nÊ− n+1
nÊpl

)
, (4.36)

demonstrating that the rotated increment of the second Piola-Kirchhoff can be directly

summed to the converged Cauchy stress tensor. In the presentwork, the previous equation is

employed to perform the constitutive update when small strain but large displacement and/or

rotations are considered.

4.3 Geometric Nonlinearity

During nonlinear analyses, the change of the geometry of a given problem can significantly

alter the nature of a problem. If geometric nonlinearities are being considered, the equilib-

rium conditions must then be written with respect to the current (deformed) configuration.
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However, this deformed configuration in not known in advance. As mentioned before,

geometric nonlinear problems can be analysed using a Total Lagrangian or an Updated

Lagrangian formulation. The Updated Lagrangian formulation is employed in the current

work and described in more detail in the following.

4.3.1 Updated Lagrangian Formulation

As stated before, in the UL formulation the configurationn is taken as the reference in order

to obtain the new configurationn+1. According to Equation 2.12, the Principle of Virtual

Work (PVW) at incrementn+1, using an indicial tensorial form, can then be expressed as

∫

n+1V

n+1σi j δ n+1εi j d
n+1V = δ n+1Πext, (4.37)

whereδ n+1Πext is the external virtual work at incrementn+1. As can be seen, the integral

on the left hand side of Equation 4.37 is computed over the volumen+1V, which is unknown.

Therefore, the equation cannot be directly solved in the current state since it is not possible

to integrate over an unknown volume. Furthermore, it is not possible to directly work with

the increments in the Cauchy stressσσσ because this tensor is always relative to the current

geometry. This change in geometry can be dealt with by defining the appropriate stress

and strain measures, which can be accomplished by employingthe second Piola-Kirchhoff

S stress and the Green-LagrangeE strain tensors. Therefore, Equation 4.37 can now be

re-written as ∫

nV

n+1Si j δ n+1Ei j d
nV = δ n+1Πext. (4.38)

The second Piola-Kirchhoff stress tensor at incrementn+1 can be decomposed as

n+1Si j =
nSi j +

n+1
nSi j , (4.39)

wherenSi j is the stress at incrementn andn+1
nSi j is the increment in stress between statesn

andn+1. Similarly, the Green-Lagrange strain tensor can be decomposed as

n+1Ei j =
nEi j +

n+1
nEi j . (4.40)

It is worth noting that because an UL formulation is being considered, all the quantities are

referred to the last converged configurationn. Consequently, it is possible to admit that
nSi j =

nσi j since they both point to the (deformed) configuration at incrementn, which is

known. Additionally, the termnEi j = 0 since only the increments in displacements between

staten to n+1 are used. Furthermore, and accordingly to Equation 4.11, the Green-Lagrange

strain increment can be further decomposed into linear (e) and nonlinear (ηηη) components as

n+1
nEi j =

n+1
nei j +

n+1
nηi j . (4.41)
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By substituting Equations 4.39, 4.40 and 4.41 into 4.38, andafter some manipulations, the

PVW finally becomes [Bathe 96]
∫

nV

n+1
nSi j δ n+1

nEi j d
nV +

∫

nV

nσi j δ n+1
nηi j d

nV = δ n+1Πext−
∫

nV

nσi j δ n+1
nei j d

nV, (4.42)

where the integral in the right-hand side of the equation corresponds to the internal virtual

work associated to the stress tensor at incrementn.

4.3.2 Finite Element Linearization

In order to obtain a Finite Element solution, Equation 4.42 must be linearized. To this end,

the termn+1
nSi j can be written using a Taylor expansion series inn+1

nEi j as

n+1
nSi j ≈

∂ n+1
nSi j

∂ n+1
nErs

n+1
nErs+(...) , (4.43)

where higher order terms were not considered. Furthermore,by neglecting the nonlinear

terms in the Green-Lagrange strainn+1
nEi j , Equation 4.43 can now be re-written as

n+1
nSi j ≈

∂ n+1
nSi j

∂ n+1
nErs

n+1
ners =

n+1
nCi jrs

n+1
ners, (4.44)

wheren+1
nCi jrs is the constitutive tensor. As a result, Equation 4.42 now becomes

∫

nV

n+1
nCi jrs

n+1
nersδ n+1

nei j d
nV +

∫

nV

nσi j δ n+1
nηi j d

nV = δ n+1Πext−
∫

nV

nσi j δ n+1
nei j d

nV,

(4.45)

which is the weak form needed for the development of the Finite Element model based on the

UL formulation. When discretized using FEM (or IGA), Equation 4.45 can then be written

as

(nK + nKNL)∆u = n+1fext− nf int, (4.46)

where
nK =

∫

nV
(nB)T nC4

nBdnV, (4.47)

nKNL =
∫

nV
(nBNL)

T nσσσ nBNLdnV (4.48)

and
nf int =

∫

nV
(nB)T nσ̄σσdnV. (4.49)

Accordingly to Bathe [Bathe 96], the geometric nonlinear strain-displacement matrix can be

written for the three-dimensional case in a compact form as

nBNL =




n
B̃NL 0̃ 0̃

0̃
n
B̃NL 0̃

0̃ 0̃
n
B̃NL


 , (4.50)
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with

n
B̃NL =




nN1,x 0 0 nN2,x ... nNnn,x
nN1,y 0 0 nN2,y ... nNnn,y
nN1,z 0 0 nN2,z ... nNnn,z


 and0̃=




0

0

0


 , (4.51)

wherenn is the number of nodes of a given element andnNi, j are the derivatives of the shape

function i at incrementn with respect toj. Finally, the Cauchy stress matrix takes the form

nσ̄σσ =




nσ̃̃σ̃σ 0 0

0 nσ̃̃σ̃σ 0

0 0 nσ̃̃σ̃σ


 , (4.52)

in which

nσ̃̃σ̃σ =




nσ11
nσ12

nσ13
nσ21

nσ22
nσ23

nσ31
nσ32

nσ33


 and0=




0 0 0

0 0 0

0 0 0


 . (4.53)

4.3.3 Finite Element Implementation

In a UL Finite Element code, it is convenient to consider a non-fixed, movable local

coordinate system. Matrices and vectors in this coordinatesystem will be denoted using

a hat superscript (ˆ·). Matrices and vectors in the convective system will, on theother hand,

be denoted using a tilde superscript (˜·). Since the strain-displacement operatorB, defined

in the previous sections, is calculated in the global configuration, it is important to define

a transformation tensorT to mapB into different coordinate systems. This transformation

tensor can be defined as

T =




A11A11 A12A12 A13A13 A11A12 A11A13 A11A23

A21A21 A22A22 A23A13 A21A22 A21A23 A21A23

A31A31 A32A32 A33A33 A31A32 A31A33 A31A33

2A11A21 2A12A22 2A12A23 A11A22+A12A21 A11A23+A21A13 A12A23+A22A13

2A11A31 2A12A32 2A13A33 A11A32+A12A31 A11A33+A31A13 A12A33+A32A13

2A21A31 2A22A32 2A23A33 A21A32+A22A31 A21A33+A31A23 A22A33+A32A23




,

(4.54)

where

A = rT, (4.55)

for the global-to-local transformation, or

A = rTJ−1, (4.56)

for the natural-to-local transformation, wherer is defined as

r =
[
r1 r2 r3

]
, (4.57)
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andJ is the Jacobian matrix given from Equation 2.35 for FEM and from Equation 3.29

for IGA. The Finite Element implementation of a geometric nonlinear framework for a 3D

solid element using the UL formulation can be seen in Box 4.2.It is worth mentioning that

the algorithm in Box 4.2 is completely general and applicable for both the Finite Element

Method and Isogeometric Analysis. It is also important to notice that a mid-point rule was

employed in the relations presented in Box 4.2 for the calculation of the stress field that will

lead toK̂NL andf̂ int [Hughes 84, Masud 00b].
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Box 4.2: Algorithm for the implementation of a geometric nonlinear 3D displacement-based

formulation using an Updated Lagrangian formulation.

1. Initialise elemental stiffness matrix and internal force vector

2. Recover the local axis from the previous incrementnr

3. DO integration points’ cycle

(a) Compute shape functionsNi in the natural frame and its derivatives

(b) Compute the Jacobian matrix for the mid-pointn+ 1
2 J and end configurationsn+1J

n+ 1
2 J=

nn

∑
i=1




∂Ni
∂ξ

n+ 1
2 xi

∂Ni
∂ξ

n+ 1
2 yi

∂Ni
∂ξ

n+ 1
2 zi

∂Ni
∂η

n+ 1
2 xi

∂Ni
∂η

n+ 1
2 yi

∂Ni
∂η

n+ 1
2 zi

∂Ni
∂ζ

n+ 1
2 xi

∂Ni
∂ζ

n+ 1
2 yi

∂Ni
∂ζ

n+ 1
2 zi


 , n+1J=

nn

∑
i=1




∂Ni
∂ξ

n+1
xi

∂Ni
∂ξ

n+1
yi

∂Ni
∂ξ

n+1
zi

∂Ni
∂η

n+1
xi

∂Ni
∂η

n+1
yi

∂Ni
∂η

n+1
zi

∂Ni
∂ζ

n+1
xi

∂Ni
∂ζ

n+1
yi

∂Ni
∂ζ

n+1
zi




(c) Compute the deformation gradient for the mid-point
n+ 1

2
nF and end configurationsn+1

nF

n+ 1
2
nF =

∂ n+ 1
2 x

∂ nx
, n+1

nF =
∂ n+1x
∂ nx

(d) Use the polar decomposition algorithm in Box 4.1 to obtain the rotation matrices
n+ 1

2
nR and

n+1
nR

(e) Update the local reference system as

n+ 1
2 r =

n+ 1
2
nRnr

n+1r = n+1
nRnr

(f) Compute the strain-displacement operator in the globalsystem in the mid-pointn+
1
2 B and end

n+1B configurations

(g) Use the global-to-local transformation operatorT (Equations 4.54 and 4.55) to obtain the

strain displacement operators in the local coordinate system denoted asn+
1
2 B̂ andn+1B̂

(h) Compute the stress and strain fields usingn+ 1
2 B̂

(i) Compute the stiffness matrix̂K (Equation 4.47) and the internal force vectorf̂ int (Equation

4.49) usingn+1B̂

(j) Compute the geometric nonlinear stiffness matrixK̂NL (Equation 4.48) and add this

contribution to the elemental stiffness

4. END DO

5. Store the local axis in the end configurationn+1r to use in the next increment
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Chapter 5

Finite Element Technology

In this chapter, the locking phenomena that can pollute numerical analyses

based on FEM and well as IGA are described. This is followed bya

state-of-the-art review of the main methodologies used to alleviate these

non-physical phenomena in the context of both approaches. Aspecial focus is

given to the Enhanced Assumed Strain (EAS) and Assumed Natural Strain

(ANS) methods and their possible application in Isogeometric Analysis. An

innovative extension of the Assumed Natural Strain method is proposed in the

context of IGA, leading to the development of high-order NURBS-based

solid-shell elements, suitable for the analysis of thin structures. Finally, some

insight into volumetric locking in the context of IGA is alsoprovided.

5.1 The Locking Phenomena

Standard displacement-based low-order Finite Element formulations are widely used in

many applications mainly due to their simplicity and effectiveness. However, these

formulations can often be affected by spurious strain or stress fields which lead to an

overestimation of the stiffness matrix. As a consequence, this results on the underestimation

of the nodal displacements, which are then said to becomelocked. Different types of

locking can be related to the shape of the element employed when discretising the structure

(high length-to-thickness ratio, trapezoidal shapes,etc.) or with material properties (near

incompressibility) [Hughes 87]. These distinct types of locking will be explained in more

detail in the following sections.
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5.1.1 Volumetric Locking

When considering an incompressible (or near-incompressible) analysis, displacement-based

low-order Finite Element formulations present an overly stiff behaviour, leading to inac-

curate results. The compressible behaviour of a given solidcontinuum is defined by the

Poisson’s coefficientν, and as this coefficient tends to the incompressibility limit (ν → 0.5)

the material is said to become incompressible. Values ofν in the vicinity of 0.5 occur, for

instance, in rubber-like materials. The constitutive relation for an isotropic elastic situation

can be expressed by

σi j = 2Gεi j +λεkkδi j , (5.1)

whereδi j is the Kronecker delta. The Lamé parameters used in Equation5.1 are given by

λ =
Eν

(1+ν)(1−2ν)
, (5.2)

and

G=
E

2(1+ν)
. (5.3)

From Equation 5.2 it can be seen thatλ will tend to infinity asν tends to the incompressibility

limit. However, since in this situationεkk tends to zero, the stress field will still have

acceptable results.

Taking into account the Lamé parameters, the isotropic elastic constitutive tensorC4 can

be written in matrix form as

C4 =




2G+λ λ λ 0 0 0

λ 2G+λ λ 0 0 0

λ λ 2G+λ 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G




. (5.4)

Since the elemental stiffness matrix for a given finite element is given as

Ke=

∫

Ve
BTC4BdVe,

it can be concluded that some terms ofK will become very large asν tends to 0.5.

The elemental stiffness will then be assembled into the global system, with the nodal

displacements being obtained as

d = K−1f. (5.5)

If the coefficients in the stiffness matrixK are excessively high, the terms in its inverse will

tend to zero, which may lead to a null displacement field. Thismaterial-based phenomena is

known asvolumetric locking.
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5.1.2 Shear Locking

From the continuum mechanics theory, a given solid subjected to a pure bending situation

will show no transverse shear strain in the deformed configuration. However, as can be seen

in Figure 5.1, when considering a linear finite element subjected to a pure bending load, the

element is not able to properly represent the displacement field. Since the element topology

is only capable of mimicking a linear displacement field, thetop and bottom surfaces will

not present a curved pattern, leading instead to the appearance of spurious shear strains.

As a consequence, this non-physical shear strain leads to inaccurate stress fields, with the

corresponding underestimation of the displacement field. This phenomena is known as

transverse shear locking.

M M

F

FF

F

x

z

Figure 5.1: Structure under bending load in (left) continuum mechanics and (right) Finite Element

discretisation.

Shear locking effects are usual in plate and shell Finite Element formulations based on

the Reissner-Mindlin theory as thickness values tend to zero. This is due to the fact that

the ratio between the overall dimensions of the elements, compared to the thickness, can

become excessive which can on turn lead to the ill-conditioning of the numerical solution.

This phenomena is also observable when using solid or solid-shell finite elements in the

analysis of structures with low thickness values and/or in bending dominated problems.

5.1.3 Thickness Locking

Considering, once again, the structure subjected to a pure bending deformation, as depicted

in Figure 5.1, from the continuum mechanics theory, the structure will be subjected to a linear

stress componentσxx, while all other stress components are zero. Following the Hooke’s Law

σσσ = C4 : εεε,

the strain components will be given as

εxx =
σxx

E
, (5.6)

εyy= εzz=−νεxx, (5.7)

γxy = γxz= γyz= 0. (5.8)
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From the previous equations it can be concluded that, when considering a non-zero Poisson’s

coefficient,εzz presents a linear behaviour sinceσxx also presents a linear distribution.

Discretising the structure using a low-order finite elementwill lead to a constant strain

εzz. Additionally, due to the inextensibility assumption of the normal fibres in pure bending

deformation cases, this will lead toεzz= 0. Consequently, sinceεxx and εyy will have a

linear distribution, the coupling between the in-plane andnormal strain components will

also enforce a linear distribution of the normal stress as

σzz= λεxx+λεyy+(λ +2G)εzz= λ (εxx+ εyy) , (5.9)

which, according to the continuum mechanics equations, should be zero. This leads to an

overly stiff response of the system, which is known asthickness locking.

5.1.4 Trapezoidal Locking

The modelling of curved structures using low-order solid elements will result in finite

elements with a trapezoidal shape. Due to this mesh distortion effect, when considering

pure bending states, spurious transverse normal strains will appear. The appearance of these

non-physical strains when oblique element edges are present is labelled astrapezoidalor

curvature thickness locking.

To illustrate this phenomena, MacNeal [MacNeal 94] proposed the following example,

consisting on a trapezoidal structure under a pure bending loading and withν = 0.0

discretised by a single quadrilateral element, as shown in Figure 5.2, along with its

representation in the parent element domain. The parametera represents the curvature of

the structure. The corresponding strain components in the element are given as

εxx =
ζ −a
1−aζ

, (5.10)

εzz= Λa, (5.11)

γxz= Λξ
[
1+

a(ζ −a)
1−aζ

]
. (5.12)

On the other hand, from continuum mechanics the analytical solutions are

ε ref
xx = ζ , (5.13)

ε ref
zz = 0, (5.14)

γ ref
xz = 0. (5.15)

Comparing the analytical and numerical solutions, it can beseen that if no distortion is

considered (i.e. a= 0) the in-plane strain components are the same. However, in the shear
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strain component it can be seen a spurious component, which is responsible for the shear

locking phenomena described before. When mesh distortion appears the strain components

are affected by spurious numerical strains, underestimating the displacement field and thus

leading to a locked solution.

x

z

ξ

ζ

2

2

2Λ(1 + a)

2Λ(1− a)

2

Figure 5.2: Low-order quadrilateral element with trapezoidal shape in (left) global space and in (right)

parent domain.

5.1.5 Membrane Locking

Membrane lockingis a pathology which results from the inability of an elementto bend

without stretching, appearing only in curved beams and curved shell elements. When the

curved element is unable to represent the inextensional behaviour typical of pure bending,

spurious membrane strain energy terms appear, causing the element to lock. Nevertheless,

if a flat element is used to model a curved structure it will notbe affected by membrane

locking unless the element becomes warped. Linear triangles, for instance, are always flat

and therefore free from membrane locking.

5.2 Treatment of Locking in Finite Element Analysis - A

Review

The above mentioned non-physical locking pathologies are undesirable phenomena which

affect the efficiency of finite elements. As a consequence, inthe past decades an extensive

amount of work has been performed in order to alleviate locking pathologies in finite

elements. Some of the most relevant contributions are briefly presented in the following

paragraphs.

The reduced integration(RI) andselective reduced integration(SRI) techniques were

among the first ones used to alleviate locking problems [Zienkiewicz 71, Hughes 78]. Due

to lower quadrature rules employed, the elements are able torepresent deformation patterns

that fully integrated elements cannot. Relevant work in thefield of RI/SRI methodologies
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can be found in some classical papers in the literature [Belytschko 91, Belytschko 92,

Belytschko 94, Liu 94, Wriggers 96, Liu 98, Reese 00, Reese 02]. However, given the

rank deficiency of the resultant stiffness matrix, these schemes have poor performances in

bending-dominated problems and can often lead to spurious deformation patterns. Moreover,

SRI can only be applied to models where the small-strain tensor can be decomposed into

volumetric and deviatoric parts. In addition, when modelling nonlinear effects in thin-walled

structures these formulations can present a lower computational performance due to the need

of multiple layers along the thickness direction in order toprovide more integration points

along this direction.

Introduced by Sussman and Bathe [Sussman 87], themixed displacement-pressure(u-

p) formulation consists in independently interpolating both displacement and pressure

degrees-of-freedom. This formulation arises from the factthat when near incompressibility is

considered, in order to accurately determine the volumetric stress, the pressure must also be

taken as a solution variable. However, one of the key points of this formulation is the correct

choice of the displacement and pressure interpolations which can lead to an efficient Finite

Element formulation. When considering the pressure interpolation, the formulation can be

separated into two main categories:(i) the pressure is taken as an elemental variable and

can be statically condensed out, prior to the element assembly, or (ii) the pressure is defined

as a nodal variable, leading to pressure continuity betweenelements. In the latter case, the

pressure variables cannot be statically condensed. Consequently, a variety of interpolation

schemes for displacement and pressure can be considered [Bathe 96, Zienkiewicz 00].

However, in order to guarantee that the Finite Element formulation is stable and

convergent, the element must satisfy the Babuška-Brezzi (BB) condition which is a

fundamental test in mixed finite element formulations [Brezzi 91]. Due to its strictness,

many two field u-p elements (such as the linear triangle and quadrilateral) do not pass

the BB condition. Consequently, these elements present instabilities in the pressure field,

leading to the necessity of employing stabilisation techniques. For instance, themini-element

[Arnold 84] is a linear triangle with continuous piecewise linear interpolation function for

velocity and pressure. In this formulation, the pressure and velocity are interpolated using

the same functions. However, the velocity degrees-of-freedom are increased by adding an

interpolation point in the element centre, where the velocity field is enhanced by means of a

cubic bubble function. Nevertheless, the mini formulationis affected by small oscillations in

pressure and the inertial terms are affected by the bubble mode, when considering transient

problems [Cisloiu 08]. However, by introducing a stabilising parameter, Lee and co-workers

[Lee 09] were able to apply triangular and tetrahedral mini-elements to forging simulation.

Although a good agreement between the numerical and experimental data was found,

the authors concluded that the solution was dependent, in some extent, of the employed
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stabilisation parameter. Another technique for stabilising the mixed u-p formulation

is the sub-grid scale stabilisation approach, first proposed by Hughes [Hughes 95] for

incompressible fluid dynamics and later on applied to solid mechanics by Chiumenti

[Chiumenti 02], as well as to incompressible J2-pasticity and damage problems with strain

localisation [Cervera 03, Chiumenti 04, Cervera 04a, Cervera 04b, Cervera 09]. In this

method, the continuous field is decomposed into fine and coarse components, corresponding

to different length scales. Although being able to circumvent the BB condition, this method

is dependent on material and geometric parameters and is computationally expensive, due to

the introduction of additional degrees-of-freedom [Cisloiu 08].

Developed by Oñate [Oñate 04], and following a different approach, thefinite calculus

method can be employed to tackle volumetric locking. The basis of this method consists

in the satisfaction of the equations of balance of momentum in a finite size domain.

Volumetric locking is overcame by adding enhancing terms toequations obtained from a

Taylor expansion where only the high-order ones are retained.

The B̄ (readB-bar) approach introduced by Hughes [Hughes 77] was also proposed to

solve nearly incompressible problems. This method consists in splitting the strain-displace-

ment matrix into its dilatational and deviatoric components. The former term is then replaced

by another (under evaluated) one in order to reduce the contribution of the volumetric

component to the solution. In a later work, Simo and co-authors [Simo 85] showed that

theB̄ method resulted for Finite Element approximations constructed based on a three-field

variational formulation. The authors then formulated themixed variational methods, where

the goal was to construct an assumed-strain approach in which only the dilatational part of the

displacement gradient would be the independent variable. The formulation was developed

in order to account for the incompressibility constraint which results from the plastic flow

volume preservation [Simo 98].

With the goal of overcoming volumetric locking, de Souza Netoet al. [de Souza Neto 96]

introduced theF̄ (readF-bar) method. This method consists in modifying the standard

finite element internal force vector by replacing the deformation gradientF with an assumed

modified gradient,̄F, when computing the Cauchy stress tensor. The result is a constraint

relaxation, allowing to overcome volumetric locking pathologies in large strain hyperelastic

and plastic problems. ThēF method was later applied to linear triangular and tetrahedral

elements in the large strain analysis of nearly incompressible solids by de Souza Neto and

co-workers [de Souza Neto 05].

