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palavras-chave

resumo

analise isogeométrica, elemento sélido-casca, método das deformacdes
assumidas, retencdo, mecanica do contacto, algoritmo ponto-para-seg-

mento.

O presente trabalho foca-se no desenvolvimento de ferramentas
numéricas robustas para problemas n3o-lineares de mecanica dos
s6lidos no contexto de Analises Isogeométricas. Com esse intuito,
um novo elemento do tipo sélido-casca, baseado no método das
Deformacdes Assumidas, & proposto para a analise de estruturas do
tipo casca fina. A formulacdo proposta é validada recorrendo a um
conjunto de problemas-tipo disponiveis na literatura, considerando
tanto regimes lineares como n3o-lineares (geométrico e de material). E
ainda apresentada uma formulac3o alternativa para aliviar o fenémeno
de retencdo volumétrica para problemas em regime linear elastico.
Adicionalmente, é apresentado um estudo introdutério da mecénica
do contacto no contexto de Analises Isogeométricas, dando especial
énfase ao algoritmo de Ponto-para-Segmento. As metodologias
apresentadas no presente trabalho foram implementadas num cédigo
totalmente desenvolvido durante o decorrer do mesmo, juntamente
com diversas ferramentas para pré- e p6s processamento. Foram ainda

implementadas rotinas do utilizador para o software comercial Abaqus.






Keywords

Abstract

isogeometric analysis, solid-shell element, assumed natural strain

method, locking, contact mechanics, point-to-segment algorithm.

The present work deals with the development of robust numerical tools
for Isogeometric Analysis suitable for problems of solid mechanics in
the nonlinear regime. To that end, a new solid-shell element, based
on the Assumed Natural Strain method, is proposed for the analysis of
thin shell-like structures. The formulation is extensively validated using
a set of well-known benchmark problems available in the literature, in
both linear and nonlinear (geometric and material) regimes. It is also
proposed an alternative formulation which is focused on the alleviation
of the volumetric locking pathology in linear elastic problems. In
addition, an introductory study in the field of contact mechanics, in
the context of Isogeometric Analysis, is also presented, with special
focus on the implementation of a the Point-to-Segment algorithm. All
the methodologies presented in the current work were implemented in
a in-house code, together with several pre- and post-processing tools.
In addition, user subroutines for the commercial software Abaqus were

also implemented.
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Chapter 1

Introduction

In this chapter, the present research work is introduced. mativation and
main objectives of the Thesis are presented, followed byed Bescription of
the developed numerical tools. The general outline of tleidhent is

described.

The analysis of shell-like structures in the geometric aratemial nonlinear regimes
still represents a challenge in the field of computationatmaaics. The development of
reliable and computationally effective numerical forntidas for this kind of applications
is, therefore, an important research topic in computatiorehanics.

In the context of the Finite Element Method (FEM), the use @aigtangian-based
formulations to solve structural problems has been theestilgf a significant research
effort. When thickness values are relatively low, this kafdoroblems are often modelled
using shell finite elements. However, shell finite elementnigdations present some
drawbacks, specially when considering nonlinear regiriesexample, the use of rotational
degrees-of-freedom leads to a more complex treatmentge teformations when compared
with formulations based only on displacement degreeseddom. As an alternative, solid
finite elements can be used, but these are known to lead tibcsw@that are often polluted by
spurious high stiffness values, leading to overly smapldisement fields. This non-physical
phenomenon is often encountered when modelling straightarved structures with high
length-to-thickness ratios.

In order to circumvent these difficulties, the so caltsdid-shellclass of elements was
proposed and received a great amount of attention in thgéass. Solid-shell formulations
combine the advantages of both solid and shell formulatiteeling to an approach that
relies uniquely in displacement degrees-of-freedom, bitesle for the numerical simulation
of thick and thin structures. Since in this kind of formutetts only displacement degrees-of-
-freedom are employed, they can automatically account@oc@nstitutive relations, being
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Chapter 1. Introduction

able to more accurately model through the thickness gresiadistress and strains. Itis worth
mentioning that solid-shell formulations also presentan@nt advantages when considering
double-sided contact situations.

Departing from conventional FEM formulations for enginegrproblems, the recently
introduced Isogeometric Analysis (IGA) concept is a nugermethod in which the basis
functions employed to (exactly) define the geometries wvewlare also used to determine
the unknown fields of the discretised system. This contragts FEM, in which the
geometry is always approximated. Instead of the standaageshunctions based on
Lagrangian polynomials usually considered in FEM, IGA campby as basis functions,
for instance, B-Splines, Non-Uniform Rational B-Spline8JRBS) or even T-Splines, the
latter developed in recent years by the Computed Aided Desighmunity. This approach
allows for a direct connection between the Computer Aidesi@de(CAD) and the Computer
Aided Engineering (CAE) worlds. In the past few years, a ificgmt amount of research
effort has been devoted to IGA due to its advantages ovesicldd=inite Element Method.
However, recent studies also demonstrate that, althougkB8Jbased formulations present,
in general, a superior performance over standard Lagrafigaged ones, they can still
be affected by the same non-physical phenomena appeariRgM) and leading to an
overestimation of some components of the stiffness maifhxis will then result in small
(spurious) displacement fields and, in these cases, thémois said to béocked

The present Thesis is related to the study, developmennapléimentation of numerical
models and formulations in the context of Isogeometric Asigl The main goal of the
current research work is then to develop and implement taioads that can be applied
to problems of solid mechanics in both linear and nonlinegyimes. In this context,
an efficient NURBS-based solid-shell formulation suitafde the analysis of thin-shell
structures is proposed. The methodology employs the Assuxaural Strain (ANS)
technigue that has been widely used in the context of FEMl¢wiate locking pathologies.
In order to be validated in a generality of applications, fbemulation is extensively
tested using well-known benchmark problems encompassitly Inear and nonlinear
behaviours. It is also proposed in this work an extensiorhefAssumed Natural Strain
methodology in order to account for a material-based laghathology which occurs in
near incompressible problems. Additionally, an introdugtstudy of contact mechanics
problems in the context of Isogeometric Analysis is alssented. Due to the inherent
properties of B-Splines/NURBS basis functions (such ak mter-element continuity and
superior approximations of the contact stress) the use oRB&}based formulations to
model contact mechanics problems can represent a vergtattralternative to classical
Lagrangian-based methodologies.

2



In order to fulfil the objectives proposed, a set of numericalls were developed
and implemented and dsogeometric COd€ICO) was developed and written using the
programming language Fortran 90. The purpose of this codeadfold: (i) it serves as
an invaluable tool to implement, test and validate new neilagies, andi() it was written
with the aim of becoming a solid foundation for future resbars to build upon. In addition,
several tools were developed for the pre- and post-praugsseps of a typical engineering
analysis. In order to solve problems containing a high nurobdegrees-of-freedom and/or
requiring advanced solution techniques, a set of user stibhes for the commercial software
Abaquswas also implemented.

The Thesis is composed of 8 chapters. A description of théeobrof each chapter is
given in the following:

o Chapter 1: In this chapter, the present research work is introducdce motivation
and main objectives of the Thesis are presented, followealliyef description of the
developed numerical tools. The general outline of the danins described,;

o Chapter 2: In this chapter, the fundamental concepts behind the d-iBlement
Method are reviewed. A detailed description about the iTieletation of classical
displacement Lagrangian-based formulations is given. s Tdapter also serves
the purpose of introducing the nomenclature that will be leygd throughout the
remainder of this work;

o Chapter 3: The concept of Isogeometric Analysis is presented andleétal he first
part of the chapter is concerned with the introduction of@it& basis functions and
the definition of curves, surfaces and solids. This is fodvay a description of Non-
-Uniform Rational B-Splines, as a general case of the BAggliand special attention
is given to their integration with Finite Element AnalysiSnally, a description of the
tools developed throughout this research work is provided;

o Chapter 4: A summary of nonlinear continuum mechanics is providedhocus on
the main topics that have been studied and implementedghout the current work.
The theoretical background of the adopted corotationatcgmh is described, along
with a detailed description concerning the implementabbmumerical models for
analysis including geometric nonlinearities, as well as ¢brresponding developed
algorithms;

o Chapter 5: In this chapter, the locking phenomena that can pollute erical
analyses based on FEM and well as IGA are described. ThisllevEd by a
state-of-the-art review of the main methodologies used¢wiate these non-physical

3



Chapter 1. Introduction

phenomenain the context of both approaches. A special fegixgen to the Enhanced
Assumed Strain (EAS) and Assumed Natural Strain (ANS) nutlamd their possible
application in Isogeometric Analysis. An innovative exdem of the Assumed
Natural Strain method is proposed in the context of IGA, iegdo the development
of high-order NURBS-based solid-shell elements, suitdbtethe analysis of thin

structures. Finally, some insight into volumetric lockinghe context of IGA is also

provided:;

o Chapter 6: A brief state-of-the-art review of the main developmemtghie context
of contact mechanics for Isogeometric Analysis is presenf€he description of a
general two-dimensional frictionless contact problemiveug, followed by a detailed
description of the Point-to-Segment algorithm where sgeattention is provided to
the main aspects of the implementation procedure;

o Chapter 7: The performance of the NURBS-based formulations proposé&thapter
5 are assessed using a set of well-known benchmark problerbsth linear and
nonlinear regimes. Additionally, in the context of contawtchanics, the validation
of the implemented Point-to-Segment algorithm descrilme@hapter 6 in the linear
elastic regime is performed, also by means of various beadhproblems;

o Chapter 8. The main conclusions of the work are presented, along watimes
suggestions for future developments.




Chapter 2

Formulation of the Finite Element
Method for Linear Analysis

In this chapter, the fundamental concepts behind the Filément Method

are reviewed. A detailed description about the implementaif classical

displacement Lagrangian-based formulations is givens Thapter also

serves the purpose of introducing the nomenclature thabe/émployed
throughout the remainder of this work.

2.1 The Principle of Virtual Work

Consider the generic three-dimensional body in the globfdrence syster®xyzwhich
is represented in Figure 2.1, involving a stress figlénd subject to a body forde In
multidimensional elasticity, the equilibrium of the systés given as [Timoshenko 51]

div(g)+b=0, (2.1)

in the entire volum&, where diV+) is the divergence operator. Equation 2.1 is known as the
strong formulation of the problem. The volume domain is lmchby a surfac8&, where the
two subset$sy andSy can be identified. In the bounda8y, tractionst can be prescribed
defining the natural (Newman) boundary conditions. Prbedridisplacements represented
by essential (Dirichlet) boundary conditions can be defiaxed

U=Us,, (2.2)

on surfacesy. SinceSy andSy are two subsets of the boundary surf&é can be written
thatSyUSy = SandSS NS =0.
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Figure 2.1: General three-dimensional body.

In order to obtain the weak (variational) form of Equatioh,2t is necessary to multiply
the previous equation by an arbitrary test functfanand integrate over the whole domain.
This test function is also known as a virtual displacemeitd fexd must be consistent with
the given boundary conditions. Therefore, Equation 2.1rmambe re-written as

/ch [div(0)+b] AV =0, 2.3)
and, by means of the mathematical identity
div(éu-o) =du-div(o) —grad(du) : g, (2.4)
it is possible to obtain
—/Vgrad(c‘iu):adV+/Vdiv(6u-a)dV—i—/Vc‘Su-de:O, (2.5)

where grad-) is the gradient operator. By applying the divergence thaaethe second
term of the previous equation, and taking into account et 0 in S, the equation can
now be re-written as

—/grad(éu):adVJr/ 5u~tdS+/5u~de:O. (2.6)
Y S Vv
Recalling that, due to symmetry, the strain in the whole r@ican be expressed as
1
£ =5 [gradu) +gradu)'] = gradu), (2.7)
and the corresponding stress field given by
g=Cy:€, (2.8)

whereCy is the fourth-order constitutive tensor, then Equationcf now be re-written,
after rearranging, as

/a:éed\/:/c‘iu-bd\/—i-/ Su-tds, (2.9)
\Y; \Y SN




2.1. The Principle of Virtual Work

which is the weak form of Equation 2.1, also known as the Rylaof Virtual Work (PVW).
The PVW is the principle behind classical displacemenetdsnite Element models.

Take now into account the body with volundedepicted in Figure 2.2, before (solid line)
and after (dashed line) the application of infinitesimatuat displacementdu and a set
of forcesf; acting upon it. In the picture, it is assumed that the virtliaplacements are
small enough to maintain the forc§sunaltered. The virtual strainde coming from the
compatible virtual displacements can be then used to detertie internal virtual work as

Smint — / o oE V. (2.10)
Y
Additionally, the total external virtual work can be exed as
6I‘IeXt:/b~5udV+/ t-6udS (2.11)
\ SN
The postulate of the PVW states that [Bathe 96], in the statieeoequilibrium of the body,
the total internal virtual work is equal to the total extdwigtual work, which is the condition

given in Equation 2.9. The effect of concentrated forfgesting upon the body can also be
included in the PVW as

Ny
/a:aedvz/b-audv+/ t-5uds+ Y du-fi, (2.12)
\Y \Y N |

whererny is the total number of applied concentrated forces.

Figure 2.2: Body with volumeV in equilibrium before and after the application of virtual
displacements and forces.




Chapter 2. Formulation of the Finite Element Method for lanAnalysis

2.2 Displacement-Based Finite Element Formulations

In order to obtain a Finite Element solution, a given conunsibody must be subdivided in
a (finite) number of elements, which are resolved indiviuahd subsequently assembled,
in order to obtain a global solution of the problem. On eactihe§e elements, connected by
nodes, the governing equations can be formulated usingti@aral methods, where, in the
case of displacement-based elements, the variationaiplenused is the PVW. By making
use of the upper inde@<)h to denote a Finite Element approximation, the displacerieladt
(u) on each individual element can be approximately intetedlas

u~u" = Nd, (2.13)

whered; = [u; v; Wi]T (i=1,...,ny) represents the nodal displacement vector for a given
element withn, nodes andN is a matrix that contains the interpolating shape functams

N=[N; Ny .. Nnn], (2.14)
in which
NN O O
Ni=|0 N Of,i=1...,n, (2.15)
0 O N

In a general three-dimensional continuum analysis, ttestield can be expressed as

( du ) 9
ax % 0O O
ov J
ay 0 5 0O
ou o o 2|]"
_ 0z _ 0z
&= w2 2 Vo, (2.16)
dy ' Ox ady 0x W
0z Jx 0z Jx
ov ow J 0
azta) L0 5 &l
or in a more compact way as
€ =[0gu. (2.17)

By combining Equations 2.13 and 2.16, the strain field can theeobtained in a discretised
form as

whereB is known as the strain-displacement operator which costiie derivatives of the
element shape functions as
B=[B1B2 ... By, (2.19)
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with N o o
X
o & o
oN;
Bi = & (,_ﬂi f . (2.20)
dy  Ox
% 0 %

By employing the constitutive tens@x, it is then possible to obtain the elemental stress field
as

g=Cy: ¢, (2.21)
where, in the case of an isotropic linear elastic matetia mhatrix form of theC, tensor can
be defined as

1 % % O 0 0
& 1 % 0 0 0
ComEAV) _Jrvozv L 00 0 0
(1+v)(1-2v) | 0 0 0 5755 O 0
0 0 0 0 gz&5 O
0 0 o0 0 0 2%;_25)_

in which E is the elastic modulus andthe Poisson’s coefficient.
Introducing the Equations 2.18 and 2.21 into Equation Zdr2gach finite element it is
possible to state that

/ (3d)TBTC,Bd dv® — / (5d)TNTBT dve — (5d)Tfe. (2.23)
Ve ve

Taking into account that the virtual nodal displaceme¥dsare constant and always non-
zero and the nodal displacemedtare also constant, Equation 2.23 can now be expressed

as

( [ BTCiB d\/e) d— /VeNTbT ave = fe. (2.24)
From this equation, the elemental stiffness matrix can hieek as
Ke= [ BTC4B dV®, (2.25)
as well as the elemental body force vector
b® = VeNTbT dve. (2.26)

The elements’ stiffness matrices must then be assemblechéelt by element) in order to
obtain the global stiffness matrl, leading to the global system of equations defined as

Kd =f, (2.27)

which must be solved to obtain the unknown nodal displacésnen




Chapter 2. Formulation of the Finite Element Method for lanAnalysis

2.3 The Classical Displacement-Based Hexahedral Element

In the field of computational mechanics, very often a probleast be modelled using a
three-dimensional geometry. In the current section, thssital displacement-based 3D
hexahedral (brick) Finite Element formulation is desdiiliedetail, in its simplest trilinear

form.

2.3.1 Shape Functions

When using finite elements, it is effective to employ the a@metric concept. This concept
states that the interpolating functions adopted in the@ppration of the degrees-of-free-
dom are also used in the description of the geometry. To tha@t @ normalized natural
coordinate syster®én{ is defined. All points within a finite element are containedhia
domain[—1,+1] x [-1,+1] x [-1,+1], and the, n and{ axis are assumed to have their
origin at the centre of the element, passing through thereeftopposite surfaces. The
use of a natural coordinate system is convenient for coctstigithe shape functions, as
well as to perform the numerical integrations by a Gausshdge quadrature scheme. The
representation of the global and natural reference sysi@nasgeneral linear brick element
can be seen in Figure 2.3.

=3
DOoD

< 8
PR

3

ININSI
[

W

=y

f:
n=
C’:

Figure 2.3: Schematic representation of a linear hexahéidite element in the global (left) and
natural (right) reference systems.

The first step in developing an isoparametric hexahedrakfelement is to define the
shape functions that will be used for the discretisatiore Shape function for a given node
I, withi =1,...,n,, can be obtained by the Lagrange interpolation functions as

Ni (&,n,4)=Ni(&)Ni(n)Ni ({), (2.28)
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where e
NE= T — (2:29)
M _p
Nm= 1 = (2:30
and v o
N@O= T, aa (2:31)

in which ng, n, andn, represent the number of nodes along §ien- and {-directions,
respectively. For the case of the trilinear brick elemeigh{enodes) depicted in Figure 2.3,
the shape functions defined in the natural domain are given as

N(E.0.0) = & (1+E86) (1+nm) (1+4). 232)

whereé;, ni and{; are the components of the vectdrs) and{, respectively, defined as

/ \ / ( 3

-1 -1 -1

1 -1 -1

1 1 -1

-1 1 -1
= ,n = , and{ = : 2.33
E=q  pom=¢ " poandZ=3" (2.33)

1 -1 1

1 1 1

\_l) ) \1)

The shape functions derived in the previous equations &eee to the natural coordinate
systemOén . In order to compute the stress and strain fields, it is regumevertheless to
write the interpolatory functions in the global coordingystenOxyz The mapping between
the global and natural coordinate systems can be obtaindtehylation between the shape
functions’ derivatives in the global and natural spacegioled by the chain rule as

oN N
M o
i\ _ 11 i
N N
0z /]

whereJ~1is the inverse of the Jacobian matrix, defined as

9x 9y oz
9¢ ((7;5 0&
_ | ox y 0z
ax 9y oz
a( 0 0¢

11
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The Jacobian matrix can be obtained by making use of thealss of the shape functions
in the natural reference system and the coordinates of emigxn= (x;,Vi,z), as

ONi,. ONi,, OJIN

o %N %M %Z
:.Z R IR (2.36)

=L 0Ny Ny ON

(3ZXi 14 Vi dZZi

Using the Jacobian operator, it is then possible to obtaén dérivatives of the shape
functions with respect to the global coordinates, which lbarpromptly used to build the
strain-displacement operatBrusing Equations 2.19 and 2.20.

2.3.2 Elemental Stiffness Matrix and Load Vector

From the developments in Section 2.2, the elemental stfneatrix can be calculated as
K= [ BTC,BdV®,
Ve
or, alternatively, in the natural domain as

e +1 p+1 p+1 T
K :/_1 /_1 [ BTCaBpI[dEdnaC. (2.37)

where| - | is the determinant operator. An approximation of the st matrix can be
obtained by numerical integration using the Gauss-Legeqdadrature as

nr ns nt

K® =~ Zi S S (BTCaBI|), o Wewswe, (2.38)
i=1j=1j=1

wherer, sandt are the number of integration points alohgn andd{, respectively, aney;,
ws andw; the corresponding weights.

Similarly, the contribution of the volumetric lodxlto the load vector is given as

e +1 ,+1 p+1 T
b :/_1 /_1 /_1 NTb|J|dEdnd?.

When considering traction loads, a different approach mesaken. Since this type of load
is applied to a face of the element, the normal vector of the faust be first determined. To
do so, the tangential directions of the natural &xig and{ are required, as

Ix dx 9%
AN b :
01 = 5_%/ , Jo = % 5 andg3 = d_%/ . (239)
9z 9z 9z
0é on ol

12
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Comparing the tangential vectors with Equation 2.36, itloarseen that they correspond to
the columns of the transposed Jacobian operator. The ndireations of the faces can now
be calculated as

02 X 03

N = 2% 2.40

1= Tvs x gl (2.40)
O3 X 01

ny— _Bx% 2.41

2= Tiggx il (2.41)

N3 = N1 X Ny. (2.42)

The applied traction loatican then be determined as
t=tn, (2.43)

wheren is the normal to the face where the traction with magnituidepplied. Afterwards,
the equivalent nodal forces can be calculated as

+1 ,+1

fe = /_ 1 /_ N7 (1,0,2)tinsdna, for directionOg, (2.44)
+1 ,+1

1 :/ NT (&,41,2)tondEdZ, for directionOn, (2.45)
’ -1 J-1
+1 ,+1

e, — / NT (£,n,+1)tsnsdédn, for directionOC. (2.46)
’ -1 J-1

In Box 2.1, the general algorithm for the implementation bégrangian displacement-based
3D isoparametric finite element is presented.

13
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Box 2.1: Algorithm for the implementation of a general Laggen displacement-based 3D
isoparametric element.

1. Initialise elemental stiffned§® matrix and load vectoi®

2. DO integration points’ cycle

(a) Compute shape functioiin the natural frame (Equations 2.32 and 2.33) and its dives
9N N g 2N
9% ' an a7

(b) Calculate the Jacobian matias

oN; . oN; ., oN, .,

. g—'\{ﬁ g_,éyl g—l\{zi
=3 | I v S
1= oN ON; ON;
2% Y 74

and its determinand| and inverse) !

(c) Map the derivatives of the shape functions into the dlspace

oN; IN
Jx &
N\ g-1) 0N
ay ( an
N N
0z al

and assemble the strain-displacement opeiator

(d) Perform the numerical integration of the stiffness méetr the current integration point and
add it toK*®

+1 1 4l
Ke=K®+ / / / BTC4B|J|dEdnd]
J-1 J-1 /1
(e) If the nodal displacements are available, compute thesind stress fields
£€=Bd

g =Cye
3. END DO




Chapter 3

B-Splines, NURBS and Isogeometric
Analysis

The concept of Isogeometric Analysis is presented andlddtalhe first part
of the chapter is concerned with the introduction of B-Spliasis functions
and the definition of curves, surfaces and solids. This Ievi@d by a
description of Non-Uniform Rational B-Splines, as a gehease of the
B-Splines, and special attention is given to their intégrawith Finite
Element Analysis. Finally, a description of the tools depeld throughout

this research work is provided.

In the field of Computer Aided Design (CAD), the use of Non-{dnin Rational B-
-Splines (NURBS) is very popular. This is due to the fact tHaiRBS are very flexible and
accurate, allowing the exact representation of conic cuavel surfaces, as well as free-form
entities. As a result, NURBS are the standard tools for géaendesign and are used in
many graphic formats, such as IGES and STEP. However, dthingre-processing stage
of an analysis based on the Finite Element Method (FEM), gdoergetry must be discretised
into elements, inevitably leading to a change in the gegmpéarticularly when considering
curved structures discretised with low-order finite eletaefhis issue is the same even if
higher-order finite elements are chosen and, therefore,genaral sense, classical Finite
Element discretisations cannot exactly represent the gegrof the problem.

The concept of Isogeometric Analysis (IGA) was firstly imtoced by Hughegt al.
[Hughes 05]. In IGA, B-Spline and NURBS basis functions miity used to describe
the geometry are directly employed in the computation of uh&nown fields. As a
consequence, it is then possible to perform a numericallation in a geometry that is
exactly represented, rather than in an approximate fassan the FEM. When compared
to standard Lagrange elements, NURBS-based formulatiave $hown to present a better
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accuracy in structural applications when consideringsmareshes due to their higher-order
inter-element continuity [Echter 13].

More recently, and in order to overcome some restrictions@NURBS basis, T-splines
have been used in the context of IGA. T-splines, which repres generalisation of NURBS,
are specially attractive due to their ability to performdbcefinement and can generate
models with complex geometry suitable for numerical analiSederberg 03, Bazilevs 10,
Dorfel 10, Scott 11]. The use of T-splines for Isogeometn@lysis is not considered in the
current work.

3.1 B-Splines

In computational geometry, in order to create a curve, sarta volume, it is necessary to
have a correct mathematical description of such entity.réteoto create free-form curves,
the Bézier curves were developed, which are a form of pararfenctions that employ
Bernstein polynomials and a set of control points to defimedisired curve. However, the
use of the Bernstein basis leads to limitations in the fléikylof the resulting curve with, for
example, high-order curves leading to numerical insttidi In addition, due to the global
nature of the Bernstein basis, it is not possible to havea mantrol within the curve, which
turns to an inability to reproduce local changes [Rogers 01]

In order to overcome these limitations, B-Spline basis ¢(Wwhiontains the Bernstein
basis as a special case) was introduced by Schoenberg [fergel6]. This basis presents
a non-global behaviour, meaning that each control point effects the shape of the curve
in the range in which the associated basis function is noo-ZEhe description of B-Spline
curves and surfaces is given in more detail in the following.

Consider the representation of a B-Spline curve given by

C(é)= _iNi,p<E)Bi, (3.1)

whereB; (with i = 1,2,...,n¢) represents the coordinates @dntrol point iandN; p, are
piecewise polynomial functions, known as B-Splines basiscfions of orderp. As
a particular case, piecewise linegs £ 1) interpolations of the control points lead to
the so-calledcontrol polygon Although there are different ways of defining the above
basis functions, the Cox-de Boor recursion formula (desctiin the following) is usually
employed since it is the most useful for computer implentena.

Let== [El, éo, ..., Enc+p+1} be a non-decreasing sequence of real numbers knolknmoas
vector whereé; is theit" knot The interval defined by two subsequent knots is then known
as aknot spanand therefore the knot vector divides the parameter spagdinot spans. A
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3.1. B-Splines

given knot is said to have multiplicity of mif it is repeatedn times inside the knot vector,

while a knot vector is considered to lepenif the first and last knots have multiplicity
m= p+ 1. An interesting property of open knot vectors is that thesis functions are

interpolatory at the ends of the parametric space. Finalknot vector is considered to be
uniformif, in the parameter space, the knots are equally spaced@mdiniformotherwise.

3.1.1 Basis Functions

Using the Cox-de Boor recursion formula, tffeB-Spline basis function can be defined as

e JrifE<E<Ein
Nio(¢) = {O otherwise (3:2)
for a polynomial function of order zero, and
& —¢ &itpr1i—¢&
Ni =—— N " Ni1p , 3.3
o) Eip—& ° 1)+ itp+1—&it1 +1p-1(8) (3:3)

otherwise (e.for p > 1). The conventio% = 0 is adopted herein.
These basis functions have some important propertied.dfiadl, they are non-negative
over the entire domain and constitute a partition of theyund.,

_2Nm@)=LV€. (3.4)

Each pth-order basis function has— m; continuous derivatives acrogs wherem is the
multiplicity of knot &, and the support of @-order basis function i®+ 1 knot spans.
When the multiplicity of a given knot is equal to the orderthen the basis functions are
interpolatory at that knot. Accordingly, when the multgiy is p+ 1, the basis becomes
discontinuous.

In Figure 3.1-(top) a quadratic basis function for an opemfonm knot vector= =
[0,0,0,1/3,2/3,1,1,1] is depicted. At both ends of the interval, the multiplicisyg+ 1 =
3, which means that only at these points the basis are ing&qrp and discontinuous.
Elsewhere, the functions a@!-continuous. Consider now that a new krt= 2/3 is
inserted into the knot vector, as shown in Figure 3.1-(mjtoThe knot vector will now
be considered as non-uniform and the basis will be intetppleat & = 2/3, since in this
point the multiplicity ism= p = 2. Also, it can be seen that the continuity of the basis has
now been decreased, at the repeated kn@°to

Another interesting property of B-Spline curves is thaythe within the convex hull of
its control polygon and exhibit a variation diminishing pesty, guaranteeing that the curve
will not oscillate about any straight line more often thaabntrol polygon does. Moreover,
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Figure 3.1: Basis functions for (top) open, uniform knot teec= = [0,0,0,1/3,2/3,1,1,1] and
(bottom) open, non-uniform knot vectar= [0,0,0,1/3,2/3,2/3,1,1,1] .

any affine transformation applied to the curve can be diextplied to the control points.
This property is essential for satisfying the patch teststi©ll 09].

Since the basis functions are recursively obtained usia@ibx-de Boor formula, their
first derivatives can be represented in terms of lower ordsishas

INp(§)  p B p
723 _'fi+p—fiNl’p71(E) ivpr1— i1

Nit1p-1(&). (3.5)

3.1.2 B-Spline Surfaces

A tensor product B-Spline surface can be defined as

N Me

5(57’7):_Zl_leivp(aMivqm)Bi?i, (3.6)
I=1)=

whereB; ; is the position of the control points in the,y) space, defining the so-called
control net In the previous equatiomN; p () andMj q(n) are the univariate B-Spline basis
functions of orderp andq, corresponding to the knot vectags— [El,éz,...,fnc+p+1} and
H= [nl,nz,...,nquﬂ}, respectively. The properties of the B-Spline curves folthe
corresponding properties defined for the univariate basistions described in the previous
section, as a result of its tensor product nature.

