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Abstract

A cooling tower scheme considering quantitative sensible and latent heat flux released
from air condition was implemented in building energy model (BEM) and coupled to
the regional model (WRF). A mechanical drag coefficient formulation was implemented into
the WRF/BEM to improve the representation of the wind speed in complex urban environ-
ments. Two simulations used default WRF/BEP+BEM and improved WRF/BEM to estimate
the improvement effects focusing on dry day and wet day for summer 2015, respectively.
The cooling tower system in commercial area not only induces the significant increase of the
anthropogenic heat partition by 90% of the total heat flux releasing as latent but also further
changes the surface heat flux feature. When the cooling tower is introduced, averaged surface
latent heat flux in urban area is increased to about 60 W�m�2 with the peak of 150 W�m�2 in
dry day and 40 W�m�2 with the peak of 150 W�m�2 in wet day. Maximum and minimum
temperature error improved by 2–3 degrees. In the vertical model, the performance of bound-
ary layer structure in rural area is much better than in urban area. The average wind speed
error improved by 2–3 m/s in urban area with new calculation scheme.

Keywords: cooling tower, drag coefficient, regional model, high-resolution

1. Introduction

The world’s population is coming increasingly urbanized, and most of this additional urban-

ization occurs in developing countries [1]. The land-use change and the anthropogenic heat

release induced by urbanization have been recognized as important factors that have serious

impacts on climate at regional scales [2–4]. There is plenty of evidence that the regional climate
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effect of urban is significant [5–9]. And urban impacts are becoming more and more important

in fine weather forecasting. It is difficult to distinguish the impact of land-use change and

artificial heat emissions on regional climate in the observation. But numerical model can be

used to solve this problem [10]. Feng et al. [11] employed WRF coupled with single-layer

urban canopy model (UCM) to investigate urban land-use change and anthropogenic heat

release on regional climate in China and indicated that impact of anthropogenic heat release is

larger than urban land-use change.

Anthropogenic heat is one contributor to the urban heat islands which destroyed the near-

surface inversion and increased the stratification instability [12]. Anthropogenic heat release is

the extra heat flux which can change the surface energy balance [13, 14]. Energy consumption

from buildings is an important part of anthropogenic heat release that may modify near-

surface energy balance [15].

Sailor [16] provides a historical perspective on the development of models of urban energy

consumption and anthropogenic impacts on the urban energy balance. It indicated that there is

a positive feedback cycle that higher temperatures result from greater amounts of energy used

for air cooling in most urban area [17]. Global modeling results indicated that heat release from

building is the largest contributor (89–96%) to the large-scale urban consumption of energy

[12]. Future climate experiments by GCMs show anthropogenic heat flux can cause annual-

mean warming of 0.4–0.9�C over large industrialized regions although global-mean anthropo-

genic heat flux is small [18]. The temperature increased by anthropogenic heat not only

depends on the amount of heat released but also on orographical factors [19]. The amount of

heat released at night is lower than at day, but the temperature increase is nearly three times

greater [20]. Global model shows that the extra heat from energy consumption over the 86

major metropolitan can cause up to 1� of warming in winter seasons [21].

Recent regional modeling results show that anthropogenic heat flux from building has a

significant impact on temperature simulation on urban area [22]. The heat release of air

condition caused about 1–2�C warming in summer commercial area [23]. The study of Pairs

also indicated that about 0.5�C results from anthropogenic heat release and points out the air

condition makes important contributions to surface warming [24]. A study on three major

urban agglomerations of China suggests that contribution of anthropogenic heat release to

warming is larger than the land-use change [11].

But the performance of current urban canopy model is not satisfied for artificial heat emissions

in urban area [11, 25]. Both UCM and BEM take the anthropogenic heat as extra surface

sensible flux and can only recognize the diurnal variation [26]. But UCM and BEM cannot

describe the energy exchange between anthropogenic heat flux and the urban boundary layer

sensible heat flux which leads to energy balance in the boundary layer destroyed. It is note-

worthy that anthropogenic heat release includes not only sensible heat flux but also latent heat

flux. Anthropologic latent heat flux from urban area is ignored by UCM and BEM. Building

energy model that can accurately describe energy balance mechanism of urban boundary layer

and includes anthropogenic heat release urgently needs development.

The development of BEM model has solved the problem to a great extent [27]. Current BEM

model is capable of describing (1) the heat diffusion through walls, roofs, and floors, (2) the
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natural ventilation and the radiation exchanged between the indoor surfaces, (3) the heat from

occupants and equipment, and (4) the energy consumption from air condition.