Another technique to tackle locking pathologies is theEnhanced Assumed Strain(EAS)

method, firstly introduced by Simo and co-authors [Simo 90b,Simo 92]. Starting from a

three-field variational formulation, the strain field of each finite element can be enlarged

with the inclusion of a set of enhancing internal variables,gathering a wider dimension for
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the deformation subspace of the element and, therefore, resulting in additional deformation

modes. However, the use of a large number of enhancing variables will inevitably lead

to a computationally ineffective element. As examples of EAS-based Finite Element

formulations, the 21-EAS variables approach of Andelfingerand Ramm [Andelfinger 93],

as well as the 18-EAS variables solid [Alves de Sousa 02] and 12-EAS variables solid-

shell [Alves de Sousa 03] elements can be cited, among many others [Korelc 96, Roehl 96,

César de Sá 99, Armero 00, Kasper 00, Piltner 00, César de Sá 02, Korelc 10, Caseiro 13].

Pantuso and Bathe [Pantuso 95] presented a linear 2D quadrilateral element with continuous

pressure interpolation enhanced with a 6 parameter field. The element was applied to linear

problems in incompressibility and fluid flow, and extensionsto axisymmetry and three-

dimensional cases were also presented. In a later work [Pantuso 97], the formulation was

expanded to incompressible problems in the finite strain regime. However, the authors

concluded that the element was not suitable for this kind of analysis due to the development

of hourglass modes, corresponding to the appearance of excessively large non-physical

eigenvalues.

When considering enhanced strain techniques, low-order displacement based trian-

gle/tetrahedral elements show no improvement when considering the additional strain

degrees-of-freedom [Reddy 95]. However, for the case of a u-p formulation, it is possible to

select effective enhanced strain modes leading to stable mixed formulations [Lovadina 03,

Auricchio 05]. In this context, Zienkiewiczet al. [Zienkiewicz 00] introduced amixed-

enhanced strain stabilisation techniquethat was later on applied by Taylor [Taylor 00]. The

latter author employed a three-field form involving continuous displacements and pressures

and discontinuous volume change in the numerical analysis of small and finite deformation

problems using low-order tetrahedral elements. In addition, an enhanced strain technique

was used to stabilise the formulation when considering nearly incompressible problems.

In their work, Mahnken and co-workers [Mahnken 08a, Mahnken08b] applied volume and

area bubble functions to enhance the displacement and strain fields, respectively, leading

to significant damping of oscillations in mixed tetrahedrons in the small strains regime.

This work was further extended by Caylak and Mahnken [Caylak12] to hyper-elasticity

at large deformations by introducing constant stabilisation matrices in the iterative Newton

algorithm.

In order to specifically eliminate transverse shear locking, theAssumed Natural Strain

(ANS) method was developed. The methodology was first implemented by Hughes and

Tezduyar [Hughes 81] for Mindlin plates and later for shell elements by Dvorkin and Bathe

[Dvorkin 84]. The ANS method consists in interpolating the strain field at a set of distinct

points (known astying points) whose strain terms will replace the standard strain values

coming from the quadrature points. This technique has been applied in the improvement of
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reduced integration shell elements [Belytschko 94] as wellas to fully and reduced integration

solid-shell elements, as can be seen in [Hauptmann 98, Sze 00, Cardoso 08, Schwarze 09,

Schwarze 11], to name only a few.

In their work, Bonet and Burton [Bonet 98] proposed anaveraged nodal pressure

tetrahedron in an explicit framework. In this technique nodal volumes are defined, which

are then used to average the nodal pressures over each element. Based on this concept, a

nodally averaged strain field formulation was proposed by Dohrmannet al. [Dohrmann 00]

for small strain applications. This formulation was then extended to finite strain problems

by using the deformation gradient tensor as the main kinematic variable [Bonet 01] or by

employing an additional stabilisation term based on a modified material law [Puso 00].

Geeet al. [Gee 09] improved the formulation proposed by Puso and Solberg [Puso 00]

by introducing a general splitting of the stress into volumetric and isochoric components in

a variational consistent manner. By applying the stabilisation to the isochoric components,

the uniform nodal strain method becomes stable while maintaining the benefits coming of

the nodally averaged approach with respect to the volumetric stress components. Andrade

Pireset al. [Andrade Pires 04] derived an implicit version of the averaged nodal pressure

formulation, and a linear triangle for implicit plane strain and axisymmetric analysis of

nearly incompressible solids under finite strains was then obtained. Thenodally integrated

continuous element(NICE), developed by Krysl and Zhu [Krysl 08], was derived from

a weighted residual statement that weakly enforces both thebalance and the kinematic

equations, being proposed to specifically solve volumetriclocking. In this assumed-strain

technique, the weak kinematic equation is separately considered from the weak balance

equation, aimed to satisfy ita priori. This methodology was successfully applied to

triangular, tetrahedral and hexahedral elements [Krysl 08], as well as to Reissner-Mindlin

plates [Castellazzi 09]. More recently, Krysl and Kagey [Krysl 12] proposed a modification

to the NICE elements, in order to eliminate the sensitivity to mesh distortion present in

the original formulation. Castellazzi and Krysl [Castellazzi 12] improved the NICE linear

elements by deriving, in a consistent manner, a patch-averaged strain matrix for each node,

leading to a smooth representation of the stress and strain fields.

In the last years, significant research effort has been employed in the development of

the so-calledsolid-shellclass of elements. The main goal of these elements is to combine

the advantages of both solid and shell elements. This type offormulation is particularly

attractive as only displacement degrees-of-freedom are used in its kinematic description,

allowing to automatically account for 3D constitutive relations (e.g., plasticity) and to obtain,

as a consequence, a correct prediction of thickness changesin shell-like structures. Solid-

shell elements also show strong advantages in numerical simulations involving double-

sided contact situations, due, once again, to the correct modelling of the stress and
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strain fields through the thickness direction. In addition,also as a result of rotational

degrees-of-freedom not being employed, the coupling with other solid elements in the mesh

is straightforward and, most importantly, there is no need for non-trivial update procedures

for rotation-like nodal variables in nonlinear geometric formulations. Nevertheless, this

class of elements is also affected by locking pathologies when considering incompressible

materials, high length-to-thickness ratios and/or when modeling curved structures. Relevant

Finite Element solid-shell formulations are described in [Hauptmann 98, Vu-Quoc 03a,

Valente 04b, Alves de Sousa 05, Alves de Sousa 06b, Harnau 06,Reese 07, Schwarze 09],

and references therein.

5.3 Treatment of Locking in Isogeometric Analysis - A

Review

Since the introduction of IGA, it has been shown that the highregularity properties of the

employed functions can lead in many cases to superior accuracy per degree-of-freedom with

respect to standard FEM (see, for example, [Cottrell 06, Cottrell 07, Cottrell 09]).

However, it is well-known that NURBS-based element formulations are not completely

free from locking pathologies. This can be seen, for instance, in the work of Echter and

Bischoff [Echter 10] where the performance of classical Finite Elements and NURBS-based

elements was compared. In this work, convergence rates wereanalyzed, as well as the

appearance of transverse shear and membrane locking. The authors concluded that the higher

order continuity of the NURBS basis functions can significantly improve the quality of the

numerical results. Nevertheless, the authors also state that the use of linear, quadratic or

cubic basis functions can still lead to results that are not locking-free.

Therefore, the alleviation of pathologies such as volumetric, shear and membrane

locking in NURBS-based elements is still an open issue. Elguedj et al. [Elguedj 08]

employed theB̄ and F̄ projection methods to avoid volumetric locking in small andlarge

deformation elasticity and plasticity problems in high-order solid NURBS elements. This

projection methodology consists in splitting the volumetric and deviatoric components of

the strain-displacement/deformation gradient matrix, then calculating a new volumetric

counterpart in a projected space of one order lower than the displacement space. Due to the

higher inter-element continuity in the IGA formulation, this projection must be performed

at the patch level. Numerical results show that the methodology is able to obtain good

convergence rates and good quality solutions. It was also shown that theF̄ method can

alleviate shear locking for quadratic and higher-order basis functions. Taylor [Taylor 11]

proposed a formulation based on a three-field variational structure for the analysis of near
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incompressible solids in the large deformation regime. It is shown that a formulation where

displacements, mean stress and volume variables are independently approximated may be

used to efficiently solve this kind of problems. Cardoso and César de Sá [Cardoso 12]

combined the EAS method with isogeometric analysis to alleviate volumetric locking in 2D

elastic problems. The choice of the EAS parameter was motivated by a subspace analysis

of the incompressible deformation subspace [Alves de Sousa03]. However, this formulation

requires anad-hocstabilization term to prevent spurious solutions arising when higher-order

NURBS polynomials are employed.

Focusing specifically in the alleviation of transverse shear locking, Echter and Bischoff

[Echter 10] have extended the Discrete Shear Gap (DSG) method to NURBS-based beam

elements. Beirão da Veigaet al. [Beirão da Veiga 12] implemented an isogeometric

collocation method for straight planar Timoshenko beams, based on a mixed formulation

scheme and leading to a shear locking-free formulation, which has been extended to spatial

rods by Auricchioet al. [Auricchio 13]. Bouclieret al. [Bouclier 12] investigated the use of

selective reduced integration and theB̄ strain projection methods as means of alleviating

shear and membrane locking in planar curved beams. In a laterwork [Bouclier 13b],

the same authors employed this methodology to alleviate locking pathologies in 2D solid

elements for the analysis of both thick and thin beams. In addition, a simple extension to

3D NURBS based solid-shell elements was also presented. More recently, Bouclier and

co-workers [Bouclier 13a], proposed two solid-shell NURBSelements. The first uses a

B̄-formulation, leading to a high quality element but with a fully populated global stiffness

matrix. To overcome this drawback, the authors then proposed a local least-squares type of

procedure to create a locally projected̄B. This methodology allowed to obtain the global

stiffness matrix in a simpler and more effective manner, butat the expense of a decrease in

the element accuracy.

In the scope of plate/shell elements, Echter and co-workers[Echter 13] have proposed

a hierarchic family of isogeometric shell formulations. Although being based on a non-

mixed concept, these methods are able to remove transverse shear and curvature thickness

locking. Membrane locking is, in this case, alleviated by means of the DSG method

or, alternatively, by a hybrid-mixed formulation based on atwo-field Hellinger-Reissner

variational principle (displacements and stress fields). To alleviate shear locking in Reissner-

Mindlin plate elements, Thaiet al. [Thai 12] have implemented a stabilization technique

that consists in modifying the shear terms of the constitutive matrix. Hosseiniet al.

[Hosseini 13] proposed a solid-like shell element, a class of shell elements characterized

by possessing only displacement degrees-of-freedom but shell kinematics. In order to

obtain a complete 3D representation of the shell, the authors employed NURBS/T-Splines

basis functions to parametrize the mid-surface and linear Lagrange shape functions in the
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thickness direction. Benson and co-workers [Benson 11] proposed a quadratic rotation-free

isogeometric shell formulation with a 2× 2 reduced integration, reporting a significant

reduction in the computational costs. In a later work, Benson et al. [Benson 13]

proposed an isogeometric quadratic blended shell formulation and concluded that the use

of uniformly reduced integration leads to a computationally efficient formulation. Kiendl

et al. [Kiendl 09] developed an isogeometric Kirchhoff-Love shell element for geometric

nonlinear applications. This formulation relies on displacement degrees-of-freedom only

and due to the Kirchhoff kinematics shear locking is precludedab initio.

In the following, the EAS and ANS methodologies for locking treatment in FEM are

described in detail. In addition, it is proposed the extension of the ANS method in order to

alleviate locking pathologies in Isogeometric Analysis.

5.4 The Enhanced Assumed Strain Method

Introduced by Simo and co-authors [Simo 90b, Simo 92], the Enhanced Assumed Strain

(EAS) method propose the improvement of the compatible strain field Eu by means of an

enhanced strain fieldEα . The basis of the EAS method is the Veubeke-Hu-Washizu three-

-field functional [Bischoff 97, Valente 04b] that, for static cases, is written as

ΠVHW(u,E,S) =
∫

V
W(E)dV +

∫

V
S :

[
1
2

(
FTF− I2

)
−E

]
dV −Πext, (5.16)

in whichW is the strain energy and the virtual work of the external loading Πext is given by

Πext =
∫

V
u ·bρdV +

∫

SN

u · tdS, (5.17)

whereb andt are the prescribed volume and traction vectors over the control volumeV and

surfaceSN. In Equation 5.16, the displacement vectoru, the Green-Lagrange strain tensorE

and the Second Piola-Kirchhoff stress tensorSare taken as the independent variables.

The enhanced strain field can be decomposed into a displacement-based and an incom-

patible (enhanced) part, expressed as

E = Eu+Eα . (5.18)

This additive approach for the total strain field, introduced in [Simo 90b] for linear

problems, can be still applied in nonlinear problems [Valente 04b, Miehe 04], being

computationally simpler than the multiplicative decomposition of the deformation gradient

originally introduced in [Simo 92].

By imposing the orthogonality condition [Simo 90b] betweenthe stress field and the

enhancing strain field ∫

V
S : Eα = 0, (5.19)
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the functional in Equation 5.16 can be re-written as

ΠHWV(u,Eα) =

∫

V
W(Eu+Eα)dV −Πext, (5.20)

which only has two independent variables. By applying the Gâteaux derivative, one can

obtain the weak form of the modified functional [Vu-Quoc 03b], expressed as

δΠ(u,Eα) = δΠint −δΠext, (5.21)

where

δΠint =
∫

V
(δEu+δEα) :

∂W (Eu+Eα)

∂ (Eu+Eα)
(5.22)

and

δΠext =
∫

V
δu ·bρdV +

∫

SN

δu · tdS. (5.23)

Developing a truncated Taylor series around an arbitrarynth state, the weak form can be

expanded to obtain [Bischoff 97]:

δΠ
(

n+1u,n+1Eα
)
≈ δΠ

(nu,nEα)+Ψ [δΠ]
(nu,nEα) .

(
n+1

nu,n+1
nEα

)
. (5.24)

5.4.1 Implementing the EAS method

In the element domain, and by making use of the standard isoparametric compatible shape

function arranged in matrix form(N), the displacement field can be interpolated as

u ≈ uh = Nd,

δu ≈ δuh = Nδd, (5.25)

n+1
nu ≈ n+1

nuh = Nn+1
nd, (5.26)

whered is the vector of elemental degrees-of-freedom and the superscript (·)h represents,

as stated before, the Finite Element approximation. Moreover, it is possible to define the

relation between the enhanced Green-Lagrange strain tensor andd, over the element domain,

in the form

E = Bd+Bαααα, (5.27)

whereB andBα are the strain-displacement operators for the displacement and enhanced

variables, respectively. The second member of the right-hand side of the linearised

weak form presented in Equation 5.24 can be re-written as [Valente 04b, Bischoff 97,

Vu-Quoc 03b, Klinkel 97]

Ψ [δΠ] (d,ααα) ·
(n+1

nd,n+1
nααα

)
=

∂
(
δΠint −δΠext

)

∂ (d,ααα)
·
(n+1

nd,n+1
nααα

)
. (5.28)
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According to the interpolation functions, the two variations introduced before can be

expressed as

δΠint (d,ααα) = δdT
∫

V
B̂TŜdV +δαααT

∫

V

(
B̂α)T

ŜdV, (5.29)

and

δΠext(d) = δdT
∫

V
NTbρ dV +δdT

∫

SN

NTt dS. (5.30)

Taking Equation 5.29 into more detail, it can be stated that

Ψ
[
δΠint

]
·
(n+1

nd,n+1
nααα

)
=

∂
(
δΠint

)

∂d
· n+1

nd+
∂
(
δΠint

)

∂ααα
· n+1

nααα = (5.31)

= δdT [(K̂uu+ K̂uu
NL

)n+1
nd+ K̂uα n+1

nααα
]
+δαααT [K̂αu n+1

ndK̂αα n+1
nααα

]
.

The linearK̂uu and geometric nonlinear stiffnesŝKuu
NL matrices are defined in the same

manner as in a conventional displacement-based formulation and as described in Section

4.3.2. Due to the fact that the enhanced parameters are included in the variational

formulation, two coupling stiffness matricesKuα and Kαu as well as a fully-enhanced

stiffness operatorKαα must be employed. These matrices have the same structure as those

defined for the linear formulation and presented by Simo and Rifai [Simo 90b],i.e.,

K̂uα =
(
K̂αu)T

=
∫

V
B̂TC4B̂αdV, (5.32)

and

K̂αα =
∫

V

(
B̂α)T

C4B̂αdV. (5.33)

Each EAS parameter that is added to a given the Finite Elementformulation will increase

the number of columns ofBα by one.

Due to the fact that an additive approach is being employed, there is no need to include

geometric nonlinear stiffness matrices associated with the enhancing variables, leading to

a straightforward algorithmic extension of the linear case[Valente 04b]. The formulation

leads to an equivalent system of equations that, in matrix form, can be expressed as

[
K̂uu+ K̂uu

NL K̂uα

K̂αu K̂αα

]{
n+1

nd
n+1

nααα

}
=

{∫
V NTbρ dV +

∫
SN

NTt dS−
∫
V B̂TŜ dV

−
∫
V

(
B̂α)T

ŜdV

}
. (5.34)

5.4.2 Subspace Analysis Framework

When developing new EAS-based finite elements, it is important to take into account the

number and type of enhancing parameters used. Many authors employed this methodology,

but, in some cases, the choice of the enhanced parameters were not fully justified and are

mostly based ontrial and error or inspection. César de Sá and Owen [César de Sá 86]

developed the framework ofsubspace of deformationand based on this concept, concluded
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that volumetric locking occurs when a solution does not appear properly represented in the

subspace of approximated incompressible deformations.

Mathematically, a given Finite Element formulation has a characteristic space of

admissible deformations with a dimension corresponding tothe number of element degrees-

-of-freedom. However, different subspaces can be defined asa function of the constraints to

be considered. A subspace defines the finite set of deformation modes that a single element

can represent under general loading and boundary conditions. If it is imposed a deformation

pattern to the element which cannot be reproduced by a given combination of the deformation

modes from its subspace, then the formulation will suffer from locking effects.

Considering a linear space of admissible solutionsU , the idea of the subspace analysis

methodology is to determine the displacement fieldu that minimizes the energy of the

system. The displacement fieldu must be contained in a subspace ofU . The constraint

for isochoric deformations, necessary for instance to model plasticity or some rubber-like

material (ν → 0.5) defines a new subspace, here denoted asI . This condition can be

expressed asI ⊂ U for the space of incompressible deformations. TakingUh, Ih anduh

as finite element approximations ofU , I andu, respectively, it is then possible to state that

Quh = 0, (5.35)

as a possible way to define the subspace of incompressible deformationsIh, such as

Ih = {uh ∈Uh : Quh = 0}. (5.36)

To avoid the trivial solution
(
uh = 0

)
, the displacement fielduh should belong to the

subspace of incompressible deformationsIh or, in other words,uh should lie in the nullspace

of Q. If this condition is satisfied, then the approximated displacementsuh will result from

a linear combination of a given basis ofIh elements. If, under a set of external forces and/or

boundary conditions, the solution does not belong to the subspaceIh (defined in the previous

equation) volumetric locking will occur.

When considering small strains, the incompressibility condition can be written in the

three-dimensional space as






εξξ

εηη

εζζ





=

∫

V

(
δu
δξ

+
δv
δη

+
δw
δζ

)
dV = 0. (5.37)

By assuring that the integrand function in Equation 5.37 is zero, the incompressibility

condition is respected. After a Finite Element discretization, this condition results in

δu
δξ

+
δv
δη

+
δw
δζ

=
[
Ni,ξ Ni,η Ni,ζ

]
di = 0, (5.38)
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whereNi, j is the derivative of the shape functionNi with respect toj, while di represents the

vector of nodal displacements.

Following the reasoning presented for volumetric locking,it is possible to extend

the methodology for the analysis of shear locking in three-dimensional solid elements

[Caseiro 13]. Thus, for the subspace analysis of transverseshear locking the transverse shear

strain energy must vanish for low thickness values,i.e.,

Huh = 0, (5.39)

where the subspace of transverse shear deformation can be defined asTh, in the form

Th = {uh ∈Uh : Huh = 0}. (5.40)

Equation 5.39 is a simplified way of imposing that the out-of-plane deformation energy,

approximated by FEM, must tend to zero when the element thickness also tends to zero (i.e.,

Kirchhoff hypothesis). In its discrete form, Equation 5.39will lead to three sets of equations,

that is
{

εξη

εξζ

}
= Hξ uh = 0, (5.41)

{
εξη

εηζ

}
= Hηuh = 0, (5.42)

{
εξζ

εηζ

}
= Hζ uh = 0, (5.43)

depending if the normal direction is aligned with theξ , η or ζ direction, respectively.

Therefore, as for the incompressible subspace detailed before, the displacement fielduh

should be contained in the nullspace ofH in order the numerical solution can avoid transverse

shear locking effects. Based on an analysis performed for shell elements [César de Sá 02],

this corresponds to the condition

1
2

[
0 Ni,ξ +Ni,ζ Ni,η +Ni,ζ

]
di = 0, (5.44)

that must be respected for theζ direction. In an analogous way, the following conditions

1
2

[
Ni,ξ +Ni,η 0 Ni,η +Ni,ζ

]
di = 0, (5.45)

and
1
2

[
Ni,ξ +Ni,η Ni,ξ +Ni,ζ 0

]
di = 0, (5.46)

can also be stated for theη andξ directions, respectively, which – combined – would apply to

general purpose 3D finite elements. Therefore, a shear-locking free solid finite element (i.e.,

without a preferred thickness direction) can be formulatedby assuring that the conditions in

Equations 5.44 to 5.46 are simultaneously respected.
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5.4.3 The Enhanced Assumed Strain Method for Isogeometric Analysis

The Enhanced Assumed Strain method can be applied to NURBS-based elements using the

same procedure as proposed for the standard Lagrangian-based element in Finite Element

Analysis. In the work of Cardoso and César de Sá [Cardoso 12],the EAS method was

used to alleviate volumetric locking in two-dimensional NURBS-based quadratic elements.

The authors employed the subspace methodology to determinethe isochoric deformation

subspace. It was concluded that using a 3× 3 Gaussian integration scheme, the resulting

subspace would have a dimension of 10. In order to improve thebehaviour of the quadratic

NURBS element, six enhanced parameter were then added in order to obtain an isochoric

deformation subspace with dimension 16. However, in order to obtain stable results, a

stabilization parameter was employed.

In a more comprehensive way and by making use of the subspace analysis framework

described in the previous section, it is possible to performa general analysis for three-di-

mensional NURBS-based elements and determine the dimension of the subspaces associated

with both volumetric and shear locking effects, with the results being presented in Table 5.1.