In the following, a simple example will be employed to intumg important concepts
related to Isogeometric Analysis. In addition, the exampilé also serve the purpose of
demonstrating some of the differences between B-SplingRMB5-based and Lagrangian-
-based formulations. Consider a B-Spline surface defingd/byiniform, open knot vectors
defined by= = [0,0,0,%/2,1,1,1] andH = [0, 0, 1, 1}, with control points forming the control
net given in Figure 3.2. Also, in the same figure theshof the structure in the physical
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3.1. B-Splines

space can be seen. In the present context, it is worth mémgidinat the concept of mesh
refers to the non-zero knot spans, defined by the correspgiatiervals of each knot vector.
Accordingly, the control points can be interpreted as thA Eguivalent to nodes in FEM.
However, due to the nature of the B-Splines basis functitims,control points are only
interpolatory in the corners, where the multiplicity of tineivariate basis functions apet 1
andqg+ 1. Another key difference is that the elements defined udwmegB-Spline basis
are able to exactly describe the geometry (which can be seEigure 3.2), as opposed to
Lagrangian-based elements in which the geometry is onlyoappated.

| S RaN
| / S
| / N
| / AN
/
: / AN
| / \\
/
| / \\
| / N\
o ——— 4 »
N\ Prd |
AN -
\\ /// |
N _- |
A\ |
|
| |
[ |
| |
S — Y

Figure 3.2: Control net (left) and the mesh composed of twmehts (right) for a B-Spline surface.

Consider now the concept (exclusive to IGA)inflex spacavhich can be interpreted
as a space in which the axis are defined by all the knots of tbeettor, independently
of their value. In a two-dimensional parametric caise. (in a surface) this leads to a grid
as shown in Figure 3.3 for the current example. Each nondaeob span in a knot vector
will then define oneelementalong a coordinate direction. Analysing the given knot gex;t
it can be seen th& contains two non-zero knot spans whidlecontains only one, leading
to a total of 2x 1 = 2 elements. Starting from the index space, it is now possibtefine
the parameter spac&hich contains only the non-zero knot spans (or elementh)s Jet
of elements is known asfatch The parameter space is also depicted in Figure 3.3, along
with the univariate basis functions along thendn directions. In a B-Spline surface, the
support of a given bivariate basis functidj;p.q(€,n), is [&, &i+pr1] x [Nj,Nj+gra]. In
practical terms, this means that a given basis function afiict a set of knot spans and,
consequently, it is possible to obtain high-order intemsnt continuity. This differs from
standard Lagrangian-based formulation, in which the shapstions are onl{C°-continuous
between elements. In the example given, the basis will Bav@ntinuity at the kno€, i.e.,
there exist€!-continuity between the two elements of the mesh.
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Figure 3.3: B-Spline surface represented in the index amdnpeter spaces, along with the
corresponding basis functions.

3.1.3 B-Spline Solids

Analogously to B-Spline surfaces, it is possible to definerssor product B-Spline solid.
Given acontrol lattice B; j x (the three-dimensional equivalent of a control net) andtkno

vectors= = [&1,&, ..., &nrpr1)s H = [N1.N2, .., Nmgrgr1] @ndZ = (01,42, ..., Qietr11)s @
B-Spline solid can be expressed as

Ne lc
VERD=FS 3 Np(@)Mya(n) L (O)Bijk 37)

i=1j=1k=1
The properties of B-Spline volumes can be obtained from igdizations of the properties
of B-Spline curves and surfaces [Piegl 97, Rogers 01, Hug8ks

3.1.4 Refinement

B-Spline basis can be enriched without changing the stugesanetry and its parametri-
sation, which is an interesting feature when compared toadional FEM. In CAD, the

refinement can be typically performed by the so-cakedt insertionandorder elevation

techniques. These two methods are closely related to treeptsof h- and p- refinements,
respectively, in traditional Finite Element analysis. Hwer, the use of B-Spline basis
allows for a new type of refinement known lesefinement These refinement techniques
will be detailed in the following. Efficient algorithms fonkt insertion and order elevation
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procedures, among many others, can be found in [Piegl 97].

Knot Insertion

The knot insertion procedure consists in enriching thedfasictions by including additional
knot values into the knot vector. Considering, for the saksimplicity a curve, when
using this procedure the curve is not changed, neither geimaléy nor parametrically.
Taking into account a given knot vectar= [él,fg,...,fnc+p+1], with control pointsB;,
and inserting a single knot into it will lead to an extendeefifred) knot vecto=* =
¢ =4¢81¢5,..., E§c+p+2 = Enc+p+1]. The representation of the B-Spline curve ®hcan

be expressed as
Ne+1

CE)= 3 NipBi, (3.8)

in which N, is the enriched basis function. Considering that [&, ék.1], the new control
pointsB;* can be obtained from a linear combinatiorByfas

B = aiBj + (1—qi)Bi_1, (3.9)
where
1 i<i<k—p
aj = a:ii k—p+l<i<k . (3.10)

0 Kk+1<i<ne+p+2

Inserting knot values that are already present in the aldinot vector will increase
their multiplicity and, consequently, the continuity ofetlbasis will be decreased. An
example of knot insertion can be seen in Figure 3.4 for anainknot vector= =
[0,0,0,0.25,0.5,0.75,1,1,1]. It can be seen that, after inserting the knéts= 0.325 and
¢* = 0.75, the obtained curve is geometrically and parametrigdiiytical to the original
one. It can also be seen that at ki§ét= 0.75 the basis is nowg®, since the multiplicity
at this location was increased. Since the khibt= 0.75 was already present in the original
knot vector, a new element was not generated. The processobfirksertion can then be
compared with the standard h-refinement in FEM, in which @mgimesh is divided into
smaller elements.

Order Elevation

The order elevation procedure consists in raising the motyal order of the basis functions
without changing the geometry and parametrisation of thgir@l curve. In this process,
the multiplicity of each knot is increased, but no new knotsadded. The order elevation
procedure can be seen as an extraction of Bézier segmenigtie curve by replicating
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Figure 3.4: Knot insertion example: (left) original curveda(right) the curve after insertion of
additional knots.

existing knots, order elevating this segment and, finadlyyaving unnecessary knots in order
to obtain a final B-Spline curve of higher order. An advantafi¢his method is that the
differentiability of the curve at the knots is not reducesljrathe case of the knot insertion
procedure.

The mathematical details of the order elevation processamaplex and will not be
reproduced for the sake of simplicity. With this approaclnew elevating the order of a
B-Spline curve, the new curve must remain identical to thgimal. Thus, the order elevation
of a B-Spline curve from ordgo to p+ 1 can be written as

p+1 p+2

C(¢)= ; BiNip(¢) = Z BN p1(€), (3.11)

whereB;" are the control points defining the new (order elevated)euthe original knot
vector

== [07 ceey 07 517 ceey El? ceey ES? ceey éS? ceey énc+p+17 ceey Enc+p+1], (312)
—— —— —_—— -~ v
p+1 my ms p-+1
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will now take the form

-~

E* = [07 ) 07 El? L) Elv ) ES: ) ES: ) Enc+p+1, L) Enc+p+ ]7 (313)
——— —— ——

p+2 m+1 ms+1 pr2

wherem; represents the multiplicity of any of tisanternal knots in the original basis. It can
be seen from the previous equations that, when a B-Spline ¢siiorder elevated, the curve
at a knot of multiplicitym; remainsCP~™ continuousj.e., both the original and the order
elevated curves have the same continuity at that knot.

A simple example demonstrating the order elevation proeedan be seen in Figure 3.5.
The original curve of ordep = 2 with a knot vector

==10,0,0,0.25,0.5,0.75,1,1,1],
is order elevated tp = 3, leading to the enriched knot vector
=*=10,0,0,0,0.250.25,0.5,0.5,0.75,0.75,1,1,1,1],

showing that the multiplicity of each knot was increased byg,cbut no new knots were
added. The order elevated curve is geometrically and pareailéy identical to the original

one. The order elevation procedure can be seen as the |IGaadenti of p-refinement in
FEM, where the order of the polynomial basis is increased.

K-refinement

In the context of IGA, there is one very important charasterin the refinement procedures:
the processes of order elevation and knot insertion do motaate. This property gives rise
to an alternative refinement technique with no analogou&iM F

Consider, for instance, the example given in Figure 3.6rti&tafrom a basis of order
p = 1 and with a knot vectat = [0,0, 1, 1], a single kno€* = 0.5 is inserted. Therefore, a
refined two element mesh with a new knot ve@bde= [0,0,0.5, 1, 1] is obtained. Afterwards,
an order elevation of one is performed, leading to an iner@athe multiplicity of each knot.
Thus, the final knot vector will be given & = [0,0,0,0.5,0.5,1,1,1]. As can be seen, at
&* = 0.5 the basis still ha€® continuity due to the multiplicity of 2, although the polymél
order is nowp = 2.

Consider now the alternative case represented in FigurédrBtiiis example, and starting
from the same knot vect@ = [0,0, 1, 1| as before, the basis of ordpr= 1 is firstly order
elevated to an ordep = 2, leading to the refined knot vectar = [0,0,0,1,1,1]. In the
second step, a kndt* = 0.5 is inserted, leading to the knot vectf = [0,0,0,0.5,1,1,1].
The basis (with the same polynomial order as in the previcasele) will now present
C! continuity até* = 0.5, since the multiplicity of the knot is only one. This proced
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Figure 3.5: Order elevation example: (left) original cunfeorder p = 2 and (right) after order
elevation top = 3.

is known as k-refinement. Comparing Figures 3.6 and 3.7,nthmaclearly seen that the
k-refinement procedure leads to a basis in which the conyiatithe location of the inserted
knot is superior. Moreover, the control polygon resultingn this procedure contains one
less control point and is, therefore, computationally nedfieient.

3.2 Non-Uniform Rational B-Spline

Despite being a powerful tool, B-Spline are not able to repn¢ some geometries, such
as circles and ellipsoids. However, this problem can beuninented by employing a
generalised form of B-Spline known as Non-Uniform Ratidde®pline (NURBS). NURBS
provide a single precise mathematical form capable of sgmtng common analytical
shapes such as lines, planes, conic curves, free-form canve quadric surfaces that are
used in computer graphics and CAD [Rogers 01].
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Figure 3.6: Example of successive refinements: (left) nalgcurve, control polygon and basis,
(centre) after knot insertion and (right) followed by oréésvation.

In an analogous way to Equation 3.1, a NURBS curve of opdgan be defined as

C(e)= 3 R(©B: (3.14)
whereRP (&) are rational basis functions. These functions are defined as
poey_ Nip(Owi  Nip(§)Hw 3.15

where, as seen beford\ (&) represents thé" basis function of ordep andw; are
selected weights. The choice of appropriate values of thghtew; allows for a proper
representation of different types of curves, such as arcatcs. A simple example to
illustrate the influence of the weight in a NURBS curve is preed in Figure 3.8. In this
example, the weighi; of the middle control poinB;, is varied within the rangé.25,2.0].
As can be seen, as the weight's value increases, the obtsidBBS curve tends to come
closer to the control point.

As seen before for B-Splines, it is possible to define the NSRRsis functions for
surfaces and volumes by means of the tensorial productréeatsi

Ni,p (§)Mjq(&) W]
31 350 Np (E)Mpg (M)W 7

RPA(E.n) = (3.16)
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Figure 3.7: Example of k-refinement: (left) original curneantrol polygon and basis, (centre) after
order elevation and (right) followed by knot insertion.

Figure 3.8: Influence of the weight of the middle control pamthe NURBS curve (control polygon
represented by dashed line).

and

Ni,p (§)Mjq(&)Lir (&)W jk
> Z?ﬁl Z'pf:l N; o (§)Mjq (M) Li, (O)We rg

F:qur (&,n,0)= , (3.17)
respectively.

By applying the quotient rule to Equation 3.15, one can obifa¢ first derivative of the
NURBS basis function as

ORE) o NaOWE) Ny EW (0
o T (W (§))? |

(3.18)
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ON;,
whereN/ ,(§) = a%(s) and

W (£) = _ZN{,p@)wi. (3.19)

The NURBS basis functions inherit many of the properties hif B-Splines basis
functions, such as the partition of unity and pointwise megativity. The algorithms
described for order elevation and knot insertion can alsnigoyed for the case of NURBS.
It can be seen that if all points have the same weight, % ) = N; , (§) and, therefore, B-
Splines can be interpreted as a special case of NURBS, withttea 3.14 being simplified
to 3.1.

3.3 NURBS as Basis for Finite Element Analysis

As in classical FEM, Isogeometric Analysis also employs ig@parametric concept in
the sense that the same parametrisation is used for the@iswlution variables and the
geometry. However, one major difference can be identifigd/é&en both approaches. In
the case of FEM, the basis used to interpolate the unknovutisolfields are also used to
approximate the geometry. On the other hand, in IGA, the BFa8&/NURBS basis used
to exactly interpolate the geometry are also employed toceqopate the unknown solution
variables.

In an Isogeometric Analysis, as introduced before, one ¢stmduish three domains:
the physical space, the parametric space and the parer¢mepace. In the single patch
case presented in Figure 3.9, elements in these domainsmesented by the volum¥sV
andV, respectively. For the sake of simplicity, a two-dimensiorepresentation is adopted
in Figure 3.9, where the extension to 3D volumes is straoghidrd.

The physical space represents the actual geometry undissanaThis geometry is
defined by the basis functions and the control points. Thaighymodel can be divided into
multiple patches, which can be seen as macro elements. Seongetries can be modelled
using a single patch. In the parametric space, each patepissented as a rectangle (or
cuboid in a 3D case). The construction of the parametric espeas detailed in Section
3.1.2. Finally, the numerical quadrature is performed ehgrarent element (represented by
non-zero knot spans along each direction in the parent elfedoenain) exactly as happens
with FEM. The structure of an Isogeometric code is therebeny similar to the structure of
a FEM code. Aside from the data input and results output, ta@inthange resides in the
computation of the basis functions (and their derivatives)ich will replace the classical
Finite Element shape functions. A detailed procedure ontieabtain the basis function for
a general three-dimensional Isogeometric Analysis isrgirehe following.

Consider that the physical domaihis subdivided intone elementsv® (Figure 3.9).
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Figure 3.9: Representation of the different domains inésogetric Analysis.

Using a geometric mapping, the integrals in the physical @omcan be pulled back to
the parametric spadé®, which can then be pulled back to the parent element dom&in
Mathematically, this can be expressed by successive mggpps

/Vf(x,y,z)d\/:e;/vef(x,y,z)d\/e:
=3 [ fEn.0lolave = (3.20)

=3 [T ERD gy

The integral can be evaluated using a standgd- 1) x (q+ 1) x (r + 1) Gaussian
guadrature, wherp, g, andr are the order of the NURBS basis in then and{ directions,
respectively. However, it must be noted that this quadeatute is not optimal when
considering IGA and a number of studies have been carrieithoutier to propose alternative
and optimal quadrature rules suitable for IGA [Hughes 1(jc&lnio 12, Schillinger 14].

Starting from the parent element dom¥if, the transformation to the parametric space
(&, &ira] ¥ [n,-,njﬂ} x [k, {k+1] can be obtained from the knot vectors and parent element
coordinates as

(Eis1—&)E+ (&1 + &)

¢ = 5 : (3.21)
n— (nj+1—nj)ﬁz+ (j+1+1j) (3.22)
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and _
(Qkr1— Q) § + (dkr1+ k)
2 )

Where(é, ﬁ,Z) are the integration point coordinates, which are the santleeamtegration
point coordinates in the natural system in a Finite Elemewlec if a standard Gaussian
quadrature is employed.

The Jacobian matrix representing the mapping between thentpand parametric
domains can then be seen as a simple scaling of the elema, ag

{ =

(3.23)

98 9¢ o9&
98 on 7 1 it1— i 0 0
an an 9
W=15 a1 o7|=3| O M o |, (3.24)
¢ a7 & B
o9& 9 o 0 0 k1 =k

and the determinant for this transformation matrix can s#yaalculated as

1

| = 8 (&1 —&) (’7j+1— ’7j) (k1 — k) - (3.25)

Definingne = (p+1) (q+1) (w+1) as the number of control points that belongs to the
element connectivity, and using the parametric coordgmalgained from Equations 3.21 to
3.23, the NURBS basis functions

R, ]
R>
R=1| |, (3.26)
R |
and its derivatives
[ R ] [ OR, ] [ R ]
& an P14
IR IR, IR
Re=| % [ Rop=|°" | andRg=| % |, (3.27)
0Rnc 0Rnc aRnC
| 9¢ | an | a7

can be calculated using the procedures from Sections 3.3.2nd

Once the derivatives of the basis functions with respediégiirametric coordinates are
computed, and together with the coordinates of the contioltg, it is possible to determine
the Jacobian matrix representing the geometry mappingdegtihe parametric and physical
spaces in the form

X 9x  0x IRy Ry Ry
ot on oC| ot N an X g7
o=\ m 7|2 T Ry By (3.28)
9z 9z 9z| 1=1|dR, IR, IR,
9t on o7 9t4 gn4 374
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It is also possible to compute the Jacobian matrix represgiihe mapping between the
parent domain and the physical space as

J=oqy. (3.29)

Finally, the derivatives of the basis functions with reggedhe physical coordinates can be
obtained as
[RxRyRJ=[R¢RyR;] @™ (3.30)

These derivatives can be employed to build the strain-a@cgphent operatd®, which has the
same structure as the one presented for three-dimensispiEcement-based finite elements
in Section 2.2. The procedures to determine the stress aaih $ields, as well as the
elemental stiffness and load vectors, are also the same asgeneral 3D Finite Element
code, but with the difference that NURBS basis functionsuared, instead of Lagrangian
shape functions. The algorithm for the implementation ot #RBS-based finite element for
linear elastic analysis can be seen in Box 3.1.

3.4 The Developed Tools for Isogeometric Analysis

Being a relatively recent research subject, commercial arigal simulation codes em-
ploying Isogeometric Analysis and NURBS-based formulaiare not available. At the
time of the writing of this Thesis, LS-DYNA provides an imtiapproach to IGA, by
means of a generalised element concept and some adaptétibe mput files used for
FEM [Benson 10]. Also, the Finite Element Analysis ProgrdfEAP) [Zienkiewicz 05,
Taylor 13] provides a beta version, under request, with samiteal implementations
of NURBS-based finite elements. There are also some awilgtén-source packages
based on IGA. For instancéseoPDES$ is an Octave/Matlab code for solving partial
differential equations for linear elasticity, fluid mech@and electromagnetism. More
recently, igatool$’, an isogeometric analysis library, was also released. This code
supports parallel processing and presents a higher cotignahefficiency for solving
partial differential equations. Another open-source lllattode is thégafen? software
which allows to solve linear elastic problem in one, two amké dimensions, as well as
inclusion and crack modelling.

Since the present research work is devoted to the analysiaglie and multipatch solid
mechanics problems in the nonlinear regime, it was necgs$satevelop and implement a
software which would be suitable for these kind of probleitseIsogeometric COd@CO)

1 The GeoPDEssoftware is available at http://geopdes.apnetwork.it/
2Theigatoolssoftware is available at http://code.google.com/p/igksto
3Theigafemsoftware is available at http://sourceforge.net/prajechcodes/
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3.4. The Developed Tools for Isogeometric Analysis

Box 3.1: Algorithm for the implementation of a general damment-based 3D NURBS-based
element.

1. Initialise elemental stiffned§® matrix

2. DO integration points’ cycle

(a) Compute parametric coordinat€sn, ) from parent element coordinatéé n, Z) as

(&1 &) E+ (&n+&)

&= 5

_ (msa—m) n+ (njsa+nj)
2

Z;,@m1—5054%4w1+50
N 2

(b) Compute the Jacobian for the transformation betweepanent element and the parametric
spaces
1 &1 =G 0 0
w:§ 0 Nj+1—1N;j 0
0 0 Q+1—Zj

(c) Compute the NURBS basis functioRs(Equation 3.15) and derivativég ¢, R , andR
(Equation 3.18)

(d) Compute the Jacobian for the transformation betweepdhemetric and physical space
IdR,. OJR, IR,
ne | 08X an X 7%
¢=_Z By Ry By
i= R AR
Sa Fu Rz
(e) Usingg, compute the basis functions derivatifeg, R y andR ;
RxRyR]=[R¢R,R]®!

() Build the strain-displacement operat®r
(g) Compute the Gauss point contribution to the elemeritddass matrix
(h) If control points’ displacements are available, conepthe stress and strain fields

3. END DO
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Chapter 3. B-Splines, NURBS and Isogeometric Analysis

is an in-house developed code written in Fortran 90. The deilt in a modular fashion,
allowing to easily include additional element formulaomaterial and contact modeéte
This was one of the main concerns when writing ICO, since thdedntends to serve as
a robust and easy to learn/modify tool, upon which futureaeshers can further use and
improve. The code is currently composed of one main prognasnoaer 30 subroutines. In
Appendix A the User’'s Manual of the Isogeometric COde is give

3.4.1 ICO Pre-Processing Step

In order to perform a numerical analysis in ICO, an input fimtaining all the necessary
data must be constructed. To create the mesh for the geqraatmgsh creation tool was
developed using the Matlab programming language. As art,inipe user must define the
dimension, knot vectors and control points coordinateshefinitial geometry. The user
is then able to perform the refinement of the mesh using batktiot insertion and order
elevation procedures. An example of a mesh refinement ofcalair plate can be seen
in Figure 3.10. The code then provides as an output the krzibrgeand control points
corresponding to the refined mesh. This information is thgried to the ICO input file,
where all the information regarding boundary conditiohsmeent types, material properties
and analysis parameters are also defined.

—S =) - D )

felss szecetsloulasloslasisslac
e B £ 8 8 .

o 1 2 3

Figure 3.10: Windows of the mesh creation tool.

3.4.2 ICO Analysis Step

The code architecture of the Isogeometric Code is very amid that of a standard Finite
Element code. The program starts by reading an input fileaoing all the information
relative to the model. After the necessary matrices arecaiéml, the code then starts
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3.4. The Developed Tools for Isogeometric Analysis

the analysis. The general flowchart of ICO can be seen in €i§@utl. In a first step

the connectivities of the elements are defined and all thieadjlarrays are initialised and,
afterwards, the code will enter the increment and iteratiops. In each iteration a element
cycle is considered where the contributions of each elenseatided to the global system
of equations. Iterations are performed until the soluteable to converge. In the end, all
relevant data is written to an output file.

When considering a multipatch simulation, an additionaleys introduced inside the
iteration loop in order to allocate all the data relevantte patch, with the remaining
structure of the code being left unchanged. In the currengsime of the code, only
compatible discretisations for the geometry can be emplagemultipatch analyses of
a single structure. Therefore, each control point on a facstnbe in a one-to-one
correspondence with a control point from the adjoining face

3.4.3 ICO Post-Processing Step

After performing the analysis, the displacements of thetr@brpoints can be used to
create the deformed geometry of the problem. To that endnplsicode was written in
Matlab to read the displacement field and plot the deformedngéry of the structure under
consideration.

3.4.4 Implementing NURBS-Based Elements in Abaqus

The developed software ICO is a valuable tool for implenmentand testing different
methodologies and formulations in the context of Isogeoiménalysis. However, the
implementation of these methodologies within a commereiaite Element code presents
several advantages, such as lower computational costsdiolems involving a high number
of degrees-of-freedom and the possibility to use advanckdign techniques (as the Riks
arc-length method) in nonlinear analysis and advancedrrabteodels.

In addition to the developed Isogeometric COde, a set of NBRBsed elements were
also implemented in the commercial software Abaqus by mefaeveloping User ELement
(UEL) subroutines. The procedure to implement a NURBS-thésenulation in Abaqus is
similar to the one followed by standard Lagrangian-basea@itations. In the Abaqus input
file, all the information about the control points coordemtelements connectivities and
boundary conditions are defined. The UEXTERNALDB subraiis then used in order
to open and read external files with the objective of impgrtafi the data relative to the
numerical model which cannot be added to the input file (sctha knot vectors). This
information is stored in a global module which is accessedneler necessary. The UEL
subroutine is afterwards responsible for the definitionhef ¢lemental stiffness matrix and
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Increment
cycle

Start —P Read input file +—Fp
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Build

connectivities and
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arrays
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Get converged
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strain, etc.)

Compute element
stiffness

Assemble
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contributions to
global arrays

Only in first iteration
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u=u+Au = - .
variables
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Figure 3.11: Workflow of the Isogeometric COde for a singleepanalysis.
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internal force vectors. Since all the NURBS data are avilabthe global module, these
computations can be promptly performed.

The implementation in Abaqus was carried out in a way to magessible to deal with
multiple patches. To that end, each patch must be assoaidtiedlifferent element types
(U1, U2, ..., Un). When the UEL subroutine is called, the esponding type of the element
is read and all the data corresponding to the current patahoisated and used to compute
the elemental contribution. As in the ICO code, the multpahethodology implemented in
Abaqus is limited to compatible geometry discretisati@ms] the coincident control points
are constrained using tiultiple Point Constrain{MPC) methodology.

In more recent versions, Abaqus also provides the podgiloficodding user-defined
elements with access to the entire material library of thiwswe. The procedure to
implement this subroutine (known as UELMAT) is similar teetetandard UEL. The key
difference resides in the fact that the user does not needde the material subroutine
by himself/herself, being the utility subroutine MATERIALIB_MECH called instead.
However, and considering for instance small strain plagtithe UELMAT subroutine leads
to higher computational costs when compared with the etpnv& EL. Nevertheless, the
availability of using UELMAT subroutines opens up the vameresting possibility of using
more advanced material models without the necessity ohgaoly the user. In Appendix B
a detailed description of the implemented procedure usisq@le-patch UEL is given,
together with examples of the necessary input files and thoatine coding in Fortran.
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Chapter 4
Topics in Nonlinear Formulations

A summary of nonlinear continuum mechanics is providedh\fatus on the
main topics that have been studied and implemented thratighe current
work. The theoretical background of the adopted corotatiapproach is
described, along with a detailed description concernirgrtiplementation of
numerical models for analysis including geometric nordiitees, as well as

the corresponding developed algorithms.

In general nonlinear analyses, a body subjected to a setefnay applied loads can
undergo large rotations and/or deformations. In this sibnathe final configuration of the
body can significantly differ from the configuration at tharsof the analysis. In order to
solve this kind of problems, an incremental procedure i®galy employed. This procedure
consists in dividing the problem into small incremefits , n—1, n, n+1, ...), where for
each increment the equilibrium of the system is satisfiechiitexative way. The difficulty
arises from the fact that, since the body can undergo lag@atiements and strains, the
deformed configuration for the solution of step+ 1 is not known (assuming that the
solution is known up to step). A solution can be nevertheless obtained by referring all
the variables to a previously known equilibrium configusati If the employed equilibrium
configuration corresponds to the last converged incremethien the formulation is termed
Updated Lagrangian (UL). In contrast, if the initial configtion is assumed as the reference
one, then a Total Lagrangian (TL) formulation is achievexthle current work, an Updated
Lagrangian formulation is considered for the nonlineeasitdescription.

4.1 Coordinate Systems

In a nonlinear analysis employing the UL formulation, a giearticle can be referred
to different coordinate systems. In the current work, foeference systems can be
distinguished:
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Chapter 4. Topics in Nonlinear Formulations

(i) Aglobal coordinate system, defined by the coordinétes'y, "z) and(""1x,"1y,"1z),
in the (updated) reference and current configurations easely. Note that the left
upper index explicitly refers to the considered configumra{istep);

(i) A natural or parent coordinate system for integratiamgoses;

(iif) A parametric coordinate system, employed in IsogetioeAnalysis to define the
parametric space of a NURBS patch, as mentioned in the precioapter;

(iv) A convective system, defined loy = g—g, whereé; =¢&, & =n andé3=C.

The components of the convective frame can be used to defioetational reference
system based on the vectorsandr, as [Valente 044a]

01 02
r=—,rp=—, 4.1
Yol 7 ol (1)

which can then be used to computeas

r3=rq1xro. (4.2)

This procedure can be used to determine an initial localdinate system in the undeformed

(n = 0) configuration. A representation of the different cooatensystems in the reference
and current configurations can be seen in Figure 4.1.

nl,i‘/ 7l+1$i

Figure 4.1: Coordinate systems in the (left) reference &gtitj current configurations.
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4.2 Nonlinear Continuum Mechanics

In the following, some concepts regarding stress and steaigors are summarised. The
analysis is far from being exhaustive and only focus on tine&mentals used in this work.

In order to describe the macroscopic deformation of a bddig mecessary to define
a configuration at the start of the analysis (known as thergefe configuration), with
cartesian coordinateX and the configuration at an incremefmt+ 1) (assumed as the
current configuration) with cartesian coordinategsee Figure 4.2). For the sake of
simplicity, the upper left indexes, shown in Figure 4.2 arefidng the coordinates
at each configuration, were dropped in the following equesticallowing to present a
more general case and to adopt the nomenclature employecny olassical textbooks
[Simo 98, Doghri 00, Belytschko 00]. The indexes will be reex@d later on for the stress
update procedure between statesdn+ 1.

Configuration at increment n + 1

Reference configuration
Y

Figure 4.2: Position of a material particle at different ftguaration.

The deformation of a solid can be described by the mappingd®st the reference
and current configurations by means of the so-called defiiwmagradient, which can be
expressed as

F=— 4.3
ax? ( )
or, alternatively,
Jdu
F=1+— 4.4

whereu is the displacement field arldthe unit tensor. By making use of the deformation
gradient, it is also possible to define, for instance, thatrand left Cauchy-Green strain
tensors as

C=F'F, (4.5)
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and
b~ =FFT, (4.6)

respectively. These strain tensors are important singedhew the definition of relevant
strain measures, as presented in the following.

Since the deformation of a solid is described by the defaonajradient, this means that
F contains the information about rigid body rotations as \aslthe stretches. To obtain this
information in a decoupled way, the deformation gradientlmadecomposed using the polar
decomposition theorem. This theorem states that any mayulsir, second-order tensor can
be decomposed uniquely into the product of an orthogonatiost tensor and a symmetric
and positive definite stretch tensor [Dunne 06]. Applying folar decomposition theorem
to F results in

F=RU, (4.7

whereR is the orthogonal rotation tensor albldis the symmetric right stretch tensor. With
this theorem it is therefore possible to obtain the rigidypoatation for any motion. This
rotation tensor is especially useful in situations whereratational coordinate system must
be updated at each increment. SiRtes an orthogonal tensor, it follows that

R1=R". (4.8)

The algorithm for the polar decomposition of the the defdramegradient can be found in
Box 4.1 [Valente 04a].