Although BEM has the ability to simulate the building energy-exchange process as mentioned

above, the performance is not satisfied enough especially for the high-resolution forecast in

urban area [3, 25, 28]. Air condition releasing is treated as sensible heat flux to potential

temperature equation when couples to BEP and regional model [29]. Simulated temperature

in urban area is always obviously higher than the observation by current WRF/BEM model.

Assessment report in Beijing shows that latent heat flux maximum simulated by WRF/BEM is

only 40 W�m�2 while the observation is about 230 W�m�2 [25]. Errors of simulated heat flux

directly lead to underestimate the humidity and further affect the performance of rainfall. In

most commercial buildings, anthropogenic heat can be associated to heat release from air

conditioning systems. Most air conditioning systems use evaporative cooling that releases a

mixture of sensible and latent heat to the environment [30].

Many studies show that the energy consumption of air condition from building is gradually

increasing as the frequency of heat wave is increasing [31]. And heat release from the building

air condition system is one of the primary sources of anthropologic latent heat flux in urban

area [29, 32–35]. Although heat released by air condition is considered in the current WRF/

BEM, the performance is still not satisfied. Previous studies have indicated that heat released

by air condition in some megacities is equal to or more than half of the surface sensible flux

[23]. Simulation results show that contribution of heat released by air condition to summer

warming can exceed 1� in the megacities [23, 36, 37], and contribution to nighttime tempera-

ture can reach 2� [29].

However, most air condition systems use evaporative cooling that releases a mixture of sensible

and latent heat to the environment. In summer, 50–80% of their heat released by evaporative-

cooled systems is in the form of latent heating [38]. In China, metropolitan electricity consump-

tion report shows that most important energy consumption in building comes from air condition

system whether in commercial or residential area [39]. Air condition usage report about Chinese

metropolitan indicated that the ratio of sensible and latent heat flux by different types of air

condition emissions is 20 and 80%, respectively [39].

So how to correctly describe the latent heat flux released by air condition in high-resolution

model is an urgent problem to solve. It has shown that a BEM coupled with a cooling tower

model can improve the model performance of temperature [30]. Cooling tower scheme will

obviously improve model performance of the energy exchange ability between building and

its surroundings and urban boundary layer balance.

Beijing power consumption is gradually increasing from 1978 to 2015, and the proportion of

electricity consumed by residents is also gradually increasing (Beijing Municipal Bureau of

Statistics website). It is noteworthy that heat released from building air condition is the impor-

tant component of summer electricity consumed by residents. Namely, heat flux released by air

condition system in Beijing’s urban area becomes one of the primary sources of summer

anthropologic heat as other big cities. In order to modify the simulation of heat flux released by

air condition, a new cooling tower scheme [30] was coupled to rapid-refresh multi-scale analysis

and prediction (RMAPS).
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Parameterizations using the specific input parameters describe the complex arrangement

of buildings and streets in an urban environment. However, simulations using this type of

data reproduce fine-resolution features that are not clearly reproducible by traditional

methods [10, 29].

In order to represent the effects of horizontal and vertical building surfaces of momentum,

heat, and turbulent kinetic energy (TKE) equations, the building effect parameterization and

the building energy model (BEP + BEM) [40] have been introduced. In the relevant equations,

new terms about frictional and drag forces on the mean flow and the increase of the TKE

between buildings are introduced. This scheme assumes drag coefficient is a constant. That is

inaccurate because the magnitude of the drag is decided by building density in highly hetero-

geneous urban environments. A new formulation has been implemented in the BEP + BEM

system to calculate the values of the drag coefficient based on the building plan-area fraction to

improve the airflow simulation in the urban boundary layer. The performance of this drag

formulation has been evaluated in an idealized urban configuration using computational fluid

dynamical (CFD) simulations [27].

Our aims are as follows:

1. To improve the performance of BEM using the cooling tower scheme and drag formulation.

2. To evaluate the forecast performance of the improved RMAPS coupled with improved

BEM in summer Beijing

Details of the data and the experimental design are given in Section 2. The performance of

improved RMAPS is evaluated in Section 3. We summarize the findings and discuss our

results in Section 4.

2. Data, model description, and experimental design

The surface temperature and humidity data were obtained from 294 meteorological stations

operated by the Beijing Meteorological Bureau (Figure 1). Vertical temperature data was

gathered from a radiometer located at 39.8�N, 116.46�E. Heat flux data used in this study were

obtained from the Beijing meteorological tower (39.97�N, 116.37�E), which is 325 m high and

located in North Beijing.