It can be seen that, for the case of the quadratic NURBS-basedelement, by making use

of a 3×3×3 Gaussian integration scheme, the isochoric deformation subspace will have a

dimension of 55. In order to alleviate volumetric locking effects, the isochoric subspace must

have a dimension of 80. Therefore, it is necessary to introduce 25 enhancing parameters into

the element formulation. Consequently, for each element a 25×25 matrix (corresponding

to the K̂αα stiffness matrix in Equation 5.34) must be inverted. As a consequence, the

computational cost of the 3D-EAS formulation will be higher. In addition, the use of such

a high number of enhancing parameter would lead to numericalinstabilities and the need

of using stabilization parameters. A very similar result isobtained for the case of shear

locking. It can also been seen from Table 5.1 that the adoption of a lower integration scheme

would require the use of a lower number of enhancing parameters. However, these reduced

integration schemes may also lead to numerical instabilities.

Initial attempts to provide a high-order NURBS-based three-dimensional solid element

employing the EAS method were performed during the current research work. However,

due to the high computational costs required and stability issues that plagued the obtained

solutions, the implementation was not considered as successful. Nevertheless, the author

of this Thesis believes that the extension of the EAS method to IGA may be an interesting

future research topic that should be explored, since this methodology is able to alleviate

diverse non-physical pathologies such as volumetric, shear and thickness locking. In that

sense, the subspace analysis framework presented in the previous section can prove to be a

valuable tool.
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Table 5.1: Number of deformation modes obtained by different NURBS-based formulations.

Element Order Integration Scheme Nullity(Q) Nullity(H i)

1 2×2×2 17 of 23 18 of 23

1 1×1×1 23 of 23 23 of 23

2 3×3×3 55 of 80 57 of 80

2 2×2×2 73 of 80 73 of 80

2 1×1×1 80 of 80 80 of 80

3 4×4×4 129 of 191 132 of 191

5.5 The Assumed Natural Strain Method

As mentioned before, the Assumed Natural Strain (ANS) approach was firstly introduced in

the works of Hughes and Tezduyar [Hughes 81] and MacNeal [MacNeal 82] in the context of

plate elements for linear analysis. The key idea behind the ANS method consists of selecting

a set of tying (alternative interpolation) points that willreplace the standard integration ones

for the calculation of the strain components.

In their work, Dvorkin and Bathe [Dvorkin 84] proposed a general 4-node shell element,

leading to the well known MITC4 shell element, where MITC stands formixed interpolation

of tensorial components. In the MITC4 only the transverse shear strain components are

interpolated in order to alleviate shear locking. In a laterwork [Bathe 86], the same authors

proposed an extension of the formulation to quadratic 8-node shell elements, leading to the

MITC8 element. In this element, in addition to the transverse shear strain components, also

the in-layer strains were interpolated in order to avoid membrane locking. Bucalem and

Bathe [Bucalem 93] further extended this methodology to a 16-node shell element. In the

numerical examples presented, the resulting MITC16 formulation did not exhibit shear and

membrane locking effects. A variational basis for these proposes can be found, for example,

in [Militello 90].

In the years that followed, the ANS methodology was applied in order to alleviate shear

and membrane locking in different applications of the FEM, as for example in the works of

[Belytschko 94, Hauptmann 98, Sze 00, Cardoso 08, Schwarze 09], among many others.

5.5.1 The ANS Method for Isogeometric Analysis

In the following, a detailed description of the proposed extension of the Assumed Natural

Strain method to IGA will be given. With the objective of facilitating the exposition of

the methodology, a notation for defining the various frames that slightly differs from the

one employed in Chapters 3 and 4 is used. However, the new notation is clearly presented
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throughout the text and in the accompanying figures.

In the small strain regime, a given strain component at each integration point, in the

covariant frame, can be expressed as

εi j (ξ ,η,ζ ) =
1
2

(
∂u
∂ξi

g j +
∂u
∂ξ j

gi

)
, (5.47)

whereξ1 = ξ , ξ2 = η andξ3 = ζ are the natural coordinate system (described in Chapter 4),

while the covariant base vectors are given asgi =
∂xxx
∂ξi

. Equation 5.47 can be also expressed

in matrix form as

εεε (ξ ,η,ζ ) = B̃(ξ ,η,ζ )d, (5.48)

in which B̃(ξ ,η,ζ ) is the standard compatible strain-displacement matrix in the covariant

frame computed at each integration point. In the framework of IGA, d corresponds to the

vector of displacement degrees-of-freedoms at the controlpoints (control variables).

The Choice of Tying Points

The current research work is focused on the quadratic NURBS-based element, which will be

employed in the following to present a detailed descriptionof the proposed methodology.

Following the original work of Bucalem and Bathe [Bucalem 93] for Lagrangian basis

functions, the selection of the tying points for the second-order element is given in Figure

5.3. To define the ANS strain-displacement matrix in the context of IGA, a set of local

bivariate basis functions must be created.

The NURBS patch consisting of four second-order elements aspresented in Figure 5.4 is

considered in order to present the different spaces more clearly. In this figure, the integration

points (circles) and the tying points (triangles) for the interpolation ofεξξ andεξζ strain

components in the top left element are represented. The univariate basis functions coming

from the knot vectors that define the mesh are denoted as theglobal space. For each element,

it is also possible to define two local knot vectors that will be used to define thelocal space.

These new knot vectors are open and contain only one non-zeroknot span. It is important to

note that the basis functions along theξ -direction is of one order lower than the one along

theη-direction, due to the fact that a lower number of tying points is considered in the latter.

As mentioned before, following the work of Bucalem and Bathe[Bucalem 93], the

choice of the tying points is closely related to the order of the quadrature employed in the

Finite Element formulation. In the current work, followingclassical 3D solid Lagrangian

formulations, afull integrationscheme is defined when(p+1), (q+1) and(r+1) quadrature

points are used in a given element for theξ , η and ζ -directions, respectively. As can

be seen in Figure 5.4, forεξξ and εξζ components, the points from a one-order lower

Gaussian quadrature are employed in theξ -direction, while the points corresponding to
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full Gaussian integration are employed in theη-direction. An analogous reasoning is

performed for theεηη and εηζ components of the strain-displacement operator. For the

in-plane componentεξη , the points from a one-order lower Gaussian integration scheme

are considered. Experimentations using a lower number of integration points were also

performed, leading, however, to the appearance of numerical instabilities and spurious

hourglass deformation modes.

5

3

3

1

3

1

5

3

3

1

3

1

Figure 5.3: Representation of the tying points for the integration of εξξ andεξζ (left), εηη andεηζ

(centre) andεξη (right).
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Figure 5.4: Global and local spaces for the quadratic NURBS element (interpolation ofεξξ andεξζ

components).

The Assumed Strain Field

In standard Lagrange-based elements, after computing the strain-displacement matrix at the

tying points, a set of interpolation functions are used to associate the tying points with the
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integration points. This procedure leads, in the end, to assumed covariant strain components.

Following the tying point sets defined in Figure 5.3, each component of the assumed strains

can then be expressed as

εANS
i (ξ ,η,ζ ) =

ni
t

∑
j=1

Nj ε̄i

(
ξ̂ j , η̂ j ,ζ

)
, (5.49)

whereni
t is the number of tying points associated with theith strain component andNj

is the j th component of the vectorN which arises from the tensor product of the local

basis functions calculated at each conventional integration point. In the previous equation,

ε̄i

(
ξ̂ , η̂,ζ

)
are the coefficients of the local space which interpolate thecompatible strains at

the tying points with coordinates
(

ξ̂ , η̂ ,ζ
)

. Note that the third coordinate follows the one

obtained by the quadrature rule being employed. Using the notation presented in Figure 5.4,

the vectorN can be expressed as

N =
[
N̄k

3,2M̄k
2,1 N̄k

2,2M̄k
2,1 N̄k

1,2M̄k
2,1 N̄k

3,2M̄k
1,1 N̄k

2,2M̄k
1,1 N̄k

1,2M̄k
1,1

]T
, (5.50)

whereN̄k
i,p andM̄k

j ,q are the local univariate NURBS basis functions calculated at the current

integration pointk. It is then possible to project the local compatible strainε̄εε
(

ξ̂ , η̂,ζ
)

onto

the global space, leading now to a global compatible strainεεε
(

ξ̂ , η̂,ζ
)

, by performing the

following operation

εεε
(

ξ̂ , η̂,ζ
)
= M ε̄εε

(
ξ̂ , η̂,ζ

)
, (5.51)

whereM , with number of rows and columns equal to the number of tying points, is obtained

from the tensor product of the local basis function calculated at each tying point. As an

example, this matrix can be computed for the tying point set given in Figure 5.4 as

M =




N̄1
3,2M̄1

2,1 N̄1
2,2M̄1

2,1 N̄1
1,2M̄1

2,1 N̄1
3,2M̄1

1,1 N̄1
2,2M̄1

1,1 N̄1
1,2M̄1

1,1

N̄2
3,2M̄2

2,1 N̄2
2,2M̄2

2,1 N̄2
1,2M̄2

2,1 N̄2
3,2M̄2

1,1 N̄2
2,2M̄2

1,1 N̄2
1,2M̄2

1,1

N̄3
3,2M̄3

2,1 N̄3
2,2M̄3

2,1 N̄3
1,2M̄3

2,1 N̄3
3,2M̄3

1,1 N̄3
2,2M̄3

1,1 N̄3
1,2M̄3

1,1

N̄4
3,2M̄4

2,1 N̄4
2,2M̄4

2,1 N̄4
1,2M̄4

2,1 N̄4
3,2M̄4

1,1 N̄4
2,2M̄4

1,1 N̄4
1,2M̄4

1,1

N̄5
3,2M̄5

2,1 N̄5
2,2M̄5

2,1 N̄5
1,2M̄5

2,1 N̄5
3,2M̄5

1,1 N̄5
2,2M̄5

1,1 N̄5
1,2M̄5

1,1

N̄6
3,2M̄6

2,1 N̄6
2,2M̄6

2,1 N̄6
1,2M̄6

2,1 N̄6
3,2M̄6

1,1 N̄6
2,2M̄6

1,1 N̄6
1,2M̄6

1,1




, (5.52)

whereN̄t
i,p andM̄t

j ,q are the local univariate NURBS basis functions calculated at the tying

point t. Matrix M presented in Equation 5.52 is computed using the local basisfunctions at

the tying point coordinates, which are the same for each element of the patch. Consequently,

this matrix needs only to be computed once for each tying point set at the beginning of the

analysis, leading to lower computational costs.
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Chapter 5. Finite Element Technology

Combining Equations 5.49 and 5.51 leads to the final form of the assumed natural strain

field as

εANS
i (ξ ,η,ζ ) =

ni
t

∑
j=1

L jεi

(
ξ̂ j , η̂ j ,ζ

)
, (5.53)

whereL j is the j th component of the vectorL = NTM−1. For the numerical implementation

in the Isogeometric Analysis framework, the previous equation can be written in terms of

strain-displacement operators as

B̃ANS
i (ξ ,η,ζ ) =

ni
t

∑
j=1

L j B̃i

(
ξ̂ j , η̂ j ,ζ

)
, (5.54)

where B̃i corresponds to theith line of the B̃ matrix. The numerical implementation of

the ANS procedure implies the substitution of lines of the compatible strain-displacement

operator by the ones coming from the ANS strain-displacement operator, which were

computed in the associated tying points. Note that, in accordance with the tying point

sets given in Figure 5.3, the third line of the strain-displacement operator, corresponding

to the εζζ strain component, remains unchanged,i.e., is the same as in the compatible

strain-displacement matrix.

The interpolation based on the tying points, for the NURBS-based formulation, is inde-

pendent of the element-based (natural)ζ coordinate. This is typical for shell formulations,

and is adopted in the present work for trivariate NURBS constructions, thus justifying the

so-calledsolid-shellconcept.

The extension of the ANS methodology to the nonlinear regimeis straightforward.

Once the ANS strain-displacement operator in the corotational frameB̂ANS is computed

it will replace the standard strain-displacement operatorin the computation of the strain

components and for the tangential stiffness matrixK̂ . It should be noted that, when

accounting for geometric nonlinearities, the corresponding stiffness matrixK̂NL (given by

Equation 4.48) remains unchanged.

In Box 5.2, the algorithm to obtain the Assumed Natural Strain strain-displacement

operatorBANS is presented. A detailed algorithm describing the implementation of the ANS

methodology for NURBS-based elements in the nonlinear regime is presented in Box 5.3.
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5.5. The Assumed Natural Strain Method

Box 5.2: Algorithm for the computation of the Assumed Natural Strain strain-displacement operator.

1. Compute the strain-displacement operator in the covariant frame for the current integration point

B̃(ξ ,η ,ζ )

2. DO tying point set cycle

(a) ComputeN based on the local basis functions and the integration points coordinates (Equation

5.50)

(b) ComputeM based on the local basis functions and the tying points coordinates (Equation

5.52)

(c) DO tying point cycle

i. Compute the strain-displacement operator in the covariant frame at the tying points

coordinates̃B
(

ξ̂ , η̂ ,ζ
)

ii. Compute the ANS strain-displacement operatorB̃ANS (ξ ,η ,ζ ) (Equation 5.54)

(d) END DO

(e) Replace the appropriate line ofB̃(ξ ,η ,ζ ) by the ones from̃BANS (ξ ,η ,ζ )

3. END DO

Note: The operatorsN andM can be precomputed outside the element cycle for lower computational costs.

In this algorithm, they are included in order to more clearlypresent the developed approach.
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Chapter 5. Finite Element Technology

Box 5.3: Algorithm for the Assumed Natural Strain method forNURBS-based formulations (should

be used in conjunction with the algorithm from Box 4.2).

1. DO element cycle

(a) Initialise elemental stiffness matrix and internal force vector

(b) Recover the local axisnr from the last converged increment

(c) DO integration point cycle

i. Calculate the deformation gradient for the mid-point
n+ 1

2
nF and endn+1

nF configurations

ii. Use the polar decomposition algorithm in Box 4.1 to obtain the rotation matrices
n+ 1

2
nR

andn+1
nR

iii. Update the corotational reference system as

n+ 1
2 r =

n+ 1
2
nRnr

n+1r = n+1
nRnr

iv. Compute the compatible strain-displacement matrix in the covariant frame for both mid-

-point
n+ 1

2 B̃ and end
n+1B̃ configurations in the current integration point

v. Compute
n+ 1

2 B̃ANS and
n+1

B̃ANS using the algorithm presented in Box 5.2

vi. Use the natural-to-local transformation operatorT (Equations 4.54 and 4.56) to obtain

the strain-displacement operators in the corotational coordinate system denoted as
n+ 1

2 B̂ANS and
n+1

B̂ANS

vii. Compute the stress and strain fields using
n+ 1

2 B̂ANS and the elastic/elastoplastic

constitutive tensor̂C4

viii. Compute stiffness matrix̂K (Equation 4.47) and the internal forcesf̂ int (Equation 4.49)

using
n+1

B̂ANS

ix. Compute the geometric nonlinear stiffness matrixK̂NL (Equation 4.48) and add this

contribution to the elemental stiffness

x. Store the local axis in the end configurationn+1r to be used in the next increment

(d) END DO

2. END DO
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5.5. The Assumed Natural Strain Method

5.5.2 The Proposed H2ANS Formulation

When developing new Finite Element formulations, it is important to take into account

its computational efficiency. From the literature survey performed at the beginning of the

current chapter, it can be concluded that a great amount of research effort was dedicated

in the improvement of the performance and treatment of locking pathologies in low-order

Lagrangian-based finite elements. One of the main advantages of these Finite Element

formulations is the fact that they usually present a reducedcomputational cost, especially

when employing reduced integration techniques.

In the context of Isogeometric Analysis, it is well known that the linear NURBS-based

formulation provides exactly the same results as standard Lagrangian-based formulations.

Consequently, the lowest order formulation that can take advantage of the NURBS basis

functions corresponds to the development of a quadratic element. In addition, since it is

possible to use quadratic NURBS-based elements to represent most of the usual shapes

studied [Piegl 97, Cottrell 09, Bouclier 13a], it seems to beof great importance to invest

some research effort to improve the performance of such formulations.

This is the motivation which led to the development of a quadratic NURBS-based

solid-shell element extending the concept of the Assumed Natural Strain to IGA. The

proposed formulation will be denoted as H2ANS from hereafter and all the details for its

implementation were given in the previous section.

It is worth mentioning that the procedure to implement the ANS method in NURBS-

-based formulations presented herein is entirely performed at the element level. As a

consequence, this strategy would allow for an easier implementation within available

commercial finite element codes in combination with a Bézierextraction approach in a

similar way, as carried out by Bordenet al. [Borden 11]. The presented formulation can

also be extended to higher-order solid-shell elements in a straightforward manner. One

only needs to define the tying points coordinates accordingly to the degree of the element

under consideration and the strain component being interpolated. The computation of

the vectorN and matrixM is simply obtained from the tensor product of the local basis

functions, as detailed before. However, studies performedduring the current research work

demonstrated that no significant gains were obtained when applying the ANS methodology

to cubic NURBS-based elements. Nevertheless, the development of different element-based

quadrature rules which are optimal for IGA may open up the possibility of extending the

proposed ANS methodology to these higher-order formulations.
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Chapter 5. Finite Element Technology

5.6 A Note on the Alleviation of Volumetric Locking

The Assumed Natural Strain methodology was originally devised in the context of plate and

shell elements to alleviate pathological effects such as shear and membrane locking. Thus,

the ANS method is not adequate to solve or attenuate volumetric locking. In the literature,

this material-based locking is usually dealt with by employing, for instance, the EAS method,

theB̄ or F̄ techniques.

In the following it is shown that the methodology described in Section 5.5 can be

employed to alleviate volumetric locking effects in NURBS-based formulations. The starting

point is based on thēB approach, originally proposed by Hughes [Hughes 80] for theanalysis

of nearly-incompressible media in FEM.

From the equations dealt with in the previous chapters, the strain field can be expressed

in terms of the strain-displacement operatorB as

εεε = Bd,

which can be written as

B =
[
B1 B2 ... Bnn

]
,

wherenn is, in the context of IGA, the number of control points of the element. Each sub-

matrixBi in the previous equation can also be expressed as

Bi =




Ri,x 0 0

0 Ri,y 0

0 0 Ri,z

Ri,y Ri,x 0

Ri,z 0 Ri,y

0 Ri,z Ri,y




. (5.55)

Furthermore, the strain-displacement operatorB can be additively decomposed into its

volumetricBvol and deviatoricBdev contributions as

B = Bvol +Bdev, (5.56)

which are given by the sub-matrices

Bvol
i =

1
3




Ri,x Ri,y Ri,z

Ri,x Ri,y Ri,z

Ri,x Ri,y Ri,z

0 0 0

0 0 0

0 0 0




, (5.57)
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and

Bdev
i =

1
3




2Ri,x −Ri,y −Ri,z

−Ri,x 2Ri,y −Ri,z

−Ri,x −Ri,y 2Ri,z

3Ri,y 3Ri,x 0

3Ri,z 0 3Ri,y

0 3Ri,z 3Ri,y




, (5.58)

respectively. To obtain an improved performance when dealing with incompressible

problems where volumetric locking can be an issue, theBvol matrix can be replaced by

an improved volumetric contribution̄Bvol (which must be formally identical), leading to the

new strain-displacement operator as

B̄ = B̄vol +Bdev. (5.59)

The methodology proposed in Section 5.5 can be promptly usedto compute the improved

volumetric strain-displacement operatorB̄vol. Once again, this study will be focused on

quadratic elements dealt with a full integration rule consisting of (p+1)× (q+1)× (r +

1) integration points. A new tying point scheme is selected, where the location of these

points are given by a reduced Gaussian integration scheme. Aschematic representation of

these tying points can be seen in Figure 5.5. These points will then be used to compute the

components of̄Bvol using the same procedure as the one presented in Section 5.5.1. The

performance of this methodology is assessed in Section 7.3 using two numerical examples

in the linear elastic range, where the newly proposed formulation is denoted as H2PV.

ξ
η

ζ

O

Figure 5.5: Representation of the tying points (triangles)for the computation of thēBvol matrix.
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Chapter 6

Contact for Isogeometric Analysis

A brief state-of-the-art review of the main developments inthe context of

contact mechanics for Isogeometric Analysis is presented.The description of

a general two-dimensional frictionless contact problem isgiven, followed by

a detailed description of the Point-to-Segment algorithm where special

attention is provided to the main aspects of the implementation procedure.

In the context of the Finite Element Method, a contact problem involving large sliding can

be seriously affected by numerical instabilities which areoften associated with non-smooth

contact surface discretizations. This problem can be tackled by employing Hermite, spline or

Bézier interpolations to discretize the master surface. Relevant contributions in this field can

be found in the work of Pietrzak and Curnier [Pietrzak 99], Wriggerset al. [Wriggers 01],

Krstulovic-Oparaet al. [Krstulovic-Opara 02] and Stadleret al. [Stadler 03].

Within an Isogeometric Analysis, and since NURBS are used todescribe the geometry

of the problem under consideration, the surface description is already available and,

therefore, no smoothing procedures are required. Lu [Lu 11]introduced a NURBS

Isogeometric formulation for frictionless contact and concluded that this discretization

alleviates the non-physical contact force oscillations often detected in contact with faceted

surfaces. In a simultaneous parallel study, Temizer and co-workers [Temizer 11] proposed

a Knot-to-Surface (KTS) algorithm as an extension of the classical Node-to-Surface

algorithm. Although the KTS algorithm led to satisfactory qualitative results in various

examples, it delivered excessively stiff contact constraints enforcement. To alleviate this

issue, a mortar KTS approach was also developed, which was able to attain robust and

accurate results. In a later work, the same authors [Temizer12] extended their previous

contribution to the large deformation regime using a 3D mortar-based frictional contact

treatment. The proposed approach presented robust local results even when considering

coarse meshes, leading to smooth pressure and tangential traction distributions. Dittmann

and co-authors [Dittmann 14] proposed an extension to a fully coupled thermomechanically
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Chapter 6. Contact for Isogeometric Analysis

consistent frictional mortar contact formulation suitable for the analysis of contact/impact

problems, allowing to model the energy transfer between thecontact surfaces.

De Lorenziset al. [de Lorenzis 11] proposed a 2D contact formulation based on amortar

approach for normal and frictional contact, combined with asimple integration scheme in

the large deformations regime. Results showed that the proposed methodology presents

a significantly superior performance, when compared with Lagrange discretizations. It

was also shown that in large frictional sliding problems, the tractions histories obtained

are much smoother. In a later work, de Lorenziset al. [de Lorenzis 12] employed a

mortar-based approach in combination an Augmented Lagrangian method to solve large

deformation frictionless problem in 3D analysis. The authors demonstrated that the

NURBS-based approach can lead to significantly better predictions of the contact pressures,

while Lagrangian ones present spurious oscillations and, in some cases, non-physical

negative values.

Kim and Youn [Kim 12] proposed a novel contact matching algorithm for linear elastic

frictionless Isogeometric Analysis contact problems using a mortar method. The employed

methodology resulted in an excellent performance for curved contact surface problems with

nonconforming meshes.