In analyses where large rotations and/or large strainsraavied, it is necessary to
employ a strain measure that must vanish in the presenceigiflaoody motion (which is
not the case of the left Cauchy-Green strain tensor). In thigeFElement Method (FEM),
the Green-Lagrange strathand the rate of deformatidd tensors are the most widely used
[Belytschko 00]. By means of the right Cauchy-Green straivsor, it is possible to define
the Green-Lagrange strain tensor in the form

1
E=5(C-1). (4.9)

If a given body is subjected only to a rigid body motion, théodmation gradient results in
F = R, which introduced into Equation 4.9 leads to

E:%(RTR—I):%(I—I):O, (4.10)

proving that theE vanishes in the presence of rigid body motion only.
Substituting Equation 4.4 into 4.9 leads to

E—} ﬂ+ ﬂ !
2| aX oX

1/0u\' du
+§<ﬁ) X (4.11)
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showing that is therefore composed by two terms. The first term is the tefsinal (linear)
strain tensor and the second term corresponds to the nanlyat. The Green-Lagrange
strain tensor can show the variation of length with respeté reference configuration. If
one requires the variation of the length with respect to thieenit configuration, the Almansi-
-Euler strain tensor can be employed, for example, whicleisdd as

1 \-11 _1|au u\ " du\ ' du
e“_é[l—(b) }_§[&+<&)]—<&) ™ (4.12)
The Almansi-Euler strain tensor is usually applied in Eialerapproaches, which is not
focused in the current work.

4.2.1 Stress Measures

As happens with strain tensors, in nonlinear mechanicsetiaee also different stress
measures that can be employed. These stress measures atntihel deformed or
undeformed configurations to the applied forces. Two of tlkstmommon stress measures
in a nonlinear analysis are the Caucly &nd the second Piola-Kirchhofb) stresses. Since
they are adopted in the present work, they will be detailgtiéfollowing.

The Cauchy stress can be interpreted as the ratio of thentfioree per unit of deformed
area,.e, it can be seen as a measure of the true stress in the deformeitise [Hinton 00].
Consider the body represented in Figure 4.3 in which the abwectorn of the surface of
an elemental arealds represented. The surface traction can then be expressed a

f
t=— 4.13
dA’ ( )
wheref is an elemental internal force which acts in the elementa dk. The Cauchy stress

tensoro is then the projection of the surface traction into/overuhg normal vecton, as
t=on. (4.14)

On the other hand, the first Piola-Kirchhoff stress relatesds in the present configu-
ration with the (previous) undeformed configuration, and lba obtained from the Cauchy
stress tensor as

P=JoF ', (4.15)

whered = |F| is the determinant of the deformation gradient. Finallis ppossible to define
the second Piola-Kirchhoff stress tensor as

S=JFloF . (4.16)

The second Piola-Kirchhofé can be interpreted as the transformed current force which
acts upon the undeformed area, being the work conjugateeoBteen-Lagrange strakf,
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Box 4.1: Polar decomposition algorithm.

1. Compute the right Cauchy-Green strain tensor
C=F'F
2. Compute the invariants of the right Cauchy-Green stexisdr

lc=tr(C), llc= ! [1E—tr(C?)], IMc=|C|

2
3. Compute variablk as
k=12-3ll¢c
4. IFk<10°
(&) Computey as
Ic
=V3
(b) ComputeJ andU—?
U=yl
ul=y?l

ELSE
(a) Directly compute the largest eigenvalue

|:|3—g|c||c+%7|||c

6 =cos? (kl—g)
V= % {Ic+2\/ﬁcos<g)]

(b) Compute the invariants &f

Ny =+lc
I

ly=y+ —y2+lc+T

(c) Computed andU—1

U= (ﬁ) [lulllyl + (1§ = y) € — C7]

1
U’lzm(llul—luu—i-C)

END IF
5. Compute the rotation tensor
R=FU?!
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X

Figure 4.3: Body subject to elemental forces.

defined before. This stress measure is of extreme importahera considering an Updated
Lagrangian formulation.

If the polar decomposition theorem is applied to the defdimnagradient tensor in
Equation 4.16, the following relation can be obtained:

S=J(RU) to(RU)T. (4.17)

When considering small strains but large displacementsadoittary rotations, the stretch
tensor can be approximately given ds~ |, while the determinant of the deformation
gradient turns to be equal tb= |F| = 1. Also, from the property of the rotation tensor
given in Equation 4.8, the second Piola-Kirchhoff stresslmaapproximated as

S~R'oOR. (4.18)

Equation 4.18 shows that when considering small strainsldnge displacements and
arbitrary rotations, the second Piola-Kirchhoff str&4s approximately equal to the rotated
Cauchy stresgr. For this reasonS is often known by thematerial or co-rotational
stress [Doghri 00].

4.2.2 Constitutive Update

In the following, the constitutive update for small stramg arbitrarily large displacements
and/or rotations is described. Consider the time derigatithe deformation gradieift as
given by

d [ 0X ov  dv Idx
_E<ax) “9X axax (#.19)
where P
A —]
L= =FF (4.20)

is known as the velocity gradient tensor. Applying the paleacomposition theorem to the
Equation 4.20 leads to

L =FF '=(RU+RU)-U *R*=RRT+RUU 'R, (4.21)
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The tensolL can, on the other hand, be additively decomposed into a symenbensorD
and an antisymmetric rotation tensbfras

L=D+W, (4.22)
in which 1
D==-(L+L"T 4.23
2 ( + ) ) ( )
is known as the rate of deformation, and
W:}(L—LT) (4.24)
5 )

is the spin tensor, representing the rate of deformatioh@ptincipal axes of tens@. By
substituting Equation 4.20 in 4.24, it comes that

1r- T-
W == [FF—l— F1 FT} : 4.25
> (F) (4.25)
Applying the polar decomposition theorem of Equation 4.d after some manipulation, the
spin tensor can now be written as [Dunne 06]
: 1 .. :
W =RR'+ZR[UUT (UUT)R], (4.26)
whereQ = RRT is known as the rotation rate tensor.

In a corotational approach, a coordinate system is cortstitfor each point of the body.
This coordinate system is rotated with the material by usirggrotation tensoR coming
from the polar decomposition of the deformation gradientn this situation, the principal
material lines otJ are assumed to be kept constant, while the product! is then equal to
its symmetric part [Yoon 99a, Valente 04a, Alves de Sousd 0Bansequently, the rate of
deformation and the spin tensors can be re-written as

D =RUUIRT, (4.27)
and
W=Q=RRT, (4.28)

respectively. From Equation 4.27 it is now possible to defire corotational rate of the

deformation tensor as

A 1 .. .
D=R'DR = 5 (VU t+u ), (4.29)

which is energy conjugated with the corotational (rotatedyichy stress tensor, defined as

6 =RToR. (4.30)
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The constitutive update between stgt@sand(n-+ 1), now recovering the upper left indexes,
can be written as 46
- - o
g — ”0+Ata. (4.31)
In an hypoelastic-plastic model, in which the elastic sisare small when compared to the
plastic strains, it is possible to additively decomposer#ie of deformation tensor into its

elastic and plastic parts as [Belytschko 00]
D =D®+DP, (4.32)
and, by making use of Equation 4.29, the corotational ratietdrmation tensor comes as
D =D® +DP!, (4.33)

The incremental rotated strain between stdt®@sand (n+1) can now be calculated as
[Yoon 99a, Yoon 99b] :
n+1 A 1,
A _ / " Bat =" 2Pt (4.34)
tn

The use of amid-point ruleensures that a second-order accuracy in the stress update is
achieved [Key 82, Hughes 84, Masud 00b]. This rule is basealiu-point configuration
that can be obtained simply by dividing the incremental ldispments by two. The
constitutive update of the corotational (rotated) Caudingss tensor can now be obtained
as

Mlg "G +™lG ="G+C, (”*ﬁa‘\ - ”*ﬁéf\vp') , (4.35)
which is formally identical to a constitutive update tyglg@mployed within an infinitesimal
strain framework. By employing the relation defined in Equa#.18, which is only valid for
the case of small strains, the incremental corotationarsg®iola-Kirchhoff stress tensor
can now be introduced, finally leading to [Masud 00b, Doghii 0

g =g+ "8 ="G+C,y (”*ﬁé - ”*ﬁl“zp'> , (4.36)

demonstrating that the rotated increment of the secondafthhoff can be directly
summed to the converged Cauchy stress tensor. In the presgqtthe previous equation is
employed to perform the constitutive update when smalirsbiat large displacement and/or
rotations are considered.

4.3 Geometric Nonlinearity

During nonlinear analyses, the change of the geometry ofengroblem can significantly
alter the nature of a problem. If geometric nonlinearitieslaeing considered, the equilib-
rium conditions must then be written with respect to the entr(deformed) configuration.
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However, this deformed configuration in not known in advands mentioned before,
geometric nonlinear problems can be analysed using a Tatgtalngian or an Updated
Lagrangian formulation. The Updated Lagrangian formalais employed in the current
work and described in more detail in the following.

4.3.1 Updated Lagrangian Formulation

As stated before, in the UL formulation the configuratiois taken as the reference in order
to obtain the new configuratiom+ 1. According to Equation 2.12, the Principle of Virtual
Work (PVW) at incremenh+ 1, using an indicial tensorial form, can then be expressed as

/ n+1o.ij 5n+leijdn+lv _ 5n+1|—|ext, (437)
n+lV

whered " 1MeXis the external virtual work at increment- 1. As can be seen, the integral
on the left hand side of Equation 4.37 is computed over themnsel"*1V, which is unknown.
Therefore, the equation cannot be directly solved in theeciiistate since it is not possible
to integrate over an unknown volume. Furthermore, it is rossgble to directly work with
the increments in the Cauchy strasdecause this tensor is always relative to the current
geometry. This change in geometry can be dealt with by defitie appropriate stress
and strain measures, which can be accomplished by empldygngecond Piola-Kirchhoff

S stress and the Green-Lagrangestrain tensors. Therefore, Equation 4.37 can now be

re-written as
/nv n+1Sj 6I’H—1Eijdnv _ 5n+1|—|ext. (438)

The second Piola-Kirchhoff stress tensor at incremnentl can be decomposed as
") =" +" 1S, (4.39)

where"S; is the stress at incremeniand”*%s j is the increment in stress between states
andn+ 1. Similarly, the Green-Lagrange strain tensor can be dposed as

n+1Eij ="Ej + n+%Eij. (4.40)

It is worth noting that because an UL formulation is beingsidared, all the quantities are
referred to the last converged configuratian Consequently, it is possible to admit that
"S; = "aij since they both point to the (deformed) configuration aténgentn, which is
known. Additionally, the termfE;; = O since only the increments in displacements between
statenton+ 1 are used. Furthermore, and accordingly to Equation h&IGteen-Lagrange
strain increment can be further decomposed into lingaarfd nonlinearrf) components as

"B =""le; + " . (4.41)
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By substituting Equations 4.39, 4.40 and 4.41 into 4.38, &ftet some manipulations, the
PVW finally becomes [Bathe 96]

/,,V ”+ﬁ3j5”+ﬁEnd”V+/nv”ai,~5”+ﬁm,~d”v - 5”+1r|ext—/nvnai,~5”+lajd”v, (4.42)

n

where the integral in the right-hand side of the equatiomesponds to the internal virtual
work associated to the stress tensor at increment

4.3.2 Finite Element Linearization

In order to obtain a Finite Element solution, Equation 4.48trbe linearized. To this end,
the term”*%sj can be written using a Taylor expansion serie%ﬁﬁEij as

an+%sj n+1
0”+%Ers n
where higher order terms were not considered. Furthernigyreneglecting the nonlinear
terms in the Green-Lagrange str&i*rﬁEi j» Equation 4.43 can now be re-written as

lg.
dn+nsl n+1
0n+%Ers n

“ﬁsj ~ Ers+(...), (4.43)

n+ﬁ5j ~ €s = nJrﬁcijrs n+%ers, (4.44)

Where”ﬁcijrS is the constitutive tensor. As a result, Equation 4.42 nogobees

%V n+ﬁcijrs n+%ers5n+ﬁeijdnv +/nv nUij5n+ﬁrlijng — 5n+1|—|ext_ /nv nUij5n+ﬁeijng,
(4.45)
which is the weak form needed for the development of the &Biement model based on the
UL formulation. When discretized using FEM (or IGA), Equmti4.45 can then be written
as

(nK + nKNL)AU — ntlgext nfint7 (4.46)
where
K — A/ ("B)T"C,"Bd", (4.47)
"KL = /nv ("Bne) "o "BaLd™V (4.48)
and
nfint — / (nB)T nang. (449)
ny

Accordingly to Bathe [Bathe 96], the geometric nonlineaaistdisplacement matrix can be
written for the three-dimensional case in a compact form as

"Bae 0 0
"By=| 0 "By O |, (4.50)
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with
Npx 0 0 ™oy ... "™Nnx 0
"Bau=|"™Niy 0 0 "™ay ... "Nny| and0= |0, (4.51)
Nz 0 0 "Nz ... "Nz 0

wheren, is the number of nodes of a given element 8Ngd; are the derivatives of the shape
functioni at incremenh with respect tgj. Finally, the Cauchy stress matrix takes the form

"¢ 0 O
"e=|0 "¢ 0], (4.52)
0 0 "o
in which
nO'll n012 nO'13 0 0O
"G = |"oyy "om, "oz and0= [0 0 Of. (4.53)
IqO’31 n032 nO'33 00O

4.3.3 Finite Element Implementation

In a UL Finite Element code, it is convenient to consider a-fie&d, movable local
coordinate system. Matrices and vectors in this coordisgstem will be denoted using
a hat superscript)” Matrices and vectors in the convective system will, ondtieer hand,
be denoted using a tilde superscrigt (Since the strain-displacement operaBordefined

in the previous sections, is calculated in the global coméiion, it is important to define

a transformation tensdr to mapB into different coordinate systems. This transformation
tensor can be defined as

[ ApAir AoArz AisAas A11A12 A11A13 A11A23
Ao1Ao1 AxpPor  AxzAgz A21A2 A21A23 A21A23
T Az1A31  A32A32  AssAsz Az1A32 A31A33 Az1A33
2811801 2A10A00 2A10A03 A1iAoo+A1oAr1 ApiAoz+AxtArs AppAoz+AxArs|
2A11A31 2A12A32 2A13A33 A11Az2+A12A31 A11As3+Az1A13 A12Azz+ AzoAa3
|2A21A31 2A02A32 2A3Asz AoiAsa+ ARzt AoiAss+AsiAzs AxoAgs+ AgaAgs)
(4.54)
where
A=rT, (4.55)
for the global-to-local transformation, or
A=rTJ1 (4.56)
for the natural-to-local transformation, wheares defined as
r= [rl ro r3], (4.57)
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andJ is the Jacobian matrix given from Equation 2.35 for FEM ararfrEquation 3.29
for IGA. The Finite Element implementation of a geometrialear framework for a 3D
solid element using the UL formulation can be seen in Box #.. worth mentioning that
the algorithm in Box 4.2 is completely general and appliedbl both the Finite Element
Method and Isogeometric Analysis. It is also important ttigethat a mid-point rule was
employed in the relations presented in Box 4.2 for the catauh of the stress field that will
lead toK . andf™ [Hughes 84, Masud 00b].
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Box 4.2: Algorithm for the implementation of a geometric hoear 3D displacement-based
formulation using an Updated Lagrangian formulation.

1. Initialise elemental stiffness matrix and internal ®xector
2. Recover the local axis from the previous increnfent

3. DO integration points’ cycle

(@) Compute shape functiohiin the natural frame and its derivatives

(b) Compute the Jacobian matrix for the mid—pd‘ih%J and end configuratiorfs1J

1 1 1
mn‘f’z)q mn+2y. mn+22i mrH»l ] mﬂ#’l : mﬂ#’l )
1 Nn 98 1 o¢ 1I 9% 1 m | 9¢ X o0& yi 9¢
nt3y_ mmz)q NI AN n+ly_ oL ﬁnﬂy N L
Al T A A Tt
7N 7 G (7 o Ko

1
(c) Compute the deformation gradient for the mid—p8i+n?aF and end configuratiors F

1
n+% F B 0n+2X nile an+1x
T gk T

1
(d) Use the polar decomposition algorithm in Box 4.1 to abthie rotation matrice?%R and
n+1R
n

(e) Update the local reference system as
n3p = rH%R”r
Ml — n+%Rnr
(f) Compute the strain-displacement operator in the glepstem in the mid-poirﬁ*% B and eng
n+1B configurations

(g) Use the global-to-local transformation operatofEquations 4.54 and 4.55) to obtain the
strain displacement operators in the local coordinateesystenoted a& 3B and™ 1B

(h) Compute the stress and strain fields u§ih§|§

(i) Compute the stiffness matrik (Equation 4.47) and the internal force vectir (Equation
4.49) usind*'B

() Compute the geometric nonlinear stiffness matkx,. (Equation 4.48) and add this
contribution to the elemental stiffness

4. END DO

5. Store the local axis in the end configuratibir to use in the next increment
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Chapter 5
Finite Element Technology

In this chapter, the locking phenomena that can pollute misaleanalyses
based on FEM and well as IGA are described. This is followed by
state-of-the-art review of the main methodologies usedi¢viate these
non-physical phenomena in the context of both approachepeagial focus is
given to the Enhanced Assumed Strain (EAS) and Assumed &l&train
(ANS) methods and their possible application in Isogeocmétnalysis. An
innovative extension of the Assumed Natural Strain metsgaoposed in the
context of IGA, leading to the development of high-order N&fRbased
solid-shell elements, suitable for the analysis of thindtires. Finally, some

insight into volumetric locking in the context of IGA is algoovided.

5.1 The Locking Phenomena

Standard displacement-based low-order Finite Elememhdtations are widely used in
many applications mainly due to their simplicity and effeehess. However, these
formulations can often be affected by spurious strain cgsstrfields which lead to an
overestimation of the stiffness matrix. As a consequeinig résults on the underestimation
of the nodal displacements, which are then said to beclotieed Different types of
locking can be related to the shape of the element employed wiscretising the structure
(high length-to-thickness ratio, trapezoidal shapgs) or with material properties (near
incompressibility) [Hughes 87]. These distinct types afkimg will be explained in more
detail in the following sections.
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5.1.1 Volumetric Locking

When considering an incompressible (or near-incompregsamalysis, displacement-based
low-order Finite Element formulations present an overlff $iehaviour, leading to inac-
curate results. The compressible behaviour of a given salidinuum is defined by the
Poisson’s coefficient, and as this coefficient tends to the incompressibilitytifoi— 0.5)
the material is said to become incompressible. Values iofthe vicinity of 0.5 occur, for
instance, in rubber-like materials. The constitutivetietafor an isotropic elastic situation
can be expressed by

0ij = 2G&jj + A &dij » (5.1)

whered;j is the Kronecker delta. The Lamé parameters used in Equatioare given by

Ev
A= (1+v)(1=2v)’ (5-2)

and £
T 2(1+v) (5:3)

From Equation 5.2 it can be seen thawill tend to infinity asv tends to the incompressibility
limit. However, since in this situatiomy tends to zero, the stress field will still have
acceptable results.

Taking into account the Lamé parameters, the isotropictielesnstitutive tenso€, can
be written in matrix form as

[2G+A A A 0 0 O
A 2G4A A 0 0 O
Co A A 2G+A 0 0 O 5.
0 0 0 GO0 O
0 0 0 0G O
0 0 0 0 0G]

Since the elemental stiffness matrix for a given finite eletiegiven as
K= [ BTC,BdV®,
\ve
it can be concluded that some terms Kfwill become very large ay tends to 0.5.
The elemental stiffness will then be assembled into the alslystem, with the nodal
displacements being obtained as
d=K"1. (5.5)

If the coefficients in the stiffness matrik are excessively high, the terms in its inverse will
tend to zero, which may lead to a null displacement field. Tiaserial-based phenomena is
known asvolumetric locking
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5.1.2 Shear Locking

From the continuum mechanics theory, a given solid subjetttea pure bending situation
will show no transverse shear strain in the deformed cordigam. However, as can be seen
in Figure 5.1, when considering a linear finite element sttbpto a pure bending load, the
element is not able to properly represent the displacenmaldt fince the element topology
is only capable of mimicking a linear displacement field, the and bottom surfaces will
not present a curved pattern, leading instead to the appssaa spurious shear strains.
As a consequence, this non-physical shear strain leadsatourate stress fields, with the
corresponding underestimation of the displacement fielthis phenomena is known as
transverse shear locking

Figure 5.1: Structure under bending load in (left) contmuonechanics and (right) Finite Element
discretisation.

Shear locking effects are usual in plate and shell Finitenglg formulations based on
the Reissner-Mindlin theory as thickness values tend to.z@&his is due to the fact that
the ratio between the overall dimensions of the elementsipaned to the thickness, can
become excessive which can on turn lead to the ill-conditgof the numerical solution.
This phenomena is also observable when using solid or sbkdl-finite elements in the
analysis of structures with low thickness values and/ominding dominated problems.

5.1.3 Thickness Locking

Considering, once again, the structure subjected to a mmdilhg deformation, as depicted
in Figure 5.1, from the continuum mechanics theory, thecttine will be subjected to a linear
stress componeiky, while all other stress components are zero. Following thekd’'s Law

o=C4: €,

the strain components will be given as

(0}
Exx = %’ (5.6)
Eyy = Ezz= —V&x, (5.7)
Yey = Yz = Wz=0. (5.8)
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From the previous equations it can be concluded that, whesidering a non-zero Poisson’s
coefficient,g;; presents a linear behaviour singg also presents a linear distribution.

Discretising the structure using a low-order finite elemaifitlead to a constant strain
&2 Additionally, due to the inextensibility assumption oéthormal fibres in pure bending
deformation cases, this will lead @, = 0. Consequently, sincgx and &y will have a
linear distribution, the coupling between the in-plane aodmal strain components will
also enforce a linear distribution of the normal stress as

O-ZZ:A£XX+A£W+(A +2G> 8222)\ (8xx+ 8yy>, (59)

which, according to the continuum mechanics equationsjldhme zero. This leads to an
overly stiff response of the system, which is knowritdskness locking

5.1.4 Trapezoidal Locking

The modelling of curved structures using low-order solidneénts will result in finite
elements with a trapezoidal shape. Due to this mesh distogiffect, when considering
pure bending states, spurious transverse normal strallhsppear. The appearance of these
non-physical strains when oblique element edges are gdrestabelled adrapezoidalor
curvature thickness locking

To illustrate this phenomena, MacNeal [MacNeal 94] propdase following example,
consisting on a trapezoidal structure under a pure bendiading and withv = 0.0
discretised by a single quadrilateral element, as showniguré& 5.2, along with its
representation in the parent element domain. The pararaetpresents the curvature of
the structure. The corresponding strain components inlémeent are given as

_¢-a
Exx = 1-ar (5.10)
£ZZ: /\a7 (511)
a({—a

=N |1+———+]. 5.12
pam e 1420 512)

On the other hand, from continuum mechanics the analytaiations are
eref— 0, (5.14)
e =0. (5.15)

Comparing the analytical and numerical solutions, it carséen that if no distortion is
consideredi(e. a= 0) the in-plane strain components are the same. Howevdrgishear
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strain component it can be seen a spurious component, whiasponsible for the shear
locking phenomena described before. When mesh distorfipaas the strain components
are affected by spurious numerical strains, underestimatie displacement field and thus
leading to a locked solution.

2A(1 —a)

2A(1+a)

Figure 5.2 Low-order quadrilateral element with trapdabshape in (left) global space and in (right)
parent domain.

5.1.5 Membrane Locking

Membrane lockings a pathology which results from the inability of an elementbend
without stretching, appearing only in curved beams andexlishell elements. When the
curved element is unable to represent the inextensionaiviomlr typical of pure bending,
spurious membrane strain energy terms appear, causindetnerd to lock. Nevertheless,
if a flat element is used to model a curved structure it will hetaffected by membrane
locking unless the element becomes warped. Linear trignfpe instance, are always flat
and therefore free from membrane locking.

5.2 Treatment of Locking in Finite Element Analysis - A
Review

The above mentioned non-physical locking pathologies adesirable phenomena which
affect the efficiency of finite elements. As a consequenctherpast decades an extensive
amount of work has been performed in order to alleviate lgkpathologies in finite
elements. Some of the most relevant contributions are pneé#sented in the following
paragraphs.

The reduced integratior(RI) and selective reduced integratiai®RI) techniques were
among the first ones used to alleviate locking problems eswicz 71, Hughes 78]. Due
to lower quadrature rules employed, the elements are abéptesent deformation patterns
that fully integrated elements cannot. Relevant work inftblel of RI/SRI methodologies
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can be found in some classical papers in the literature [Behko 91, Belytschko 92,
Belytschko 94, Liu 94, Wriggers 96, Liu 98, Reese 00, Reege (2owever, given the
rank deficiency of the resultant stiffness matrix, theseeswds have poor performances in
bending-dominated problems and can often lead to spuriefiasrdation patterns. Moreover,
SRI can only be applied to models where the small-strainotecan be decomposed into
volumetric and deviatoric parts. In addition, when moagjinonlinear effects in thin-walled
structures these formulations can present a lower compoéperformance due to the need
of multiple layers along the thickness direction in ordeptovide more integration points
along this direction.

Introduced by Sussman and Bathe [Sussman 87]ixed displacement-pressufie-
p) formulation consists in independently interpolatingthbaisplacement and pressure
degrees-of-freedom. This formulation arises from thetfa&twhen near incompressibility is
considered, in order to accurately determine the volumstress, the pressure must also be
taken as a solution variable. However, one of the key poiisi® formulation is the correct
choice of the displacement and pressure interpolationshwtan lead to an efficient Finite
Element formulation. When considering the pressure ialetpn, the formulation can be
separated into two main categorig$) the pressure is taken as an elemental variable and
can be statically condensed out, prior to the element adgeankjii ) the pressure is defined
as a nodal variable, leading to pressure continuity betveéements. In the latter case, the
pressure variables cannot be statically condensed. Coesty a variety of interpolation
schemes for displacement and pressure can be considertbe [B3 Zienkiewicz 00].

However, in order to guarantee that the Finite Element fdatan is stable and
convergent, the element must satisfy the BabuSka-BrezBi) (@ndition which is a
fundamental test in mixed finite element formulations [BréX]. Due to its strictness,
many two field u-p elements (such as the linear triangle aratgjateral) do not pass
the BB condition. Consequently, these elements presetathitities in the pressure field,
leading to the necessity of employing stabilisation tegbes. For instance, tmeini-element
[Arnold 84] is a linear triangle with continuous piecewiseelar interpolation function for
velocity and pressure. In this formulation, the pressuid\alocity are interpolated using
the same functions. However, the velocity degrees-ofefsee are increased by adding an
interpolation point in the element centre, where the vé&ydeld is enhanced by means of a
cubic bubble function. Nevertheless, the mini formulai®affected by small oscillations in
pressure and the inertial terms are affected by the bubbtEepwhen considering transient
problems [Cisloiu 08]. However, by introducing a stabiligiparameter, Lee and co-workers
[Lee 09] were able to apply triangular and tetrahedral relements to forging simulation.
Although a good agreement between the numerical and exeetaindata was found,
the authors concluded that the solution was dependent,ne sxtent, of the employed
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stabilisation parameter. Another technique for stalijsthe mixed u-p formulation
is the sub-grid scale stabilisation approach, first propdsg Hughes [Hughes 95] for
incompressible fluid dynamics and later on applied to soliecianics by Chiumenti
[Chiumenti 02], as well as to incompressiblephsticity and damage problems with strain
localisation [Cervera 03, Chiumenti 04, Cervera 04a, Qer@db, Cervera 09]. In this
method, the continuous field is decomposed into fine and ec@amponents, corresponding
to different length scales. Although being able to circuntwbe BB condition, this method
is dependent on material and geometric parameters and jgutationally expensive, due to
the introduction of additional degrees-of-freedom [Cisl08].

Developed by Onate [Ofate 04], and following a differentrapph, thefinite calculus
method can be employed to tackle volumetric locking. Thasbakthis method consists
in the satisfaction of the equations of balance of momentana ifinite size domain.
Volumetric locking is overcame by adding enhancing termgdaations obtained from a
Taylor expansion where only the high-order ones are redaine

TheB (readB-bar) approach introduced by Hughes [Hughes 77] was also propase
solve nearly incompressible problems. This method cansisgplitting the strain-displace-
ment matrix into its dilatational and deviatoric comporsethe former term is then replaced
by another (under evaluated) one in order to reduce the ibation of the volumetric
component to the solution. In a later work, Simo and co-austliimo 85] showed that
the B method resulted for Finite Element approximations comséa based on a three-field
variational formulation. The authors then formulated thiged variational methodsvhere
the goal was to construct an assumed-strain approach imwhlg the dilatational part of the
displacement gradient would be the independent variabie fdrmulation was developed
in order to account for the incompressibility constraintiethresults from the plastic flow
volume preservation [Simo 98].

With the goal of overcoming volumetric locking, de Souzadnattal. [de Souza Neto 96]
introduced theF (read F-bar) method. This method consists in modifying the standard
finite element internal force vector by replacing the defation gradienf with an assumed
modified gradientlf, when computing the Cauchy stress tensor. The result is streamt
relaxation, allowing to overcome volumetric locking pdtigies in large strain hyperelastic
and plastic problems. Thie method was later applied to linear triangular and tetraddedr
elements in the large strain analysis of nearly incompiéssiolids by de Souza Neto and
co-workers [de Souza Neto 05].

Another technique to tackle locking pathologies is Brhanced Assumed StraiBAS)
method, firstly introduced by Simo and co-authors [Simo @imo 92]. Starting from a
three-field variational formulation, the strain field of bamite element can be enlarged
with the inclusion of a set of enhancing internal variabtggthering a wider dimension for
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the deformation subspace of the element and, therefordfirggsin additional deformation
modes. However, the use of a large number of enhancing Vesiatill inevitably lead
to a computationally ineffective element. As examples ofSH#ased Finite Element
formulations, the 21-EAS variables approach of Andelfinggd Ramm [Andelfinger 93],
as well as the 18-EAS variables solid [Alves de Sousa 02] dhAS variables solid-
shell [Alves de Sousa 03] elements can be cited, among méameysofKorelc 96, Roehl 96,
César de Sa 99, Armero 00, Kasper 00, Piltner 00, César de, ¥06c 10, Caseiro 13].
Pantuso and Bathe [Pantuso 95] presented a linear 2D catadail element with continuous
pressure interpolation enhanced with a 6 parameter field.eldment was applied to linear
problems in incompressibility and fluid flow, and extensisasaxisymmetry and three-
dimensional cases were also presented. In a later workyBa®t], the formulation was
expanded to incompressible problems in the finite straimmreg However, the authors
concluded that the element was not suitable for this kinchafyssis due to the development
of hourglass modes, corresponding to the appearance ofsxely large non-physical
eigenvalues.