The use of T-Splines for modelling contact presents an advantage over NURBS-based

formulations since T-Spline interpolations are able to represent complex geometries with

a single parametrisation. Following this reasoning, Dimitri et al. [Dimitri 14] employed

T-Splines to model two- and three-dimensional frictionless contact problems between

deformable bodies in the large deformation regime. The problem was solved employing

a Gauss-Point-to-Surface (GPTS) method, while the frictionless contact constraints were

regularized by the penalty method. T-Splines and NURBS presented similar orders

of convergence although T-Splines shows a superior accuracy for a given number of

degrees-of-freedom. However, due to the high number of locations at which the contact

constraints are enforced, numerical instabilities can occur when these constrains are enforced

exactly or nearly exactly. Consequently, the GPTS algorithm should not be used in

conjunction with the Lagrange Multiplier method or with thepenalty method when very

large values of the penalty parameter are considered.

Matzen et al. [Matzen 13] developed a Point-to-Segment (PTS) algorithm as an

straightforward extension of the Node-to-Segment (NTS) algorithm used in two-dimensional

analysis. In this formulation, a set of collocation points is defined in the slave segment

in order to collocate the contact integrals. The numerical examples demonstrated that

the NURBS-based PTS algorithms present superior performance in large sliding contact

problems when compared with Lagrange discretizations.

In this work, an introductory study of contact mechanics in the context of Isogeometric
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Analysis is performed. In the following, the PTS algorithm developed by Matzen and co-

workers [Matzen 13] is described in detail, along with its numerical implementation. This

chapter serves as the starting point for the analysis of problems in the field of contact

mechanics within the research group in which the author of this Thesis is inserted. Therefore,

an effort was carried out to develop a program which can be used in the future for further

developments and implementations in contact mechanics using IGA.

6.1 Normal Contact in Two Dimensions

Consider that two deformable bodies, that occupy distinct positions in the initial configu-

ration, come into contact after a finite deformation process, as seen in Figure 6.1. These

bodies can be classified as master and slave, according to theupperscript indexi = 1 and

i = 2, respectively. The position vectors of a material point belonging to the master and slave

bodies in the current configuration are given asx1 andx2, respectively.

x

y

z

0V 2

n+1V 2

n+1V 1

0V 1

S2
C

S1
C

S2
C

S1
C

x
2

u
2

u
1

n̄

ā

x̄

Figure 6.1: Finite deformation of bodies in a contact problem.

In order to determine the gap between the two bodies, it is required to determine the

Closest Point Projection (CPP) of the slave pointx2 onto the master contact segmentS1
C,

which can be mathematically expressed as

x̄ = minx1⊆S1
C
||x2−x1(ξ ) ||, (6.1)

where ξ is the parametric coordinate of the contact boundary of the master bodyS1
C.

Quantities with an overbar̄(·) are evaluated at the CPP in the parametric spaceξ .

Once the projection̄x is known, the normal gap can be defined as

gN =
(
x2− x̄

)
· n̄, (6.2)

81



Chapter 6. Contact for Isogeometric Analysis

wheren̄ is the outward unit normal on the current master segment at the CPPx̄. Contact

takes place whengN = 0, leading to the appearance of a normal contact pressurepN < 0. In

the case of frictional contact a tangential pressure is alsopresent, but this scenario will not be

considered in the current work. On the other hand, if there exists a gap between the bodies,

thengN ≥ 0 andpN = 0. Therefore, the contact conditions can be stated as

gN ≥ 0, (6.3)

pN ≤ 0, (6.4)

gNpN = 0, (6.5)

which are known as the Hertz-Signorini-Moreu (or alternatively, the Karush-Kuhn-Tucker)

conditions for frictionless contact.

The variation of the normal gapδgN follows from Equation 6.2 as

δgN = δ
[(

x2− x̄
)
· n̄
]
, (6.6)

which leads to

δgN =
(
δx2−δ x̄− x̄,ξ δξ

)
· n̄+

(
x2− x̄

)
·δ n̄. (6.7)

6.2 Description of the Frictionless Contact Problem

The Principle of Virtual Work (PVW) for each bodyi, and neglecting inertia terms, can be

expressed as

δΠ(u,δu) =
2

∑
i=1

∫

V i
Si : δEidV −

∫

V i
ρbi ·δuidV −

∫

Si
N

t i ·δuidS= 0. (6.8)

where the first term corresponds to virtual internal work, while the second and third terms

are related to the virtual work of the external forces. Thus,Equation 6.8 can be re-written as

δΠ(u,δu) =
2

∑
i=1

δΠi
int+δΠi

ext = 0, (6.9)

where

δΠi
int =

∫

V i
Si : δEidV, (6.10)

and

δΠi
ext =−

∫

V i
ρbi ·δuidV −

∫

Si
N

t i ·δuidS. (6.11)

Once the contact interface is known, an additional term mustbe added to Equation 6.9

in order to avoid penetration of the bodies. The PVW including the term dealing with the

contact contributions can then be written as
2

∑
i=1

δΠi
int+δΠi

ext+δΠC = 0, (6.12)
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whereδΠC is associated with the active master-slave contact boundaries set.

There are different strategies that can be applied to solve the contact problem. For

example, the penalty and the Lagrange Multiplier methods, often used in optimisation theory,

can be employed. In the penalty method a contact penalty is added to the active contact

constrains by means of a large penalty parameter. This methodology is easy to implement,

however it only approximates the solution of the problem and, additionally, the use of

large penalty parameters can lead to an ill-conditioned numerical problem. In the Lagrange

Multiplier method the contact constraints are fulfilled in an exact matter, but at the expense

of additional variables. In the current work, the Lagrange Multiplier method is applied to

solve the contact problem.

6.2.1 The Lagrange Multiplier Method

The Lagrange Multiplier method is employed in optimizationtheory to determine a

minimum (or maximum) of a constrained functionalΠ. Mathematically, the minimisation of

the scalar functionalΠ(x) under constraintg(x) can be expressed as

min Π(x), (6.13)

subjected to

g(x) = 0. (6.14)

Using the Lagrange Multiplier method, the constrained minimization problem can be

reformulated as a saddle point problem by employing the Lagrange functional as

grad(L (x,λ )) = 0, (6.15)

whereλ is known as the Lagrange multiplier. The Lagrangian is constructed as

L (x,λ ) = Π(x)+λg(x), λ ≤ 0, (6.16)

and its gradient is given as

grad(L (x,λ )) =

[
∂L

∂x
∂L

∂λ

]
=

[
∂Π(x)

∂x +λ ∂g(x)
∂x

g(x)

]
= 0. (6.17)

The lower equation is the constrain function given in Equation 6.14. The replacement of a

single argument functionalΠ(x) by the two argument Lagrange functionalL (x,λ ) implies

a higher number of unknowns in the latter [Yastrebov 13].
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The Lagrange Multiplier Method for Normal Contact

Using the Lagrange Multiplier method, the contact contribution ΠC in Equation 6.12 can be

defined for normal contact as

ΠLM
C =

∫

SC

λNgNdS, (6.18)

where, once again,λN is the Lagrange multiplier which can be interpreted as the normal

contact pressure in the contact interface. The variation ofΠC leads to

δΠLM
C =

∫

SC

λNδgNdS+
∫

SC

δλNgNdS, (6.19)

where the first term is associated with the virtual work of theLagrange multipliers along

the variation of the normal gap function. The second term in Equation 6.19 represents the

enforcement of the contact constraints.

6.3 Point-to-Segment Contact Formulation

In the following, the Point-to-Segment (PTS) contact formulation proposed by Matzen and

co-workers [Matzen 13] is described. This formulation can be seen as an extension to

NURBS-based formulations of the classic Node-to-Segment (NTS) algorithm frequently

used in the context of FEM. In the NTS formulation, the non-penetration conditions are

enforced by preventing that the nodes on the slave segment penetrate the master segments.

Due to its simplicity, clear physical meaning and flexibility, the NTS formulation is widely

used in problems involving contact. For details on the NTS algorithms, the reader is referred

to [Hughes 76, Wriggers 85, Papadopoulos 92, Zavarise 09b],and references therein.

In the PTS algorithm, a set of points on the slave segment mustbe defined. These are

known ascollocation pointsand will be denoted asxs in the following Sections. The need

to define collocation points arises from the fact that, contrary to standard Finite Element

formulations, the control points are not, in general, interpolatory and, therefore, are not part

of the geometry. In the following, the term̄x will be used to define the CPP on the master

curve, whilex1
i will denote the control pointi of the master segment.

6.3.1 Kinematics

Consider a discrete collocation pointxs belonging to the slave curve. The normal gapgN can

be defined as the minimum distance between the slave point andthe master segment as

gN = (xs− x̄) · n̄, (6.20)
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wherex̄ is the CPP ofxs into the master segment, with outward unit normaln̄, as depicted in

Figure 6.2. The tangent vector at the CPP can be computed as

ā=
1
l

nm

∑
i=1

Ri,ξ
(
ξ̄
)

x1
i =

1
l

nm

∑
i=1

R̄i,ξ x1
i , (6.21)

where

l =

∣∣∣∣∣
nm

∑
i=1

R̄i,ξ x1
i

∣∣∣∣∣ . (6.22)

In Equations 6.21 and 6.22,nm is the number of basis functions, including vanishing terms,

on the master curve of orderpm andR̄i,ξ are the derivatives of the master basis functioni

computed at the CPP with respect toξ . It is now possible to define a local frame(n̄, ā,e3),

wheree3 is the unit vector orthogonal to the plane containing the contact element. For the

two-dimensional case, the unit normal vector can then be obtained as

n̄ = ā×e3. (6.23)

xs

x̄ = x
1
(

ξ̄
)

gNn̄

ā

n+1V 1

n+1V 2

Figure 6.2: Point-to-Segment contact element.

The coordinates of the projection of the slave pointxs on the master segment are given

as

x
(
ξ̄
)
= x̄ =

nm

∑
i=1

R̄ix1
i , (6.24)

which can be computed using a numerical iterative procedureon

(xs− x̄) · ā= 0. (6.25)

This equation guarantees that orthogonality between the vectors(xs− x̄) andā is achieved.

The variation of the gap can now be obtained from Equation 6.7by taking into account that

x̄,ξ · n̄ = 0, (6.26)
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and

(xs− x̄) = 0, (6.27)

leading to

δgN = (δxs−δ x̄) · n̄. (6.28)

6.3.2 Choice of Contact Collocation Points

In the literature, there are various sets of collocation points that can be selected, such as

Greville [De Boor 78], Demko [Demko 85] or Botella [Botella 02] points. In the current

work, Greville points are considered to collocate the contact integrals. The coordinate of the

Greville points can be obtained as

ξ̆i =
ξi+1+ · · ·+ξi+p+1

p
, (6.29)

whereξi are the knots contained in the knot vectorΞΞΞ which defines the curve of degree

p. According to Matzen and co-workers [Matzen 13], the choiceof the collocation points is

motivated by two main reasons:(i)Demko points have to be computed by a complex iterative

algorithm, while Greville and Botella points can be more easily obtained; and(ii) the number

of Greville and Botella points are the same as the number of control points used to define the

surface. The latter presents an advantage since a higher number of collocation points results

in a over-constrained system which can cause convergence problems. Moreover, results show

that Greville abscissae present better results when compared with Botella points.

In the remainder of this work, the upperscript˘(·) is used to denote variables computed

at the collocation pointxs. Thus, the coordinates of the contact collocation pointxs can be

obtained as

xs=
ns

∑
i=1

Ri

(
ξ̆
)

x2 = R̆ix2, (6.30)

wherens is the number of control points that define the slave curve of order ps.

6.3.3 Linearisation

When using a Newton-Raphson iterative scheme, it is required to linearise the contact

contributions is order to obtain a quadratic convergence. The normal contact term given

in Equation 6.19 can be rewritten as

δΠLM
C =

∫

SC

cNdS, (6.31)

where

cN = λNδgN +δλNgN. (6.32)
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The linearisation ofcN can be computed as

∂cN

∂u
∆u =

∂cN

∂λN
∆λN +

∂cN

∂gN
∆gN +

∂cN

∂δgN
∆δgN +

∂cN

∂δλN
∆δλN, (6.33)

and since the term∆δλN is equal to zero, the previous equation results in

∂cN

∂u
∆u = δgN∆λN +δλN∆gN +λN∆δgN. (6.34)

By substituting Equation 6.24 into 6.28, the variation ofgN can be expressed, in matrix form,

as

δgN =
[
δxs δx1

]T
Ns, (6.35)

where, from Equations 6.24 and 6.30,

Ns=




R̆1n̄
...

R̆nsn̄

−R̄1n̄
...

−R̄nmn̄




. (6.36)

In an analogous way, the term∆gn can be written as

∆gN =
[
∆xs ∆x1

]T
Ns. (6.37)

The linearisation of the variation of the normal gap can be obtained for the two dimensional

case as [Wriggers 02]

∆δgN =−
(
δ x̄,ξ ∆ξ +∆x̄,ξ δξ + x̄,ξξ ∆ξ δξ

)
· n̄ +

gN

l2

(
δ x̄,ξ + x̄,ξξ δξ

)
· n̄ ·

(
∆x̄,ξ + x̄,ξξ ∆ξ

)
· n̄, (6.38)

which requires the linearisation of̄ξ . This can be obtained by linearising Equation 6.25 and

solving for∆ξ̄ as

∆ξ̄ =
1

ā11−gNb̄11

[
(∆xs−∆x̄) · x̄,ξ +gNn̄ ·∆x̄,ξ

]
(6.39)

where the metric ¯a11 and the curvature of the boundaryb̄11 are given as

ā11 = x̄,ξ · x̄,ξ = l2, (6.40)

and

b̄11 = x̄,ξξ · n̄, (6.41)
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respectively.

By introducing the vectors

N0s=




0
...

0

R̄1,ξ n̄
...

R̄nm,ξ n̄




, Ts =




R̆1ā
...

R̆nsā

−R̄1ā
...

−R̄nmā




, δx =

[
δxs

δx1

]
and∆x =

[
∆xs

∆x1

]
, (6.42)

the linearisation of the variation of the gap can be written in matrix form as

∆δgN = δxTK∆δ ∆x, (6.43)

in which

K∆δ =

(
− l

m
− b̄11lgN

m2 +
b̄11gN

ml
+

b̄2
11g

2
N

m2l

)
N0sTT

s+

(
− l

m
− b̄11lgN

m2 +
b̄11gN

ml
+

b̄2
11g

2
N

m2l

)
TsNT

0s+

(
−2gN

m
− b̄11g2

N

m2 +
gN

l2 +
2b̄11g2

N

ml2
+

b̄2
11g

3
N

m2l2

)
N0sNT

0s+

(
− b̄11l2

m2 +
b̄2

11gN

m2

)
TsTT

s , (6.44)

wherem= ā11−gNb̄11. Finally, it is possible to establish the matrix form of Equation 6.34

as

KC =
[
δx δλN

]T
[

λNK∆δ Ns

NT
s 0

][
∆x

∆λN

]
. (6.45)

The contribution to the right-hand side of the global systemof equations stems from Equation

6.18 as

fC = δλNgN +λNδgN =
[
δx δλN

]T
[

λNNs

gN

]
. (6.46)

Both the global stiffness matrix and the right-hand side vector will receive additional entries

from each collocation point, increasing the size of the system to be solved.

6.3.4 Contact Stress

When solving the global system of equations in conjunction with the Lagrange Multiplier

method, the additional entries that arise from Equations 6.45 and 6.46 correspond to the

normal contact pressuresλN that act upon each collocation point. These contact pressures
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6.3. Point-to-Segment Contact Formulation

can then be used to compute the contact stresses that act on the contacting slave curve. In

standard linear Lagrangian-based formulations, since theslave points are the element nodes,

in order to obtain the contact stresses it is only required tocompute the area corresponding

to half of the length of the adjacent elements. In the contextof Isogeometric Analysis

employing the Point-to-Segment algorithm a different approach must be considered. In the

current work, a method which consists in dividing a point’s equivalent normal contact force

by the physical length (associated with the same point) is employed.

The first step is to distribute the contribution of each Lagrange MultiplierλN j from the

collocation pointsξ̆ j as

Pi =
nc

∑
j=1

Ri

(
ξ̆ j

)
λN j . (6.47)

In the slave segment, a given control pointBi (x,y) only affects the curve in the range[
ξi ,ξi+ps+1

]
since the basis functionsRi (ξ ) = 0 for ξ�∈

[
ξi ,ξi+ps+1

]
. Consequently, the

parametric lengthls
i of the segment associated withPi is given as

ls
i =

Ξs
(
ξi+ps+1

)
−Ξs(ξi)

∑ns
j=1 ls

j
, (6.48)

whereΞΞΞs is the knot vector defining the slave segment. It should be noted that the parameters

defined in the previous equation are normalised. This normalisation arises from the fact that,

since there exists inter-element continuity, the sum of theparametric slave curve lengths

would be superior to 1.0.

The physical length of the slave segment can be obtained by numerical integration as

lph =
ns+ps

∑
i=1

∫

SC

√
d2

x +d2
ydξ , (6.49)

where

dx =
nG

∑
j=1

Ri,ξ xi , (6.50)

and

dy =
nG

∑
j=1

Ri,ξ yi , (6.51)

in which xi andyi define the physical coordinates of the slave curve control point andnG =

ps+1 is the number of integration points in each knot span. By making use of Equations

6.48 and 6.49, the physical length of the slave curve segmentassociated with pointPi can

then be written as

ls,ph
i = ls

i × lph. (6.52)

Finally, the normal contact stress can be computed as

σC
i =

Pi

ls,ph
i

. (6.53)
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6.4 Implementation of the Contact Algorithm

The Point-to-Segment contact algorithm was implemented inthe in-house developed

Isogeometric Analysis code ICO. The flowchart of the code’s structure can be seen in Figure

6.3. A detailed description of the steps performed in boxes containing contributions to the

contact problem is given in the following.

6.4.1 Initialise

In this step, all the data is read from the input file and all thevariables are allocated. The

coordinates of the Greville points in the parametric curve are computed from the curve’s knot

vector as

ξ̆i =
ξi+1+ · · ·+ξi+p+1

p
. (6.54)

Additionally, the contact status of each collocation pointis set toNot A
tive and the global

system of equations is augmented in order to accommodate theadditional degrees of freedom

coming from the Lagrange Multiplier method.

6.4.2 Compute Contact Contributions

The compute contact contributionsbox contains the core of the contact module using the

PTS algorithm in conjunction with the Lagrange Multiplier method. The main steps are

represented inside the dashed box on the left-hand side of Figure 6.3.

For each collocation point, the physical coordinates of theslave pointxs are computed

based on its parametric coordinatesξ̆i as

xs =
ns

∑
i=1

Ri

(
ξ̆i

)
x2

i .

The code will then compute the closest point projection of the slave point onto the master

segment̄x by iteratively solving

(xs− x̄) · ā= 0,

using the Newton algorithm presented in Box 6.1.

Once the coordinates of the CPP are determined, it is possible to compute the gap as

gN = (xs− x̄) · n̄,

where, for the two-dimensional case, the normal vector is obtained as

n̄ = ā×
[
0 0 −1

]T
. (6.55)
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Figure 6.3: Flowchart of the ICO code including contact.
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If gN ≤ 0, then penetration will occur and the contact status of the collocation point is set

to A
tive. The contact stiffness is computed using Equations 6.44 and6.45 and assembled

into the global system of equations. Otherwise, ifgN > 0, the contact status will be set as

Not A
tive and the diagonal of the contact stiffness matrix will be set to 1.0 and all other

entries are set to 0.0.

Box 6.1: Newton algorithm to determine the CPP of the slave point onto the master segment.

1. DO Newton iteration (k)

(a) compute the physical coordinates of the master point andits derivatives

x̄ =
nm

∑
i=1

R̄i

(
ξ̄ k

)
x1

i

x̄,ξ =
nm

∑
i=1

R̄i,ξ

(
ξ̄ k

)
x1

i

x̄,ξ ξ =
nm

∑
i=1

R̄i,ξ ξ

(
ξ̄ k

)
x1

i

(b) compute master segment length and its derivative

l =
∣∣x̄,ξ

∣∣=
∣∣∣∣∣

nm

∑
i=1

R̄i,ξ

(
ξ̄ k

)
x1

i

∣∣∣∣∣

l,ξ =
∣∣x̄,ξ ξ

∣∣=
∣∣∣∣∣

nm

∑
i=1

R̄i,ξ ξ

(
ξ̄ k

)
x1

i

∣∣∣∣∣

(c) compute the tangent to the master segment and its derivative

ā=
x̄,ξ
l

ā,ξ =
x̄,ξ
l,ξ

(d) compute new CPP parametric coordinate

ξ̄ k+1 = ξ̄ k− (xs− x̄) · ā(
xs,ξ − x̄,ξ

)
· ā,ξ

(e) IF (xs− x̄) · ā ≤ 1.0× 10−8 then exit cycle, otherwise setk = k+ 1 and perform another

iteration

2. END DO
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6.4.3 Solve Global System of Equations

After assembling all the contact stiffness contribution ofeach collocation point, the global

system of equations
[

K (u)+KC(u,λλλ ) CC(u)

[CC(u)]
T 0

]{
∆u

∆λλλ

}
=

{
fext− f int

0

}
−
{

CC(u)λλλ
GC(u)

}
(6.56)

is solved for the incremental displacements∆u and incremental Lagrange multipliers∆λλλ . In

Equation 6.56, matrixK (u) is the standard tangential stiffness matrix described in previous

chapters, andfext andf int are the external and internal forces, respectively. MatricesKC(u,λλλ )
andCC(u) arise from the contributions of each collocation point to the global system of

equations andGC(u) defines the normal contact constraint.
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Chapter 7

Numerical Examples

The performance of the NURBS-based formulations proposed in Chapter 5

are assessed using a set of well-known benchmark problems inboth linear

and nonlinear regimes. Additionally, in the context of contact mechanics, the

validation of the implemented Point-to-Segment algorithmdescribed in

Chapter 6 in the linear elastic regime is performed, also by means of various

benchmark problems.

In this chapter, the methodologies described in Chapter 5 and 6 are validated using

various benchmark problems. In particular, the first two sections are related to the assessment

of the performance of the H2ANS element (see Section 5.5) in the linear and nonlinear

regimes for thin plate and shell structures, followed by a couple of numerical problems where

the volumetric locking pathology is dominant. The remainder of the chapter is dedicated to

the analysis of contact problems in the linear elastic rangein the context of Isogeometric

Analysis.

In the numerical examples presented in the following, except the ones involving contact

mechanics, a single NURBS patch was considered for modelling each problem (unless

otherwise stated). In every example, the initial geometry was defined using the lowest order

and number of control points possible. Successive refined meshes were obtained by the

process of k-refinement (see Section 3.1.4) using the in-house developed code written in

Matlab and described in Section 3.4.1. Standard Gaussian quadrature is employed in all the

presented examples.

7.1 Linear Elastic Problems

In the present section, the performance of the proposed H2ANS formulation is assessed in

the analysis of shell-like structures in the linear elasticrange. In particular, the proposed

numerical experiments consist of the study of a straight anda curved cantilever beam, as
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Chapter 7. Numerical Examples

well as of the solution of the well-knownshell obstacle course, proposed by Belytschkoet

al. [Belytschko 85] as a set of benchmarks for the assessment of shell analysis procedures.

In all numerical examples, the proposed formulation is compared with quadratic and

cubic NURBS-based solid and Kirchhoff-Love shell elements. Whenever possible, other

NURBS-based shell and solid-shell results available in theliterature are also considered, for

comparison purposes. In this section the following nomenclature for the different employed

formulations is adopted:

.: Hn: Standard solid NURBS-based element of degreen;

.: KLn: Kirchhoff-Love shell element of degreen, as proposed by Kiendlet al.

[Kiendl 09];

.: 3p-HS: Quadratic 3-parameter Kirchhoff-Love shell element with a Hybrid Stress

modification of the membrane part, as proposed by Echteret al. [Echter 13];

.: 3p-DSG: Quadratic 3-parameter Kirchhoff-Love shell element with a Discrete Strain

Gap modification of the membrane part, as proposed by Echteret al. [Echter 13];

.: 5p-stand(-DSG): Quadratic 5-parameter Reissner-Mindlin shell element (with a Dis-

crete Strain Gap modification of the membrane part), as proposed by Echteret

al. [Echter 13];

.: 5p-hier(-HS): Quadratic 5-parameter Reissner-Mindlinshell element with hierarchic

difference vector (and a Hybrid Stress modification of the membrane part), as proposed

by Echteret al. [Echter 13];

.: Mixed 2: Quadratic solid-shell element employing a mixedmethod, as proposed by

Bouclieret al. [Bouclier 13a];

.: Local Bbar 2: Quadratic solid-shell element employing a mixed method with modified

B̄-projection, as proposed by Bouclieret al. [Bouclier 13a].

In addition, whenever possible, a comparison with high performance Lagrangian-based

solid and solid-shell formulations is carried out. The nomenclature employed is defined as

follows:

.: Sch09: Solid-shell formulation with in-plane reduced integration and stabilization, as

proposed by Schwarze and Reese [Schwarze 09];

.: Ree07: Solid-shell using reduced integration with hourglass stabilization and EAS

[Reese 07];
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7.1. Linear Elastic Problems

.: Kim05: Solid-shell based on the ANS method with plane stress assumptions [Kim 05];

.: RESS: Reduced Enhanced Solid-Shell element with stabilization of hourglass modes

and one EAS mode [Alves de Sousa 05];

.: HCiS18(12): Solid(solid-shell) element with 18(12) EASenhancing parameters, as

proposed by [Alves de Sousa 03];

.: Are03: EAS solid element with penalty stabilization [Areias 03];

.: Leg03: EAS solid-shell element with stabilisation of hourglass modes [Legay 03];

.: H1/ME9: Mixed-enhanced fully integrated eight-node element with 9 enhanced modes

[Kasper 00].

7.1.1 Straight Cantilever Beam

In this first example, a straight beam clamped at one end is subjected to a vertical loadF

at the opposite free end, as can be seen in Figure 7.1. From theBernoulli beam theory, the

strain energyU of the structure is given as

U =
2F2L3

Ewt3
, (7.1)

whereE is the elastic modulus andL, w, andt are the beam’s length, width, and thickness,

respectively. By expressing the results in terms of the strain energy, it is possible to assess

the accuracy of the stress and strain fields predicted by the formulations. For a deeper insight

of the performance of the proposed formulation, the currentproblem is subdivided into two

cases.

Figure 7.1: Scheme of the straight beam problem.

In the first case, the convergence of distinct formulations is analysed for a beam ofL =

100.0 andw= t = 1.0. The material properties are taken asE = 1000.0 andν = 0.0. The
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problem is discretized with only one element along the widthand thickness directions. The

results for the normalized strain energy versus the number of elements along the length

direction are presented in Figure 7.2, for distinct NURBS-based elements. It can be seen

that the proposed H2ANS formulation is able to reproduce thereference solution, even when

considering a very coarse mesh. The results are superior to those attained by quadratic solid

and Kirchhoff-Love shell elements. The results for cubic formulations are not reported due

to the fact that a cubic polynomial interpolation is, in thiscase, enough to reproduce the exact

solution.
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Figure 7.2: Normalized strain energy versus mesh density for the straight cantilever beam problem

with a constant slenderness ofL/t = 100.0.

In the second case, a mesh composed of eight elements is considered, and the problem

is studied for different beam thickness values. As the beam becomes thinner, transverse

shear locking effects will be increasingly dominant, making this example a valuable tool for

evaluating the capability of a given formulation to alleviate this kind of locking phenomenon.

The results for the normalized strain energy versus slenderness are presented in Figure 7.3,

for the same formulations as before. The proposed NURBS-based solid-shell element is able

to obtain good results for both thick and thin beams, demonstrating a very low sensitivity to

shear locking effects. As expected, as the thickness of the beam decreases, the results for

the standard quadratic NURBS-based solid element tend to deteriorate. It can also be seen

that the KL2 formulation can be considered as free from shearlocking (as being based in the

Kirchhoff-Love rationale). It should be highlighted that,when higher slenderness ratios are
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7.1. Linear Elastic Problems

considered, the stiffness matrices resulting from the solid elements become ill-conditioned,

leading to difficulties when solving the global system of equations. This situation is not

detected when shell elements are instead used.
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Figure 7.3: Normalized strain energy versus beam slenderness for the straight cantilever beam

problem for a eight NURBS element mesh.

7.1.2 Curved Cantilever Beam

In this example a curved beam, consisting of a quarter of a circle, is clamped at one end

and subjected to a transversal load at its the free end. Due tothe curvature of the beam,

membrane locking will be the dominant parasitic phenomena [Echter 13]. In addition, when

solid (or solid-shell) elements are used to model the curvedprofile, curvature thickness

(trapezoidal) locking may also be present. The structure isrepresented in Figure 7.4 for a

single element mesh, along with the corresponding control lattice. The final mesh is obtained

by performing an order elevation along the thickness (radial) and width directions, followed

by knot insertion in circumferential direction. The structure has a radius, at the neutral

surface, ofR= 10.0 and a widthw = 1.0. An elastic modulus of 1000.0 and a Poisson’s

ratio of 0.0 are considered. The load is given as a function of the thicknesst, asF = 0.1t3.

From the Bernoulli beam theory, the radial displacement canbe computed to be equal to

0.942 [Echter 13]. The problem is discretized using ten NURBS elements, with only one

element through the thickness and width directions.
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F/2

F/2

R

w

t

Figure 7.4: Scheme of the curved cantilever beam problem discretised with a single element and

corresponding control lattice.

The results for the radial displacement as the beam slendernessR/t is increased are

presented in Figure 7.5. It can be seen that, although the proposed formulation is not locking

free, it is able to significantly improve the behaviour of thestandard quadratic NURBS solid

element. The performance of H2ANS is also superior to the quadratic Kirchhoff-Love shell

element. In fact, H2 and KL2 formulations are seen to suffer from locking, even when

considering a moderately thin shell. Cubic elements present a better overall performance,

although not being completely locking-free.

In Figure 7.6, the proposed formulation is now also comparedwith the shell formulations

presented in [Echter 13]. The results obtained by H2ANS are very close to those attained by

the 5p-stand-DSG shell element. Echter and co-workers [Echter 13] justify the deterioration

of the results obtained by the 5p-stand-DSG element throughshear locking effects. However,

as seen in the previous example, since the ANS methodology isable to alleviate shear locking

effects, the decrease of the H2ANS performance as the slenderness of the beam increases

may be related to curvature thickness locking. As observed in [Echter 13], in this case the

3p-DSG and 3p-HS formulations are instead completely locking-free.
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Figure 7.5: Displacement versus slenderness for the curvedcantilever beam problem (1).
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Figure 7.6: Displacement versus slenderness for the curvedcantilever beam problem (2).
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7.1.3 Shell Obstacle Course I: The Scordelis-Lo Roof

In this example, introduced by Scordelis and Lo [Scordelis 69], a cylindrical shell supported

by rigid diaphragms in the curved edges is subjected to a volume force (self-weight). The

geometry of the problem is presented in Figure 7.7 and the dimensions of the structure are:

radiusR= 25.0, lengthL = 50.0 and thicknesst = 0.25. The magnitude of the volume force

is given asρg= 360, whereρ is the density andg is the gravity acceleration constant, for a

set of coherent unities. The elastic properties are given byE = 4.32×108 andν = 0.0. Due

to symmetry conditions, only a quarter of the structure is modelled.

Rigid

diaphragm

Free edge

Rigid

diaphragm

Free edge

L
40º

t
R

Free edge
D

g

Figure 7.7: Schematic representation of the Scordelis-Lo roof problem.

The vertical displacement of the midpoint of the free edge (point D in Figure 7.7) is

numerically computed and compared with the reference solution of 0.3024, with the results

being presented in Figure 7.8. The proposed H2ANS formulation is able to obtain good

results and a very fast convergence, significantly improving the behaviour of the conventional

formulation (H2 element). In fact, it can be seen that the results from H2ANS are similar to

those obtained by cubic solid and Kirchhoff-Love shell elements.

The results for the normalised displacements of point D for various Lagrangian-based

formulations available in the literature are compared withthe proposed methodology in

Figure 7.9. As can be seen, the H2ANS element presents competitive results when compared

to different solid and solid-shell formulations.

In the following, the NURBS-based solid elements H2 and H3 are compared with the

proposed H2ANS solid-shell in terms of computational costs. The CPU time obtained by

each formulation as a function of the number of control points is presented in Figure 7.10.

The results are normalised by the CPU time obtained by the H3 formulation using a mesh

composed of 4900 control points. It can be observed that the proposed NURBS-based solid-

shell formulation presents a significantly lower computational cost when compared with the

cubic solid element, while being able to obtain a similar prediction of the displacement of
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Figure 7.8: Displacement of the midpoint of the free edge forthe Scordelis-Lo roof.
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point D, as seen in Figure 7.8.
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Figure 7.10: Scordelis-Lo roof: comparison of computational costs.

7.1.4 Shell Obstacle Course II: Full Hemispherical Shell

The full hemispherical shell schematically represented inFigure 7.11 is another well-known

benchmark to assess the performance of shell (and solid-shell) elements. In this problem,

a hemisphere of radiusR= 10.0 and thicknesst = 0.04 is subjected to a pair of opposite

concentrated loads applied at antipodal points of the equator, while the equator edge is

considered to be free. Due to symmetry conditions, only one quarter of the structure needs

to be modelled, as seen in the figure. The magnitude of the loadis F = 1.0, the material

parameters are given asE = 6.825×107 andν = 0.3, and the reference radial displacement

at point A isu= 0.0924.

In Figure 7.12 the results for the radial displacement at point A versus the number of

control points per side is presented. Once again, the proposed H2ANS formulation is able to

obtain good results and convergence, being superior to quadratic solid and Kirchhoff-Love

shell elements, and comparable to formulations accountingfor higher order interpolations.

The normalised results obtained by the H2ANS element can also be compared to

Lagrangian-based formulations, as shown in Figure 7.13. The results demonstrate that the

proposed element is able to obtain a performance that is superior or similar to some of the

solid and solid-shell Lagrangian formulations available in the literature. These results once
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Figure 7.11: Full hemispherical shell problem setup (1/4 of the whole structure is shown).
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Figure 7.12: Radial displacement of point A for the full hemispherical shell problem.
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again allow to infer that the proposed methodology can lead to a competitive formulation in

terms of reliability of the provided numerical solution.
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Figure 7.13: Radial displacement of point A for the full hemispherical shell problem: comparison

with Lagrangian-based Finite Element formulations.

7.1.5 Shell Obstacle Course III: Pinched Cylinder

As a last example of this set of three shell obstacle course problems, the pinched cylinder

with end diaphragms subjected to a pair of concentrated loads is presented. This is a rather

demanding example due to the very localized strain state resulting from the application of

the point load. The cylinder has radiusR= 300.0, lengthL = 600.0 and thicknesst = 3.0,

as can be schematically seen in Figure 7.14. The concentrated loads have a magnitude of

1.0, for material properties given asE = 3.0×106 andν = 0.3. Due to symmetry, only one

eighth of the structure is modelled. The reference solutionfor the radial displacement at the

loaded point is given asu= 1.8248×10−5.

The results for the different formulations are presented inFigure 7.15. The H2ANS

NURBS-based element gives again better results than those coming from quadratic elements,

even if, in this case, not as good as those obtained with cubicelements.

Finally, the radial displacement obtained for the H2ANS is normalised and compared

with solid and solid-shell formulations available in the literature. The results are depicted

in Figure 7.16. As can be seen, the results obtained by the proposed formulation are very

similar to those from the HCiS12, HCiS18, Are03 and H1/ME9 elements.

106



7.1. Linear Elastic Problems

Rigid diaphragmRigid diaphragm

Rigid diaphragm

F

L

R

t

Figure 7.14: Schematic representation of the pinched cylinder problem.
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Figure 7.16: Radial displacement for the pinched cylinder problem: comparison with Lagrangian-

-based Finite Element formulations.

7.2 Nonlinear Problems

In the following, the proposed H2ANS NURBS-based element isapplied for the analysis of

shell-like structures in the geometric and material nonlinear regimes. The implementation

of the formulation for this type of problems follows the methodologies presented in Sections

4.2 and 4.3.

The reference to results available in the literature is performed by using the first three

letters of the first authors’ name and the year of publishing.

7.2.1 Elastic Large Deflection Bending of a Beam

In this example, a beam is clamped in one end and subjected to an in-plane transverse force

F = 1000.0 in its free end, as shown in Figure 7.17. Results in the context of FEM can

be found in a number of references, such as [Simo 90a, Betsch 96, Miehe 98, Valente 04b].

The geometry of the beam is characterized by a lengthL = 1.0, widthw= 0.1 and thickness

t = 0.1, while the elastic properties are defined by the bulk modulus κ = 83.33×105 and

shear modulusG = 38.46× 105. When performing the numerical simulation, the load is

applied in ten equally spaced increments.

The analysis of the problem is initiated by performing a meshconvergence study in order

to compare the performance of the H2ANS formulations and itssolid counterpart H2, in
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Figure 7.17: Schematic representation of the elastic largedeflection membrane bending of a beam

benchmark.

the context of a geometry nonlinear analysis. In this problem, the beam is discretised using

a single element along the width and thickness directions. The load-displacement curves

of point A for various mesh densities are presented in Figure7.18 and compared with a

reference solution coming from the work of Simoet al. [Simo 90a], for a mesh composed

of 10 elements. The results show that the H2ANS element is able to provide a very good

solution considering a mesh comprised of just 6 elements in the length direction. It can also

be seen that the proposed solid-shell NURBS-base formulation has a better performance than

the standard solid quadratic element, specially when considering coarse meshes.
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Figure 7.18: Elastic large deflection bending of a beam: displacement of point A versus load.

Employing the same benchmark problem, the sensitivity to mesh distortion is assessed.
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To that end, two types of distortion are considered and represented in Figure 7.19 for a 6

element mesh. For each case, the distortion parameterd varies within the range[0.0,3.0].

The results for the displacements of point A for the distorted meshes of type I (DTI) and type

II (DTII) are presented in Figures 7.20 and 7.21, respectively. It can be seen that, in the DTI

case, when considering distortion parameters up tod = 0.2, the solution is not affected in a

significant manner. It is also demonstrated that the DTII represents a more difficult situation,

leading to a higher mesh sensitivity for both the H2ANS and H2elements, although this

sensitivity is more significant for a distortion parameterd > 0.2. In conclusion, for the range

of distortion levels considered, the proposed solid-shellpresents a similar or slightly superior

performance when compared to the standard solid element. For some higher distortion levels,

especially in case DTII, the H2ANS tends however to present convergence difficulties, in this

example.

d

d

Figure 7.19: Elastic large deflection bending of a beam: definition of distortion parameterd and

NURBS mesh for (left) distortion type I and (right) distortion type II.
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0

100

200

300

400

500

600

700

800

900

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

L
o

a
d

Displacement

Sim90

H2ANS, DTII, d=0.0

H2ANS, DTII, d=0.1

H2ANS, DTII, d=0.2

H2ANS, DTII, d=0.3

H2, DTII, d=0.3

Figure 7.21: Elastic large deflection bending of a beam: displacement of point A versus load for

distorted mesh of type II.
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7.2.2 Large Deflection of an Elastic and Elasto-Plastic Straight Can-

tilever Beam

In this example the flat cantilever beam previously seen in the linear elastic range (Section

7.1.1), is now considered in the nonlinear regime. This example assesses the out-of-plane

bending behaviour of the formulations and has been analysedby a wide range of authors con-

sidering both elastic [Simo 90c, Parisch 95, Miehe 98, El-Abbasi 00, Valente 04b, Reese 07,

Schwarze 11] and elasto-plastic [Dvorkin 95, Eberlein 99, Valente 04a] constitutive rela-

tions.

In the first case, a geometric nonlinear regime combined withlinear elastic material is

considered. The elastic modulus is defined asE = 1×107 and the Poisson’s coefficient as

ν = 0.3. Following the above mentioned authors, the load is considered to be constant and

with a total magnitude given byF = 40×λ , whereλ is a load factor ranging from 0.0 to 1.0.

The load is applied in 10 equal steps and the solutions for thevertical tip displacements are

compared with theoretical values coming from the literature [Frisch-Fay 62]. In Figure 7.22,

the results obtained by the proposed H2ANS solid-shell element and the standard quadratic

NURBS-based solid element H2 are compared by means of a convergence study. A single

element is considered along the width and thickness directions. As can be seen, the H2ANS

formulation is able to significantly improve the behaviour of the H2 element, specially when

a coarse mesh is employed. For a mesh consisting of 16 elements, the H2ANS element is

able to attain the reference solution.
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Figure 7.22: Large deflection of an elastic straight cantilever beam: mesh convergence study.
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In Figure 7.23, the results obtained are now compared with Lagrangian-based formula-

tions from the works of Valenteet al. [Valente 04b], Reese [Reese 07] and Schwarze and

Reese [Schwarze 11]. The results demonstrate that the proposed H2ANS formulation for

a given mesh density can be competitive when compared to classic solid and solid-shell

formulations available. However, it is important to take into account that the results coming

from the literature are, in some cases, referred to linear elements based on reduced integration

schemes, making them particularly efficient in terms of computational costs to the expense

of, in some cases, introducing numerical instabilities into the solution. The final shape of the

beam can be seen in Figure 7.24, along with the control lattice of the deformed configuration.
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Figure 7.23: Large deflection of an elastic straight cantilever beam: comparison with available finite

element formulations.

In the following, the present example is used to validate themultipatch implementation

in the commercial software package Abaqus, as described in Section 3.4.4. To that end, the

beam is divided into two patches midway through the length direction. The comparison with

the single patch model is presented in Figure 7.25 for the H2ANS NURBS-based element.

It is possible to observe that for the coarser mesh the modelspresent some variation in the

load-displacement curves, although this variation is no longer significant after successive

mesh refinements. The H2 formulation presents a similar behaviour.

The same problem in also analysed considering both geometric and material nonlinear

conditions. The geometry remains unaltered but the elasto-plastic constitutive relations are

now defined by the elastic modulusE = 1.2×107 and Poisson’s coefficientν = 0.3, while
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Figure 7.24: Large deflection of an elastic straight cantilever beam: initial geometry and final

deformed shape with control lattice.

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8

L
o

a
d

Vertical tip displacement

Theoretical Solution

Single Patch, 4 Elements

Single Patch, 8 Elements

Single Patch, 16 Elements

Multipatch, 4 Elements

Multipatch, 8 Elements

Multipatch, 16 Elements

Figure 7.25: Large deflection of an elastic straight cantilever beam: comparison between the single

patch and multipatch models.
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the yield stress is described by means of the equivalent plastic strainεpl as

σy

(
εpl

)
= σ0+Hεpl, (7.2)

in which the initial yield stress isσ0 = 2.4×104 and the linear isotropic hardening coefficient

is equal toH = 1.2× 105. The results for the tip displacement are given in Figure

7.26 for two mesh densities. In the same plot, results from the works of Dvorkinet al.

[Dvorkin 95] and Eberlein and Wriggers [Eberlein 99] are also presented for comparison

purposes, both employing references employ a mesh consisting of 20 elements with a

single element in the width and thickness directions. The results demonstrate that the

H2ANS NURBS-based solid-shell element formulation is ableto more accurately represent

the behaviour of the beam, when compared to the standard quadratic solid NURBS-based

element, which presents a stiffer behaviour. Also, the results of the proposed solid-shell are

in good accordance with the ones coming from the literature,specially for the 20 element

mesh.
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Figure 7.26: Large deflection of an elasto-plastic straightcantilever beam: mesh convergence study.

7.2.3 Geometric Nonlinear Pinching of a Clamped Cylinder

In this example, a cylindrical shell is fully clamped in one end and subjected to a pair

of point loads with opposite directions in its free end [Parisch 91, Brank 95, Valente 03,

Valente 04b, Alves de Sousa 06b]. The schematic representation of the problem can be

seen in Figure 7.27. The elastic constitutive parameters are given byE = 2.0685× 107

115



Chapter 7. Numerical Examples

andν = 0.3, while the geometry is defined by the lengthL = 3.048, radiusR= 1.016 and

thicknesst = 0.03. The maximum imposed inwards load has a magnitude ofF = 1600.0×λ ,

with λ ∈ [0.0,1.0]. Due to symmetry conditions, only a quarter of the structureis modelled.

F

F

Clamped end

R

L

A

t

Figure 7.27: Schematic view of the clamped cylinder benchmark.

The load-displacement curves with respect to point A are presented in Figure 7.28 for the

H2 and H2ANS NURBS-based elements, considering different mesh densities. The results

are compared with a reference solution coming from the work of Brank et al. [Brank 95].

As can be seen, the H2ANS solid-shell element presents an improved performance when

compared with its solid counterpart, being more noticeablein coarse meshes. The results

for the 16×16 mesh are now compared with those coming from the literature for solid-shell

elements, as for instance proposed by Alves de Sousaet al. [Alves de Sousa 06b] and Valente

et al. [Valente 04b] for the same mesh density (Figure 7.29). Once again, the results attained

by the H2ANS formulation are in good agreement with the ones presented by the references.

In Figure 7.30 the deformed configurations at different loadstages are depicted, for the upper

half of the cylinder. It is worth noting that the loaded points go beyond the highest physical

displacement possible (the radius of the shell).
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Figure 7.28: Pinching of a clamped cylinder: convergence study.
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Figure 7.29: Pinching of a clamped cylinder: comparison with formulations available in the literature.
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a)

c)

b)

d)

Figure 7.30: Pinching of a clamped cylinder: configuration for a)λ = 0.0, b)λ = 0.33, c)λ = 0.42

and d)λ = 1.0.

7.2.4 Channel-Section Beam

The present benchmark deals with a U-shaped channel-section beam with one clamped end

and subjected to a concentrated load in its free end. The geometry of the beam, schematically

represented in Figure 7.31, is defined by a lengthL = 36.0, heighth = 6.0, width w = 2.0

and thicknesst = 0.05, according to references [Chróścielewski 92, Ibrahimbegović 94,

Betsch 96, Eberlein 99, Li 00, Valente 04a]. The elastic properties relate to an elastic

modulusE = 1× 107 and a Poisson’s coefficient ofν = 0.333. A mesh comprised of

25×36×1 elements is used, following the work of Valente [Valente 04a].