When considering enhanced strain techniques, low-ordgslatiement based trian-
gle/tetrahedral elements show no improvement when comsglehe additional strain
degrees-of-freedom [Reddy 95]. However, for the case opdarmulation, it is possible to
select effective enhanced strain modes leading to stabdedriormulations [Lovadina 03,
Auricchio 05]. In this context, Zienkiewicet al. [Zienkiewicz 00] introduced anixed-
enhanced strain stabilisation technigtiet was later on applied by Taylor [Taylor 00]. The
latter author employed a three-field form involving conbns displacements and pressures
and discontinuous volume change in the numerical analysimall and finite deformation
problems using low-order tetrahedral elements. In additem enhanced strain technique
was used to stabilise the formulation when consideringlypeacompressible problems.
In their work, Mahnken and co-workers [Mahnken 08a, Mahnb@b] applied volume and
area bubble functions to enhance the displacement ana $igds, respectively, leading
to significant damping of oscillations in mixed tetrahedran the small strains regime.
This work was further extended by Caylak and Mahnken [Ca¥kto hyper-elasticity
at large deformations by introducing constant stabilsathatrices in the iterative Newton
algorithm.

In order to specifically eliminate transverse shear lockthg Assumed Natural Strain
(ANS) method was developed. The methodology was first impteed by Hughes and
Tezduyar [Hughes 81] for Mindlin plates and later for shéheents by Dvorkin and Bathe
[Dvorkin 84]. The ANS method consists in interpolating thieas field at a set of distinct
points (known agying pointy whose strain terms will replace the standard strain values
coming from the quadrature points. This technique has bppliea in the improvement of
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reduced integration shell elements [Belytschko 94] as aglb fully and reduced integration
solid-shell elements, as can be seen in [Hauptmann 98, SZead8oso 08, Schwarze 09,
Schwarze 11], to name only a few.

In their work, Bonet and Burton [Bonet 98] proposed averaged nodal pressure
tetrahedron in an explicit framework. In this technique aloeblumes are defined, which
are then used to average the nodal pressures over each tlddased on this concept, a
nodally averaged strain field formulation was proposed blB@annet al. [Dohrmann 00]
for small strain applications. This formulation was themeexied to finite strain problems
by using the deformation gradient tensor as the main kinematiable [Bonet 01] or by
employing an additional stabilisation term based on a medlifnaterial law [Puso 00].
Geeet al. [Gee 09] improved the formulation proposed by Puso and $glffeuso 00]
by introducing a general splitting of the stress into voltmeeand isochoric components in
a variational consistent manner. By applying the staliibsato the isochoric components,
the uniform nodal strain method becomes stable while miainiathe benefits coming of
the nodally averaged approach with respect to the volumstress components. Andrade
Pireset al. [Andrade Pires 04] derived an implicit version of the avexdgodal pressure
formulation, and a linear triangle for implicit plane straand axisymmetric analysis of
nearly incompressible solids under finite strains was tH#ained. Thenodally integrated
continuous elemenfNICE), developed by Krysl and Zhu [Krysl 08], was derivearfr
a weighted residual statement that weakly enforces bothh#i@nce and the kinematic
equations, being proposed to specifically solve voluméngking. In this assumed-strain
technique, the weak kinematic equation is separately dersil from the weak balance
equation, aimed to satisfy @& priori. This methodology was successfully applied to
triangular, tetrahedral and hexahedral elements [Krykl@&8 well as to Reissner-Mindlin
plates [Castellazzi 09]. More recently, Krysl and Kageyy#lr12] proposed a modification
to the NICE elements, in order to eliminate the sensitivitymtesh distortion present in
the original formulation. Castellazzi and Krys| [Castefial2] improved the NICE linear
elements by deriving, in a consistent manner, a patch-gedratrain matrix for each node,
leading to a smooth representation of the stress and stedds fi

In the last years, significant research effort has been graglin the development of
the so-calledsolid-shellclass of elements. The main goal of these elements is to cambi
the advantages of both solid and shell elements. This tyderofulation is particularly
attractive as only displacement degrees-of-freedom aed usits kinematic description,
allowing to automatically account for 3D constitutive tadas (.9, plasticity) and to obtain,
as a consequence, a correct prediction of thickness chamgéell-like structures. Solid-
shell elements also show strong advantages in numericallaiions involving double-
sided contact situations, due, once again, to the correateliiog of the stress and
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strain fields through the thickness direction. In additialso as a result of rotational
degrees-of-freedom not being employed, the coupling witlkerosolid elements in the mesh
is straightforward and, most importantly, there is no nesdhbn-trivial update procedures
for rotation-like nodal variables in nonlinear geometrarriulations. Nevertheless, this
class of elements is also affected by locking pathologiesnatonsidering incompressible
materials, high length-to-thickness ratios and/or whedehiag curved structures. Relevant
Finite Element solid-shell formulations are described kfajiptmann 98, Vu-Quoc 03a,
Valente 04b, Alves de Sousa 05, Alves de Sousa 06b, HarnaRé¥se 07, Schwarze 09],
and references therein.

5.3 Treatment of Locking in Isogeometric Analysis - A
Review

Since the introduction of IGA, it has been shown that the lggularity properties of the
employed functions can lead in many cases to superior ancpex degree-of-freedom with
respect to standard FEM (see, for example, [Cottrell 06tr&€lb07, Cottrell 09]).

However, it is well-known that NURBS-based element forniolas are not completely
free from locking pathologies. This can be seen, for ingtaint the work of Echter and
Bischoff [Echter 10] where the performance of classicaltEiklements and NURBS-based
elements was compared. In this work, convergence rates avealyzed, as well as the
appearance of transverse shear and membrane locking. fleesaconcluded that the higher
order continuity of the NURBS basis functions can signiftgaimprove the quality of the
numerical results. Nevertheless, the authors also statetib use of linear, quadratic or
cubic basis functions can still lead to results that are eckihg-free.

Therefore, the alleviation of pathologies such as voluimetshear and membrane
locking in NURBS-based elements is still an open issue. é&dget al. [Elguedj 08]
employed theB andF projection methods to avoid volumetric locking in small dacye
deformation elasticity and plasticity problems in higlider solid NURBS elements. This
projection methodology consists in splitting the volureetind deviatoric components of
the strain-displacement/deformation gradient matrixentitalculating a new volumetric
counterpart in a projected space of one order lower thaniigadement space. Due to the
higher inter-element continuity in the IGA formulationjgtprojection must be performed
at the patch level. Numerical results show that the methagyols able to obtain good
convergence rates and good quality solutions. It was alswistihat theF method can
alleviate shear locking for quadratic and higher-orderibsctions. Taylor [Taylor 11]
proposed a formulation based on a three-field variatiomatstre for the analysis of near
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incompressible solids in the large deformation regimes #hown that a formulation where
displacements, mean stress and volume variables are mdieqmity approximated may be
used to efficiently solve this kind of problems. Cardoso asda de Sa [Cardoso 12]
combined the EAS method with isogeometric analysis to &tewolumetric locking in 2D
elastic problems. The choice of the EAS parameter was ntetiMay a subspace analysis
of the incompressible deformation subspace [Alves de S@8kd1owever, this formulation
requires arad-hocstabilization term to prevent spurious solutions arisitgewhigher-order
NURBS polynomials are employed.

Focusing specifically in the alleviation of transverse sheeking, Echter and Bischoff
[Echter 10] have extended the Discrete Shear Gap (DSG) méthblURBS-based beam
elements. Beirdo da Veigat al. [Beirdo da Veiga 12] implemented an isogeometric
collocation method for straight planar Timoshenko beanased on a mixed formulation
scheme and leading to a shear locking-free formulation¢lvhas been extended to spatial
rods by Auricchicet al. [Auricchio 13]. Bouclieret al. [Bouclier 12] investigated the use of
selective reduced integration and tBestrain projection methods as means of alleviating
shear and membrane locking in planar curved beams. In a\aigt [Bouclier 13Db],
the same authors employed this methodology to alleviatierigcpathologies in 2D solid
elements for the analysis of both thick and thin beams. Int@dd a simple extension to
3D NURBS based solid-shell elements was also presented.e k&aently, Bouclier and
co-workers [Bouclier 13a], proposed two solid-shell NURB®Bments. The first uses a
B-formulation, leading to a high quality element but withuly populated global stiffness
matrix. To overcome this drawback, the authors then prapadecal least-squares type of
procedure to create a locally projectéd This methodology allowed to obtain the global
stiffness matrix in a simpler and more effective manner,diihe expense of a decrease in
the element accuracy.

In the scope of plate/shell elements, Echter and co-woifaister 13] have proposed
a hierarchic family of isogeometric shell formulations. tiidugh being based on a non-
mixed concept, these methods are able to remove transvezae and curvature thickness
locking. Membrane locking is, in this case, alleviated byam® of the DSG method
or, alternatively, by a hybrid-mixed formulation based otwa-field Hellinger-Reissner
variational principle (displacements and stress fields)lleviate shear locking in Reissner-
Mindlin plate elements, That al. [Thai 12] have implemented a stabilization technique
that consists in modifying the shear terms of the constutnatrix. Hosseiniet al.
[Hosseini 13] proposed a solid-like shell element, a cldsshell elements characterized
by possessing only displacement degrees-of-freedom kit kinematics. In order to
obtain a complete 3D representation of the shell, the astamployed NURBS/T-Splines
basis functions to parametrize the mid-surface and linegrange shape functions in the
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thickness direction. Benson and co-workers [Benson 11jgsed a quadratic rotation-free
isogeometric shell formulation with a 22 reduced integration, reporting a significant
reduction in the computational costs. In a later work, Bansb al. [Benson 13]
proposed an isogeometric quadratic blended shell formonland concluded that the use
of uniformly reduced integration leads to a computatignafficient formulation. Kiendl
et al. [Kiendl 09] developed an isogeometric Kirchhoff-Love dhedement for geometric
nonlinear applications. This formulation relies on digglaent degrees-of-freedom only
and due to the Kirchhoff kinematics shear locking is preetiab initio.

In the following, the EAS and ANS methodologies for lockirgatment in FEM are
described in detail. In addition, it is proposed the extemsif the ANS method in order to
alleviate locking pathologies in Isogeometric Analysis.

5.4 The Enhanced Assumed Strain Method

Introduced by Simo and co-authors [Simo 90b, Simo 92], thkalBoned Assumed Strain
(EAS) method propose the improvement of the compatiblensfigld EY by means of an
enhanced strain field?. The basis of the EAS method is the Veubeke-Hu-Washizu three
-field functional [Bischoff 97, Valente 04b] that, for s@atiases, is written as

VAW E,S) — / W(E)dV +/ S: B (FTF—12) - E} v — e (5.16)
v v
in whichW is the strain energy and the virtual work of the external logd1®*tis given by
I'IeXt:/u~bpdV+/ u-tds (5.17)
\ N

whereb andt are the prescribed volume and traction vectors over thea@omlumeV and
surfaceSy. In Equation 5.16, the displacement veatiothe Green-Lagrange strain tengor
and the Second Piola-Kirchhoff stress tenSare taken as the independent variables.

The enhanced strain field can be decomposed into a displatdérased and an incom-
patible (enhanced) part, expressed as

E=EY+E”°. (5.18)

This additive approach for the total strain field, introddic@ [Simo 90b] for linear
problems, can be still applied in nonlinear problems [Vaedvb, Miehe 04], being
computationally simpler than the multiplicative decomon of the deformation gradient
originally introduced in [Simo 92].
By imposing the orthogonality condition [Simo 90b] betwede stress field and the
enhancing strain field
/Vs: EY =0, (5.19)
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the functional in Equation 5.16 can be re-written as
nHWY (4 E9) :/W(E”+E“)dV—I'IeXt, (5.20)
%

which only has two independent variables. By applying thée@ax derivative, one can
obtain the weak form of the modified functional [Vu-Quoc 03pressed as

SN (u,E”) =M™ — 5N, (5.21)
where IW (EY 4+ E7)
int __ u ay .
o1 _/V<5E o) S (5.22)
and
St — / 3u-bpdV + / Su-tdS (5.23)
\ SN

Developing a truncated Taylor series around an arbitrfhstate, the weak form can be
expanded to obtain [Bischoff 97]:

51 <n+1u7n+1Ea) ~ M (nu,nEa) +w(sn] (nu,nEa) ) <”+%u7”+%EO’) . (5.24)

5.4.1 Implementing the EAS method

In the element domain, and by making use of the standard rigoyric compatible shape
function arranged in matrix forrfN), the displacement field can be interpolated as

ua~u"=Nd,
du ~ ou = Nad, (5.25)
1y o Mgh — g (5.26)

whered is the vector of elemental degrees-of-freedom and the suppr(-)h represents,
as stated before, the Finite Element approximation. Maeavis possible to define the
relation between the enhanced Green-Lagrange strainrtendd, over the element domain,
in the form

E=Bd+B%, (5.27)

whereB and B are the strain-displacement operators for the displacearahenhanced
variables, respectively. The second member of the rightthside of the linearised
weak form presented in Equation 5.24 can be re-written asefita04b, Bischoff 97,
Vu-Quoc 03b, Klinkel 97]

0 (5|—|int —3n ext)
J(d,a)

wion](d,a)- ("id,"ha) = -("Hd, " a) . (5.28)
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According to the interpolation functions, the two variagointroduced before can be
expressed as
ant (d, a) :5dT/ éTéd\/+5aT/ (B7) v, (5.29)
% v

and
5N (d) = 5dT / NTbp oV + odT / NTt dS (5.30)
\ N

Taking Equation 5.29 into more detail, it can be stated that

d (snint)

_ int
W [5|—|mt] . (n+%d,n+%a) — —3g n+%d + % . n+%a — (5.31)

—=odT [(Ruu+ Rm)n+%d_l_|gua n+%a} L oal [Rau mlgg aa n+%a} '

The linearK" and geometric nonlinear stiffne¢s! matrices are defined in the same
manner as in a conventional displacement-based formuolatiol as described in Section
4.3.2. Due to the fact that the enhanced parameters aredettlin the variational
formulation, two coupling stiffness matrica¢"” and K as well as a fully-enhanced
stiffness operatok 7% must be employed. These matrices have the same structuresss t
defined for the linear formulation and presented by Simo afal [Simo 90b],i.e.,

Rua — (Row)T = / BTC,B74V, (5.32)
\%

and
Raa — / (B)" C4BaV. (5.33)
\%

Each EAS parameter that is added to a given the Finite Elefoemulation will increase
the number of columns @“ by one.

Due to the fact that an additive approach is being employestetis no need to include
geometric nonlinear stiffness matrices associated wighetilhancing variables, leading to
a straightforward algorithmic extension of the linear cRgdente 04b]. The formulation
leads to an equivalent system of equations that, in matrix foan be expressed as

Ruu+ RKILIJ_ Rua n+%d
Rau Raa n+%a

JyNTop v + [ NTtdS— f, BTS dv

5.4.2 Subspace Analysis Framework

When developing new EAS-based finite elements, it is impbrtia take into account the
number and type of enhancing parameters used. Many autimpisyed this methodology,
but, in some cases, the choice of the enhanced parameteeaatefully justified and are
mostly based orrial and error or inspection. César de Sa& and Owen [César de Sa 86]
developed the framework subspace of deformatiaand based on this concept, concluded
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that volumetric locking occurs when a solution does not appeoperly represented in the
subspace of approximated incompressible deformations.

Mathematically, a given Finite Element formulation has arelsteristic space of
admissible deformations with a dimension correspondirigegamumber of element degrees-
-of-freedom. However, different subspaces can be definedasction of the constraints to
be considered. A subspace defines the finite set of deformiattmles that a single element
can represent under general loading and boundary conglitibihis imposed a deformation
pattern to the element which cannot be reproduced by a gombination of the deformation
modes from its subspace, then the formulation will suffenfiocking effects.

Considering a linear space of admissible solutidnshe idea of the subspace analysis
methodology is to determine the displacement figlthat minimizes the energy of the
system. The displacement fieldmust be contained in a subspacellf The constraint
for isochoric deformations, necessary for instance to mpleticity or some rubber-like
material (v — 0.5) defines a new subspace, here denoted.as his condition can be
expressed ak C U for the space of incompressible deformations. Takity I" and uf
as finite element approximationsdf I andu, respectively, it is then possible to state that

Qu"=0, (5.35)
as a possible way to define the subspace of incompressitdemions ", such as
I"={uheuM:Qu" =01 (5.36)

To avoid the trivial solution(u" = 0), the displacement field" should belong to the
subspace of incompressible deformatither, in other wordsyu" should lie in the nullspace
of Q. If this condition is satisfied, then the approximated dispmentsi" will result from
a linear combination of a given basis|&felements. If, under a set of external forces and/or
boundary conditions, the solution does not belong to theatd " (defined in the previous
equation) volumetric locking will occur.

When considering small strains, the incompressibilityditon can be written in the
three-dimensional space as

e
€n

€17

S

ou Jdv ow
:/\/<§+%+§)dv:0. (5.37)

By assuring that the integrand function in Equation 5.37 @ésoz the incompressibility
condition is respected. After a Finite Element discrettatthis condition results in

ou ov ow
§+ﬁ+§=hmwﬂwgww, (5.38)
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whereN, ; is the derivative of the shape functidiiwith respect toj, while d; represents the
vector of nodal displacements.

Following the reasoning presented for volumetric lockinigjs possible to extend
the methodology for the analysis of shear locking in threeethsional solid elements
[Caseiro 13]. Thus, for the subspace analysis of transgérsar locking the transverse shear
strain energy must vanish for low thickness valugs,

Hu" =0, (5.39)
where the subspace of transverse shear deformation carfibvectasT", in the form
Th={u"euU": HU"=0}. (5.40)

Equation 5.39 is a simplified way of imposing that the ouptafne deformation energy,
approximated by FEM, must tend to zero when the elementitieigkalso tends to zeriog(,
Kirchhoff hypothesis). In its discrete form, Equation 584 lead to three sets of equations,
that is

&

{ f”}:Hf h_o, (5.41)
234

&

{ 5’7} = HMuh =0, (5.42)
€n¢
&

{ *‘Z}:HZ h=o, (5.43)
€ng

depending if the normal direction is aligned with te n or { direction, respectively.
Therefore, as for the incompressible subspace detailantdiethe displacement field"
should be contained in the nullspacé-bin order the numerical solution can avoid transverse
shear locking effects. Based on an analysis performed i slements [César de Sa 02],
this corresponds to the condition

1

é _O Ni,E+Ni,Z Ni7'7+Ni,Z_ di :O, (544)
that must be respected for tgedirection. In an analogous way, the following conditions

l - -

é _Nif‘f‘Ni,n 0 Ni,ﬂ+Ni,Z_ di =0, (5.45)
and 1 ]

> _Ni7E+Ni,n Ni,£+Ni7Z 0|di =0, (5.46)

can also be stated for timeandé directions, respectively, which —combined —would apply to
general purpose 3D finite elements. Therefore, a sheamigdiee solid finite element.g.,
without a preferred thickness direction) can be formuldtgdssuring that the conditions in
Equations 5.44 to 5.46 are simultaneously respected.
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5.4.3 The Enhanced Assumed Strain Method for Isogeometricralysis

The Enhanced Assumed Strain method can be applied to NURB&dkelements using the
same procedure as proposed for the standard Lagrangiad-bisnent in Finite Element
Analysis. In the work of Cardoso and César de Sa [Cardosoth@] EAS method was
used to alleviate volumetric locking in two-dimensional RBS-based quadratic elements.
The authors employed the subspace methodology to detetimnisochoric deformation
subspace. It was concluded that using a3 Gaussian integration scheme, the resulting
subspace would have a dimension of 10. In order to imprové¢haviour of the quadratic
NURBS element, six enhanced parameter were then added én tradbtain an isochoric
deformation subspace with dimension 16. However, in ordeolitain stable results, a
stabilization parameter was employed.

In a more comprehensive way and by making use of the subspatgses framework
described in the previous section, it is possible to perfargeneral analysis for three-di-
mensional NURBS-based elements and determine the dinmeofsiloe subspaces associated
with both volumetric and shear locking effects, with theutessbeing presented in Table 5.1.
It can be seen that, for the case of the quadratic NURBS-balsedent, by making use
of a 3x 3 x 3 Gaussian integration scheme, the isochoric deformatibeace will have a
dimension of 55. In order to alleviate volumetric lockinfeets, the isochoric subspace must
have a dimension of 80. Therefore, it is necessary to inte@% enhancing parameters into
the element formulation. Consequently, for each elemeri:a25 matrix (corresponding
to the K27 stiffness matrix in Equation 5.34) must be inverted. As aseguence, the
computational cost of the 3D-EAS formulation will be highér addition, the use of such
a high number of enhancing parameter would lead to numans#bilities and the need
of using stabilization parameters. A very similar resulbigained for the case of shear
locking. It can also been seen from Table 5.1 that the adopfia lower integration scheme
would require the use of a lower number of enhancing parasmettowever, these reduced
integration schemes may also lead to numerical instadsliti

Initial attempts to provide a high-order NURBS-based tkdgeensional solid element
employing the EAS method were performed during the curreséarch work. However,
due to the high computational costs required and stabgiyes that plagued the obtained
solutions, the implementation was not considered as ssitdedNevertheless, the author
of this Thesis believes that the extension of the EAS metbd@A may be an interesting
future research topic that should be explored, since thihodelogy is able to alleviate
diverse non-physical pathologies such as volumetric, rstied thickness locking. In that
sense, the subspace analysis framework presented in theyseection can prove to be a
valuable tool.
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Table 5.1: Number of deformation modes obtained by diffeMldRBS-based formulations.

Element Order Integration Scheme Nulli@)( Nullity(H")

1 2x2x2 17 of 23 18 of 23
1 Ix1x1 23 of 23 23 of 23
2 3x3x3 55 of 80 57 of 80
2 2x2x2 73 of 80 73 of 80
2 Ix1x1 80 of 80 80 of 80
3 4x4x4 129 0f 191 132 0f 191

5.5 The Assumed Natural Strain Method

As mentioned before, the Assumed Natural Strain (ANS) agugravas firstly introduced in
the works of Hughes and Tezduyar [Hughes 81] and MacNeal [\dat82] in the context of
plate elements for linear analysis. The key idea behind th& Aethod consists of selecting
a set of tying (alternative interpolation) points that wéplace the standard integration ones
for the calculation of the strain components.

In their work, Dvorkin and Bathe [Dvorkin 84] proposed a gextd-node shell element,
leading to the well known MITCA4 shell element, where MITCnsta formixed interpolation
of tensorial componentsin the MITC4 only the transverse shear strain componer@s ar
interpolated in order to alleviate shear locking. In a laterk [Bathe 86], the same authors
proposed an extension of the formulation to quadratic 8rsiell elements, leading to the
MITC8 element. In this element, in addition to the transeesisear strain components, also
the in-layer strains were interpolated in order to avoid roeane locking. Bucalem and
Bathe [Bucalem 93] further extended this methodology to ad@e shell element. In the
numerical examples presented, the resulting MITC16 foatnuh did not exhibit shear and
membrane locking effects. A variational basis for thesgpses can be found, for example,
in [Militello 90].

In the years that followed, the ANS methodology was appliedrder to alleviate shear
and membrane locking in different applications of the FEM{a example in the works of
[Belytschko 94, Hauptmann 98, Sze 00, Cardoso 08, Schwéijzaffong many others.

5.5.1 The ANS Method for Isogeometric Analysis

In the following, a detailed description of the proposedeasion of the Assumed Natural
Strain method to IGA will be given. With the objective of fatEting the exposition of
the methodology, a notation for defining the various franteg slightly differs from the
one employed in Chapters 3 and 4 is used. However, the newiarota clearly presented
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throughout the text and in the accompanying figures.
In the small strain regime, a given strain component at eatgygiation point, in the
covariant frame, can be expressed as

1/0u Jdu
& (E,n,0)==(>=gi+~-=0 |, 5.47
whereé; = &, & = n andés = { are the natural coordinate system (described in Chapter 4),
while the covariant base vectors are givergas g—%‘i. Equation 5.47 can be also expressed

in matrix form as

£(&,n,{)=B(&,n,0)d, (5.48)

in which I§(€, n,{) is the standard compatible strain-displacement matrixéncovariant
frame computed at each integration point. In the framewdnGd\, d corresponds to the
vector of displacement degrees-of-freedoms at the coptioks (control variables).

The Choice of Tying Points

The current research work is focused on the quadratic NUBR&S®d element, which will be
employed in the following to present a detailed descriptbthe proposed methodology.
Following the original work of Bucalem and Bathe [Bucalenj $& Lagrangian basis
functions, the selection of the tying points for the seconder element is given in Figure
5.3. To define the ANS strain-displacement matrix in the exnof IGA, a set of local
bivariate basis functions must be created.

The NURBS patch consisting of four second-order elementsesented in Figure 5.4 is
considered in order to present the different spaces moaelylén this figure, the integration
points (circles) and the tying points (triangles) for théempolation ofegs and &g, strain
components in the top left element are represented. Thewaig basis functions coming
from the knot vectors that define the mesh are denoted agdheal space For each element,
it is also possible to define two local knot vectors that walused to define tHecal space
These new knot vectors are open and contain only one norknetspan. It is important to
note that the basis functions along thalirection is of one order lower than the one along
then-direction, due to the fact that a lower number of tying pgistconsidered in the latter.

As mentioned before, following the work of Bucalem and BafBecalem 93], the
choice of the tying points is closely related to the orderna&f tjuadrature employed in the
Finite Element formulation. In the current work, followirdassical 3D solid Lagrangian
formulations, dull integrationscheme is defined whe¢p-+1), (q+ 1) and(r +1) quadrature
points are used in a given element for then and {-directions, respectively. As can
be seen in Figure 5.4, faggs and &5, components, the points from a one-order lower
Gaussian quadrature are employed in &direction, while the points corresponding to
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full Gaussian integration are employed in thedirection. An analogous reasoning is
performed for thee,, and ¢,,; components of the strain-displacement operator. For the
in-plane components,, the points from a one-order lower Gaussian integratioreiseh
are considered. Experimentations using a lower numbertefjiation points were also
performed, leading, however, to the appearance of nuntdanstabilities and spurious
hourglass deformation modes.

ny |1 ny 3 ny L
3 5 3
A A
3 A a A 1 A A 1
5 T3 T3
A A
¢ g g
A A A A A
A A

Figure 5.3: Representation of the tying points for the irdaégn of &g andég, (left), enp ande,,
(centre) andckg, (right).
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Figure 5.4: Global and local spaces for the quadratic NURB&ent (interpolation of;s ande;,
components).

The Assumed Strain Field

In standard Lagrange-based elements, after computingreie-glisplacement matrix at the
tying points, a set of interpolation functions are used &oamte the tying points with the
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integration points. This procedure leads, in the end, torassl covariant strain components.
Following the tying point sets defined in Figure 5.3, each gonent of the assumed strains
can then be expressed as

eiANS(é,n,Z)zZthE(rfj,ﬁj,Z), (5.49)
=1

where nit is the number of tying points associated with iHestrain component anbyl;

is the j component of the vectoN which arises from the tensor product of the local
basis functions calculated at each conventional intemrgibint. In the previous equation,
] (é, n, Z) are the coefficients of the local space which interpolatetmepatible strains at

the tying points with coordinateéf,ﬁ,(). Note that the third coordinate follows the one
obtained by the quadrature rule being employed. Using tketioa presented in Figure 5.4,
the vectomN can be expressed as

— T
N:[I\—IIéZI\mZ(,l '\_‘52'\['2(,1 '\_"f,zszﬁl ’\—II?iZMll(,l |\_‘52'%'1(,1 I\_IkZMll} ) (5.50)

wherel\—li'fp andl\ﬁ}fq are the local univariate NURBS basis functions calculatedeacurrent
integration poink. It is then possible to project the local compatible sté(rf, f],Z) onto

the global space, leading now to a global compatible st{ié, n, Z), by performing the
following operation

e(€n.0)=me(én.2), (5.51)
whereM, with number of rows and columns equal to the number of tymigts, is obtained

from the tensor product of the local basis function caladaat each tying point. As an
example, this matrix can be computed for the tying point 8etrgin Figure 5.4 as

N32M21 N22M21 N12M21 N32M11 N22M11 N12M11
N32M21 N22M21 N12M21 N32M11 N22M11 N12M11
M — N32M21 N22M21 N12M21 N32M11 N22M11 N12M11 , (5.52)
N32M szM N12M N32M11 N22M11 N12M11
N32M21 N22M21 N12M21 N32M szM leM

_N362M Ng,zMz,l NizM 2.1 N362M Ng,le,l NEZMl,l_

Wherel\_liﬁp and I\Z}yq are the local univariate NURBS basis functions calculatetietying
pointt. Matrix M presented in Equation 5.52 is computed using the local hastsions at
the tying point coordinates, which are the same for eachet¢of the patch. Consequently,
this matrix needs only to be computed once for each tyingtg@nat the beginning of the
analysis, leading to lower computational costs.
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Combining Equations 5.49 and 5.51 leads to the final form efttsumed natural strain
field as

5iANS(E,f7,Z)=ZtLj€i (gj,ﬁj,f), (5.53)
=1

whereLj is the j component of the vectdr = NTM ~1. For the numerical implementation
in the Isogeometric Analysis framework, the previous eigmatan be written in terms of
strain-displacement operators as

éiANS(f,n,Z)ZZtLjéi (ébﬁj,(), (5.54)
=

whereB; corresponds to thé" line of the B matrix. The numerical implementation of
the ANS procedure implies the substitution of lines of thenpatible strain-displacement
operator by the ones coming from the ANS strain-displaceénoperator, which were
computed in the associated tying points. Note that, in alzowre with the tying point
sets given in Figure 5.3, the third line of the strain-displaent operator, corresponding
to the &;; strain component, remains unchanged, is the same as in the compatible
strain-displacement matrix.

The interpolation based on the tying points, for the NURBSdad formulation, is inde-
pendent of the element-based (natutaoordinate. This is typical for shell formulations,
and is adopted in the present work for trivariate NURBS amiesions, thus justifying the
so-calledsolid-shellconcept.