The load-displacement curve for the H2 and H2ANS formulations are presented in

Figure 7.32 and compared with the results coming from the work of Eberlein and Wriggers

[Eberlein 99] and Li and Zhan [Li 00]. It can be seen that the solid-shell formulation

is able to predict a behaviour which is in good accordance with the reference solutions.

The H2 formulation presents a stiffer solution, leading to aslight overestimation of the

critical point before the buckling of the beam occurs. The final deformed configuration

obtained by the H2ANS element it is presented in Figure 7.33,in which is possible to

observe the buckling of the upper flange near the clamped edgeand the twisting in the

free end. This behaviour is in accordance with the results coming from the literature

[Ibrahimbegovíc 94, Eberlein 99, Li 00].
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Figure 7.31: Schematic representation of the channel-section beam.
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Figure 7.32: Channel-section beam: load-displacement curves.
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Figure 7.33: Channel-section beam: final deformed configuration.

7.2.5 Cantilever Ring Plate

In this example, a cantilever ring plate is clamped in one endand subjected to a vertical

line load on its free end, as shown in Figure 7.34. According to Basaret al. [Basar 92],

this benchmark is very sensitive in the evaluation of modelswhich involve large rigid

body rotations and displacements and has been studied in various works [Buechter 92,

Wriggers 93, Brank 95, Sansour 98, Li 00, Valente 03]. The geometry of the model is

characterised by an internalRi = 6.0 and externalRo = 10.0 radii with a constant thickness

of t = 0.03. The distributed load has a nominal value ofF = 100.0× λ per unit length,

whereλ is a load factor. The line load transforms the plane structure into a doubly curved

one. The elastic constitutive parameters are the elastic modulusE = 2.1×1010 and Poisson’s

coefficientν = 0.0.

Clamped End

F Ri
Ro

AB

Figure 7.34: Schematic representation of the cantilever ring plate benchmark.

For the solution of the problem two mesh densities are considered: a coarser mesh with
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16× 2× 1 elements and a finer mesh with 32× 4× 1 (this one seen in Figure 7.34). In

Figure 7.35, the displacement along the out-of-plane direction of points A and B as obtained

for the H2 and H2ANS formulations are plotted and compared with those obtained by Simo

and Rifai [Simo 88] (as reproduced in Basaret al. [Basar 92]) and Valente [Valente 03],

for a maximum load factor ofλ = 2.0. This load factor is enough for comparison

purposes since it corresponds to the load zone where the shape variations are more drastic

[Basar 92, Valente 04a]. It can be seen that for the finer mesh the proposed H2ANS

formulation is able to obtain results that are in good accordance with the reference solutions.

The H2 solid element is not able to correctly reproduce the desired behaviour, leading to an

underestimation of the displacement field. In Figure 7.36, the deformed mesh (along with

the corresponding control lattice) is depicted for a loading factor λ = 20.0, qualitatively

demonstrating the good performance of the proposed formulation in the presence of large

rotations and displacements.
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Figure 7.35: Cantilever ring plate: evolution of the displacement of points A and B for a load factor

λ = 2.0.
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Figure 7.36: Cantilever ring plate: deformed mesh and control lattice for a load factorλ = 20.0 .

7.2.6 Snap-Through Behaviour of a Shallow Roof Structure

In this example, the snap-through and snap-back load-displacement path of a cylindrical

structure is analysed. This is a standard benchmark problemused to assess the performance

of shell and solid-shell formulations [Horrigmoe 78, Crisfield 81, Cho 98, Eriksson 02,

Valente 03, Valente 04b, Alves de Sousa 06b, Schwarze 11], and a schematic representation

of the structure can be seen in Figure 7.37. Due to symmetry conditions, only a quarter

of the structure is modelled. Following references [Valente 04b, Alves de Sousa 06b], the

geometry of the model is defined by the parametersL1=508.0,L2=507.15, radiusR=2540

and thicknesst = 6.35. The material is defined by the elastic modulusE = 3102.75 and the

Poisson’s coefficientν = 0.3. The load applied at the centre of the structure (point A) has a

magnitude ofF = 1000.0.

The load-displacement curves for points A and B are presented in Figure 7.38 and com-

pared with solutions coming from the the works of Horrigmoe and Bergan [Horrigmoe 78]

and Schwarze and Reese [Schwarze 11]. In the current exampletwo mesh densities are

considered: a coarse mesh composed of 2×2×1 elements and a finer one with 5×5×1

elements (shown in Figure 7.37). It can be seen that the H2ANSformulation is able to

reproduce the behaviour of the structure, even when considering the coarse mesh. These

results are in good agreement with the reference solutions,leading to a correct prediction

of the snap-through and snap-back effects. On the other hand, the conventional H2

formulation presents a very stiff response when the coarse mesh is employed, resulting in
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an overestimation of the critical load for which the snap-trough behaviour of the structure

occurs. This overestimation is alleviated when a finer mesh is considered.
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Y Figure 7.37: Schematic representation of the shallow roof structure.
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Figure 7.38: Shallow roof structure: load-displacement curves for Points A and B.

7.2.7 Elastic and Elasto-Plastic Stretch of a Cylinder withFree Edges

In this example, a cylindrical shell with free edges, depicted in Figure 7.39, is deformed un-

der the action of two opposite pulling loads, inducing largerotations and displacements. This

popular benchmark has been analysed in the literature considering both elastic [Sansour 92,

Brank 95, Masud 00b, Valente 03, Valente 04b, Sze 04, Schwarze 11, Hosseini 13] and
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elasto-plastic [Masud 00a, Valente 04b] constitutive relations. The geometry of the problem

is defined by the lengthL = 10.35, radiusR= 4.953 and thicknesst = 0.094. The structure

is subjected to a pair of concentrated loads with magnitudeF = 40000×λ , whereλ is a load

factor ranging from 0.0 to 1.0. Due to symmetry conditions, only one eighth of the structure

needs to be modelled. The material properties are given by anelastic modulusE= 10.5×106

and Poisson’s coefficientν = 0.3125. The elasto-plastic behaviour is defined by the yield

stressσ0 = 1.05× 105 and a linear isotropic hardening coefficient ofH = 10.5× 105. A

mesh consisting of 16×8×1 is employed in both cases, as shown in Figure 7.39.

A

B

F

R

L

t

Free edge

Free edge

Figure 7.39: Schematic representation of the stretch of a cylinder benchmark.

The obtained load-displacement curves obtained for pointsA and B for the elastic case

can be seen in Figure 7.40, while the results for the elasto-plastic counterpart version are

presented in Figure 7.41. In these figures, reference valuestaken from the works of Hosseini

et al. [Hosseini 13], Schwarze and Reese [Schwarze 11], Valenteet al. [Valente 04b], Sze

et al. [Sze 04], Masudet al. [Masud 00b] and Masud and Tham [Masud 00a] are also

provided. As can be seen, in both the elastic and elasto-plastic regime, the H2ANS element

follows the results from Szeet al. [Sze 04] and Masud and Tham [Masud 00a], respectively.

It is worth noting that in the latter case, the H2 NURBS-basedsolid element presents

convergence difficulties after the application of 95% of thetotal load, being observable the

excessive displacement obtained for point A. The final deformed configurations obtained by

the H2ANS NURBS-based element can be seen in Figure 7.42.
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Figure 7.40: Elastic stretch of a cylinder: load-displacement curves for points A and B.
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Figure 7.41: Elasto-plastic stretch of a cylinder: load-displacement curves for points A and B.
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Figure 7.42: Elasto-plastic stretch of a cylinder: deformed configuration considering (left) elastic and

(right) elasto-plastic constitutive relations.

7.2.8 Elastic and Elasto-Plastic Analysis of a Hemispherical Shell with

18◦ Hole

This example deals with a doubled curved shell with a 18◦ hole subjected to a pair of

concentrated loads applied at antipodal points, leading toa problem dominated by large

rotations. A schematic representation of one quarter of thestructure can be seen in

Figure 7.43 where the equator plane represents a free edge. The geometry of the problem

is defined by a radiusR = 10.0 and thicknesst = 0.04. In the following, and as done

for the previous example, this benchmark problem is analysed considering both elastic

[Simo 90a, Liu 98, Sansour 00, Masud 00b, Sze 02, Kim 05, Schwarze 11] and elasto-plastic

[Masud 00a, Valente 04b] constitutive relations.

F F

A B

Symmetry Symmetry

Free edge
x y

z

Figure 7.43: Schematic representation of one quarter of thehemispherical shell with 18◦ hole.
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Focusing first on the elastic case (but accounting large deformations), the constitutive

parameters relate to an elastic modulusE = 6.825×107 and Poisson’s coefficientν = 0.3.

The load is given byF = 1.0×λ , where the load factor is set toλ = 100.0, and the total load

is applied in 10 equal steps. The displacements of points A and B for different mesh densities

are presented in Figure 7.44 and 7.45, respectively, and compared with reference results

coming from the works of Simoet al. [Simo 90a] and Sansour and Kollmann [Sansour 00],

both considering a 16× 16 mesh. It can be seen that for both the 16× 16 and 18× 18

meshes, the results coming from the H2ANS solid-shell formulation are in good agreement

with the reference solutions coming from the literature. Onthe contrary, the second-order

NURBS-based solid element (H2) presents a very stiff behaviour due to locking effects,

leading to an underestimation of the displacements of points A and B, even when considering

the refined mesh.
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Figure 7.44: Hemispherical shell with 18◦ hole: displacement for point A for the elastic case.

In the following, the same problem is analysed within the material nonlinear range. To

this end, an initial yield stressσ0 = 6.825×105 and a linear isotropic hardening coefficient

of H = 6.825×106 are introduced in the model, the load now being given byF = 0.5×λ ,

for a load factorλ = 400.0. The displacement of points A and B are presented in Figure

7.46, along with reference solutions from the works of Masudand Tham [Masud 00a] and

Valenteet al. [Valente 04b]. The H2ANS formulation is able to provide results with a good

agreement with the reference solution presented by Masud and Tham [Masud 00a] when

considering a mesh composed of 18× 18× 1 elements. The final deformed shape for the
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Figure 7.45: Hemispherical shell with 18◦ hole: displacement for point B for the elastic case.

finer mesh is presented in Figure 7.47.
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Figure 7.46: Hemispherical shell with 18◦ hole: displacement for points A and B for the elasto-plastic

case.
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Figure 7.47: Elasto-plastic hemispherical shell with 18◦ hole: deformed configuration.

7.2.9 Geometry and Material Nonlinear Analysis of a PinchedCylinder

In this example, the pinched cylinder problem presented in the fully linear context in

Section 7.1.5 is now analysed considering both geometric and material nonlinear effects.

This is a classical test to assess the performance of a formulation in the presence of localized

plasticity and significant shape modifications [Wriggers 96, Hauptmann 98, Miehe 98,

Eberlein 99, Valente 04b]. As in its linear counterpart, thegeometry of the problem is

defined by a lengthL = 600.0, radiusR= 300.0 and thicknesst = 3.0 (Figure 7.14). Both

ends of the cylinder are constrained in order to maintain their circular shape, but allowing

for a longitudinal displacement. The elasto-plastic constitutive relation is defined by a bulk

modulusκ = 2500.0, shear modulusG= 1154.0, initial yield stressσ0 = 24.3 and a linear

isotropic hardening coefficientH = 300.0. A total load ofF = 2.0×λ is applied, whereλ
ranges from 0.0 to 5000.0. Two mesh densities are considered: a coarse mesh comprised of

16×16×1 elements and a more refined one with 32×32×1 elements, over one eighth of

the total structure.

The results for the displacement of the loaded point are plotted in the Figure 7.48, along

with reference solutions from Wriggerset al. [Wriggers 96], Miehe [Miehe 98] and Eberlein

and Wriggers [Eberlein 99]. In can be seen that the load-deflection path for the two mesh

densities obtained by the present formulation are in good agreement with the numerical

results from the works of Miehe [Miehe 98] and Eberlein and Wriggers [Eberlein 99],

specially for the refined mesh. It can also be seen that the H2ANS formulation does not

present non-smooth curves which are representative of a snap-through like behaviour usually

present in this benchmark when a coarse mesh is employed [Hauptmann 98]. The standard

H2 solid element presents high convergence difficulties when dealing with this benchmark

and was not able to complete the numerical simulation, even for the finer mesh. For this

reason, the results for the H2 element are not presented in the plots. In Figure 7.49, the

deformed shapes corresponding to a maximum vertical tip displacement up to approximately
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300.0 consistent units (the same value of the radius of the structure) are depicted for the

16×16×1 mesh.
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Figure 7.48: Geometry and material nonlinear analysis of a pinched cylinder: displacement curve for

different mesh densities.

a) b)

c) d)

Figure 7.49: Geometry and material nonlinear analysis of a pinched cylinder: deformed mesh for tip

displacement of a)w≈ 120.0, b)w≈ 240.0, c)w≈ 275.0 and d)w≈ 300.0 .
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7.2.10 Elasto-Plastic Full Hemispherical Shell

As a last example, the full hemispherical shell analysed within the linear regime in

Section 7.1.4 is now modelled considering both geometric and material nonlinearities. The

geometry of the structure is defined by a radiusR= 10.0 and thicknesst = 0.5. Following

references [Eberlein 99, Klinkel 06, Schwarze 11], the elastic material properties are defined

by an elastic modulusE = 10.0, and a Poisson’s coefficientν = 0.2, while the plastic

behaviour of the material is defined by the yield stressσ0 = 0.2 and an isotropic hardening

coefficientH = 9.0. The load magnitude is given asF = 0.04.

The results for the load-displacement curves for points A and B located in the inner

and outer surfaces are presented in Figures 7.50 and 7.51, respectively. These curves

are compared with those coming from the works of Schwarze andReese [Schwarze 11],

Klinkel et al. [Klinkel 06] and Eberlein and Wriggers [Eberlein 99]. As canbe seen,

load-displacement curves obtained by the proposed H2ANS formulations are in good

agreement with the results from Klinkelet al. [Klinkel 06]. The H2 formulation, however,

is affected by locking and, consequently, presents a stiffer behaviour.
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Figure 7.50: Full hemispherical shell problem: load-displacement curves for point A.

Finally, a comparison between the NURBS-based cubic solid element (H3) and the

H2ANS solid-shell element is performed. The load-displacement curves for points A and B

obtained by both formulations using a 8×8×1 mesh are presented in Figure 7.52, showing

that both elements present a very similar performance. The CPU times obtained by the

formulations is depicted in Figure 7.53, where the results from the quadratic NURBS-based

131



Chapter 7. Numerical Examples

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

L
o

a
d

Displacement

Ebe99

Kli06, Inner

Kli06, Outer

H2ANS, Inner, 8x8 mesh

H2ANS, Outer, 8x8 mesh

H2, Inner, 8x8 mesh

H2, Outer, 8x8 mesh

Sch11, Inner, 12x12 mesh

Sch11, Outer, 12x12 mesh

Figure 7.51: Full hemispherical shell problem: load-displacement curves for point B.

elements are also presented for comparison purposes. The results are normalised using

the CPU time obtained by the H3 element with a mesh composed of1444 control points,

corresponding to 16× 16× 1 elements. As can be seen, the H2ANS element presents a

significantly lower CPU time when compared with the cubic solid NURBS-based element,

while maintaining a very similar prediction of the load-displacement curves of the analysed

points, making the H2ANS a more efficient choice for the numerical simulation of this

problem.

132



7.2. Nonlinear Problems

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

L
o

a
d

Displacement

Ebb99

Kli06, Inner

Kli06, Outer

H2ANS, Inner

H2ANS, Outer

H3, Inner

H3, Outer

Point A Point B
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7.3 Problems Dealing With Volumetric Locking

The following numerical examples will be used to assess the performance of the NURBS-

based formulation proposed in Section 5.6 (denoted as H2PV)when volumetric locking

effects are present.

7.3.1 The Curved Beam

The first example deals with a curved beam which is subjected to a uniform radial

displacement on its free edge, as can be seen in Figure 7.54. The geometry of the beam

if defined by an outer and inner radii given byRo = 10.0 andRi = 5.0, respectively. The

radial displacement is set to be equal tou0 = 0.1, while the boundary conditions are defined

asu(0,y)= v(0,Ri)= 0. The material properties are given by the elastic modulusE= 9600.0

and Poisson’s coefficientν = 0.4995, and plane strain conditions are assumed [Taylor 11].

The strain energy error of the numerical solution versus theelement size is presented in

Figure 7.55 for the H2, H2ANS and H2PV NURBS-based formulations. It can be seen that

the H2PV element is able to significantly improve the behaviour of the standard quadratic

solid element. For the finer mesh, composed of 16× 16 elements, the error in the strain

energy obtained by the H2PV element is more than one order of magnitude lower than the

one obtained by the H2.

u0
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Ri

x

y

O

Figure 7.54: Schematic representation of the curved beam.
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Figure 7.55: Curved beam: strain energy error versus element size.

7.3.2 The Cook’s Membrane

The Cook’s membrane is a well-known benchmark test to assessthe performance of a given

formulation in the near incompressible case [Simo 90b, Ibrahimbegovíc 90, César de Sá 99,

Kasper 00]. This problem consists of a skew plate which is clamped on one side and

subjected to a shear loadF = 100.0 on the opposite edge. The geometry of the problem is

given in Figure 7.56. The constitutive parameters are takenasE = 240.565 andν = 0.4999.

Once again, plane strain conditions are considered.

The vertical displacements of point A obtained by differentNURBS-based formulations

are presented in Figure 7.57. For comparison purposes, the results obtained by Elguedjet

al. [Elguedj 08] for a quadratic̄B patch are also presented. The H2PV element is able

to significantly improve the behaviour of the standard quadratic solid element, showing

a performance that is closer to the one of the cubic element. The H2ANS formulation

presents a performance similar to the one of the H2 element, demonstrating that the

ANS methodology is not adequate to tackle volumetric locking. The second-order̄B

NURBS-based element presents the best overall performance. This was to be expected since

this methodology is applied at the patch level, while the method proposed herein operates

at the element level. However, and particularly to this element-wise approach, the proposed

methodology may prove to be easier to implement into available finite element codes by

means of user subroutines.

135



Chapter 7. Numerical Examples

F

48

44

16

A

Figure 7.56: Cook’s membrane problem setup.
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Figure 7.57: Cook’s membrane: vertical tip displacement (point A).
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7.4 Contact Benchmark Problems

In this section, a set of numerical examples are used to validate the implementation and

assess the accuracy of the Point-to-Segment formulation described in Chapter 6. All the

examples presented herein are referred to the linear elastic range.

7.4.1 The Contact Patch Test

The contact patch test, introduced in [Taylor 91], is a well-known benchmark problem to

assess the ability of the contact formulation to exactly transmit constant normal tractions

over two different bodies. If the patch test is not satisfied,the algorithms introduce errors at

the contacting surfaces that do not necessarily decrease with mesh refinement [Crisfield 00,

El-Abbasi 01, Zavarise 09a]. In [Taylor 91], it was demonstrated that the classical Node-

to-Segment algorithms do not pass the patch test. This can beremedied by employing a

two-pass algorithm [Zavarise 09a].

In this work, the setup proposed by Crisfield [Crisfield 00] and presented in Figure 7.58

is considered. Instead of a distributed load, the top surface of the upper body is subjected to

a prescribed displacement∆u. The exact solution of the problem’s stress field is given by

σxx = τxy = 0, (7.3)

σyy=
E

1−ν2∆u, (7.4)

σzz= νσyy. (7.5)

The Elastic modulus is taken asE = 1000.0, the Poisson’s coefficient asν = 0.0 and∆u=

0.001. The upper body is considered to be the slave while the lower body is the master.

The Finite Element discretisation adopted can be seen in Figure 7.58, where the contact

collocation points are represented by diamond symbols.

The contact stresses at the interface for the PTS algorithm is presented in Figure 7.59,

along with the curves obtained for the NTS algorithm using fully integrated linear (CPE4)

and quadratic (CPE8) Lagrangian-based elements availablein the commercial Finite Element

software Abaqus. It can be seen that the PTS contact formulation is not able to exactly satisfy

the contact patch test. However, it is worth mentioning thatthe maximum and minimum

stress along the horizontal direction at the integration points areσmax
yy ≈−0.997 andσmin

yy ≈
−1.002, respectively. Taking into account that the reference solution is σyy = −1.0, it can

be stated that the PTS methodology offers a significant improvement over the classical NTS

algorithm typically employed in the context of Finite Element Analysis, since the quadratic

Lagrangian-based elements fail the contact patch test analysed herein and introduce quite

substantial errors [Crisfield 00]. As can be seen, the PTS algorithm presents oscillations
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Figure 7.58: Contact patch test problem setup (diamond symbols represent contact collocation

points).

of much lower magnitude about the reference solution, when compared to the algorithm of

Abaqus, even for higher-order approximations.
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Figure 7.59: Contact patch test: contact stress at the interface.
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7.4.2 Indentation of an Elastic Block by a Circular Rigid Punch

This example deals with the indentation of an elastic foundation by a circular rigid punch, as

represented in Figure 7.60. The material constitutive parameters are referred to an elastic

modulusE = 1000.0 and Poisson’s coefficientν = 0.3, and plane strain conditions are

considered. The radius of the tool is given asR = 8.0 and the depth of indentation is

set tod = 0.6, where the foundation is defined by a lengthL = 16.0 and heighth = 4.0

[Kikuchi 88]. Due to symmetry conditions, only half of the model is considered.

x

y

h

L

R

Elastic foundation

Rigid Punch

Figure 7.60: Setup of the indentation of an elastic block by acircular rigid punch.

The values of the strain energy for different mesh densitiesare presented in Table 7.1 for

a quadratic NURBS-based formulation. Since no analytical solution is available, a reference

solution of 109.513 is obtained using the commercial software Abaqus employing a mesh

consisting of 125× 125 quadratic quadrilateral elements. It can be seen that, although

some small oscillations are obtained, the PTS algorithm is able to converge to the reference

solution quite rapidly. The final deformed configuration canbe seen in Figure 7.61, for two

mesh densities.

Table 7.1: Normalised strain energy for the indentation of an elastic block by a circular rigid punch.

Number of Elements Number of dof’s Normalised Strain Energy

4×4 36 0.984

5×5 49 0.970

6×6 64 0.998

10×10 144 1.005

14×14 256 0.999

In the second part of the current example, the performance ofthe methodology presented

in Section 6.3.4 to compute the contact stresses is assessed. The results for 3 mesh densities,

as well as the reference solution coming from Abaqus, are presented in Figure 7.62. The

coarser mesh comprised of 6× 6 elements is able to correctly approximate the contact

stress at the centre of the elastic foundation. However, since only 3 collocation points are

139



Chapter 7. Numerical Examples

Figure 7.61: Indentation of an elastic block by a circular rigid punch: deformed configuration for

(left) 6×6 and (right) 10×10 meshes (contact collocation points represented by diamond symbols).

considered to be active, the predicted contact stresses in the remainder of the structure are

underestimated. Nevertheless, when considering more refined meshes (10×10 and 14×14

elements) it can be seen that the presented methodology is able to predict the reference

contact stresses with a good accuracy.
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Figure 7.62: Indentation of an elastic block by a circular rigid punch: contact stress for different mesh

densities.
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7.4.3 Indentation of an Elastic Block by a Flat Rigid Punch

The current example deals with the indentation of an elasticfoundation by a flat rigid punch,

for which a schematic representation can be seen in Figure 7.63. The elastic foundation

is defined by the lengthL = 3.0 and heighth = 1.0, with the material properties given

by an elastic modulusE = 200.0×109 and Poisson’s coefficientν = 0.3, and plane strain

conditions are assumed. Due to symmetry conditions and as inthe previous example, only

half of the problem is modelled. The rigid flat punch, with a widtha= 0.5, is subjected to a

vertical prescribed displacement of 0.01.
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Figure 7.63: Setup of the indentation of an elastic block by aflat rigid punch.

The theoretical contact stress distribution at the punch-block interface is given by

[Johnson 85]

σC(x) =
F

π
√

a2−x2
, (7.6)

whereF is the total applied force at the punch andx is the distance from the centre of contact.

It can be seen from the previous equation that the contact stress will tend to infinity at the

sharp corner of the punch.

In this problem, three different mesh configurations consisting of 16×16 elements are

considered. In the first configuration (mesh I), uniform knotvectors are taken into account in

both directions. In the other two configurations (mesh II andmesh III), the knot vectors were

defined in such a way that a higher element density is present in the vicinity of the sharp

corner of the rigid punch. These different mesh configurations can be seen in Figure 7.64.

The results for the contact stress distribution for the three considered configurations are

plotted in Figure 7.65, along with the theoretical results and a solution coming from the

commercial software Abaqus. Due to the low number of collocation points in the contact

zone, the model with mesh I is not able to correctly reproducethe contact stress distribution,

leading to higher contact stresses than those predicted by the theoretical model. On the other

hand, the mesh with the finer refinement near the sharp corner of the punch is able to predict

the contact stress distribution very accurately.
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Figure 7.64: Indentation of an elastic block by a flat rigid punch: mesh configurations (from left to

right) I, II and III.
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Figure 7.65: Indentation of an elastic block by a flat rigid punch problem: contact stress for the

different mesh configurations.

7.4.4 Hertz Contact Problem

In this problem, an infinitely long elastic cylinder is pressed between two rigid surfaces, as

can be seen in Figure 7.66. The cylinder is defined by a radiusR= 4.0 and the constitutive

parameters are given by the elastic modulusE = 1.0×106 and Poisson’s coefficientν = 0.3.

Due to symmetry conditions, only a quarter of the cylinder ismodelled, being the upper

symmetry plane subjected to a total prescribed displacement of 0.15. The resulting model

is then discretised using a 16×16 mesh. Different knot vectors were considered in order

to obtain different numbers of collocation points in the contact zone, leading to the mesh
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configurations I, II and III, shown in Figure 7.67.

The analytical solution for the contact stress distribution along the contact surface can be

computed as [Timoshenko 51, Kikuchi 88]

σC =
2F
πb2

√
b2−x2, (7.7)

whereF is the equivalent force andb is the half-width of the contact surface, defined as

b= 2

√
FR(1−ν2)

Eπ
. (7.8)

The solution is obtained by considering that the cylinder isaffected by small displacements

and small strains only.

R

Fixed surface

Prescribed displacement

Figure 7.66: Hertz contact problem setup.

Figure 7.67: Hertz contact problem: mesh configurations (from left to right) I, II and III.

The resulting curves for the normal contact stress versus the distance from the centre, for

each mesh configuration, are presented in Figure 7.68. The results are compared with the
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analytical solution and with those coming from a consistentsegment algorithm proposed by

Baig [Baig 06]. It can be seen that, when considering the meshconfiguration III, the contact

stress distribution follows the same tendency of the analytical solution. Similarly to the

previous example, the mesh configuration III is able to reproduce the contact stresses in the

slave surface more accurately due to the higher number of collocation points in the contact

zone, although all three configurations are able to predict similar values for the maximum

normal contact stress. These predicted maximum contact stresses are seen to be lower to the

values coming from the analytical solution (about 9%), being however very similar to those

obtained by the consistent segment procedure of Baig [Baig 06].
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Figure 7.68: Hertz contact problem: contact stress for the different mesh configurations.
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Chapter 8

Conclusions and Future Works

The main conclusions of the work are presented, along with some suggestions

for future developments.

The present research work is mainly devoted to the development of robust tools for the

numerical simulation of solid mechanics problems in the context of Isogeometric Analysis.

With this goal, a NURBS-based solid-shell Finite Element formulation was proposed, based

on the Assumed Natural Strain method. In addition, an introductory study of contact

mechanics in Isogeometric Analysis, focused in the Point-to-Segment algorithm, was also

performed. All these developments were implemented in a setof in-house developed tools.

In Chapter 2 the classical Finite Element Method was introduced and detailed, along with

the procedures necessary to implement a Lagrangian displacement-based formulation. This

chapter served to introduce the nomenclature employed, since the Finite Element Method

and Isogeometric Analysis share many characteristics. In Chapter 3, the B-Spline basis

functions were introduced, along with the procedure to define a curve, surface or volume

using B-Splines and NURBS entities. The integration of the B-Spline basis with Finite

Element Analysis is detailed and the numerical tools developed throughout the present work

were presented. Chapter 4 dealt with the inclusion of geometric and material nonlinearities

in the numerical models. A state-of-the-art review on the treatment of locking pathologies

in the context of both the Finite Element Method and Isogeometric Analysis was given in

Chapter 5. The extension of the Enhanced Assumed Strain and Assumed Natural Strain

methods to Isogeometric Analysis was also studied.

From the research carried out, it was concluded that a high-order solid element based

uniquely in the EAS method requires a high number of enhancing parameters to solve

volumetric and shear locking pathologies. This would inevitably lead to high computational

costs, since a square matrix with size equal to the number of enhancing parameters must

be inverted which turns the EAS+ IGA approach prohibited and not practical for complex
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problems. In addition, adding the enhancing variables to NURBS-based formulations, in the

same way as is done with Lagrangian elements, may lead to numerical instabilities.

Afterwards, the Assumed Natural Strain method for Isogeometric Analysis was pro-

posed. The method relies in the definition of a local space, inaddition to the patch parametric

space present in IGA (which is referred to as the global space). This local space was then

employed to compute a set of local basis functions that interpolate the strain fields of the tying

points, which replaced the ones from the standard Gauss points. The presented methodology

led to a NURBS-based solid-shell formulation suitable for the analysis of thin structures,

which was denoted as H2ANS. The main advantages of this methodology proved to be its

simplicity and easiness of implementation, also into available finite element codes.

The methodology’s performance was assessed by means of a wide range of numerical

benchmark problems. The results demonstrate that the H2ANSformulation is able to

alleviate locking pathologies (such as shear and membrane locking) leading to a significantly

superior performance when compared with the standard quadratic solid element. In fact,

in some of the presented examples, the H2ANS solid-shell element was able to obtain

a performance which was very similar to the one of the standard cubic NURBS-based

element. However, the proposed methodology presents significantly lower computational

cost, specially when considering analyses in the nonlinearregime. In addition, since a

full integration scheme consisting of(p+1)× (q+1)× (r +1) was employed, it was not

necessary to develop stabilisation techniques which are frequently used to avoid numerical

instabilities in reduced integration formulations in the context of Lagrangian-based Finite

Element formulations. The same methodology was employed todevise a NURBS-based

quadratic element suitable for the analysis of problems in the linear elastic range which are

affected by volumetric locking pathologies, which was denoted H2PV. This formulation,

which can be seen as a type of localB̄ method, was able to improve the numerical solutions

obtained by the standard quadratic NURBS-based solid element. It is worth mentioning that

the methodology inherent to the H2ANS and H2PV formulationscan be easily extended to

higher-order interpolations, which is an added advantage over the EAS approach.

Chapter 6 was dedicated to the use of NURBS-based formulations in contact mechanics.

The use of NURBS-based formulations for this type of problems is an attractive alternative

to classical methodologies due to the high inter-element continuity and better approximation

of contact stresses. In this Thesis, the Point-to-Segment algorithm (which can be seen

as the Isogeometric Analysis counterpart of the Node-to-Segment algorithm widely used

in Finite Element Analysis) was studied. The implementation for the analysis of linear

elastic problems was validated using a set of well-known benchmark problems. This study

represents the first step in the field of computational contact mechanics within the research

group in which the author is inserted. Thus, it is intended toserve as the foundation on which
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future researchers can build upon in computational contactmechanics’ field.

During the time period in which the present research work wasperformed, a set of

numerical tools were created. These tools include an in-house developed Isogeometric COde

(ICO) and several user subroutines for the commercial Finite Element software Abaqus.

Focusing in the ICO, the code was written in a modular fashion, allowing other researchers

to more easily implement and test new methodologies.

The author of this Thesis believes that an interesting research topic to be pursued in the

future would be the extension of the Enhanced Assumed Strainmethodology to Isogeometric

Analysis. This is an attractive strategy to avoid differentkinds of locking effects (volumetric,

shear, etc.), but requires special considerations when employed in the context of IGA, since it

was proved that using the same paradigm as adopted with the Finite Element Method renders

a not effective approach, from the point of view of the computational costs.

Another interesting application of the proposed solid-shell ANS + IGA approach would

be in the numerical simulation of biomedical structures (tissues and ligaments, for instance),

where 3D modelling capabilities along with locking-free formulations are welcomed.

From the point of view of the numerical integration, in this work a Gaussian integration

procedure was adopted, as in the great majority of works in the literature. However, as was

highlighted previously, this choice of integration pointsis not optimal for the IGA context

and, recently, a significant amount of research effort has been dedicated to this subject.

Therefore, extending the ANS+ IGA formulation proposed in this work to alternative sets

of integration (and tying) points would be a valuable contribution.

Finally, and related to contact mechanics, the use of IGA forthe numerical simulation

of contact problems is particularly attractive for the analysis of, for instance, sheet and bulk

metal forming operations where large sliding contact between the different components is

present. In this category, the Point-to-Segment algorithmis an interesting methodology due

to its simplicity. Thus, its extension to three-dimensional analysis and friction problems is

also a valuable topic for future research, as well as the comparison with other methodologies

(such as the mortar method).
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Appendix A

Isogeometric COde User’s Manual

The Isogeometric COde (ICO) is an in-house code fully written in Fortran 90 for solving

solid mechanics problems using the Isogeometric Analysis (IGA) concept. The code can

be separated into two sub-codes: one for two-dimensional analysis and a second one for

three-dimensional problems. In its current version, the ICO code supports:

.: single and multipatch (compatible discretisation) analysis;

.: linear isotropic elastic problems;

.: small strains plasticity with isotropic hardening;

.: geometric nonlinear analysis;

.: contact using the Point-to-Segment algorithm (only for two-dimensional analyses).

The present document is intended to provide a general description of the code and

the required steps to perform an analysis of a solid mechanics problem employing the

Isogeometric Analysis concept.

The general flowchart of the code can be seen in Figure A.1. In order to perform the

numerical simulation, the user must create an input file containing all the data of the model

(organised using specific keywords), which will then be readby the code.

A.1 The Input File

The input file contains all the necessary information to perform the numerical simulation.

The file must be given a name which will then called by the code.In order to correctly

perform an Isogeometric Analysis, the data must be entered in the input file by using

specific keywords. After opening the file, the code will read it, searching for predetermined

keywords. Once a keyword is found, the code reads all the information related to the keyword

and stores it in the appropriate array.
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Start Read input file
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Figure A.1: Flowchart of the multipatch Isogeometric COde for two-dimensional analysis.
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The start of an input file data is given by the keyword <*begin> and the end is defined

by the keyword <*end>. Everything that is written outside of these boundaries will not be

considered for the analysis. A general input file contains the following sections:

.: header, where the general dimensions of the problem are given;

.: mesh, in which the knot vectors, control points and element type are defined;

.: material properties;

.: analysis parameters, in which the number of iterations and increments are defined, as

well as the type of analysis (optional);

.: boundary conditions.

In the input file the header must always be defined first in orderto allocate the required

variables. The general structure of the header is given as

*begin

nds

p, q, w

n
px, n
py, n
pz


losed_u, 
losed_v, 
losed_w

wherends is the number of degrees of freedom of each control point,p, q andw the order

chosen along theξ , η and ζ -coordinate directions, respectively. The number of control

points along each direction is given byn
px, n
py andn
pz. The last line defines if the

boundaries are open or closed (1: Closed, 0: Open). The keyword <*begin> defines the

beginning of the model data input for a single patch analysis.
It is then necessary to define the control points and the elements to be used in the analysis.

This section will have the following aspect

*knots

U

V

W

*element

X

*bnet

x1 y1 z1 w1

x2 y2 z2 w2

... ...
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whereU, V andW are the knot vectors along each coordinate direction. The element definition

is given by the stringX, according to the element library presented in Table A.1. Note

that Gauss integration is employed in all the formulations.The keyword <*bnet> sets the

beginning of the input of the NURBS control points, where each line represents a different

control point. In each line the points are defined by thex, y andz coordinates, followed

by the weight of the control point. The complete lattice is read using three cycles. The

inner cycle for thez-direction, the middle cycle for they-direction and the outer cycle for

x-direction. The user must take special care in this definition in order to avoid an incorrect

interpretation of the control lattice.

Table A.1: ICO Element Library

Element Tag Description

Hex8 Linear hexahedral element with full integration

Hex27 Quadratic hexahedral element with full integration

Hex27ANS Fully integrated second-order solid-shell hexahedral element

enhanced with the Assumed Natural Strain method

Hex64 Cubic hexahedral element with full integration

Quad4S/E Linear quadrilateral element for plane stress/strain with full

integration

Quad9S/E Quadratic quadrilateral element for plane stress/strain with full

integration

Quad16S/E Cubic quadrilateral element for plane stress/strain with full

integration

The next step is to define the material properties associatedwith the patch. These
properties are defined in the input file as

*material

iprops

props(1), props(2),...., props(iprops)

whereiprops is the dimension of the arrayprops. Each position of the arrayprops is

associated with a given material property, as shown in TableA.2. In the current version

of the code, only linear elastic and isotropic hardening small strain plasticity models are

implemented.
The next step consists in defining the number of increments and maximum iterations in

the analysis. This section of the input file is defined as

*NLGeom

*In
rements
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Table A.2: ICO properties array index definition

Props index Material Property

1 Elastic modulus

2 Poisson’s Coefficient

3 Density

4 Element thickness (for plane stress analyses)

5 Yield stress

6 to - Hardening data

in
max

*Iterations

itermax

wherein
max anditermax are the total number of increments and the maximum number

of iterations per increment, respectively. The keyword <*NLGeom> should only be used if a

geometric nonlinear analysis is being considered. If this section is omitted in the input file,

the parameters will take the default values ofin
max=1 anditermax=25 and a geometric

linear analysis will be considered.

Finally, the boundary conditions are defined. In the currentversion of ICO, homogeneous

and inhomogeneous Dirichlet boundary conditions as well asexternal point loads can

only be applied directly into the control points. The user must take into account that

inhomogeneous Dirichlet boundary conditions and externalpoint loads should only be

applied in interpolatory control points. The imposition ofthese types of constraints in other

positions will be addressed in future versions of the code. Additionally, the user may also

apply pressure loads in the faces of the elements, as well as gravitic loads (self-weight). For

the particular case of a two-dimensional analysis, in this boundary conditions section it is also

possible to define the slave and master segments which will beused in the Point-to-Segment

contact methodology.
If a multipatch analysis is to be conducted, the user replaces the keywords <*begin>

by <*begin_MP>. In addition, the global connectivity (numbering) of the patches must be
defined as

*MP_
onn

i, 
onn

...

wherei is the global element number and
onn the connectivity. This second line must be

repeated for each element of the model. All the other properties are defined as described

above in a sequential way for each patch.
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As an example, the ICO input file for the Scordelis-Lo roof problem discretised using a
mesh consisting of four quadratic elements from Section 7.1.3 is given below.

*begin

3 !problem dimension

2, 2, 2 !degree of ea
h dimension

4, 4, 3 !
ontrol points in ea
h dire
tion

0, 0, 0 !open(0) or 
losed(1) knot ve
tor

--------------------------------------------------------

*knots !knot spans

0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0

0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0

0.0, 0.0, 0.0, 1.0, 1.0, 1.0

--------------------------------------------------------

*element

Hex27

*bnet

4.3861336E+00 1.8750000E+01 2.4875000E+01 9.6984631E-01

4.4081745E+00 1.8750000E+01 2.5000000E+01 9.6984631E-01

4.4302154E+00 1.8750000E+01 2.5125000E+01 9.6984631E-01

4.3861336E+00 2.5000000E+01 2.4875000E+01 9.6984631E-01

4.4081745E+00 2.5000000E+01 2.5000000E+01 9.6984631E-01

4.4302154E+00 2.5000000E+01 2.5125000E+01 9.6984631E-01

1.2629368E+01 0.0000000E+00 2.1874708E+01 9.6984631E-01

1.2692833E+01 0.0000000E+00 2.1984631E+01 9.6984631E-01

1.2756297E+01 0.0000000E+00 2.2094554E+01 9.6984631E-01

1.2629368E+01 6.2500000E+00 2.1874708E+01 9.6984631E-01

1.2692833E+01 6.2500000E+00 2.1984631E+01 9.6984631E-01

1.2756297E+01 6.2500000E+00 2.2094554E+01 9.6984631E-01

1.2629368E+01 1.8750000E+01 2.1874708E+01 9.6984631E-01

1.2692833E+01 1.8750000E+01 2.1984631E+01 9.6984631E-01

1.2756297E+01 1.8750000E+01 2.2094554E+01 9.6984631E-01

1.2629368E+01 2.5000000E+01 2.1874708E+01 9.6984631E-01

1.2692833E+01 2.5000000E+01 2.1984631E+01 9.6984631E-01

1.2756297E+01 2.5000000E+01 2.2094554E+01 9.6984631E-01

1.5989342E+01 0.0000000E+00 1.9055356E+01 1.0000000E+00

1.6069690E+01 0.0000000E+00 1.9151111E+01 1.0000000E+00

1.6150039E+01 0.0000000E+00 1.9246867E+01 1.0000000E+00

1.5989342E+01 6.2500000E+00 1.9055356E+01 1.0000000E+00

1.6069690E+01 6.2500000E+00 1.9151111E+01 1.0000000E+00

1.6150039E+01 6.2500000E+00 1.9246867E+01 1.0000000E+00

1.5989342E+01 1.8750000E+01 1.9055356E+01 1.0000000E+00

1.6069690E+01 1.8750000E+01 1.9151111E+01 1.0000000E+00

1.6150039E+01 1.8750000E+01 1.9246867E+01 1.0000000E+00

1.5989342E+01 2.5000000E+01 1.9055356E+01 1.0000000E+00
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1.6069690E+01 2.5000000E+01 1.9151111E+01 1.0000000E+00

1.6150039E+01 2.5000000E+01 1.9246867E+01 1.0000000E+00

--------------------------------------------------------

*material

5

4.32e8, 0.0, 360.0, 1.0, 1e25

--------------------------------------------------------

*b
dof

31

1, 1

5, 1

9, 1

13, 1

17, 1

21, 1

25, 1

29, 1

33, 1

37, 1

41, 1

45, 1

13, 2

14, 2

15, 2

16, 2

29, 2

30, 2

31, 2

32, 2

45, 2

46, 2

47, 2

48, 2

1, 3

2, 3

3, 3

4, 3

2, 1

3, 1

4, 1

*gravity

1.0, 3

*end
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A.2 Keywords

In the following, the keywords available for defining the input file for ICO will be described

in detail. All the keywords are case sensitive.

<*bcdof>

The keyword <*b
dof> is used to define homogeneous Dirichlet boundary conditions

directly into the control points. This keyword uses the global numbering of the control

points to define the boundary condition. The data following the <*b
dof> keyword is:

.: first line: total number of Dirichlet boundary conditions;

.: additional line for each boundary condition: integer defining global control point

number, integer defining which degree of freedom is being restricted.

Note that a boundary condition cannot be repeated or the system of reduced equations will

not be dimensioned correctly, leading to an allocation error. In alternative, the user may

employ the keyword <*boundary> as a way to impose Dirichlet boundary conditions.

<*begin>

The keyword <*begin> defines the start of the data for the input file. Before using this

keyword, any comments may be added to the input file. The data following the <*begin>

keyword is:

.: first line: integer defining the dimension of the problem;

.: second line: integers defining the order of the basis used in the xx-, yy- and zz-

directions;

.: third line: integers defining the number of control used inthexx-, yy- andzz-directions;

.: fourth line: integers defining if the knot vectors are openor closed (0 for open and 1

for closed).

The keyword <*begin> must always be used in the input file or otherwise the code will exit

with and I/O error.
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<*begin_MP>

The keyword <*begin_MP> defines the start of the data for the input file for a multipatch

analysis. Before using this keyword, any comments may be added to the input file. The data

following the <*begin_MP> keyword is:

.: first line: integer defining the number of patches;

.: second line: integer defining the dimension of the problem;

.: one additional line for each patch containing integers defining the order of the basis

used in thexx-, yy- andzz-directions;

.: one additional line for each patch containing integers defining the number of control

used in thexx-, yy- andzz-directions;

.: one additional line for each patch containing integers defining if the knot vectors are

open or closed (0 for open and 1 for closed).

The keyword <*begin_MP> must always be used in the input file or otherwise the code

will exit with and I/O error. All the remaining keywords can be used as described herein.

However all the lines in each keyword must be repeated once for each patch.

<*bnet>

The keyword <*bnet> is used to define the control lattice of the problem. This data is

read using three DO-cycles. The outer cycle (i) for directionxx, the middle cycle (j) for

directionyyand the inner cycle (k) for directionzz. The data is stored in matrix Bnet(i, j,k, l),

wherel = 1,2,3,4 contains thexx-coordinate,yy-coordinate,zz-coordinate and weight of the

control point. The data following the <*bnet> keyword is:

.: one line for each control point:xx-coordinate,yy-coordinate,zz-coordinate, weight.

The users must take special attention to the way the control lattice in read in the code in order

to avoid an incorrect interpretation of the geometry.

<*boundary>

The keyword <*boundary> is used to define homogeneous Dirichlet boundary conditions

directly into the control points. This keyword uses the indexes from the control lattice

to defined the control point subjected to the boundary condition. The data following the

<*boundary> keyword is:
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.: first line: total number of Dirichlet boundary conditions;

.: additional line for each boundary condition:i, j, k, l where i, j and k defines the

position in the control lattice andl defined which degree of freedom is being restricted.

Note that a boundary condition cannot be repeated or the reduced system of equations will

not be dimensioned correctly, leading to an allocation error. In alternative, the user may

employ the keyword <*b
dof> as a way to impose Dirichlet boundary conditions.