The extension of the ANS methodology to the nonlinear regisstraightforward.
Once the ANS strain-displacement operator in the coratatiframeBANS is computed
it will replace the standard strain-displacement operatahe computation of the strain
components and for the tangential stiffness makix It should be noted that, when
accounting for geometric nonlinearities, the correspogditiffness matrixK y. (given by
Equation 4.48) remains unchanged.

In Box 5.2, the algorithm to obtain the Assumed Natural &trstrain-displacement
operatoB”NS is presented. A detailed algorithm describing the impletation of the ANS
methodology for NURBS-based elements in the nonlineanregs presented in Box 5.3.
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Box 5.2: Algorithm for the computation of the Assumed NatBtain strain-displacement operator.

1. Compute the strain-displacement operator in the cavafiame for the current integration point

B(£.n.9)
2. DO tying point set cycle

=]

(&) ComputeN based on the local basis functions and the integration poatrdinates (Equatig
5.50)

-

(b) ComputeM based on the local basis functions and the tying points ¢oates (Equatio
5.52)

(c) DO tying point cycle

i. Compute the strain-displacement operator in the comaifimme at the tying point
coordinate (57 A, Z)

i. Compute the ANS strain-displacement oper&6¥S (£, n,¢) (Equation 5.54)

)

(d) END DO
(e) Replace the appropriate line®f&,n, ) by the ones fronBANS (&,n,2)

3. END DO

Note: The operatorsl andM can be precomputed outside the element cycle for lower ctatipnal costs|.
In this algorithm, they are included in order to more clegrgsent the developed approach.

73



Chapter 5. Finite Element Technology

Box 5.3: Algorithm for the Assumed Natural Strain method ¥t RBS-based formulations (should
be used in conjunction with the algorithm from Box 4.2).

1. DO element cycle

(a) Initialise elemental stiffness matrix and internak®rector
(b) Recover the local axi¥ from the last converged increment
(c) DO integration point cycle
i. Calculate the deformation gradient for the mid-p(?iJh%F and end"1F configurations
ii. Use the polar decomposition algorithm in Box 4.1 to obttie rotation matriceréJr%]R
and™ IR
iii. Update the corotational reference system as
N3~ MERNp

n+lr _ n+%Rnr

iv. Compute the compatible strain-displacement matrixiexdovariant frame for both mid
1~ ~
-pointn+2 Bandend B configurations in the current integration point

1. ~
v. Compute' ZBANS and™ ' BANS ysing the algorithm presented in Box 5.2

vi. Use the natural-to-local transformation operafofEquations 4.54 and 4.56) to obtai

the strain-displacement operators in the corotationakdinate system denoted jas
”+%|§ANS and" *BANS

n

1.
vii. Compute the stress and strain fields using BANS and the elastic/elastoplastic

constitutive tenso€,4
viii. Compute stiffness matriK (Equation 4.47) and the internal forcey (Equation 4.49
. n+1 SANS
using B
ix. Compute the geometric nonlinear stiffness matfix, (Equation 4.48) and add this
contribution to the elemental stiffness

x. Store the local axis in the end configuratibrir to be used in the next increment

(d) END DO

2. END DO
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5.5.2 The Proposed H2ANS Formulation

When developing new Finite Element formulations, it is intpat to take into account
its computational efficiency. From the literature surveyf@ened at the beginning of the
current chapter, it can be concluded that a great amountsefareh effort was dedicated
in the improvement of the performance and treatment of togldathologies in low-order
Lagrangian-based finite elements. One of the main advantaféhese Finite Element
formulations is the fact that they usually present a redwmedputational cost, especially
when employing reduced integration techniques.

In the context of Isogeometric Analysis, it is well known tthiae linear NURBS-based
formulation provides exactly the same results as standagiangian-based formulations.
Consequently, the lowest order formulation that can takeuathge of the NURBS basis
functions corresponds to the development of a quadratimoeié In addition, since it is
possible to use quadratic NURBS-based elements to represest of the usual shapes
studied [Piegl 97, Cottrell 09, Bouclier 13a], it seems todbegreat importance to invest
some research effort to improve the performance of suchdtations.

This is the motivation which led to the development of a gaddrNURBS-based
solid-shell element extending the concept of the AssumetlirdiaStrain to IGA. The
proposed formulation will be denoted as H2ANS from hereatad all the details for its
implementation were given in the previous section.

It is worth mentioning that the procedure to implement theSANethod in NURBS-
-based formulations presented herein is entirely perfdriaethe element level. As a
consequence, this strategy would allow for an easier im@lgation within available
commercial finite element codes in combination with a Béeraction approach in a
similar way, as carried out by Bordeat al. [Borden 11]. The presented formulation can
also be extended to higher-order solid-shell elements itraaghtforward manner. One
only needs to define the tying points coordinates accorditmjthe degree of the element
under consideration and the strain component being inleigsh The computation of
the vectorN and matrixM is simply obtained from the tensor product of the local basis
functions, as detailed before. However, studies perforchethg the current research work
demonstrated that no significant gains were obtained whplyiag the ANS methodology
to cubic NURBS-based elements. Nevertheless, the develojpoh different element-based
quadrature rules which are optimal for IGA may open up thesipdgy of extending the
proposed ANS methodology to these higher-order formutatio
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5.6 A Note on the Alleviation of Volumetric Locking

The Assumed Natural Strain methodology was originally siedtiin the context of plate and
shell elements to alleviate pathological effects such aarsand membrane locking. Thus,
the ANS method is not adequate to solve or attenuate volioietking. In the literature,
this material-based locking is usually dealt with by empigy for instance, the EAS method,
the B or F techniques.

In the following it is shown that the methodology describ@dSection 5.5 can be
employed to alleviate volumetric locking effects in NURB&sed formulations. The starting
pointis based on the approach, originally proposed by Hughes [Hughes 80] foattadysis
of nearly-incompressible media in FEM.

From the equations dealt with in the previous chapters, tilandfield can be expressed
in terms of the strain-displacement operdBaas

& =Bd,

which can be written as
B=|B1 Bz .. Bpn,l,

wheren, is, in the context of IGA, the number of control points of tHemneent. Each sub-
matrix B;j in the previous equation can also be expressed as

Rx 0 O
0 Ry O
B = 0 0 Rz (5.55)
Ry Rx O
Rz 0 Ry
| 0 Rz Ry

Furthermore, the strain-displacement operd&ocan be additively decomposed into its
volumetricB"°! and deviatori®%€" contributions as

B =BY0 4+ Bde, (5.56)
which are given by the sub-matrices

Rx Ry R
Rx Ry Rz
B}’O':% Rgx R(')’y R'(’)Z : (5.57)
0 0 0

O 0 O
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and -
2Rx —Ry —-R:
—Rix 2Ry —-R:
poev— T | "R ~Ry 2Rz (5.58)
3[3Ry 3Rx O

3R; 0 3Ry
| 0 3Rz 3Ry]
respectively. To obtain an improved performance when dgaWith incompressible
problems where volumetric locking can be an issue, B¥% matrix can be replaced by
an improved volumetric contributioB"® (which must be formally identical), leading to the

new strain-displacement operator as

B =BY! B, (5.59)

The methodology proposed in Section 5.5 can be promptlytessaimpute the improved
volumetric strain-displacement opera1|§Y°'. Once again, this study will be focused on
quadratic elements dealt with a full integration rule cetisg of (p+1) x (q+ 1) x (r +
1) integration points. A new tying point scheme is selectedengithe location of these
points are given by a reduced Gaussian integration schensehématic representation of
these tying points can be seen in Figure 5.5. These poinitshen be used to compute the
components oBv using the same procedure as the one presented in Sectidn Fle
performance of this methodology is assessed in Sectionsing two numerical examples
in the linear elastic range, where the newly proposed foatrarn is denoted as H2PV.

E A AC A
A E A
. 0 n
i§
Fa_ o ___b__a____

Figure 5.5: Representation of the tying points (triangfesthe computation of thgv°! matrix.
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Chapter 6
Contact for Isogeometric Analysis

A brief state-of-the-art review of the main developmentthia context of
contact mechanics for Isogeometric Analysis is preseritbd.description of
a general two-dimensional frictionless contact problemgiven, followed by

a detailed description of the Point-to-Segment algorithinere special
attention is provided to the main aspects of the implemiemtatrocedure.

In the context of the Finite Element Method, a contact pnatilevolving large sliding can
be seriously affected by numerical instabilities which afiten associated with non-smooth
contact surface discretizations. This problem can be ¢adky employing Hermite, spline or
Bézier interpolations to discretize the master surfacée\R@t contributions in this field can
be found in the work of Pietrzak and Curnier [Pietrzak 99]idyerset al. [Wriggers 01],
Krstulovic-Opareet al. [Krstulovic-Opara 02] and Stadlet al. [Stadler 03].

Within an Isogeometric Analysis, and since NURBS are useatksxzribe the geometry
of the problem under consideration, the surface descriptsoalready available and,
therefore, no smoothing procedures are required. Lu [Luibffpduced a NURBS
Isogeometric formulation for frictionless contact and doled that this discretization
alleviates the non-physical contact force oscillatiorterfdetected in contact with faceted
surfaces. In a simultaneous parallel study, Temizer andariers [Temizer 11] proposed
a Knot-to-Surface (KTS) algorithm as an extension of thessiaal Node-to-Surface
algorithm. Although the KTS algorithm led to satisfactonyadjtative results in various
examples, it delivered excessively stiff contact consteaenforcement. To alleviate this
issue, a mortar KTS approach was also developed, which wlastalattain robust and
accurate results. In a later work, the same authors [Terti2jeextended their previous
contribution to the large deformation regime using a 3D wmwebiased frictional contact
treatment. The proposed approach presented robust laatseeven when considering
coarse meshes, leading to smooth pressure and tangeati@bir distributions. Dittmann
and co-authors [Dittmann 14] proposed an extension to g éallipled thermomechanically
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Chapter 6. Contact for Isogeometric Analysis

consistent frictional mortar contact formulation suitldr the analysis of contact/impact
problems, allowing to model the energy transfer betweerdimact surfaces.

De Lorenziset al. [de Lorenzis 11] proposed a 2D contact formulation basedronrgar
approach for normal and frictional contact, combined witkiraple integration scheme in
the large deformations regime. Results showed that theopempmethodology presents
a significantly superior performance, when compared witgraage discretizations. It
was also shown that in large frictional sliding problemse thactions histories obtained
are much smoother. In a later work, de Lorenetsal. [de Lorenzis 12] employed a
mortar-based approach in combination an Augmented Lagmangethod to solve large
deformation frictionless problem in 3D analysis. The awhdemonstrated that the
NURBS-based approach can lead to significantly better gieds of the contact pressures,
while Lagrangian ones present spurious oscillations andsome cases, non-physical
negative values.

Kim and Youn [Kim 12] proposed a novel contact matching altbon for linear elastic
frictionless Isogeometric Analysis contact problems g@irmortar method. The employed
methodology resulted in an excellent performance for alioantact surface problems with
nonconforming meshes.

The use of T-Splines for modelling contact presents an @dganover NURBS-based
formulations since T-Spline interpolations are able tar@epnt complex geometries with
a single parametrisation. Following this reasoning, Dinet al. [Dimitri 14] employed
T-Splines to model two- and three-dimensional frictiosleontact problems between
deformable bodies in the large deformation regime. The lprolwas solved employing
a Gauss-Point-to-Surface (GPTS) method, while the fmd#iss contact constraints were
regularized by the penalty method. T-Splines and NURBS gmtesl similar orders
of convergence although T-Splines shows a superior acgu@ca given number of
degrees-of-freedom. However, due to the high number oftilmes at which the contact
constraints are enforced, numerical instabilities campaten these constrains are enforced
exactly or nearly exactly. Consequently, the GPTS algoritthould not be used in
conjunction with the Lagrange Multiplier method or with tpenalty method when very
large values of the penalty parameter are considered.

Matzen et al. [Matzen 13] developed a Point-to-Segment (PTS) algoritranaa
straightforward extension of the Node-to-Segment (NT§)adhm used in two-dimensional
analysis. In this formulation, a set of collocation poindsdiefined in the slave segment
in order to collocate the contact integrals. The numericangles demonstrated that
the NURBS-based PTS algorithms present superior perfarenanlarge sliding contact
problems when compared with Lagrange discretizations.

In this work, an introductory study of contact mechanicshie tontext of Isogeometric
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Analysis is performed. In the following, the PTS algorithevdloped by Matzen and co-
workers [Matzen 13] is described in detail, along with itsnarical implementation. This
chapter serves as the starting point for the analysis ofl@nub in the field of contact
mechanics within the research group in which the authorisflthesis is inserted. Therefore,
an effort was carried out to develop a program which can bd uséhe future for further
developments and implementations in contact mechaniog UGIA.

6.1 Normal Contact in Two Dimensions

Consider that two deformable bodies, that occupy distinsitpns in the initial configu-
ration, come into contact after a finite deformation processseen in Figure 6.1. These
bodies can be classified as master and slave, according tggescript index = 1 and

I = 2, respectively. The position vectors of a material poitbbging to the master and slave
bodies in the current configuration are giverxasindx?, respectively.

uz

T

Figure 6.1: Finite deformation of bodies in a contact proble

In order to determine the gap between the two bodies, it igired to determine the
Closest Point Projection (CPP) of the slave poifibnto the master contact segm%t
which can be mathematically expressed as

X=mingcqX* —x* (&), (6.1)

where ¢ is the parametric coordinate of the contact boundary of tlasten bodyS}:.

Quantities with an overbdr) are evaluated at the CPP in the parametric sgace
Once the projectior is known, the normal gap can be defined as

on = (X*—X) -, (6.2)

81



Chapter 6. Contact for Isogeometric Analysis

wheren is the outward unit normal on the current master segmenteaCfPPx. Contact
takes place whegy = 0, leading to the appearance of a normal contact pregsute0. In
the case of frictional contact a tangential pressure is@ssent, but this scenario will not be
considered in the current work. On the other hand, if therst®a gap between the bodies,
thengn > 0 andpy = 0. Therefore, the contact conditions can be stated as

gn >0, (6.3)
pn <0, (6.4)
OnPN =0, (6.5)

which are known as the Hertz-Signorini-Moreu (or altewelll, the Karush-Kuhn-Tucker)
conditions for frictionless contact.
The variation of the normal gaggy follows from Equation 6.2 as

Sgn =& [(x?—X) -], (6.6)
which leads to
Sgn = (X% — OX —X £6&) - N+ (X2 —X) - &n. (6.7)

6.2 Description of the Frictionless Contact Problem

The Principle of Virtual Work (PVW) for each body and neglecting inertia terms, can be
expressed as
51 (u, 8u) = S :6Edv— ,pbi-(suidv—/_ t.oudS=0.  (6.8)
Vi Vi s,
where the first term corresponds to virtual internal workjlevthe second and third terms
are related to the virtual work of the external forces. Tiiggjation 6.8 can be re-written as

oM (u,du) = Ziél'l:nt+6l'lext— (6.9)
where
5r|}m:/s' . SEiQV, (6.10)
Vl
and
ML= — /,pbi-auid\/—/_ t.ou'ds (6.11)
V! S\

Once the contact interface is known, an additional term rhastdded to Equation 6.9
in order to avoid penetration of the bodies. The PVW inclgdime term dealing with the
contact contributions can then be written as

Zlan:m+5next+ 3Mc =0, (6.12)
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6.2. Description of the Frictionless Contact Problem

wheredll¢ is associated with the active master-slave contact boigsiset.

There are different strategies that can be applied to stlgecontact problem. For
example, the penalty and the Lagrange Multiplier methofenaised in optimisation theory,
can be employed. In the penalty method a contact penaltydschtb the active contact
constrains by means of a large penalty parameter. This melbgy is easy to implement,
however it only approximates the solution of the problem,aadditionally, the use of
large penalty parameters can lead to an ill-conditionederigal problem. In the Lagrange
Multiplier method the contact constraints are fulfilled mexact matter, but at the expense
of additional variables. In the current work, the Lagrangeltidlier method is applied to
solve the contact problem.

6.2.1 The Lagrange Multiplier Method

The Lagrange Multiplier method is employed in optimizatitmeory to determine a
minimum (or maximum) of a constrained functiom&l Mathematically, the minimisation of
the scalar functiondll (x) under constraing(x) can be expressed as

min M(x), (6.13)

subjected to
g(x)=0. (6.14)

Using the Lagrange Multiplier method, the constrained mimation problem can be
reformulated as a saddle point problem by employing the &ragg functional as

grad(-Z (x,A)) =0, (6.15)
whereA is known as the Lagrange multiplier. The Lagrangian is coiecstd as
Z(XA)=N(x)+Ag(x), A <0, (6.16)

and its gradient is given as

oar(x) A a9(x)
* ] =0. (6.17)

07
grad(Z (x,A)) = | 2% | = | ox
oA
The lower equation is the constrain function given in Equat.14. The replacement of a
single argument functiondl (x) by the two argument Lagrange function#l(x, A ) implies
a higher number of unknowns in the latter [Yastrebov 13].
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The Lagrange Multiplier Method for Normal Contact

Using the Lagrange Multiplier method, the contact contigoullc in Equation 6.12 can be
defined for normal contact as

ne' = /SCANgNdS, (6.18)

where, once agaimy is the Lagrange multiplier which can be interpreted as thenab
contact pressure in the contact interface. The variatidn®feads to

SIM — / AnSONdS+ / SAngNOS (6.19)
S S

where the first term is associated with the virtual work of tiagrange multipliers along
the variation of the normal gap function. The second termquodion 6.19 represents the
enforcement of the contact constraints.

6.3 Point-to-Segment Contact Formulation

In the following, the Point-to-Segment (PTS) contact folation proposed by Matzen and
co-workers [Matzen 13] is described. This formulation candeen as an extension to
NURBS-based formulations of the classic Node-to-SegmiiiS) algorithm frequently
used in the context of FEM. In the NTS formulation, the nongteation conditions are
enforced by preventing that the nodes on the slave segmaatrpte the master segments.
Due to its simplicity, clear physical meaning and flexilyilithe NTS formulation is widely
used in problems involving contact. For details on the NTgdathms, the reader is referred
to [Hughes 76, Wriggers 85, Papadopoulos 92, Zavarise @8l]references therein.

In the PTS algorithm, a set of points on the slave segment brugefined. These are
known ascollocation pointsand will be denoted ass in the following Sections. The need
to define collocation points arises from the fact that, cagtito standard Finite Element
formulations, the control points are not, in general, iptdstory and, therefore, are not part
of the geometry. In the following, the termwill be used to define the CPP on the master
curve, whilexi1 will denote the control poinitof the master segment.

6.3.1 Kinematics

Consider a discrete collocation poxtbelonging to the slave curve. The normal ggpcan
be defined as the minimum distance between the slave poithandaster segment as

ON = (Xs—X) - N, (6.20)
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wherex is the CPP oks into the master segment, with outward unit normahs depicted in
Figure 6.2. The tangent vector at the CPP can be computed as

N 185
a= Ti;Ri,E (€) X = Ti;RLEXil’ (6.21)
where
| = _Zmiﬁvgxil . (6.22)

In Equations 6.21 and 6.28;, is the number of basis functions, including vanishing terms
on the master curve of ordex, and RT,E are the derivatives of the master basis funciion
computed at the CPP with respect&olt is now possible to define a local franfe, a, e3),
wherees is the unit vector orthogonal to the plane containing thetacirelement. For the
two-dimensional case, the unit normal vector can then baidd as

i=axe;. (6.23)

Figure 6.2: Point-to-Segment contact element.

The coordinates of the projection of the slave poinbn the master segment are given
as

nm _
x(&) =x=Y Rx{, (6.24)
2,
which can be computed using a numerical iterative proceoire
(xs—X)-a=0. (6.25)

This equation guarantees that orthogonality between tbh®rsgxs — X) anda is achieved.
The variation of the gap can now be obtained from Equatiog.faking into account that

Xg-N=0, (6.26)
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and
(Xs—X) =0, (6.27)

leading to
Ogn = (O%s— OX) - n. (6.28)

6.3.2 Choice of Contact Collocation Points

In the literature, there are various sets of collocatiomisthat can be selected, such as
Greville [De Boor 78], Demko [Demko 85] or Botella [Botell Dpoints. In the current
work, Greville points are considered to collocate the ceiritgtegrals. The coordinate of the
Greville points can be obtained as

£ €i+1+~-.—|—€i+p+l, (6.29)

p

whereé; are the knots contained in the knot vecibmwhich defines the curve of degree
p. According to Matzen and co-workers [Matzen 13], the chaitéhe collocation points is
motivated by two main reason@) Demko points have to be computed by a complex iterative
algorithm, while Greville and Botella points can be morelgadbtained; andii ) the number
of Greville and Botella points are the same as the numbermfalpoints used to define the
surface. The latter presents an advantage since a highdranahcollocation points results
in a over-constrained system which can cause convergeobkeprs. Moreover, results show
that Greville abscissae present better results when cadpéth Botella points.

In the remainder of this work, the upperscr(b) is used to denote variables computed
at the collocation poinks. Thus, the coordinates of the contact collocation pritan be
obtained as

X — izla (5) X2 = Rx2, (6.30)

whereng is the number of control points that define the slave curveaéigs.

6.3.3 Linearisation

When using a Newton-Raphson iterative scheme, it is redquioelinearise the contact
contributions is order to obtain a quadratic convergencke fiormal contact term given
in Equation 6.19 can be rewritten as

SEM — / ondS, (6.31)
S
where
CN = AN5gN + 5ANgN. (6.32)
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The linearisation o€y can be computed as

aCN o 0CN 0CN aCN aCN
o Au= aANAAN + 0gNAgN + aégNAégN + amNAé)\N, (6.33)

and since the termdAy is equal to zero, the previous equation results in

%AU = OgNAAN + OANAON + ANAOON . (6.34)

By substituting Equation 6.24 into 6.28, the variatiomggfcan be expressed, in matrix form,
as

T
Sgn = [oxs &x| N (6.35)
where, from Equations 6.24 and 6.30,
_ T -
Rna
Ng = R”_S _ (6.36)
—Ryin
_RTnmﬁ
In an analogous way, the terfiyy,, can be written as
T
Agy = [Axs Axl} Ns. (6.37)

The linearisation of the variation of the normal gap can b=ioled for the two dimensional
case as [Wriggers 02]
Adgn =— (5ZEAE + DX £ 8¢ +X e AESE) - +
T (K g +Xgp08) - (A g +X g60) -1 (6.38)
which requires the linearisation 6_f This can be obtained by linearising Equation 6.25 and
solving forA¢ as

Af—_ 1t

where the metri@;1 and the curvature of the boundd;yl are given as
a1=Xg Xg =12 (6.40)

and
bllzigg-ﬁ, (6.41)
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respectively.
By introducing the vectors

0 Ria
0 Rn.a OX AX
Nos= | — _ |, Ts= R”_S_ ,ox=| 7| andAx= | 7|, (6.42)
Rien —Ria ()4 AX
[Ron.éM) | —Rondl

the linearisation of the variation of the gap can be writtematrix form as
ASgn = OXTK ps0X, (6.43)
in which

I 61 Lo IN 61lgN Bilgﬁl T
I

_ bulgn | buon bf.10%

)
M ml A )tsNOS*

m
29y bugd on  2bugd  b2,03 T
2 T Tme Tz ) NoNest

h.12 BR2
(——brlﬁl + blnlg“) Tl (6.44)

wherem=aj; — gN511. Finally, it is possible to establish the matrix form of Etjoa 6.34
as

Kc = [5x 5AN]T [ . (6.45)

NI O] |aa

The contribution to the right-hand side of the global systéequations stems from Equation
6.18 as

AnK pg Ns] AX

(6.46)

T |ANN
fc = OANON +ANOON = [6x 6)\N] [ N S].

ON
Both the global stiffness matrix and the right-hand sidawmewill receive additional entries
from each collocation point, increasing the size of theeysto be solved.

6.3.4 Contact Stress

When solving the global system of equations in conjunctiati the Lagrange Multiplier
method, the additional entries that arise from Equatiod$ @nd 6.46 correspond to the
normal contact pressurdg that act upon each collocation point. These contact pressur
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can then be used to compute the contact stresses that aat oarttacting slave curve. In
standard linear Lagrangian-based formulations, sincsltwe points are the element nodes,
in order to obtain the contact stresses it is only requirecbtapute the area corresponding
to half of the length of the adjacent elements. In the contéXtsogeometric Analysis
employing the Point-to-Segment algorithm a different appgh must be considered. In the
current work, a method which consists in dividing a pointjsi@alent normal contact force
by the physical length (associated with the same point) isleyed.

The first step is to distribute the contribution of each LageMultiplier Ay;j from the
collocation point§ j as

P— éRi (51) ;. (6.47)

In the slave segment, a given control pdBitx,y) only affects the curve in the range
&, &4 psr1] since the basis functior® () = 0 for £ & [&,&4pr1]. Consequently, the
parametric lengthy of the segment associated wihis given as

|is _ =° (Ei+psﬁ1) - ES(Ei) :

Sizal}
where=?s is the knot vector defining the slave segment. It should bechibtat the parameters
defined in the previous equation are normalised. This nasatadn arises from the fact that,
since there exists inter-element continuity, the sum ofghmetric slave curve lengths
would be superior to.D.

The physical length of the slave segment can be obtained fmgncal integration as

(6.48)

Ns+Ps

ph _ Z /SC /2 +d2dé, (6.49)
1=
where e
=1
and .
G
dy = > Ry, (6.51)
=1

in which x; andy; define the physical coordinates of the slave curve contrioit@mdng =
ps—+ 1 is the number of integration points in each knot span. Byintakse of Equations
6.48 and 6.49, the physical length of the slave curve segassdciated with poir®; can
then be written as

5PN — |55 1P, (6.52)

Finally, the normal contact stress can be computed as

c_ R

|
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6.4 Implementation of the Contact Algorithm

The Point-to-Segment contact algorithm was implementedha in-house developed
Isogeometric Analysis code ICO. The flowchart of the codeiscsure can be seen in Figure
6.3. A detailed description of the steps performed in boxegaining contributions to the
contact problem is given in the following.

6.4.1 Initialise

In this step, all the data is read from the input file and all\heables are allocated. The
coordinates of the Greville points in the parametric cumeecamputed from the curve’s knot
vector as
v Simato+éip
&= :
p
Additionally, the contact status of each collocation p@srget toNot Active and the global
system of equations is augmented in order to accommodaéelthigonal degrees of freedom

coming from the Lagrange Multiplier method.

(6.54)

6.4.2 Compute Contact Contributions

The compute contact contributiort®ox contains the core of the contact module using the
PTS algorithm in conjunction with the Lagrange Multiplieethod. The main steps are
represented inside the dashed box on the left-hand sidgyofd=6.3.

For each collocation point, the physical coordinates ofdlage pointxs are computed
based on its parametric coordinafesas

Xs = nZR. (&)

The code will then compute the closest point projection efdlave point onto the master
segmenk by iteratively solving
(Xs - )?) . 5: O7

using the Newton algorithm presented in Box 6.1.
Once the coordinates of the CPP are determined, it is pedsilompute the gap as

ON = (XS - )?) . rT?
where, for the two-dimensional case, the normal vector fainbd as

T=ax[0 0 _1]T. (6.55)
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Figure 6.3: Flowchart of the ICO code including contact.
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If gn < 0, then penetration will occur and the contact status of tilcation point is set
to Active. The contact stiffness is computed using Equations 6.4%afsland assembled
into the global system of equations. Otherwisggnf> 0, the contact status will be set as
Not Active and the diagonal of the contact stiffness matrix will be eel.© and all other
entries are set to.0.

Box 6.1: Newton algorithm to determine the CPP of the slavatpmto the master segment.

1. DO Newton iteration k)

(a) compute the physical coordinates of the master pointtamtkrivatives
L AN
X= i;Ri (5 )Xi
= A
= S5 (5Kl
Xee = 2 Riee GE

(b) compute master segment length and its derivative

| = Rg’ = ‘Inzmlﬁf (E_k) Xil

le =[Xee| = ‘:Zmﬁ,ss (f_k) X

(c) compute the tangent to the master segment and its deeivat

(d) compute new CPP parametric coordinate

Fet_gk (s —X)-a
(Xsg —Xe) ag

(e) IF (xs—X)-a < 1.0 x 1078 then exit cycle, otherwise sé&t= k + 1 and perform another
iteration

2. END DO
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6.4. Implementation of the Contact Algorithm

6.4.3 Solve Global System of Equations

After assembling all the contact stiffness contributioreath collocation point, the global

system of equations
ext _ fint
Au| f ™1 JCc(u)A (6.56)
AA 0 Ge (u)

is solved for the incremental displacemefitsand incremental Lagrange multipliekd . In
Equation 6.56, matriX (u) is the standard tangential stiffness matrix described énipus
chapters, antP*andf™ are the external and internal forces, respectively. Meshc: (u,A )
and Cc (u) arise from the contributions of each collocation point te tilobal system of
equations anéc (u) defines the normal contact constraint.

K(u)+Kc(u,A) Cc(u)
[Cc(u)]" 0
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Chapter 7
Numerical Examples

The performance of the NURBS-based formulations propas&hapter 5
are assessed using a set of well-known benchmark problebwhrlinear
and nonlinear regimes. Additionally, in the context of @mtmechanics, the

validation of the implemented Point-to-Segment algorittescribed in
Chapter 6 in the linear elastic regime is performed, also bgms of various

benchmark problems.

In this chapter, the methodologies described in ChapterdbGare validated using
various benchmark problems. In particular, the first twdises are related to the assessment
of the performance of the H2ANS element (see Section 5.5hénlihear and nonlinear
regimes for thin plate and shell structures, followed by@pte of numerical problems where
the volumetric locking pathology is dominant. The remainafethe chapter is dedicated to
the analysis of contact problems in the linear elastic rangle context of Isogeometric
Analysis.

In the numerical examples presented in the following, ektte@ones involving contact
mechanics, a single NURBS patch was considered for modedlach problem (unless
otherwise stated). In every example, the initial geomeitayg defined using the lowest order
and number of control points possible. Successive refineshesewere obtained by the
process of k-refinement (see Section 3.1.4) using the isdaleveloped code written in
Matlab and described in Section 3.4.1. Standard Gausseudrguure is employed in all the
presented examples.

7.1 Linear Elastic Problems

In the present section, the performance of the proposed FRfakmulation is assessed in
the analysis of shell-like structures in the linear elasticge. In particular, the proposed
numerical experiments consist of the study of a straightaedrved cantilever beam, as
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Chapter 7. Numerical Examples

well as of the solution of the well-knowshell obstacle courseroposed by Belytschket
al. [Belytschko 85] as a set of benchmarks for the assessmehetifamalysis procedures.
In all numerical examples, the proposed formulation is cara@ with quadratic and
cubic NURBS-based solid and Kirchhoff-Love shell elemerfghenever possible, other
NURBS-based shell and solid-shell results available iritemture are also considered, for
comparison purposes. In this section the following nomegce for the different employed
formulations is adopted:

: Hn: Standard solid NURBS-based element of degree

: KLn: Kirchhoff-Love shell element of degree, as proposed by Kiendét al.
[Kiendl 09];

.. 3p-HS: Quadratic 3-parameter Kirchhoff-Love shell edghwith a Hybrid Stress
modification of the membrane part, as proposed by Edttal. [Echter 13];

.. 3p-DSG: Quadratic 3-parameter Kirchhoff-Love shelhaémt with a Discrete Strain
Gap modification of the membrane part, as proposed by Eehtdr[Echter 13];

.. 5p-stand(-DSG): Quadratic 5-parameter Reissner-Mirghell element (with a Dis-
crete Strain Gap modification of the membrane part), as megdy Echteret
al. [Echter 13];

.. 5p-hier(-HS): Quadratic 5-parameter Reissner-Mindliell element with hierarchic
difference vector (and a Hybrid Stress modification of thetbene part), as proposed
by Echteret al. [Echter 13];

: Mixed 2: Quadratic solid-shell element employing a mixedthod, as proposed by
Bouclieret al. [Bouclier 13a];

: Local Bbar 2: Quadratic solid-shell element employingiged method with modified
I§-projection, as proposed by Bouclietral. [Bouclier 13a].

In addition, whenever possible, a comparison with highqremiince Lagrangian-based
solid and solid-shell formulations is carried out. The nociature employed is defined as
follows:

.. Sch09: Solid-shell formulation with in-plane reducetegration and stabilization, as
proposed by Schwarze and Reese [Schwarze 09];

.. Ree07: Solid-shell using reduced integration with htagyg stabilization and EAS
[Reese 07];
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7.1. Linear Elastic Problems

: KimO05: Solid-shell based on the ANS method with planesst@ssumptions [Kim 05];

: RESS: Reduced Enhanced Solid-Shell element with stakihn of hourglass modes
and one EAS mode [Alves de Sousa 05];

: HCiS18(12): Solid(solid-shell) element with 18(12) EA&Shancing parameters, as
proposed by [Alves de Sousa 03];

.. Are03: EAS solid element with penalty stabilization [fae 03];
: Leg03: EAS solid-shell element with stabilisation of hglass modes [Legay 03];

: H1/ME9: Mixed-enhanced fully integrated eight-nodenedmt with 9 enhanced modes
[Kasper 00].

7.1.1 Straight Cantilever Beam

In this first example, a straight beam clamped at one end igectgl to a vertical loaé
at the opposite free end, as can be seen in Figure 7.1. FroBetiheulli beam theory, the
strain energy) of the structure is given as

Uu=2=__ (7.1)

whereE is the elastic modulus and w, andt are the beam’s length, width, and thickness,
respectively. By expressing the results in terms of tharstraergy, it is possible to assess
the accuracy of the stress and strain fields predicted bytheulations. For a deeper insight
of the performance of the proposed formulation, the cumpeolblem is subdivided into two
cases.

F/2
F/2

Figure 7.1: Scheme of the straight beam problem.

In the first case, the convergence of distinct formulatierenalysed for a beam of =
1000 andw =t = 1.0. The material properties are takeneas- 10000 andv = 0.0. The
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Chapter 7. Numerical Examples

problem is discretized with only one element along the wattd thickness directions. The
results for the normalized strain energy versus the numbetements along the length
direction are presented in Figure 7.2, for distinct NURBSdd elements. It can be seen
that the proposed H2ANS formulation is able to reproducedference solution, even when
considering a very coarse mesh. The results are superioos$e @attained by quadratic solid
and Kirchhoff-Love shell elements. The results for cubiarfalations are not reported due
to the fact that a cubic polynomial interpolation is, in tbé&se, enough to reproduce the exact

solution.
S e :
! | 1
> : :
) : :
= ' '
) ' :
= ‘ ‘
B> : :
£ j 3
s : :
> 0.9 ,,,,,,,,,,,,,,‘,,,,,,,,,,,,,,,,,,,,,,,,,,,,,},,,},’, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —H2ANS
= : L.
S 1 pe
= s < ---H2
< | ’
= i e
5 3 L —=-KL2
4 ; .
i 7’
0.8 ; P
o
0.7 f } t } !
0 2 4 6 8 10 12 14 16 18
Elements

Figure 7.2: Normalized strain energy versus mesh densitthfo straight cantilever beam problem
with a constant slendernessloft = 1000.

In the second case, a mesh composed of eight elements islematsi and the problem
is studied for different beam thickness values. As the beanofmes thinner, transverse
shear locking effects will be increasingly dominant, makihis example a valuable tool for
evaluating the capability of a given formulation to alleei¢his kind of locking phenomenon.
The results for the normalized strain energy versus sleredsrare presented in Figure 7.3,
for the same formulations as before. The proposed NURB8&¢ebsdid-shell element is able
to obtain good results for both thick and thin beams, denmatisg a very low sensitivity to
shear locking effects. As expected, as the thickness of ¢éhentdecreases, the results for
the standard quadratic NURBS-based solid element tendiévidieate. It can also be seen
that the KL2 formulation can be considered as free from sloeaing (as being based in the
Kirchhoff-Love rationale). It should be highlighted thathen higher slenderness ratios are

98



7.1. Linear Elastic Problems

considered, the stiffness matrices resulting from thedselkments become ill-conditioned,
leading to difficulties when solving the global system of &ipns. This situation is not
detected when shell elements are instead used.

1.1
> 1 B~z------7-----"-7----@---------- H----------f---F--F-f-"-q-@---------- 3]
o0 T~a
5 T~
£ -~
£ L
= \\
g .
& AN
=09 38
g 09 —H2ANS .
E
E -_-H2 \\\
2 \\

8- KL2 "~

0.8

0.7

1.0E+01 1.0E+02 1.0E+03

Slenderness L/t

Figure 7.3: Normalized strain energy versus beam slenderf@ the straight cantilever beam
problem for a eight NURBS element mesh.

7.1.2 Curved Cantilever Beam

In this example a curved beam, consisting of a quarter of@degirs clamped at one end
and subjected to a transversal load at its the free end. Dtleetourvature of the beam,
membrane locking will be the dominant parasitic phenomé&icafer 13]. In addition, when
solid (or solid-shell) elements are used to model the cupsedile, curvature thickness
(trapezoidal) locking may also be present. The structurepsesented in Figure 7.4 for a
single element mesh, along with the corresponding cordttite. The final mesh is obtained
by performing an order elevation along the thickness (fadrad width directions, followed
by knot insertion in circumferential direction. The ste has a radius, at the neutral
surface, ofR = 10.0 and a widthw = 1.0. An elastic modulus of 1000 and a Poisson’s
ratio of 0.0 are considered. The load is given as a function of the tleisétn asF = 0.1t3.
From the Bernoulli beam theory, the radial displacementlmamcomputed to be equal to
0.942 [Echter 13]. The problem is discretized using ten NURBSnents, with only one
element through the thickness and width directions.
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Figure 7.4. Scheme of the curved cantilever beam problegratised with a single element and
corresponding control lattice.

The results for the radial displacement as the beam sleeseRjt is increased are
presented in Figure 7.5. It can be seen that, although thepea formulation is not locking
free, itis able to significantly improve the behaviour of th@ndard quadratic NURBS solid
element. The performance of H2ANS is also superior to thelgie Kirchhoff-Love shell
element. In fact, H2 and KL2 formulations are seen to suffemflocking, even when
considering a moderately thin shell. Cubic elements ptesdretter overall performance,
although not being completely locking-free.

In Figure 7.6, the proposed formulation is now also compwigathe shell formulations
presented in [Echter 13]. The results obtained by H2ANS arg ¢lose to those attained by
the 5p-stand-DSG shell element. Echter and co-workerstfEdl3] justify the deterioration
of the results obtained by the 5p-stand-DSG element threbgér locking effects. However,
as seen in the previous example, since the ANS methodoladpedo alleviate shear locking
effects, the decrease of the H2ANS performance as the stesfeof the beam increases
may be related to curvature thickness locking. As obsemd&chter 13], in this case the
3p-DSG and 3p-HS formulations are instead completely lagkiee.
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Figure 7.5: Displacement versus slenderness for the curametilever beam problem (1).
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7.1.3 Shell Obstacle Course I: The Scordelis-Lo Roof

In this example, introduced by Scordelis and Lo [Scordéedil & cylindrical shell supported
by rigid diaphragms in the curved edges is subjected to anwelforce (self-weight). The
geometry of the problem is presented in Figure 7.7 and themwions of the structure are:
radiusR = 25.0, lengthL = 50.0 and thicknest= 0.25. The magnitude of the volume force
is given aspg = 360, wherep is the density and is the gravity acceleration constant, for a
set of coherent unities. The elastic properties are givels by4.32 x 10° andv = 0.0. Due

to symmetry conditions, only a quarter of the structure islelied.

Rigid
diaphragm

Figure 7.7: Schematic representation of the Scordeliselod problem.

The vertical displacement of the midpoint of the free edganfD in Figure 7.7) is
numerically computed and compared with the referenceisolaf 0.3024, with the results
being presented in Figure 7.8. The proposed H2ANS formarias able to obtain good
results and a very fast convergence, significantly imprgtie behaviour of the conventional
formulation (H2 element). In fact, it can be seen that theltegrom H2ANS are similar to
those obtained by cubic solid and Kirchhoff-Love shell etents.

The results for the normalised displacements of point D fotous Lagrangian-based
formulations available in the literature are compared it proposed methodology in
Figure 7.9. As can be seen, the H2ANS element presents cibivgedsults when compared
to different solid and solid-shell formulations.

In the following, the NURBS-based solid elements H2 and H8@mpared with the
proposed H2ANS solid-shell in terms of computational co3tise CPU time obtained by
each formulation as a function of the number of control poiatpresented in Figure 7.10.
The results are normalised by the CPU time obtained by thedrtBulation using a mesh
composed of 4900 control points. It can be observed thatrihygosed NURBS-based solid-
shell formulation presents a significantly lower computadil cost when compared with the
cubic solid element, while being able to obtain a similardprgon of the displacement of
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Figure 7.8: Displacement of the midpoint of the free edgaherScordelis-Lo roof.
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Figure 7.9: Displacement of the midpoint of the free edgeaHerScordelis-Lo roof: comparison with
Lagrangian-based Finite Element formulations.
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point D, as seen in Figure 7.8.
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Figure 7.10: Scordelis-Lo roof: comparison of computadiarosts.

7.1.4 Shell Obstacle Course Il: Full Hemispherical Shell

The full hemispherical shell schematically representdeigure 7.11 is another well-known
benchmark to assess the performance of shell (and sollfj-slements. In this problem,
a hemisphere of radiuR = 10.0 and thickness$ = 0.04 is subjected to a pair of opposite
concentrated loads applied at antipodal points of the eguathile the equator edge is
considered to be free. Due to symmetry conditions, only aretgr of the structure needs
to be modelled, as seen in the figure. The magnitude of theitoBd= 1.0, the material
parameters are given &= 6.825x 10’ andv = 0.3, and the reference radial displacement
at point A isu=0.0924.

In Figure 7.12 the results for the radial displacement anipAiversus the number of
control points per side is presented. Once again, the pealdd2ANS formulation is able to
obtain good results and convergence, being superior torgtiadolid and Kirchhoff-Love
shell elements, and comparable to formulations accoufingigher order interpolations.

The normalised results obtained by the H2ANS element cam laés compared to
Lagrangian-based formulations, as shown in Figure 7.1% r€bults demonstrate that the
proposed element is able to obtain a performance that igisupe similar to some of the
solid and solid-shell Lagrangian formulations availalvleéhe literature. These results once
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Figure 7.11: Full hemispherical shell problem setup4(f the whole structure is shown).
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Figure 7.12: Radial displacement of point A for the full heptierical shell problem.
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again allow to infer that the proposed methodology can leaddompetitive formulation in
terms of reliability of the provided numerical solution.
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Figure 7.13: Radial displacement of point A for the full hepherical shell problem: comparison
with Lagrangian-based Finite Element formulations.

7.1.5 Shell Obstacle Course llI: Pinched Cylinder

As a last example of this set of three shell obstacle coursklgms, the pinched cylinder
with end diaphragms subjected to a pair of concentratedslsapresented. This is a rather
demanding example due to the very localized strain statétiag from the application of
the point load. The cylinder has radiRs= 3000, lengthL = 600.0 and thickness = 3.0,
as can be schematically seen in Figure 7.14. The concethticdads have a magnitude of
1.0, for material properties given &= 3.0 x 10° andv = 0.3. Due to symmetry, only one
eighth of the structure is modelled. The reference solubothe radial displacement at the
loaded point is given as= 1.8248x 107>,

The results for the different formulations are presenteéfigure 7.15. The H2ANS
NURBS-based element gives again better results than tloosiag from quadratic elements,
even if, in this case, not as good as those obtained with @lbments.

Finally, the radial displacement obtained for the H2ANS asmalised and compared
with solid and solid-shell formulations available in theefature. The results are depicted
in Figure 7.16. As can be seen, the results obtained by theopea formulation are very
similar to those from the HCiS12, HCiS18, Are03 and H1/MEShaénts.
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Rigid diaphragm

Figure 7.14: Schematic representation of the pinched agtiproblem
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Figure 7.15: Radial displacement for the pinched cylindeblem.
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Figure 7.16: Radial displacement for the pinched cylindebfem: comparison with Lagrangian-
-based Finite Element formulations.

7.2 Nonlinear Problems

In the following, the proposed H2ANS NURBS-based elemeapislied for the analysis of
shell-like structures in the geometric and material n@dimregimes. The implementation
of the formulation for this type of problems follows the metlologies presented in Sections
4.2 and 4.3.

The reference to results available in the literature isquaréd by using the first three
letters of the first authors’ name and the year of publishing.

7.2.1 Elastic Large Deflection Bending of a Beam

In this example, a beam is clamped in one end and subjectedite@ane transverse force
F =100Q0 in its free end, as shown in Figure 7.17. Results in the corteFEM can
be found in a number of references, such as [Simo 90a, Be6GdWlighe 98, Valente 04b].
The geometry of the beam is characterized by a lehgthl.0, widthw = 0.1 and thickness
t = 0.1, while the elastic properties are defined by the bulk maslkle= 83.33x 10° and
shear modulu$ = 38.46 x 10°. When performing the numerical simulation, the load is
applied in ten equally spaced increments.

The analysis of the problem is initiated by performing a mastvergence study in order
to compare the performance of the H2ANS formulations andotgl counterpart H2, in
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Clamped End

Figure 7.17: Schematic representation of the elastic ldejkection membrane bending of a beam
benchmark.

the context of a geometry nonlinear analysis. In this proble beam is discretised using
a single element along the width and thickness directiortse [0ad-displacement curves
of point A for various mesh densities are presented in Figui® and compared with a
reference solution coming from the work of Sirabal. [Simo 90a], for a mesh composed
of 10 elements. The results show that the H2ANS element &s tabprovide a very good
solution considering a mesh comprised of just 6 elementsanength direction. It can also
be seen that the proposed solid-shell NURBS-base forroulatis a better performance than
the standard solid quadratic element, specially when denisig coarse meshes.
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Figure 7.18: Elastic large deflection bending of a beam:ldigment of point A versus load.

Employing the same benchmark problem, the sensitivity tehmistortion is assessed.
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To that end, two types of distortion are considered and sgmted in Figure 7.19 for a 6
element mesh. For each case, the distortion parardetaries within the rang¢0.0,3.0].
The results for the displacements of point A for the distbrteeshes of type | (DTI) and type
Il (DTII) are presented in Figures 7.20 and 7.21, respelstivecan be seen that, in the DTI
case, when considering distortion parameters up+00.2, the solution is not affected in a
significant manner. It is also demonstrated that the DTllespnts a more difficult situation,
leading to a higher mesh sensitivity for both the H2ANS anddiénents, although this
sensitivity is more significant for a distortion parametes 0.2. In conclusion, for the range
of distortion levels considered, the proposed solid-ghrelents a similar or slightly superior
performance when compared to the standard solid elemensoRte higher distortion levels,
especially in case DTII, the H2ANS tends however to presemiergence difficulties, in this
example.

N

Figure 7.19: Elastic large deflection bending of a beam: diefimof distortion parameted and
NURBS mesh for (left) distortion type | and (right) distami type II.
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Figure 7.20: Elastic large deflection bending of a beam: laigment of point A versus load for
distorted mesh of type I.
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Figure 7.21: Elastic large deflection bending of a beam: laigment of point A versus load for
distorted mesh of type Il
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7.2.2 Large Deflection of an Elastic and Elasto-Plastic Stight Can-
tilever Beam

In this example the flat cantilever beam previously seenérnlitiear elastic range (Section
7.1.1), is now considered in the nonlinear regime. This glarassesses the out-of-plane
bending behaviour of the formulations and has been analygadvide range of authors con-
sidering both elastic [Simo 90c, Parisch 95, Miehe 98, Eb&g 00, Valente 04b, Reese 07,
Schwarze 11] and elasto-plastic [Dvorkin 95, Eberlein 98lexte 04a] constitutive rela-
tions.

In the first case, a geometric nonlinear regime combined lviar elastic material is
considered. The elastic modulus is definedeas 1 x 10" and the Poisson’s coefficient as
v = 0.3. Following the above mentioned authors, the load is censitito be constant and
with a total magnitude given by =40x A, whereA is a load factor ranging from.0to 10.
The load is applied in 10 equal steps and the solutions fovehigcal tip displacements are
compared with theoretical values coming from the litera{tirisch-Fay 62]. In Figure 7.22,
the results obtained by the proposed H2ANS solid-shell efgrand the standard quadratic
NURBS-based solid element H2 are compared by means of armgemee study. A single
element is considered along the width and thickness dmestiAs can be seen, the H2ANS
formulation is able to significantly improve the behaviobitlee H2 element, specially when
a coarse mesh is employed. For a mesh consisting of 16 elenibatH2ANS element is
able to attain the reference solution.
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Figure 7.22: Large deflection of an elastic straight cavgitdbeam: mesh convergence study.
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In Figure 7.23, the results obtained are now compared witrdregian-based formula-
tions from the works of Valentet al. [Valente 04b], Reese [Reese 07] and Schwarze and
Reese [Schwarze 11]. The results demonstrate that the ggdge2ANS formulation for
a given mesh density can be competitive when compared tsiclaslid and solid-shell
formulations available. However, it is important to takeiaccount that the results coming
from the literature are, in some cases, referred to linesnehts based on reduced integration
schemes, making them particularly efficient in terms of cotaponal costs to the expense
of, in some cases, introducing numerical instabilities hie solution. The final shape of the
beam can be seen in Figure 7.24, along with the control éattithe deformed configuration.
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Figure 7.23: Large deflection of an elastic straight cavgildoeam: comparison with available finite
element formulations.

In the following, the present example is used to validatentitipatch implementation
in the commercial software package Abaqus, as describeédatiod 3.4.4. To that end, the
beam is divided into two patches midway through the lengtiation. The comparison with
the single patch model is presented in Figure 7.25 for the M2AURBS-based element.
It is possible to observe that for the coarser mesh the mauetent some variation in the
load-displacement curves, although this variation is mgéy significant after successive
mesh refinements. The H2 formulation presents a similanbetia

The same problem in also analysed considering both geareetd material nonlinear
conditions. The geometry remains unaltered but the elalststic constitutive relations are
now defined by the elastic modul&s= 1.2 x 10" and Poisson’s coefficient = 0.3, while
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Figure 7.24: Large deflection of an elastic straight cavgilebeam: initial geometry and final
deformed shape with control lattice.
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Figure 7.25: Large deflection of an elastic straight cavdildoeam: comparison between the single
patch and multipatch models.
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the yield stress is described by means of the equivalertipktsaine® as
ay <sp') — gp+HeP, (7.2)

in which the initial yield stress igp = 2.4 x 10* and the linear isotropic hardening coefficient
is equal toH = 1.2 x 10°>. The results for the tip displacement are given in Figure
7.26 for two mesh densities. In the same plot, results froenvibrks of Dvorkinet al.
[Dvorkin 95] and Eberlein and Wriggers [Eberlein 99] arecagesented for comparison
purposes, both employing references employ a mesh comnggsisfi 20 elements with a
single element in the width and thickness directions. Tlreilte demonstrate that the
H2ANS NURBS-based solid-shell element formulation is dblenore accurately represent
the behaviour of the beam, when compared to the standardajicasiolid NURBS-based
element, which presents a stiffer behaviour. Also, theltesd the proposed solid-shell are
in good accordance with the ones coming from the literatspegially for the 20 element
mesh.
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Figure 7.26: Large deflection of an elasto-plastic straggimtilever beam: mesh convergence study.

7.2.3 Geometric Nonlinear Pinching of a Clamped Cylinder

In this example, a cylindrical shell is fully clamped in onedeand subjected to a pair
of point loads with opposite directions in its free end [Behi91, Brank 95, Valente 03,
Valente 04b, Alves de Sousa 06b]. The schematic repregmntat the problem can be
seen in Figure 7.27. The elastic constitutive parametersgien byE = 2.0685x 10’
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andv = 0.3, while the geometry is defined by the length- 3.048, radiusR = 1.016 and
thicknesg = 0.03. The maximum imposed inwards load has a magnituéfe-ofL60Q0 x A,
with A € [0.0,1.0]. Due to symmetry conditions, only a quarter of the strucisiraodelled.

Clamped end

Figure 7.27: Schematic view of the clamped cylinder benakma

The load-displacement curves with respect to point A arsgreed in Figure 7.28 for the
H2 and H2ANS NURBS-based elements, considering differeeghdensities. The results
are compared with a reference solution coming from the wérBrank et al. [Brank 95].
As can be seen, the H2ANS solid-shell element presents arouag performance when
compared with its solid counterpart, being more noticeableoarse meshes. The results
for the 16x 16 mesh are now compared with those coming from the litegdtursolid-shell
elements, as for instance proposed by Alves de Setea[Alves de Sousa 06b] and Valente
et al. [Valente 04b] for the same mesh density (Figure 7.29). Oge@athe results attained
by the H2ANS formulation are in good agreement with the omesgnted by the references.
In Figure 7.30 the deformed configurations at different Isagjes are depicted, for the upper
half of the cylinder. It is worth noting that the loaded pgigb beyond the highest physical
displacement possible (the radius of the shell).
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Figure 7.28: Pinching of a clamped cylinder: convergenadyst
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Figure 7.29: Pinching of a clamped cylinder: comparisoinf@rmulations available in the literature.
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Figure 7.30: Pinching of a clamped cylinder: configurationd)A = 0.0, b)A =0.33, c)A =0.42
and d)A =1.0.

7.2.4 Channel-Section Beam

The present benchmark deals with a U-shaped channel#sdogtaom with one clamped end
and subjected to a concentrated load in its free end. Thegfepof the beam, schematically
represented in Figure 7.31, is defined by a lerigth 36.0, heighth = 6.0, widthw = 2.0
and thicknesg = 0.05, according to references [Clidelewski 92, Ibrahimbegovid4,
Betsch 96, Eberlein 99, Li 00, Valente 04a]. The elastic propes relate to an elastic
modulusE = 1 x 10’ and a Poisson’s coefficient of = 0.333. A mesh comprised of
25x 36 1 elements is used, following the work of Valente [Valenta]04

The load-displacement curve for the H2 and H2ANS formutetiare presented in
Figure 7.32 and compared with the results coming from th&kwbEberlein and Wriggers
[Eberlein 99] and Li and Zhan [Li 00]. It can be seen that th&dsshell formulation
is able to predict a behaviour which is in good accordancé wie reference solutions.
The H2 formulation presents a stiffer solution, leading telight overestimation of the
critical point before the buckling of the beam occurs. Thalfideformed configuration
obtained by the H2ANS element it is presented in Figure 7i83yhich is possible to
observe the buckling of the upper flange near the clamped addehe twisting in the
free end. This behaviour is in accordance with the resultsimg from the literature
[Ibrahimbegowvi 94, Eberlein 99, Li 00].
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Load

Clamped end

Figure 7.31: Schematic representation of the channeleseloeam.
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Figure 7.32: Channel-section beam: load-displacemeresur
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Figure 7.33: Channel-section beam: final deformed configura

7.2.5 Cantilever Ring Plate

In this example, a cantilever ring plate is clamped in one a&nd subjected to a vertical
line load on its free end, as shown in Figure 7.34. Accordm@asaret al. [Basar 92],
this benchmark is very sensitive in the evaluation of modetéch involve large rigid
body rotations and displacements and has been studied iousaworks [Buechter 92,
Wriggers 93, Brank 95, Sansour 98, Li 00, Valente 03]. Thengystoy of the model is
characterised by an intern@l = 6.0 and externalR, = 10.0 radii with a constant thickness
of t = 0.03. The distributed load has a nominal valueFof= 1000 x A per unit length,
whereA is a load factor. The line load transforms the plane strecito a doubly curved
one. The elastic constitutive parameters are the elastiuusE = 2.1 x 1019 and Poisson’s
coefficientv = 0.0.

Figure 7.34: Schematic representation of the cantilewgr plate benchmark.

For the solution of the problem two mesh densities are censtd a coarser mesh with
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16 x 2 x 1 elements and a finer mesh with 321 x 1 (this one seen in Figure 7.34). In
Figure 7.35, the displacement along the out-of-plane tioeof points A and B as obtained
for the H2 and H2ANS formulations are plotted and comparet thiose obtained by Simo
and Rifai [Simo 88] (as reproduced in Bas#ral. [Basar 92]) and Valente [Valente 03],
for a maximum load factor ol = 2.0. This load factor is enough for comparison
purposes since it corresponds to the load zone where the staaitions are more drastic
[Basar 92, Valente 04a]. It can be seen that for the finer mbshptoposed H2ANS
formulation is able to obtain results that are in good acance with the reference solutions.
The H2 solid element is not able to correctly reproduce trséree behaviour, leading to an
underestimation of the displacement field. In Figure 7.86,deformed mesh (along with
the corresponding control lattice) is depicted for a logdiactor A = 20.0, qualitatively
demonstrating the good performance of the proposed fotronlan the presence of large
rotations and displacements.
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Figure 7.35: Cantilever ring plate: evolution of the dig@ment of points A and B for a load factor
A=20.
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Figure 7.36: Cantilever ring plate: deformed mesh and obfdttice for a load factoA = 20.0 .

7.2.6 Snap-Through Behaviour of a Shallow Roof Structure

In this example, the snap-through and snap-back loadatispient path of a cylindrical
structure is analysed. This is a standard benchmark probéesh to assess the performance
of shell and solid-shell formulations [Horrigmoe 78, Cufi 81, Cho 98, Eriksson 02,
Valente 03, Valente 04b, Alves de Sousa 06b, Schwarze 1ldJa@chematic representation
of the structure can be seen in Figure 7.37. Due to symmetmgitons, only a quarter
of the structure is modelled. Following references [VadeddMb, Alves de Sousa 06b], the
geometry of the model is defined by the paramdtgers 5080, L, =507.15, radiuR = 2540
and thickness = 6.35. The material is defined by the elastic modltus 310275 and the
Poisson’s coefficient = 0.3. The load applied at the centre of the structure (point A)da
magnitude oF = 100Q0.

The load-displacement curves for points A and B are predentEigure 7.38 and com-
pared with solutions coming from the the works of Horrigmoe 8ergan [Horrigmoe 78]
and Schwarze and Reese [Schwarze 11]. In the current exdamplenesh densities are
considered: a coarse mesh composed »f22< 1 elements and a finer one with<® x 1
elements (shown in Figure 7.37). It can be seen that the H2faX8ulation is able to
reproduce the behaviour of the structure, even when comsglthe coarse mesh. These
results are in good agreement with the reference solutleadjng to a correct prediction
of the snap-through and snap-back effects. On the other, hidwed conventional H2
formulation presents a very stiff response when the coaesshris employed, resulting in
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an overestimation of the critical load for which the snamitth behaviour of the structure
occurs. This overestimation is alleviated when a finer mgslonsidered.

Free edge

Figure 7.37: Schematic representation of the shallow risotture.
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Figure 7.38: Shallow roof structure: load-displacememves for Points A and B.

7.2.7 Elastic and Elasto-Plastic Stretch of a Cylinder withFree Edges

In this example, a cylindrical shell with free edges, degran Figure 7.39, is deformed un-
der the action of two opposite pulling loads, inducing laigfations and displacements. This
popular benchmark has been analysed in the literatureamnisg both elastic [Sansour 92,
Brank 95, Masud 00b, Valente 03, Valente 04b, Sze 04, Sclewidrz Hosseini 13] and
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elasto-plastic [Masud 00a, Valente 04b] constitutivetrefes. The geometry of the problem
is defined by the length = 10.35, radiusR = 4.953 and thickness= 0.094. The structure

is subjected to a pair of concentrated loads with magnikuget0000x A, whereA is a load
factor ranging from @ to 10. Due to symmetry conditions, only one eighth of the strrectu
needs to be modelled. The material properties are given biaatic modulug& = 10.5x 10°

and Poisson’s coefficiet = 0.3125. The elasto-plastic behaviour is defined by the yield
stressop = 1.05x 10° and a linear isotropic hardening coefficienttéf= 10.5 x 10°>. A
mesh consisting of 16 8 x 1 is employed in both cases, as shown in Figure 7.39.

Figure 7.39: Schematic representation of the stretch ofiadgr benchmark.