<*ContactPTS>

This keyword is used in order to activate the Point-to-Segment algorithm for dealing

with contact between two bodies. The definition of the masterand slave segments

(using the keywords <*Master> and <*Slave>, respectively) must be performed after the

<*Conta
tPTS> keyword. The Point-to-Segment algorithm is available fortwo-dimensional

analyses only.

<*dispdof>

The keyword <*dispdof> is used to apply prescribed displacements directly into the control

points. This keyword uses the global numbering of the control points to define the boundary

condition. The data following the <*dispdof> keyword is:

.: first line: total number of prescribed displacement boundary conditions;

.: additional line for each prescribed displacement boundary condition: integer defining

global control point number, integer defining which degree of freedom is considered,

real number defining the the displacement.

Note that this keyword applies the prescribed displacementdirectly into the control

points. Therefore, if the control point does not belong to the physical geometry of the

problem, this command should not be employed. The user may also employ the keyword

<*displa
ement> as a way to apply displacement boundary conditions directly into the

control points.

<*displacement>

The keyword <*displa
ement> is used to apply prescribed displacements directly into the

control points. This keyword uses the indexes from the control lattice to define the boundary

condition. The data following the <*displa
ement> keyword is:

.: first line: total number of prescribed displacement boundary conditions;
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.: additional line for each boundary condition:i, j, k, l , d wherei, j andk defines the

position in the control lattice andl defines which degree of freedom is being considered

andd is the displacement being imposed.

Note that this keyword applies the prescribed displacementdirectly into the control points.

Therefore, if the control point does not belong to the physical geometry of the problem, this

command should not be employed. The user may also employ the keyword <*dispdof> as

a way to apply displacement boundary conditions directly into the control points.

<*element>

The keyword <*element> is used to defined the element type that will be used to solve the

numerical problem. The data following the <*element> keyword is:

.: first and only line: string defining the element (see Table A.1).

In all the formulations, standard Gaussian quadrature is employed. The term full integration

of an element of orderp stands for(p+1) integration points used in each direction, while

reduced integration consists ofp integration points along each direction. The user must

choose an element formulation which is consistent with the inputed data. For example,

errors or inaccurate results may occur if the Hex8 element isused in a mesh containing data

for a quadratic formulation.

<*end>

The keyword <*end> defines the end of the input file. No data written after this keyword

will be read by the code. This <*end> keyword must always be present in the input file or

otherwise the code will exit with and I/O error.

<*gravity>

The keyword <*gravity> is used to apply gravity loads (self-weight) to the numerical

model. The data following the <*gravity> keyword is:

.: first and only line: real number defining the acceleration constant, integer defining the

direction of the gravity (1, 2 or 3, corresponding to thexx, yy or zzaxis, respectively).

Note that in order to use the keyword <*gravity> to define gravity loads, the density of the

material must be defined and different from zero.
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<*Iterations>

The keyword <*Iterations> defines the maximum number of iteration allowed in each

increment. The data following the <*Iterations> keyword is:

.: first and only line: integer defining the maximum number of iterations per increment.

If the keyword <*Iterations> is omitted, the code will use the default value of 25

iterations. If the code is unable to converge within the defined number of iterations, the

simulation will terminate and a warning message will be printed to the screen.

<*Increments>

The keyword <*In
rements> defines the number of increments in which the analysis is

divided. The data following the <*In
rements> keyword is:

.: first and only line: integer defining the number of increments.

If the keyword <*In
rements> is omitted, the code will use the default value of 1 increment.

<*knots>

The keyword <*knots> is used to input the knot vectors to be used in the analysis. The data

following the <*knots> keyword is:

.: first line: knot vector along thexx-direction;

.: second line: knot vector along theyy-direction;

.: third line: knot vector along thezz-direction.

<*load>

The keyword <*load> is used to apply external forces directly into the control points. This

keyword uses the indexes from the control lattice to define the control point subjected to the

load. The data following the <*load> keyword is:

.: first line: total number of external forces;

.: additional line for each boundary condition:i, j, k, l , F wherei, j andk defines the

position in the control lattice,l defines which degree of freedom is being restricted and

F is the magnitude of the load.
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Note that this keyword applies the load directly into the control points. Therefore, if the

control point does not belong to the physical geometry of theproblem, this command should

not be employed. The user may also employ the keyword <*loaddof> as a way to apply

external forces directly into the control points.

<*loaddof>

The keyword <*loaddof> is used to apply external forces directly into the control points.

This keyword uses the global numbering of the control pointsto define the boundary

condition. The data following the <*loaddof> keyword is:

.: first line: total number of external forces;

.: additional line for each boundary condition: integer defining global control point

number, integer defining which degree of freedom is considered, real number defining

the load.

Note that this keyword applies the load directly into the control points. Therefore, if the

control point does not belong to the physical geometry of theproblem, this command should

not be employed. The user may also employ the keyword <*load> as a way to apply external

forces directly into the control points.

<*Master>

Keyword used to define the master segment for a two-dimensional contact analysis. The data

following the <*Master> keyword is:

.: first line: integer defining the order of the master segment;

.: second line: number of control points which define the master segment;

.: third line: knot vector of the master segment;

.: fourth line: list of control point that define the master segment.

<*material>

The keyword <*material> is used to define the material properties to be used in the

analysis. The data following the <*material> keyword is:

.: first line: integeripropsdefining the total number of properties
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.: second line:props(1), props(2),...., props(iprops), whereprops(i) is a real number

defining propertyi, accordingly to Table A.2.

To define an hardening curve, the data must be inputed in tabular form. The position 6 of

the array props must contain the yield stress and position 7 the corresponding plastic strain.

Additional points of the hardening curve must be added in thesame manner: the yield stress

followed by the corresponding plastic strain. The higher the number of data points, the better

the approximation to the hardening curve will be. The minimum number of points that must

be inserted is 2. Note that in the current version of the code,only linear elastic and small

strain elastoplasticity with isotropic hardening constitutive models are implemented.

<*MP_conn>

Keyword used to define the global connectivity in a multipatch analysis. The data following

the <*MP_
onn> keyword is:

.: one line for each element: integer defining the global element number followed by

integers that define the control points that belong to the connectivity of the element.

<*NLGeom>

The keyword <*NLGeom> is used when a geometric nonlinear analysis is considered.If this

keyword is omitted in the input file, a geometric linear analysis is considered. No additional

information is required.

<*pressure>

The keyword <*pressure> is used to apply pressure loads in a surface of a three-

dimensional element. The data following the <*pressure> keyword is:

.: first line: number of pressure loads applied in the model;

.: additional line for each pressure load: number of the element, string defining the

element surface, real number defining the magnitude of the load.

The pressure load is applied in the inward direction following the normal of the face. To

apply an outward pressure, the load magnitude must have a negative sign. The strings to

define the surface are S1-S6, accordingly to Figure A.2.
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S1

S2

S3

S4

S5

S6

Figure A.2: Surface definition.

<*Slave>

Keyword used to define the slave segment for a two-dimensional contact analysis. The data

following the <*Slave> keyword is:

.: first line: integer defining the order of the slave segment;

.: second line: number of control points which define the slave segment;

.: third line: knot vector of the slave segment;

.: fourth line: list of control point that define the slave segment.
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Appendix B

User Element Subroutine for Abaqus

A detailed description of the implementation of NURBS-based Finite Element formulation

into the commercial Finite Element code Abaqus by means of a User Element subroutine is

presented in the following. To that end, a conceptual implementation of the main subroutines

is given, together with the necessary input files.

At the beginning of each increment, before computing the element-related variables,

it is necessary to input the NURBS-related data, which is accomplished by means of the

UEXTERNALDB subroutine which, in turn, will store the information in theglobal module

ModVariables. Afterwards, it is possible to perform the computation of the elemental

stiffness and internal force vector, along with the necessary state variables (stress and strain

fields, local axes,etc.).

B.1 NURBS Data Input File

The NURBS data input file contains all the information necessary for the computation of the

NURBS-based element variables that cannot be included directly in the Abaqus input file.

This file will then include the knot vector and control pointsweights which are required to

compute the NURBS basis functions. In the current implementation, the different variables

are separated by keywords, as can be seen in the following example.

*begin

3 !problem dimension

2, 2, 2 !degree of ea
h dimension

4, 4, 3 !
ontrol points in ea
h dire
tion

--------------------------------------------------------

*knots !knot spans

0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0

0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0

0.0, 0.0, 0.0, 1.0, 1.0, 1.0

--------------------------------------------------------
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*bnet !nurbs 
ontrol points

0.0000000000E+00 0.0000000000E+00 2.4875000000E+01 1.0000000000E+00

0.0000000000E+00 0.0000000000E+00 2.5000000000E+01 1.0000000000E+00

0.0000000000E+00 0.0000000000E+00 2.5125000000E+01 1.0000000000E+00

0.0000000000E+00 6.2500000000E+00 2.4875000000E+01 1.0000000000E+00

...

*end

B.2 Subroutine UEXTERNALDB

As mentioned before, theUEXTERNALDB subroutine is responsible for reading the user-

defined input file (defined in the previous section) which contains all the information

necessary for the computation of NURBS basis functions. Thecoding presented herein is

specific to the H2ANS element proposed in Section 5.5, as theM matrix is precomputed in

this step and stored in the global module. It is also worth mentioning that the NURBS-based

element connectivity is also computed in order to be used directly in the calculation of

the basis functions. The subroutine can be conceptually written in Fortran programming

language as follows.

subroutine UEXTERNALDB(LOP,LRESTART,TIME,DTIME,KSTEP,KINC)

use ModVariables

in
lude 'ABA_PARAM.INC'

dimension TIME(2)

!Variable definition -----


hara
ter*256::FileName


hara
ter*256::Line

...

!Define path to NURBS-data input file -----

FileName = 'C:/.../SLo_2el_p2q2w2.txt'

open(unit=1,file=FileName)

!Read input file -----

do while(Line .ne. '*end')

read(1,*)Line ...

end do

!Generate element 
onne
tivity for NURBS basis fun
tions


all gen_ien_inn

!Compute ANS related matri
es

allo
ate(Nb(p+1),Mb(q+1),dNbdxi(p+1),dMbdeta(q+1))

allo
ate(Nbr(p),Mbr(q),dNbrdxi(p),dMbrdeta(q))

!Tying Points Coordinates -----

CA = dsqrt(1.0d0/3.0d0)

CB = dsqrt(3.0d0/5.0d0)

TyPt = 0.0d0
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TyPt(1,1)= CA; TyPt(1,2)= CB;

TyPt(2,1)=-CA; TyPt(2,2)= CB;

...

TyPt(16,1)=-CA; TyPt(16,2)=-CA

!Bezier knot ve
tors -----

ub = 1.0d0

...

do k1=1,p+1

ub(k1) = 0.0d0

end do

...

!ANS M Matrix for Tying Point 
y
le 1 -----

MTP1 = 0.0d0

do k1=1,6

uk = (TyPt(k1,1) + 1.0d0)/2.0d0

vk = (TyPt(k1,2) + 1.0d0)/2.0d0

Nbr = 0.0d0

dNbrdxi = 0.0d0

!Compute basis fun
tions and derivatives for lo
al spa
e -----


all BSplineBasisAndDeriv(2,p-1,uk,ubr,Nbr,dNbrdxi)

Mb = 0.0d0

dMbdeta = 0.0d0


all BSplineBasisAndDeriv(3,q ,vk, vb, Mb,dMbdeta)


ount = 0

!Build ANS M matrix for tying point 
y
le 1 -----

do k2=0,q

do k3=0,p-1


ount = 
ount + 1

MTP1(k1,
ount) = Nbr(p-k3)*Mb(q+1-k2)

end do

end do

end do

!Inverse of the ANS M Matrix for Tying Point 
y
le 1 -----

temp6 = 0.0d0


all gaussj(MTP1,6,temp6,ilixo)

!ANS M Matrix for Tying Point 
y
le 2 -----

...

!ANS M Matrix for Tying Point 
y
le 3 -----

...

return

end
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B.3 Abaqus Input File

In the Abaqus input file the user defines the control points coordinates, the type of user

element and its connectivities and all the boundary conditions. In addition, the type of

analysis and the output variables are also defined for each step of the simulation. A sample

of an input file for Abaqus in the context of Isogeometric analysis using quadratic elements

is given in the following.

*Heading

Abaqus-IGA sample input file

***

*** Control points 
oordinates

***

*Node

1, 0.0000000000000000E+000, 0.0000000000000000E+000, 2.4875000000000000E+001

2, 4.3861336451230644E+000, 0.0000000000000000E+000, 2.4875000000000004E+001

3, 1.2629368485328952E+001, 0.0000000000000000E+000, 2.1874707884098953E+001

4, 1.5989341790952663E+001, 0.0000000000000000E+000, 1.9055355522584584E+001

...

***

*** User element definition

***

*User element, Type=U1, Coordinates=3, Var=596, Nodes=27, Properties=6

1,2,3

*Element, Type=U1, Elset=uelement

1,43,42,41,39,38,37,35,34,33,27,26,25,23,22,21,19,18,17,11,10,9,7,6,5,3,2,1

2,44,43,42,40,39,38,36,35,34,28,27,26,24,23,22,20,19,18,12,11,10,8,7,6,4,3,2

3,47,46,45,43,42,41,39,38,37,31,30,29,27,26,25,23,22,21,15,14,13,11,10,9,7,6,5

...

*Uel property, Elset=uelement

4.32e8, 0.0, 360.0, 1.0, 1e15, 10.0

***

*** Auxiliary node sets

***

*nset,nset=symmx, generate

1, 13, 4

17, 29, 4

33, 45, 4

*nset, nset=symmy, generate

1, 4, 1

17, 20, 1

33, 36, 1

*nset, nset=symmxz, generate

13, 16, 1
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***

*** Step definition

***

*Step, Nlgeom=No

*Stati


1.0, 1., 1e-05, 1.0

*Boundary

symmx, 1, 1

symmy, 2, 2

symmxz, 1, 1

symmxz, 3, 3

*Node print

U

*End step

B.4 Subroutine UEL

After reading the NURBS-related data (knot vectors, weights, etc.) and storing it in the

global module, it is possible to compute the element relatedvariables necessary for the

numerical simulation. In the context of Isogeometric Analysis, the implementation of a

formulation is very similar to the one from the classic Finite Element Method. Abaqus

provides as an input all the necessary variables for the computations, such as material

properties, control points displacements, type of analysis,etc. The NURBS data necessary to

the computation of the basis functions is recovered from theglobal module and as detailed in

Section B.2. The user must then provide as an output the elemental stiffness matrix (amatrx)

the residual vector (rhs) and all the state variables (svars).

In the following, a conceptual implementation of the singlepatch UEL subroutine

corresponding to the H2ANS NURBS-based element from Section 5.5 is presented. It should

be noted that only the main element subroutine is presented,while all the utility subroutines

(for determining the basis functions, for polar decomposition and others) can be coded using

the methodologies presented in Chapters 3 and 4 and references therein.

subroutine uel(rhs,amatrx,svars,energy,ndofel,nrhs,nsvars,

1 props, nprops, 
oords, m
rd, nnode, u, du, v, a, jtype, time,

2 dtime, kstep, kin
, jelem, params, ndload, jdltyp, adlmag,

3 predef, npredf, lflags, mlvarx, ddlmag, mdload, pnewdt, jprops,

4 njpro, period)

use ModVariables

impli
it real*8(a-h,o-z)
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dimension rhs(mlvarx,*),amatrx(ndofel,ndofel),props(*),

1 svars(nsvars),energy(8),
oords(m
rd,nnode),u(ndofel),

2 du(mlvarx,*),v(ndofel),a(ndofel),time(2),params(3),

3 jdltyp(mdload,*),adlmag(mdload,*),ddlmag(mdload,*),

4 predef(2,npredf,nnode),lflags(*),jprops(*)

...

!Displa
ement in
rement -----

ddisp=0.0d0

do j=1,nnode*ndof

ddisp(j,1)=dU(j,1)

end do

!Che
k for geometri
 nonlinearity -----

if(lflags(2)==0) then

nlgeom=.false.

tdisp=0.0d0

elseif(lflags(2)==1) then

nlgeom=.true.

tdisp=ddisp

end if

!Updated 
ontrol points 
oordinates for geometri
 nonlinearity -----

if(nlgeom==.true.)then

do k1=1,nnode

updtdisp(k1*3-2,1) = u(k1*ndof-2) - du(k1*ndof-2,1)

updtdisp(k1*3-1,1) = u(k1*ndof-1) - du(k1*ndof-1,1)

updtdisp(k1*3 ,1) = u(k1*ndof ) - du(k1*ndof ,1)

end do

endif

!Initialize residual and stiffness matrix -----

do i=1,ndofel

do j=1,nrhs

rhs(i,j)=zero

end do

do k=1,ndofel

amatrx(k,i)=zero

end do

end do

!Re
over state variables -----

s
ount=1

do k1=1,npi

do k2=1,ntens

stress(nel,k1,k2)=svars(s
ount)

s
ount = s
ount + 1

end do

end do

...
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!Gauss points parametri
 
oordinates and weights -----


all gauleg(npi_xi, e, we)


all gauleg(npi_eta, n, wn)


all gauleg(npi_zeta, 
, w
)

!Mid-point 
onfiguration for geometri
 nonlinear analysis

if(nlgeom==.true.)then

tdisp = ddisp

mdisp = ddisp/2.0d0

else

do i=1,6

TGL(i,i) = 1.0d0

TCL(i,i) = 1.0d0

end do

end if

!Gauss point 
y
le (xi) -----

do i=1,npi_xi

xi = e(i)

!Gauss point 
y
le (eta) -----

do j=1,npi_eta

eta = n(j)

xib = ( xi + 1.0d0)/2.0d0

etab = (eta + 1.0d0)/2.0d0

!ANS N array for TP 
y
le 1 -----


all BSplineBasisAndDeriv(n
px-1,p-1,xib ,ubr,Nbr,dNbrdxi)


all BSplineBasisAndDeriv(n
py ,q ,etab, vb, Mb,dMbdeta)


ount = 0

M1 = 0.0d0

do k2=0,q

do k3=0,p-1


ount = 
ount + 1

M1(1,
ount) = Nbr(p-k3)*Mb(q+1-k2)

end do

end do

!ANS L array for TP 
y
le 1 -----

MMult1 = matmul(M1,MTP1)

!ANS N and L arrays for TP 
y
le 2 -----

...

!ANS N and L arrays for TP 
y
le 3 -----

...

!Gauss point 
y
le (zeta) -----

do k=1,npi_zeta

zeta = 
(k)

!Compute NURBS-basis fun
tions -----


all ShapeFun
(nel,xi,eta,zeta,R,dRdx,dRdxii,detj,ja
,updtdisp)

!Weight fa
tor -----
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gwt = we(i)*wn(j)*w
(k)*detj

!Re
over/Compute Lo
al Axis -----


all lo
al_axis(nds,ja
,r
onv)

!-----------------------------

!Mid-point 
onfiguration

!-----------------------------

!Compute deformation gradient(matF) -----


all DefGrad3D(inodes,nds,dRde,dRdn,dRd
,ja
inv,nodes

1 mdisp,MatF_mid)

!Compute rotation matrix (matR) using polar de
omposition -----


all PolarDe
omp3D(nds,matF_mid,matR_mid)

!Update lo
al 
oordinate axis (r
onv)


all axisupdate(r
onv,matR_mid,r
onv_mid)

!Compute NURBS-basis fun
tions for mid-point 
onfiguration-----


all ShapeFun
(nel,xi,eta,zeta,R,dRdx,dRdxii,detj,ja
_mid,

1 updtdisp+mdisp)

!Natural-to-lo
al transformation matrix -----

Temp33_mid= matmul(transpose(r
onv_mid),ja
inv_mid)


all TransformationMat3D(Temp33_mid,TCL_mid)

!Global-to-lo
al transformation matrix -----

Trans_mid=transpose(r
onv_mid)


all TransformationMat3D(Trans_mid,TGL_mid)

!ANS strain-displa
ement operator -----

!BANS line 3 -----

do k1=1,(p+1)*(q+1)*(w+1)

do k2 =1,nds

BANS_mid(3,(k1-1)*3+k2) = dRdxii_mid(k1,3)*ja
_mid(3,k2)

end do

end do

!BANS lines 1 and 5 -----

do k1=1,6


all ShapeFun
(nel,TyPt(k1,1),TyPt(k1,2),TyPt(k1,3),RA,dRAdx,

1 dRAdxi,dRAdxii,detjA,ja
A,dxdxiA,mdisp+updtdisp)

do k2=1,(p+1)*(q+1)*(w+1)

do k3 =1,nds

BANS_mid(1,(k2-1)*3+k3) = BANS_mid(1,(k2-1)*3+k3) +

1 dRAdxii(k2,1)*ja
A(1,k3)*MMult1(1,k1)

BANS_mid(5,(k2-1)*3+k3) = BANS_mid(5,(k2-1)*3+k3) +

1 (dRAdxii(k2,1)*ja
A(3,k3) +

2 dRAdxii(k2,3)*ja
A(1,k3))*MMult1(1,k1)

end do

end do

end do

!BANS lines 2 and 6 -----

...
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!BANS line 4 -----

...

!-----------------------------

!End 
onfiguration

!-----------------------------

...

!Strain-displa
ement matrix in lo
al frame -----

Blo
=matmul(TCL,BNG)

if(nlgeom == .false.) Blo
_mid = Blo


!Compute stress and strain fields and 
onstitutive

!matrix using the mid-point strain-displa
ement operator

!in the lo
al frame -----


all MatPlasti
3D(Blo
_mid,ddisp,stress(nel,
pi,:),...,matD)

if (nlgeom == .true.) then

!Compute nonlinear stiffness -----

do k1=1,inodes

dRden
(1,1)=dRdx(k1,1)

dRden
(2,1)=dRdx(k1,2)

dRden
(3,1)=dRdx(k1,3)

dRdxyz = matmul(trans,dRden
)

BNL(1,k1*3-2)=dRdxyz(1,1)

BNL(2,k1*3-2)=dRdxyz(2,1)

...

end do

do k1=1,nds

MSTR(k1*3-2,k1*3-2) = stress(nel,
pi,1)

MSTR(k1*3-2,k1*3-1) = stress(nel,
pi,4)

...

end do

KNLG = KNLG + matmul(matmul(transpose(BNL),MSTR),BNL)*gwt

!Store lo
al axis -----

laxis(
pi,:,:) = r
onv

end if

!Linear Stiffness matrix -----

amatrx = amatrx + matmul(matmul(transpose(Blo
),matD),Blo
)*gwt

!Residual ve
tor -----

rhs = rhs - matmul(transpose(Blo
),stress)*gwt

end do

end do

end do

!Elemental Stiffness matrix -----

if(nlgeom==.true)amatrx = amatrx + KNLG

!Store state variables -----

s
ount=1

do k1=1,npi
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do k2=1,ntens

svars(s
ount) = stress(nel,k1,k2)

s
ount = s
ount + 1

end do

end do

end subroutine
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