The obtained load-displacement curves obtained for pdiraad B for the elastic case
can be seen in Figure 7.40, while the results for the elasistip counterpart version are
presented in Figure 7.41. In these figures, reference vidkea from the works of Hosseini
et al. [Hosseini 13], Schwarze and Reese [Schwarze 11], Valketnd [Valente 04b], Sze
et al. [Sze 04], Masucket al. [Masud 00b] and Masud and Tham [Masud 00a] are also
provided. As can be seen, in both the elastic and elasttiptagime, the H2ANS element
follows the results from Szet al. [Sze 04] and Masud and Tham [Masud 00a], respectively.
It is worth noting that in the latter case, the H2 NURBS-basetid element presents
convergence difficulties after the application of 95% of tb&l load, being observable the
excessive displacement obtained for point A. The final deéat configurations obtained by
the H2ANS NURBS-based element can be seen in Figure 7.42.
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Figure 7.40: Elastic stretch of a cylinder: load-displaeatncurves for points A and B.
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Figure 7.41: Elasto-plastic stretch of a cylinder: loaspthcement curves for points A and B.
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Figure 7.42: Elasto-plastic stretch of a cylinder: defadmenfiguration considering (left) elastic and
(right) elasto-plastic constitutive relations.

7.2.8 Elastic and Elasto-Plastic Analysis of a Hemispherad Shell with
18° Hole

This example deals with a doubled curved shell with & b8le subjected to a pair of
concentrated loads applied at antipodal points, leading pooblem dominated by large
rotations. A schematic representation of one quarter ofstinecture can be seen in
Figure 7.43 where the equator plane represents a free edgegéometry of the problem
is defined by a radiu® = 10.0 and thickness = 0.04. In the following, and as done
for the previous example, this benchmark problem is andlysmsidering both elastic
[Simo 90a, Liu 98, Sansour 00, Masud 00b, Sze 02, Kim 05, Stenhl] and elasto-plastic
[Masud 00a, Valente 04b] constitutive relations.

Symmetry Symmetry

Free edge

Figure 7.43: Schematic representation of one quarter dig¢ha@spherical shell with 18hole.
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Focusing first on the elastic case (but accounting largeraefions), the constitutive
parameters relate to an elastic modufiis: 6.825x 10 and Poisson’s coefficient = 0.3.
The load is given by = 1.0x A, where the load factor is set o= 1000, and the total load
is applied in 10 equal steps. The displacements of pointsdBaior different mesh densities
are presented in Figure 7.44 and 7.45, respectively, angpaamd with reference results
coming from the works of Simet al. [Simo 90a] and Sansour and Kollmann [Sansour 00],
both considering a 1& 16 mesh. It can be seen that for both thex186 and 18x 18
meshes, the results coming from the H2ANS solid-shell fdatan are in good agreement
with the reference solutions coming from the literature. tB& contrary, the second-order
NURBS-based solid element (H2) presents a very stiff behavilue to locking effects,
leading to an underestimation of the displacements of péiretnd B, even when considering
the refined mesh.
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Figure 7.44: Hemispherical shell with 18o0le: displacement for point A for the elastic case.

In the following, the same problem is analysed within theariat nonlinear range. To
this end, an initial yield stressg = 6.825x 10° and a linear isotropic hardening coefficient
of H = 6.825x 10° are introduced in the model, the load now being giverFby 0.5x A,
for a load factorA = 4000. The displacement of points A and B are presented in Figure
7.46, along with reference solutions from the works of Maand Tham [Masud 00a] and
Valenteet al. [Valente 04b]. The H2ANS formulation is able to provide léswith a good
agreement with the reference solution presented by Masddraam [Masud 00a] when
considering a mesh composed ofx188 x 1 elements. The final deformed shape for the
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Figure 7.45: Hemispherical shell with 18ole: displacement for point B for the elastic case.

finer mesh is presented in Figure 7.47.
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Figure 7.46: Hemispherical shell with 18ole: displacement for points A and B for the elasto-plastic
case.
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Figure 7.47: Elasto-plastic hemispherical shell witl? b®le: deformed configuration.

7.2.9 Geometry and Material Nonlinear Analysis of a Pincheylinder

In this example, the pinched cylinder problem presentedhi fully linear context in
Section 7.1.5 is now analysed considering both geometdcraaterial nonlinear effects.
This is a classical test to assess the performance of a fatimniin the presence of localized
plasticity and significant shape modifications [Wriggers $&uptmann 98, Miehe 98,
Eberlein 99, Valente 04b]. As in its linear counterpart, geometry of the problem is
defined by a length = 600.0, radiusR = 3000 and thickness = 3.0 (Figure 7.14). Both
ends of the cylinder are constrained in order to maintaiir ttiecular shape, but allowing
for a longitudinal displacement. The elasto-plastic ciutste relation is defined by a bulk
modulusk = 25000, shear modulu& = 11540, initial yield stressop = 24.3 and a linear
isotropic hardening coefficieid = 300.0. A total load ofF = 2.0 x A is applied, where\
ranges from M to 50000. Two mesh densities are considered: a coarse mesh cothpfise
16 x 16 x 1 elements and a more refined one with322 x 1 elements, over one eighth of
the total structure.

The results for the displacement of the loaded point aré¢quoh the Figure 7.48, along
with reference solutions from Wriggees al. [Wriggers 96], Miehe [Miehe 98] and Eberlein
and Wriggers [Eberlein 99]. In can be seen that the load-ctedte path for the two mesh
densities obtained by the present formulation are in goodesgent with the numerical
results from the works of Miehe [Miehe 98] and Eberlein andiglyers [Eberlein 99],
specially for the refined mesh. It can also be seen that theN®formulation does not
present non-smooth curves which are representative ofatenaugh like behaviour usually
present in this benchmark when a coarse mesh is employegbfidann 98]. The standard
H2 solid element presents high convergence difficultiesnndhealing with this benchmark
and was not able to complete the numerical simulation, egeithe finer mesh. For this
reason, the results for the H2 element are not presenteceipltits. In Figure 7.49, the
deformed shapes corresponding to a maximum vertical tgdatement up to approximately
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300.0 consistent units (the same value of the radius of tletste) are depicted for the
16x 16 x 1 mesh.
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Figure 7.48: Geometry and material nonlinear analysis afehgd cylinder: displacement curve for
different mesh densities.
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Figure 7.49: Geometry and material nonlinear analysis ohehgd cylinder: deformed mesh for tip
displacement of ay ~ 1200, b)w ~ 2400, c)w ~ 2750 and d)w = 3000 .

130



7.2. Nonlinear Problems

7.2.10 Elasto-Plastic Full Hemispherical Shell

As a last example, the full hemispherical shell analysedciwithe linear regime in
Section 7.1.4 is now modelled considering both geometritraaterial nonlinearities. The
geometry of the structure is defined by a radius 10.0 and thickness = 0.5. Following
references [Eberlein 99, Klinkel 06, Schwarze 11], thetedasaterial properties are defined
by an elastic modulugE = 10.0, and a Poisson’s coefficient = 0.2, while the plastic
behaviour of the material is defined by the yield strggs- 0.2 and an isotropic hardening
coefficientH = 9.0. The load magnitude is given &s= 0.04.

The results for the load-displacement curves for points 4 Bnlocated in the inner
and outer surfaces are presented in Figures 7.50 and 7.§iectevely. These curves
are compared with those coming from the works of SchwarzeReese [Schwarze 11],
Klinkel et al. [Klinkel 06] and Eberlein and Wriggers [Eberlein 99]. As che seen,
load-displacement curves obtained by the proposed H2AN®Uiations are in good
agreement with the results from Klinket al. [Klinkel 06]. The H2 formulation, however,
is affected by locking and, consequently, presents a shibaviour.
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Figure 7.50: Full hemispherical shell problem: load-disgiment curves for point A.

Finally, a comparison between the NURBS-based cubic sdéichent (H3) and the
H2ANS solid-shell element is performed. The load-disphaest curves for points A and B
obtained by both formulations using a8 x 1 mesh are presented in Figure 7.52, showing
that both elements present a very similar performance. TRE @mes obtained by the
formulations is depicted in Figure 7.53, where the resutimfthe quadratic NURBS-based
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Figure 7.51: Full hemispherical shell problem: load-cisgiment curves for point B.

elements are also presented for comparison purposes. $hksrare normalised using
the CPU time obtained by the H3 element with a mesh composéd4f control points,
corresponding to 16 16 x 1 elements. As can be seen, the H2ANS element presents a
significantly lower CPU time when compared with the cubiddblURBS-based element,
while maintaining a very similar prediction of the loadjascement curves of the analysed
points, making the H2ANS a more efficient choice for the nuoatrsimulation of this
problem.
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Figure 7.52: Full hemispherical shell problem: comparibetween the H3 and H2ANS elements.
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7.3 Problems Dealing With Volumetric Locking

The following numerical examples will be used to assess #grpmmance of the NURBS-
based formulation proposed in Section 5.6 (denoted as H2n volumetric locking
effects are present.

7.3.1 The Curved Beam

The first example deals with a curved beam which is subjeabea@ wniform radial
displacement on its free edge, as can be seen in Figure 7!5d.gdometry of the beam
if defined by an outer and inner radii given B = 10.0 andR; = 5.0, respectively. The
radial displacement is set to be equalgo= 0.1, while the boundary conditions are defined
asu(0,y) =Vv(0,R;) = 0. The material properties are given by the elastic modak96000
and Poisson’s coefficiemt = 0.4995, and plane strain conditions are assumed [Taylor 11].

The strain energy error of the numerical solution versustbment size is presented in
Figure 7.55 for the H2, H2ANS and H2PV NURBS-based formaladi It can be seen that
the H2PV element is able to significantly improve the behawf the standard quadratic
solid element. For the finer mesh, composed o1 elements, the error in the strain
energy obtained by the H2PV element is more than one orderaghitude lower than the
one obtained by the H2.

N7 7

o T - g

Figure 7.54: Schematic representation of the curved beam.
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Figure 7.55: Curved beam: strain energy error versus elegsn

7.3.2 The Cook's Membrane

The Cook’s membrane is a well-known benchmark test to asseggerformance of a given
formulation in the near incompressible case [Simo 90b hinnaegove 90, César de Sa 99,
Kasper 00]. This problem consists of a skew plate which isnpled on one side and
subjected to a shear lo&d= 100.0 on the opposite edge. The geometry of the problem is
given in Figure 7.56. The constitutive parameters are také&n= 240565 andv = 0.4999.
Once again, plane strain conditions are considered.

The vertical displacements of point A obtained by diffelltRBS-based formulations
are presented in Figure 7.57. For comparison purposeses$its obtained by Elgueeéf
al. [Elguedj08] for a quadratid§ patch are also presented. The H2PV element is able
to significantly improve the behaviour of the standard gatdrsolid element, showing
a performance that is closer to the one of the cubic elemeie H2ANS formulation
presents a performance similar to the one of the H2 elemestodstrating that the
ANS methodology is not adequate to tackle volumetric logkinThe second-ordeB
NURBS-based element presents the best overall performahgewas to be expected since
this methodology is applied at the patch level, while thehndtproposed herein operates
at the element level. However, and particularly to this elatrwise approach, the proposed
methodology may prove to be easier to implement into avigléhite element codes by
means of user subroutines.
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Figure 7.56: Cook's membrane problem setup.
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Figure 7.57: Cook’s membrane: vertical tip displacementrpA).
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7.4 Contact Benchmark Problems

In this section, a set of numerical examples are used toatalithe implementation and
assess the accuracy of the Point-to-Segment formulatiearitbed in Chapter 6. All the
examples presented herein are referred to the lineareiasige.

7.4.1 The Contact Patch Test

The contact patch test, introduced in [Taylor 91], is a vkalbwn benchmark problem to
assess the ability of the contact formulation to exactlypgrait constant normal tractions
over two different bodies. If the patch test is not satisftbd,algorithms introduce errors at
the contacting surfaces that do not necessarily decreabeneish refinement [Crisfield 00,
El-Abbasi 01, Zavarise 09a]. In [Taylor 91], it was demoastd that the classical Node-
to-Segment algorithms do not pass the patch test. This carrbedied by employing a
two-pass algorithm [Zavarise 09a].

In this work, the setup proposed by Crisfield [Crisfield 00fl gmesented in Figure 7.58
is considered. Instead of a distributed load, the top sarfd¢he upper body is subjected to
a prescribed displacemehiti. The exact solution of the problem’s stress field is given by

Oxx = Txy = 0, (7.3)
E

Oy = 7,204 (7.4)

Ozz= VOyy. (7.5)

The Elastic modulus is taken &= 10000, the Poisson’s coefficient as= 0.0 andAu =
0.001. The upper body is considered to be the slave while therldady is the master.
The Finite Element discretisation adopted can be seen iar&ig.58, where the contact
collocation points are represented by diamond symbols.

The contact stresses at the interface for the PTS algorghpneisented in Figure 7.59,
along with the curves obtained for the NTS algorithm usintyfuntegrated linear (CPE4)
and quadratic (CPE8) Lagrangian-based elements avaitetble commercial Finite Element
software Abaqus. It can be seen that the PTS contact forioniatnot able to exactly satisfy
the contact patch test. However, it is worth mentioning thatmaximum and minimum
stress along the horizontal direction at the integratidnts@reoy® ~ —0.997 andag}i” ~
—1.002, respectively. Taking into account that the referemdetion is o,y = —1.0, it can
be stated that the PTS methodology offers a significant isgmznt over the classical NTS
algorithm typically employed in the context of Finite Elemiénalysis, since the quadratic
Lagrangian-based elements fail the contact patch tesysethherein and introduce quite
substantial errors [Crisfield 00]. As can be seen, the PTS8riétign presents oscillations
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¢A1/l

Figure 7.58: Contact patch test problem setup (diamond sisntepresent contact collocation

points).

of much lower magnitude about the reference solution, wieenpared to the algorithm of
Abaqus, even for higher-order approximations.
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Figure 7.59: Contact patch test: contact stress at thdaoter
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7.4.2 Indentation of an Elastic Block by a Circular Rigid Punch

This example deals with the indentation of an elastic fotinddy a circular rigid punch, as
represented in Figure 7.60. The material constitutiverpatars are referred to an elastic
modulusE = 10000 and Poisson’s coefficient = 0.3, and plane strain conditions are
considered. The radius of the tool is given Rs= 8.0 and the depth of indentation is
set tod = 0.6, where the foundation is defined by a length= 16.0 and heighth = 4.0
[Kikuchi 88]. Due to symmetry conditions, only half of the ol is considered.

R Rigid Punch

Y
h
Elastic foundation
T

L

[ »l
[ >

/

Figure 7.60: Setup of the indentation of an elastic block bir@ular rigid punch.

The values of the strain energy for different mesh densitiegpresented in Table 7.1 for
a quadratic NURBS-based formulation. Since no analytiglit®n is available, a reference
solution of 109513 is obtained using the commercial software Abaqus enmjoy mesh
consisting of 125« 125 quadratic quadrilateral elements. It can be seen titAguagh
some small oscillations are obtained, the PTS algorithrblis to converge to the reference
solution quite rapidly. The final deformed configuration tenseen in Figure 7.61, for two
mesh densities.

Table 7.1: Normalised strain energy for the indentationroékstic block by a circular rigid punch.

Number of Elements Number of dof's Normalised Strain Energy

4x4 36 0.984
5x5 49 0.970
6x6 64 0.998
10x 10 144 1.005
14x 14 256 0.999

In the second part of the current example, the performantteeahethodology presented
in Section 6.3.4 to compute the contact stresses is ass@dsecesults for 3 mesh densities,
as well as the reference solution coming from Abaqus, arsepted in Figure 7.62. The
coarser mesh comprised ofx66 elements is able to correctly approximate the contact
stress at the centre of the elastic foundation. Howevecesimly 3 collocation points are
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L 4

L 2
L 2

Figure 7.61: Indentation of an elastic block by a circulgidipunch: deformed configuration for
(left) 6 x 6 and (right) 10x 10 meshes (contact collocation points represented by didregmbols).

considered to be active, the predicted contact stressée iremainder of the structure are
underestimated. Nevertheless, when considering morecefireshes (10 10 and 14x 14
elements) it can be seen that the presented methodologyedalpredict the reference
contact stresses with a good accuracy.

Contact stress
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Figure 7.62: Indentation of an elastic block by a circulgidipunch: contact stress for different mesh

densities.
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7.4.3 Indentation of an Elastic Block by a Flat Rigid Punch

The current example deals with the indentation of an eléstindation by a flat rigid punch,
for which a schematic representation can be seen in Figé® 7The elastic foundation
is defined by the length = 3.0 and heighth = 1.0, with the material properties given
by an elastic moduluE = 2000 x 10° and Poisson’s coefficient = 0.3, and plane strain
conditions are assumed. Due to symmetry conditions and taiprevious example, only
half of the problem is modelled. The rigid flat punch, with althia = 0.5, is subjected to a
vertical prescribed displacement aDQ.

11‘ Rigid Punch yl

a

Y, B T —
h
Elastic foundation
T /

L

[ »l
[ >

Figure 7.63: Setup of the indentation of an elastic block Bgtaigid punch.

The theoretical contact stress distribution at the purobkbinterface is given by
[Johnson 85]

Cron F

whereF is the total applied force at the punch and the distance from the centre of contact.
It can be seen from the previous equation that the contatsstrill tend to infinity at the
sharp corner of the punch.

In this problem, three different mesh configurations cdimgjsof 16 x 16 elements are
considered. In the first configuration (mesh I), uniform kvexttors are taken into account in
both directions. In the other two configurations (mesh Il areth 111), the knot vectors were
defined in such a way that a higher element density is preadhiei vicinity of the sharp
corner of the rigid punch. These different mesh configuratican be seen in Figure 7.64.

The results for the contact stress distribution for thegto@ensidered configurations are
plotted in Figure 7.65, along with the theoretical resultsl @ solution coming from the
commercial software Abaqus. Due to the low number of cotiocapoints in the contact
zone, the model with mesh I is not able to correctly reprodheeontact stress distribution,
leading to higher contact stresses than those predictduelth¢oretical model. On the other
hand, the mesh with the finer refinement near the sharp cofttiee punch is able to predict
the contact stress distribution very accurately.
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Figure 7.64: Indentation of an elastic block by a flat rigichph:

right) I, Il and 111,
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Figure 7.65: Indentation of an elastic block by a flat rigichplu problem: contact stress for the
different mesh configurations.

7.4.4 Hertz Contact Problem

In this problem, an infinitely long elastic cylinder is predsetween two rigid surfaces, as
can be seen in Figure 7.66. The cylinder is defined by a rdeliagt.0 and the constitutive
parameters are given by the elastic modiilus 1.0 x 10° and Poisson’s coefficient = 0.3.
Due to symmetry conditions, only a quarter of the cylindemigdelled, being the upper
symmetry plane subjected to a total prescribed displacenféhl5. The resulting model
is then discretised using a ¥616 mesh. Different knot vectors were considered in order
to obtain different numbers of collocation points in the t@mt zone, leading to the mesh
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configurations I, Il and Ill, shown in Figure 7.67.
The analytical solution for the contact stress distribuitong the contact surface can be
computed as [Timoshenko 51, Kikuchi 88]

c_2F
-

whereF is the equivalent force arfalis the half-width of the contact surface, defined as

o b2 —x2, (7.7)

FR(1-v?)

Em
The solution is obtained by considering that the cylindefiscted by small displacements
and small strains only.

b=2 (7.8)

Prescribed displacement

v v

P{X(%d surface

Figure 7.66: Hertz contact problem setup.

Figure 7.67: Hertz contact problem: mesh configuratiorangfteft to right) I, Il and .

The resulting curves for the normal contact stress versuditttance from the centre, for
each mesh configuration, are presented in Figure 7.68. Hudtseare compared with the
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analytical solution and with those coming from a consissagment algorithm proposed by
Baig [Baig 06]. It can be seen that, when considering the reesfiguration Ill, the contact
stress distribution follows the same tendency of the aitalysolution. Similarly to the
previous example, the mesh configuration 1l is able to rdpoe the contact stresses in the
slave surface more accurately due to the higher number twfoadion points in the contact
zone, although all three configurations are able to predhaiia values for the maximum
normal contact stress. These predicted maximum contasis&ts are seen to be lower to the
values coming from the analytical solution (about 9%), bediowever very similar to those
obtained by the consistent segment procedure of Baig [B&lig O
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Figure 7.68: Hertz contact problem: contact stress for ifierdnt mesh configurations.

144



Chapter 8
Conclusions and Future Works

The main conclusions of the work are presented, along witthessuggestions
for future developments.

The present research work is mainly devoted to the developafeobust tools for the
numerical simulation of solid mechanics problems in thetexinof Isogeometric Analysis.
With this goal, a NURBS-based solid-shell Finite Elememirfolation was proposed, based
on the Assumed Natural Strain method. In addition, an intctaly study of contact
mechanics in Isogeometric Analysis, focused in the Pairségment algorithm, was also
performed. All these developments were implemented in afsathouse developed tools.

In Chapter 2 the classical Finite Element Method was intcedwand detailed, along with
the procedures necessary to implement a Lagrangian despka-based formulation. This
chapter served to introduce the nomenclature employede ¢hre Finite Element Method
and Isogeometric Analysis share many characteristics. Hap@r 3, the B-Spline basis
functions were introduced, along with the procedure to @eéircurve, surface or volume
using B-Splines and NURBS entities. The integration of th&@ine basis with Finite
Element Analysis is detailed and the numerical tools dgedddhroughout the present work
were presented. Chapter 4 dealt with the inclusion of geoetd material nonlinearities
in the numerical models. A state-of-the-art review on tleatiment of locking pathologies
in the context of both the Finite Element Method and Isogegdm@nalysis was given in
Chapter 5. The extension of the Enhanced Assumed Strain asdnfed Natural Strain
methods to Isogeometric Analysis was also studied.

From the research carried out, it was concluded that a higarasolid element based
uniquely in the EAS method requires a high number of enhgnparameters to solve
volumetric and shear locking pathologies. This would ity lead to high computational
costs, since a square matrix with size equal to the numbenlodirecing parameters must
be inverted which turns the EAS$ IGA approach prohibited and not practical for complex
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problems. In addition, adding the enhancing variables t&RBB-based formulations, in the
same way as is done with Lagrangian elements, may lead torreahi@stabilities.

Afterwards, the Assumed Natural Strain method for Isoggdménalysis was pro-
posed. The method relies in the definition of a local spacaddition to the patch parametric
space present in IGA (which is referred to as the global gpadeis local space was then
employed to compute a set of local basis functions thatpolate the strain fields of the tying
points, which replaced the ones from the standard Gaustspdine presented methodology
led to a NURBS-based solid-shell formulation suitable fug tinalysis of thin structures,
which was denoted as H2ANS. The main advantages of this melkbgy proved to be its
simplicity and easiness of implementation, also into adé finite element codes.

The methodology’s performance was assessed by means ofearavige of numerical
benchmark problems. The results demonstrate that the H2fN8ulation is able to
alleviate locking pathologies (such as shear and memboakinly) leading to a significantly
superior performance when compared with the standard gtiadwlid element. In fact,
in some of the presented examples, the H2ANS solid-shethexié was able to obtain
a performance which was very similar to the one of the stahdabic NURBS-based
element. However, the proposed methodology presentsfisgmiy lower computational
cost, specially when considering analyses in the nonlinegime. In addition, since a
full integration scheme consisting ¢p+ 1) x (q+1) x (r + 1) was employed, it was not
necessary to develop stabilisation techniques which amguéntly used to avoid numerical
instabilities in reduced integration formulations in thentext of Lagrangian-based Finite
Element formulations. The same methodology was employatttise a NURBS-based
quadratic element suitable for the analysis of problem&éninear elastic range which are
affected by volumetric locking pathologies, which was dedoH2PV. This formulation,
which can be seen as a type of loBainethod, was able to improve the numerical solutions
obtained by the standard quadratic NURBS-based solid elertiés worth mentioning that
the methodology inherent to the H2ANS and H2PV formulaticaus be easily extended to
higher-order interpolations, which is an added advantagethe EAS approach.

Chapter 6 was dedicated to the use of NURBS-based formusaitiocontact mechanics.
The use of NURBS-based formulations for this type of proldésran attractive alternative
to classical methodologies due to the high inter-elementiicoity and better approximation
of contact stresses. In this Thesis, the Point-to-Segmigotitom (which can be seen
as the Isogeometric Analysis counterpart of the Node-gggmt algorithm widely used
in Finite Element Analysis) was studied. The implementatior the analysis of linear
elastic problems was validated using a set of well-knowrcherark problems. This study
represents the first step in the field of computational camtexhanics within the research
group in which the author is inserted. Thus, it is intendesktwe as the foundation on which
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future researchers can build upon in computational com@chanics’ field.

During the time period in which the present research work pagormed, a set of
numerical tools were created. These tools include an irséddeveloped Isogeometric COde
(ICO) and several user subroutines for the commercial €&iBiement software Abaqus.
Focusing in the ICO, the code was written in a modular fashatiowing other researchers
to more easily implement and test new methodologies.

The author of this Thesis believes that an interesting rekdapic to be pursued in the
future would be the extension of the Enhanced Assumed Straihodology to Isogeometric
Analysis. This is an attractive strategy to avoid differentds of locking effects (volumetric,
shear, etc.), but requires special considerations whetogegbin the context of IGA, since it
was proved that using the same paradigm as adopted withrihie Element Method renders
a not effective approach, from the point of view of the conagiohal costs.

Another interesting application of the proposed solidisheS + IGA approach would
be in the numerical simulation of biomedical structuressfies and ligaments, for instance),
where 3D modelling capabilities along with locking-freerfaulations are welcomed.

From the point of view of the numerical integration, in thienk a Gaussian integration
procedure was adopted, as in the great majority of worksarithrature. However, as was
highlighted previously, this choice of integration poirgsnot optimal for the IGA context
and, recently, a significant amount of research effort has lokedicated to this subject.
Therefore, extending the AN$ IGA formulation proposed in this work to alternative sets
of integration (and tying) points would be a valuable cdnition.

Finally, and related to contact mechanics, the use of IGAHernumerical simulation
of contact problems is particularly attractive for the g of, for instance, sheet and bulk
metal forming operations where large sliding contact betwihe different components is
present. In this category, the Point-to-Segment algoritham interesting methodology due
to its simplicity. Thus, its extension to three-dimensicanaalysis and friction problems is
also a valuable topic for future research, as well as the eoisgn with other methodologies
(such as the mortar method).
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Appendix A

Isogeometric COde User’s Manual

The Isogeometric COde (ICO) is an in-house code fully wmitte Fortran 90 for solving
solid mechanics problems using the Isogeometric Analy&#) concept. The code can
be separated into two sub-codes: one for two-dimensioraysis and a second one for
three-dimensional problems. In its current version, th@ de supports:

.. single and multipatch (compatible discretisation) gsis!

. linear isotropic elastic problems;

.. small strains plasticity with isotropic hardening;

.. geometric nonlinear analysis;

.. contact using the Point-to-Segment algorithm (only ¥fes-dimensional analyses).

The present document is intended to provide a general géscriof the code and
the required steps to perform an analysis of a solid mechgmicblem employing the
Isogeometric Analysis concept.

The general flowchart of the code can be seen in Figure A.1l.rdardo perform the
numerical simulation, the user must create an input fileaiaitg all the data of the model
(organised using specific keywords), which will then be readhe code.

A.1 The Input File

The input file contains all the necessary information to grenf the numerical simulation.
The file must be given a name which will then called by the cobleorder to correctly
perform an Isogeometric Analysis, the data must be entareithe input file by using
specific keywords. After opening the file, the code will readearching for predetermined
keywords. Once a keyword is found, the code reads all thenmdtion related to the keyword
and stores it in the appropriate array.
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Figure A.1: Flowchart of the multipatch Isogeometric COdetfvo-dimensional analysis.
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The start of an input file data is given by the keyworbesgin> and the end is defined
by the keyword <end>. Everything that is written outside of these boundaridswat be
considered for the analysis. A general input file contaiedetiowing sections:

. header, where the general dimensions of the problem aeagi
: mesh, in which the knot vectors, control points and elergoe are defined;
. material properties;

. analysis parameters, in which the number of iteratiorsiaorements are defined, as
well as the type of analysis (optional);

: boundary conditions.

In the input file the header must always be defined first in otdellocate the required
variables. The general structure of the header is given as

*begin

nds

P> 9, W

ncpx, NCpy, NCpz

closed_u, closed_v, closed_w

wherends is the number of degrees of freedom of each control pping,andw the order
chosen along thé, n and {-coordinate directions, respectively. The number of aantr
points along each direction is given lhypx, ncpy andncpz. The last line defines if the
boundaries are open or closed (1: Closed, 0: Open). The keywdegin> defines the

beginning of the model data input for a single patch analysis
Itis then necessary to define the control points and the eltste be used in the analysis.
This section will have the following aspect

*knots

U

\Y

W

*element

X

*bnet

x1l y1 z1 wi
x2 y2 z2 w2
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whereu, V andw are the knot vectors along each coordinate direction. Téraeht definition
is given by the stringk, according to the element library presented in Table A.1.teNo
that Gauss integration is employed in all the formulatiofse keyword <bnet> sets the
beginning of the input of the NURBS control points, wherehekiige represents a different
control point. In each line the points are defined by thg andz coordinates, followed
by the weight of the control point. The complete lattice iadausing three cycles. The
inner cycle for thez-direction, the middle cycle for thg-direction and the outer cycle for
x-direction. The user must take special care in this defmitioorder to avoid an incorrect
interpretation of the control lattice.

Table A.1: ICO Element Library

Element Tag  Description

Hex8 Linear hexahedral element with full integration

Hex27 Quadratic hexahedral element with full integration

Hex27ANS Fully integrated second-order solid-shell hexahl element
enhanced with the Assumed Natural Strain method

Hex64 Cubic hexahedral element with full integration

Quad4S/E Linear quadrilateral element for plane stresatstwith full
integration

Quad9S/E Quadratic quadrilateral element for plane gtteas with full
integration

Quadl6S/E Cubic quadrilateral element for plane streagistwith full
integration

The next step is to define the material properties associaitdthe patch. These
properties are defined in the input file as

*material
iprops

props (1), props(2),...., props(iprops)

whereiprops is the dimension of the arrayrops. Each position of the arrayrops is
associated with a given material property, as shown in TAk®e In the current version
of the code, only linear elastic and isotropic hardeninglksteain plasticity models are

implemented.
The next step consists in defining the number of incremerdsraaximum iterations in
the analysis. This section of the input file is defined as

*NLGeom

*Increments
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Table A.2: ICO properties array index definition

Props index Material Property
1 Elastic modulus
2 Poisson’s Coefficient
3 Density
4 Element thickness (for plane stress analyses)
5 Yield stress
6 to - Hardening data

incmax
*Iterations

itermax

whereincmax anditermax are the total number of increments and the maximum number
of iterations per increment, respectively. The keywortisGeom> should only be used if a
geometric nonlinear analysis is being considered. If taiien is omitted in the input file,
the parameters will take the default valuesiatmax=1 anditermax=25 and a geometric
linear analysis will be considered.

Finally, the boundary conditions are defined. In the curvension of ICO, homogeneous
and inhomogeneous Dirichlet boundary conditions as welexdernal point loads can
only be applied directly into the control points. The usersitake into account that
inhomogeneous Dirichlet boundary conditions and extepmaht loads should only be
applied in interpolatory control points. The impositiontbése types of constraints in other
positions will be addressed in future versions of the codddi#onally, the user may also
apply pressure loads in the faces of the elements, as welhaiigloads (self-weight). For
the particular case of a two-dimensional analysis, in thigtalary conditions sectionitis also
possible to define the slave and master segments which wikée in the Point-to-Segment

contact methodology.

If a multipatch analysis is to be conducted, the user repléive keywords xbegin>
by <*begin_MP>. In addition, the global connectivity (numbering) of thatghes must be
defined as

*MP_conn

i, conn

wherei is the global element number andnn the connectivity. This second line must be
repeated for each element of the model. All the other pragseere defined as described
above in a sequential way for each patch.
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As an example, the ICO input file for the Scordelis-Lo rooflgem discretised using a
mesh consisting of four quadratic elements from SectiorB74slgiven below.

*begin

3 !problem dimension

2, 2, 2 !degree of each dimension

4, 4, 3 !control points in each direction

0, 0, 0 'open(0) or closed(l) knot vector

xknots 'knot spans

0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0

0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0

0.0, 0.0, 0.0, 1.0, 1.0, 1.0

*element

Hex27

*bnet

4.3861336E+00 1.8750000E+01 2.4875000E+01 9.6984631E-01
4.4081745E+00 1.8750000E+01 2.5000000E+01 9.6984631E-01
4.4302154E+00 1.8750000E+01 2.5125000E+01 9.6984631E-01
4.3861336E+00 2.5000000E+01 2.4875000E+01 9.6984631E-01
4.4081745E+00 2.5000000E+01 2.5000000E+01 9.6984631E-01
4.4302154E+00 2.5000000E+01 2.5125000E+01 9.6984631E-01
1.2629368E+01 0.0000000E+00 2.1874708E+01 9.6984631E-01
1.2692833E+01 0.0000000E+00 2.1984631E+01 9.6984631E-01
1.2756297E+01 0.0000000E+00 2.2094554E+01 9.6984631E-01
1.2629368E+01 6.2500000E+00 2.1874708E+01 9.6984631E-01
1.2692833E+01 6.2500000E+00 2.1984631E+01 9.6984631E-01
1.2756297E+01 6.2500000E+00 2.2094554E+01 9.6984631E-01
1.2629368E+01 1.8750000E+01 2.1874708E+01 9.6984631E-01
1.2692833E+01 1.8750000E+01 2.1984631E+01 9.6984631E-01
1.2756297E+01 1.8750000E+01 2.2094554E+01 9.6984631E-01
1.2629368E+01 2.5000000E+01 2.1874708E+01 9.6984631E-01
1.2692833E+01 2.5000000E+01 2.1984631E+01 9.6984631E-01
1.2756297E+01 2.5000000E+01 2.2094554E+01 9.6984631E-01
1.5989342E+01 0.0000000E+00 1.9055356E+01 1.0000000E+00
1.6069690E+01 0.0000000E+00 1.9151111E+01 1.0000000E+00
1.6150039E+01 0.0000000E+00 1.9246867E+01 1.0000000E+00
1.5989342E+01 6.2500000E+00 1.9055356E+01 1.0000000E+00
1.6069690E+01 6.2500000E+00 1.9151111E+01 1.0000000E+00
1.6150039E+01 6.2500000E+00 1.9246867E+01 1.0000000E+00
1.5989342E+01 1.8750000E+01 1.9055356E+01 1.0000000E+00
1.6069690E+01 1.8750000E+01 1.9151111E+01 1.0000000E+00
1.6150039E+01 1.8750000E+01 1.9246867E+01 1.0000000E+00
1.5989342E+01 2.5000000E+01 1.9055356E+01 1.0000000E+00
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1.6069690E+01 2.5000000E+01 1.9151111E+01 1.0000000E+00
1.6150039E+01 2.5000000E+01 1.9246867E+01 1.0000000E+00
*material

5

4.,32e8, 0.0, 360.0, 1.0, le25

H
o1
NN NNNDNNNDNDNDDNDNRRBR R B R B B g

oW W w w

4, 1
xgravity
1.0, 3

*end
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A.2 Keywords

In the following, the keywords available for defining the untfile for ICO will be described
in detail. All the keywords are case sensitive.

<*bcdof>

The keyword <bcdof> is used to define homogeneous Dirichlet boundary condition
directly into the control points. This keyword uses the gllobumbering of the control
points to define the boundary condition. The data followhg bcdof> keyword is:

.. first line: total number of Dirichlet boundary conditions

.. additional line for each boundary condition: integer wiefyj global control point
number, integer defining which degree of freedom is beintyictsd.

Note that a boundary condition cannot be repeated or thersyst reduced equations will
not be dimensioned correctly, leading to an allocationrerto alternative, the user may
employ the keyword ®boundary> as a way to impose Dirichlet boundary conditions.

<*begin>

The keyword <begin> defines the start of the data for the input file. Before usmg t
keyword, any comments may be added to the input file. The d#itaving the <«begin>
keyword is:

.. firstline: integer defining the dimension of the problem;

.. second line: integers defining the order of the basis useitheé xx-, yy- and zz
directions;

.. third line: integers defining the number of control usethigxx-, yy- andzzdirections;

.. fourth line: integers defining if the knot vectors are operclosed (0 for open and 1
for closed).

The keyword <begin> must always be used in the input file or otherwise the code=wi
with and 1/O error.
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<*begin_MP>

The keyword <begin_MP> defines the start of the data for the input file for a multipatc
analysis. Before using this keyword, any comments may bedtlthe input file. The data
following the <«begin_MP> keyword is:

.. firstline: integer defining the number of patches;
: second line: integer defining the dimension of the problem

: one additional line for each patch containing integeifindey the order of the basis
used in thexx-, yy- andzzdirections;

: one additional line for each patch containing integeféndeg the number of control
used in thexx-, yy- andzzdirections;

: one additional line for each patch containing integerfindey if the knot vectors are
open or closed (0 for open and 1 for closed).

The keyword <begin_MP> must always be used in the input file or otherwise the code
will exit with and I/O error. All the remaining keywords car lused as described herein.
However all the lines in each keyword must be repeated oncaeaich patch.

<*bnet>

The keyword <bnet> is used to define the control lattice of the problem. Thisadat
read using three DO-cycles. The outer cyadlef@r directionxx, the middle cycle |) for
directionyy and the inner cyclekj for directionzz The data is stored in matrix&(i, j,k,1),
wherel = 1,2, 3,4 contains thex-coordinateyy-coordinatezzcoordinate and weight of the
control point. The data following the het> keyword is:

. one line for each control poinkx-coordinateyy-coordinate zzcoordinate, weight.

The users must take special attention to the way the coattale in read in the code in order
to avoid an incorrect interpretation of the geometry.

<*boundary>

The keyword <boundary> is used to define homogeneous Dirichlet boundary condition
directly into the control points. This keyword uses the xetefrom the control lattice
to defined the control point subjected to the boundary candit The data following the
<xboundary> keyword is:
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.. first line: total number of Dirichlet boundary conditigns

.. additional line for each boundary condition: j, k, | wherei, j andk defines the
position in the control lattice anddefined which degree of freedom is being restricted.

Note that a boundary condition cannot be repeated or theeedsystem of equations will
not be dimensioned correctly, leading to an allocationrerio alternative, the user may
employ the keyword xbcdof> as a way to impose Dirichlet boundary conditions.

<*ContactPTS>

This keyword is used in order to activate the Point-to-Segnsgorithm for dealing
with contact between two bodies. The definition of the masted slave segments
(using the keywords ®Master> and <«Slave>, respectively) must be performed after the
<xContactPTS> keyword. The Point-to-Segment algorithm is availablefar-dimensional
analyses only.

<*dispdof>

The keyword <dispdof> is used to apply prescribed displacements directly irdctimtrol
points. This keyword uses the global numbering of the cdpiwots to define the boundary
condition. The data following thexdispdof> keyword is:

.. first line: total number of prescribed displacement bamgaonditions;

.. additional line for each prescribed displacement bogndandition: integer defining
global control point number, integer defining which degré&eedom is considered,
real number defining the the displacement.

Note that this keyword applies the prescribed displacend#rectly into the control
points. Therefore, if the control point does not belong te giysical geometry of the
problem, this command should not be employed. The user nsayemhploy the keyword
<xdisplacement> as a way to apply displacement boundary conditions dyentb the
control points.

<*displacement>

The keyword <displacement> is used to apply prescribed displacements directly ingo th
control points. This keyword uses the indexes from the cbrdttice to define the boundary
condition. The data following thexdisplacement> keyword is:

.. first line: total number of prescribed displacement bamdonditions;
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. additional line for each boundary condition:j, k, I, d wherei, j andk defines the
position in the control lattice anddefines which degree of freedom is being considered
andd is the displacement being imposed.

Note that this keyword applies the prescribed displacemeattly into the control points.
Therefore, if the control point does not belong to the phaisieometry of the problem, this
command should not be employed. The user may also employefiveckd <dispdof> as
a way to apply displacement boundary conditions directly the control points.

<*element>

The keyword <element> is used to defined the element type that will be used to sbke t
numerical problem. The data following theéed ement> keyword is:

.. first and only line: string defining the element (see Table)A

In all the formulations, standard Gaussian quadrature @@&mad. The term full integration

of an element of ordep stands for{p+ 1) integration points used in each direction, while
reduced integration consists pfintegration points along each direction. The user must
choose an element formulation which is consistent with tipuied data. For example,
errors or inaccurate results may occur if the Hex8 elemeamgésl in a mesh containing data
for a quadratic formulation.

<*end>

The keyword <end> defines the end of the input file. No data written after thigward
will be read by the code. Thisxend> keyword must always be present in the input file or
otherwise the code will exit with and I/O error.

<*gravity>

The keyword <gravity> is used to apply gravity loads (self-weight) to the numedric
model. The data following thesgravity> keyword is:

.. first and only line: real number defining the accelerationstant, integer defining the
direction of the gravity (1, 2 or 3, corresponding to txeyy or zzaxis, respectively).

Note that in order to use the keywordgtravity> to define gravity loads, the density of the
material must be defined and different from zero.
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<*|terations>

The keyword <«Iterations> defines the maximum number of iteration allowed in each
increment. The data following thexZterations> keyword is:

.. first and only line: integer defining the maximum numbertefations per increment.

If the keyword <«Iterations> is omitted, the code will use the default value of 25
iterations. If the code is unable to converge within the dafimumber of iterations, the
simulation will terminate and a warning message will be f@ato the screen.

<*lncrements>

The keyword <Increments> defines the number of increments in which the analysis is
divided. The data following thexIncrements> keyword is:

.. first and only line: integer defining the number of incretsen

If the keyword <«Increments> is omitted, the code will use the default value of 1 incretnen

<*knots>

The keyword <knots> is used to input the knot vectors to be used in the analy$is.d&ta
following the <tknots> keyword is:

.. firstline: knot vector along thex-direction;
: second line: knot vector along thyg-direction;

.. third line: knot vector along thezdirection.

<*load>

The keyword <€1oad> is used to apply external forces directly into the contimhgs. This
keyword uses the indexes from the control lattice to defieectintrol point subjected to the
load. The data following thex.oad> keyword is:

.. first line: total number of external forces;

. additional line for each boundary condition:j, k, I, F wherei, j andk defines the
position in the control latticd,defines which degree of freedom is being restricted and
F is the magnitude of the load.
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Note that this keyword applies the load directly into thetooinpoints. Therefore, if the

control point does not belong to the physical geometry optimdlem, this command should
not be employed. The user may also employ the keyweftbsddof> as a way to apply

external forces directly into the control points.

<*loaddof>

The keyword <1loaddof> is used to apply external forces directly into the contraihps.
This keyword uses the global numbering of the control poiotslefine the boundary
condition. The data following thexd oaddof> keyword is:

. first line: total number of external forces;

: additional line for each boundary condition: integer ey global control point
number, integer defining which degree of freedom is consaieeal number defining
the load.

Note that this keyword applies the load directly into thetooinpoints. Therefore, if the
control point does not belong to the physical geometry optimdlem, this command should
not be employed. The user may also employ the keywelidsd> as a way to apply external
forces directly into the control points.

<*Master>

Keyword used to define the master segment for a two-dimeakiontact analysis. The data
following the <«tMaster> keyword is:

.. firstline: integer defining the order of the master segment
. second line: number of control points which define the mrastgment;
.. third line: knot vector of the master segment;

.. fourth line: list of control point that define the mastegsent.

<*material>

The keyword <material> is used to define the material properties to be used in the
analysis. The data following thersiaterial> keyword is:

.. firstline: integeiipropsdefining the total number of properties
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.. second line:propg1), propg2),...., propgiprops), wherepropqi) is a real number
defining property, accordingly to Table A.2.

To define an hardening curve, the data must be inputed inaafarim. The position 6 of
the array props must contain the yield stress and posititve €drresponding plastic strain.
Additional points of the hardening curve must be added irsime manner: the yield stress
followed by the corresponding plastic strain. The higherrtbmber of data points, the better
the approximation to the hardening curve will be. The mimmumber of points that must
be inserted is 2. Note that in the current version of the cod#;, linear elastic and small
strain elastoplasticity with isotropic hardening conghite models are implemented.

<*MP_conn>

Keyword used to define the global connectivity in a multipaaoalysis. The data following
the <«MP_conn> keyword is:

.. one line for each element: integer defining the global el@mmumber followed by
integers that define the control points that belong to theeotivity of the element.

<*NLGeom>

The keyword <«NLGeom> is used when a geometric nonlinear analysis is considdfréus
keyword is omitted in the input file, a geometric linear asédyis considered. No additional
information is required.

<*pressure>

The keyword <pressure> is used to apply pressure loads in a surface of a three-
dimensional element. The data following thepgessure> keyword is:

.. firstline: number of pressure loads applied in the model,

.. additional line for each pressure load: number of the el@mstring defining the
element surface, real number defining the magnitude of e lo

The pressure load is applied in the inward direction follagvthe normal of the face. To
apply an outward pressure, the load magnitude must haveaivegign. The strings to
define the surface are S1-S6, accordingly to Figure A.2.
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S6
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——S2

ST N

S1

Figure A.2: Surface definition.

<*Slave>

Keyword used to define the slave segment for a two-dimenktaméact analysis. The data
following the <«Slave> keyword is:

.. firstline: integer defining the order of the slave segment;
.. second line: number of control points which define theskegment;
.. third line: knot vector of the slave segment;

.. fourth line: list of control point that define the slave semt.
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Appendix B

User Element Subroutine for Abaqus

A detailed description of the implementation of NURBS-lmhE@ite Element formulation
into the commercial Finite Element code Abaqus by means adexr Hlement subroutine is
presented in the following. To that end, a conceptual imeletation of the main subroutines
is given, together with the necessary input files.

At the beginning of each increment, before computing thenelg-related variables,
it is necessary to input the NURBS-related data, which ioaxaished by means of the
UEXTERNALDB subroutine which, in turn, will store the information in tigégobal module
ModVariables. Afterwards, it is possible to perform the computation o #lemental
stiffness and internal force vector, along with the neagsstate variables (stress and strain
fields, local axesgtc).

B.1 NURBS Data Input File

The NURBS data input file contains all the information neaeg$or the computation of the
NURBS-based element variables that cannot be includedthyine the Abaqus input file.

This file will then include the knot vector and control poimtgights which are required to
compute the NURBS basis functions. In the current impleates, the different variables
are separated by keywords, as can be seen in the followimgm&a

*begin

3 !problem dimension

2, 2, 2 !degree of each dimension

4, 4, 3 !control points in each direction
xknots 'knot spans

6.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0
0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0
0.0, 0.0, 0.0, 1.0, 1.0, 1.0
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*bnet 'nurbs control points

0.0000000000E+00 0.0000000000E+00 2.4875000000E+01 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 2.5000000000E+01 1.0000000000E+00
0.0000000000E+00 0.0000000000E+00 2.5125000000E+01 1.0000000000E+00
0.0000000000E+00 6.2500000000E+00 2.4875000000E+01 1.0000000000E+00

*end

B.2 Subroutine UEXTERNALDB

As mentioned before, thBEXTERNALDB subroutine is responsible for reading the user-
defined input file (defined in the previous section) which eord all the information
necessary for the computation of NURBS basis functions. cdung presented herein is
specific to the H2ANS element proposed in Section 5.5, adtmeatrix is precomputed in
this step and stored in the global module. It is also worthtioaing that the NURBS-based
element connectivity is also computed in order to be useectyr in the calculation of
the basis functions. The subroutine can be conceptuallitenrin Fortran programming
language as follows.

subroutine UEXTERNALDB(LOP,LRESTART,TIME,DTIME,KSTEP,KINC)
use ModVariables

include ’ABA_PARAM.INC’

dimension TIME(2)

!Variable definition -----

character*256: :FileName

character*256: :Line

!Define path to NURBS-data input file -----
FileName = ’C:/.../SLo_2el_p2q2w2.txt’
open(unit=1,file=FileName)
!Read input file -----
do while(Line .ne. ’*end’)

read(1,*)Line ...
end do
!Generate element connectivity for NURBS basis functiomns
call gen_ien_inn
!Compute ANS related matrices
allocate (Nb(p+1),Mb(q+1) ,dNbdxi (p+1) ,dMbdeta(q+1))
allocate (Nbr (p) ,Mbr(q) ,dNbrdxi(p) ,dMbrdeta(q))

!Tying Points Coordinates -----

CA = dsqrt(1.0d40/3.0d0)
CB = dsqrt(3.0d0/5.040)
TyPt = 0.0d0
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TyPt(1,1)= CA; TyPt(1,2)= CB;
TyPt(2,1)=-CA; TyPt(2,2)= CB;

TyPt(16,1)=-CA; TyPt(16,2)=-CA
!Bezier knot vectors -----
ub = 1.0d0

do ki1=1,p+1
ub(k1) = 0.040
end do

'ANS M Matrix for Tying Point cycle 1 -----
MTP1 = 0.0d0
do k1=1,6
uk = (TyPt(k1,1) + 1.0d0)/2.0d0
vk = (TyPt(k1,2) + 1.0d40)/2.0d0
Nbr = 0.0d0
dNbrdxi = 0.0d0
!Compute basis functions and derivatives for local space -----
call BSplineBasisAndDeriv(2,p-1,uk,ubr,Nbr,dNbrdxi)
Mb = 0.0d0
dMbdeta = 0.0d0
call BSplineBasisAndDeriv(3,q ,vk, vb, Mb,dMbdeta)
count = 0
!Build ANS M matrix for tying point cycle 1 -----
do k2=0,q
do k3=0,p-1
count = count + 1
MTP1(k1l,count) = Nbr(p-k3)*Mb(q+1-k2)
end do
end do
end do
!Inverse of the ANS M Matrix for Tying Point cycle 1 -----
temp6 = 0.0d0
call gaussj(MTP1,6,temp6,ilixo)
'ANS M Matrix for Tying Point cycle 2 -----

'ANS M Matrix for Tying Point cycle 3 -----

return

end
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B.3 Abaqus Input File

In the Abaqus input file the user defines the control pointgdioates, the type of user
element and its connectivities and all the boundary coouti In addition, the type of

analysis and the output variables are also defined for eapho$the simulation. A sample

of an input file for Abaqus in the context of Isogeometric &sed using quadratic elements
is given in the following.

*Heading

Abaqus-IGA sample input file

* kK

*%* Control points coordinates

* ok K

*Node

1, 0.0000000000000000E+000, 0.0000000000000000E+000, 2.4875000000000000E+001
2, 4.3861336451230644E+000, 0.0000000000000000E+000, 2.4875000000000004E+001
3, 1.2629368485328952E+001, 0.0000000000000000E+000, 2.1874707884098953E+001
4, 1.5989341790952663E+001, 0.0000000000000000E+000, 1.9055355522584584E+001

* ok K

*%% User element definition

* kK

*User element, Type=Ul, Coordinates=3, Var=596, Nodes=27, Properties=6

1,2,3

*Element, Type=Ul, Elset=uelement
1,43,42,41,39,38,37,35,34,33,27,26,25,23,22,21,19,18,17,11,10,9,7,6,5,3,2,1
2,44,43,42,40,39,38,36,35,34,28,27,26,24,23,22,20,19,18,12,11,10,8,7,6,4,3,2
3,47,46,45,43,42,41,39,38,37,31,30,29,27,26,25,23,22,21,15,14,13,11,10,9,7,6,5

*Uel property, Elset=uelement
4.32e8, 0.0, 360.0, 1.0, 1lelb, 10.0
*ok ok
*k*x Auxiliary node sets
*ok ok
*nset ,nset=symmx, generate
1, 13, 4
17, 29, 4
33, 45, 4
*nset, nset=symmy, generate
1, 4, 1
17, 20, 1
33, 36, 1
*nset, nset=symmxz, generate
13, 16, 1
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* Kk

*** Step definition
* ok ok

*Step, Nlgeom=No
*Static

1.0, 1., le-05, 1.0
*Boundary

symmx, 1, 1

symmy, 2, 2

symmxz, 1, 1
symmxz, 3, 3

*Node print

U

*End step

B.4 Subroutine UEL

After reading the NURBS-related data (knot vectors, weigbtc) and storing it in the
global module, it is possible to compute the element rela@ihbles necessary for the
numerical simulation. In the context of Isogeometric Arsady the implementation of a
formulation is very similar to the one from the classic FenElement Method. Abaqus
provides as an input all the necessary variables for the atatipns, such as material
properties, control points displacements, type of ang)gst. The NURBS data necessary to
the computation of the basis functions is recovered frongtbleal module and as detailed in
Section B.2. The user must then provide as an output the altahstiffness matrixqmatrx)
the residual vectorrfis) and all the state variablesyars).

In the following, a conceptual implementation of the singlatch UEL subroutine
corresponding to the H2ANS NURBS-based element from Sebtiis presented. It should
be noted that only the main element subroutine is presewtatt all the utility subroutines
(for determining the basis functions, for polar decomposiand others) can be coded using
the methodologies presented in Chapters 3 and 4 and reésrémerein.

subroutine uel(rhs,amatrx,svars,energy,ndofel,nrhs,nsvars,

1 props, nprops, coords, mcrd, nnode, u, du, v, a, jtype, time,

2 dtime, kstep, kinc, jelem, params, ndload, jdltyp, adlmag,

3 predef, npredf, lflags, mlvarx, ddlmag, mdload, pnewdt, jprops,
4

njpro, period)

use ModVariables

implicit real*8(a-h,o0-z)
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dimension rhs(mlvarx,*),amatrx(ndofel,ndofel) ,props(*),
1 svars(nsvars),energy(8),coords(mcrd,nnode) ,u(ndofel),
2 du(mlvarx,*),v(ndofel) ,a(ndofel) ,time(2) ,params(3),

3 jdltyp(mdload,*) ,adlmag(mdload, *) ,ddlmag(mdload,*),

4 predef (2,npredf ,nnode) ,1flags(x),jprops (*)

!Displacement increment -----
ddisp=0.0d0
do j=1,nnode*ndof
ddisp(j,1)=dU(j,1)
end do
!Check for geometric nonlinearity -----
if (1flags(2)==0) then
nlgeom=.false.
tdisp=0.0d0
elseif (1flags(2)==1) then
nlgeom=.true.
tdisp=ddisp
end if
!Updated control points coordinates for geometric nonlinearity -----
if (nlgeom==.true.)then
do kl1=1,nnode
updtdisp(k1*3-2,1) = u(kl*ndof-2) - du(kl*ndof-2,1)
updtdisp(k1*3-1,1) = u(kl*ndof-1) - du(kl*ndof-1,1)
updtdisp(k1*3 ,1) = u(kl*ndof ) - du(kl*ndof ,1)

end do

endif
!Tnitialize residual and stiffness matrix -----
do i=1,ndofel
do j=1,nrhs
rhs(i,j)=zero
end do
do k=1,ndofel
amatrx(k,i)=zero
end do
end do
!Recover state variables -----
scount=1
do k1=1,npi
do k2=1,ntens
stress(nel,kl,k2)=svars(scount)
scount = scount + 1
end do
end do
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!Gauss points parametric coordinates and weights -----
call gauleg(npi_xi, e, we)

call gauleg(npi_eta, n, wn)

call gauleg(npi_zeta, c, wc)

!Mid-point configuration for geometric nonlinear analysis
if (nlgeom==.true.)then

tdisp = ddisp

mdisp = ddisp/2.0d0
else
do i=1,6
TGL(i,i) = 1.0d0
TCL(i,i) = 1.040
end do
end if

!Gauss point cycle (xi) -----
do i=1,npi_xi
xi = e(1)
!Gauss point cycle (eta) -----
do j=1,npi_eta
eta = n(j)
xib = ( xi + 1.0d0)/2.0d0
(eta + 1.0d40)/2.040
'ANS N array for TP cycle 1 -----

etab

call BSplineBasisAndDeriv(ncpx-1,p-1,xib ,ubr,Nbr,dNbrdxi)
call BSplineBasisAndDeriv(ncpy ,q ,etab, vb, Mb,dMbdeta)
count = 0
M1 = 0.0d0
do k2=0,q
do k3=0,p-1
count = count + 1
M1(1,count) = Nbr(p-k3)*Mb(q+1-k2)
end do
end do
'ANS L array for TP cycle 1 -----
MMultl = matmul (M1,MTP1)
'!ANS N and L arrays for TP cycle 2 -----

'ANS N and L arrays for TP cycle 3 -----

!Gauss point cycle (zeta) -----
do k=1,npi_zeta
zeta = c(k)
!Compute NURBS-basis functions -----
call ShapeFunc(nel,xi,eta,zeta,R,dRdx,dRdxii,detj,jac,updtdisp)
!'Weight factor -----
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gwt = we(i)*wn(j)*wc(k)*detj
'Recover/Compute Local Axis -----

call local_axis(nds, jac,rconv)

!Compute deformation gradient (matF) -----
call DefGrad3D(inodes,nds,dRde,dRdn,dRdc, jacinv,nodes
1 mdisp,MatF_mid)
!Compute rotation matrix (matR) using polar decomposition -----
call PolarDecomp3D(nds,matF_mid,matR_mid)
!Update local coordinate axis (rconv)
call axisupdate(rconv,matR_mid,rconv_mid)
!Compute NURBS-basis functions for mid-point configuration-----
call ShapeFunc(nel,xi,eta,zeta,R,dRdx,dRdxii,detj,jac_mid,
1 updtdisp+mdisp)
!Natural-to-local transformation matrix -----
Temp33_mid= matmul (transpose(rconv_mid) ,jacinv_mid)
call TransformationMat3D(Temp33_mid,TCL_mid)
!Global-to-local transformation matrix -----
Trans_mid=transpose(rconv_mid)
call TransformationMat3D(Trans_mid,TGL_mid)
!ANS strain-displacement operator -----
!BANS line 3 -----
do ki=1, (p+1)*(g+1)*(w+1)
do k2 =1,nds
BANS_mid (3, (k1-1)*3+k2) = dRdxii_mid(k1,3)*jac_mid(3,k2)
end do
end do
!BANS lines 1 and 5 -----
do k1=1,6
call ShapeFunc(nel,TyPt(k1,1),TyPt(k1,2),TyPt(kl,3),RA,dRAdx,
1 dRAdxi,dRAdxii,detjA,jacA,dxdxiA,mdisp+updtdisp)
do k2=1, (p+1)*(q+1)*(w+1)
do k3 =1,nds
BANS_mid (1, (k2-1)*3+k3) = BANS_mid (1, (k2-1)*3+k3) +

1 dRAdxii(k2,1)*jacA(l,k3)*MMultl(1,kl)
BANS_mid (5, (k2-1) *3+k3) = BANS_mid(5, (k2-1)*3+k3) +
1 (dRAdxii(k2,1)*jacA(3,k3) +
2 dRAdxii(k2,3)*jacA(1,k3))*MMultl(1,k1)
end do
end do
end do

!'BANS lines 2 and 6 -----
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!Strain-displacement matrix in local frame -----
Bloc=matmul (TCL ,BNG)
if(nlgeom == .false.) Bloc_mid = Bloc
!Compute stress and strain fields and constitutive
!matrix using the mid-point strain-displacement operator
'!in the local frame -----
call MatPlastic3D(Bloc_mid,ddisp,stress(nel,cpi,:),...,matD)
if (nlgeom == .true.) then
!Compute nonlinear stiffness -----
do k1=1,inodes
dRdenc(1,1)=dRdx(k1,1)
dRdenc(2,1)=dRdx (k1,2)
dRdenc(3,1)=dRdx(k1,3)
dRdxyz = matmul (trans,dRdenc)
BNL(1,k1%3-2)=dRdxyz(1,1)
BNL(2,k1*3-2)=dRdxyz(2,1)

end do

do k1=1,nds
MSTR(k1*3-2,k1%*3-2)
MSTR (k1*3-2,k1*3-1)

stress(nel,cpi,1)

stress(nel,cpi,4)

end do
KNLG = KNLG + matmul (matmul (transpose(BNL) ,MSTR) ,BNL)*guwt
!Store local axis -----
laxis(cpi,:,:) = rconv
end if
'Linear Stiffness matrix -----
amatrx = amatrx + matmul (matmul (transpose(Bloc),matD),Bloc)*guwt
'Residual vector -----
rhs = rhs - matmul (transpose(Bloc),stress)*gut
end do
end do
end do
!Elemental Stiffness matrix -----
if (nlgeom==.true)amatrx = amatrx + KNLG
!Store state variables -----
scount=1
do kl1=1,npi
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do k2=1,ntens
svars(scount) = stress(nel,k1,k2)
scount = scount + 1
end do
end do

end subroutine
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