This study used operational rapid-refresh multi-scale analysis and prediction system (RMAPS)

based on modified version of the WRF model (ARW versions 3.5.1), and its data assimilation

system (WRFDA v3.5) was developed by the Institute of Urban Meteorology, China Meteoro-

logical Administration, Beijing [25]. The system starts with ECMWF global forecasts (at 3-h

intervals) and terminates with hourly weather forecasts. Initial conditions is adjusted by

WRFDA-ingested including S/C band weather radar, ground-based global positioning system

meteorology (GPS-MET), radiosonde, Aircraft Meteorological Data Relay (AMDAR), and

AWS surface observations. Three domains are designed for the current study with horizontal
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grid spacings of 9, 3, and 1 km. The locations of the nested urban domains are shown in

Figure 2. NDOWN provides boundary conditions for the 1-km Domain-3 model from its 3-

km output, and VDRAS output is assimilated into the 1-km domain via FDDA [41]. Land-use

map (Figure 1) is based on 30-m Landsat data for the year 2010, including three urban land

types according to gridded urban-fraction values [42]. Parameterization schemes used in this

study are listed in Table 1.

In order to improve the current forecast model, a cooling tower scheme was incorporated to

the BEP + BEM and was coupled with RMAPS. Beijing is taken as the case study to investi-

gate anthropogenic heat impact of dense urban environment. Although the cooling tower

scheme has been used to the regional model in previous work, verification and evaluation

for improved model are not sufficient especially in vertical stratification. This work used

multiple intense observation data to evaluate the improvement effect of the new cooling

tower scheme.

Figure 1. High-resolution land-use map in model. Black dots show the 294 weather stations. The white triangle shows the

location of a 325 m meteorological tower (39.97�N, 116.37�E); the blue triangle shows the location of the Naojiao station

(39.8�N, 116.46�E); and the yellow triangle shows the location of the Yanqing station (40.45�N,115.97�E).
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The computing method is as follows:

Based on the first law of thermodynamics, heat exchange equation between air condition

system and the external atmosphere is defined as

Figure 2. Domain configuration and location of the study area.

D1 D2 D1

Models and versions WRFDA v3.5.1 + WRF v3.5.1 WRF v3.5.1

Horizontal grid points 649 � 400 550 � 424 460 � 403

∆x (km) 9 3 1

Vertical layers 50

Cumulus physics Kain-Fritsch None None

LW radiation RRTM

SW radiation Dudhia

Microphysics Thompson

PBL physics ACM2 BouLac

Urban physics SLUCM BEP BEP + BEM

Table 1. Modeling setting and parameterization options.
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Q ¼ Cmin Two,cond � Twi, condð Þ ¼ Cmin TRefi � Twi,cond

� �

(1)

Twi,cond ¼ Two,CT ¼ Twb,air (2)

Two,cond ¼ Twi,CT (3)

where Q is the total heat transfer from the building calculated by BEM, Twi, cond is the water

temperature entering the air condition system, Two,cond is the water temperature leaving the air

condition, Twi,CT is the water temperature entering the cooling, Two,CT is the water temperature

leaving the cooling tower (CT), and Cmin is the minimum thermal capacitance between the

water and the refrigerant [43]. It is assumed that the cooling tower is able to bring the water

entering the air conditioning to its minimum value of the wet bulb temperature. This wet bulb

temperature Twb,air is calculated from [44–48]:

Twb,air ¼Tairatan 0:151977 RH%þ 8:313659ð Þ1=2
h i

þ atan Tair þ RH%ð Þ � atan RH%� 1:676331ð Þ

þ 0:00391838 RH%ð Þ3=2atan 0:023101RH%ð Þ � 4:686035

(4)

where Tair is air temperature and RH is relative humidity.

The effectiveness, ε, for the cooling tower is defined as:

ε ¼
Q

ma hsai � haið Þ
(5)

where hai is the enthalpy of inlet air and hsai is saturated enthalpy of inlet air.

Finally, the outlet air temperature Tao can be obtained from the following equations using an

iterative scheme:

Q ¼ ma hao � haið Þ (6)

hao ¼ hai þ ε hsai � haið Þ (7)

CpTao þ qvao Cpw þ L
� �

¼ hao (8)

qvao ¼ 0:62198
e

P� e
(9)

e ¼ 6:11� 10
7:5Tao

237:7þTao (10)

where qvao is absolute humidity or mixing ratio.

Due to the effect of complicated urban surface, the structure of the meteorological field in the

urban boundary layer is different from other surfaces. Impervious vertical surfaces of build-

ings induce a drag force that produces a loss of momentum that changes the flow field in near-

surface atmospheric boundary layer. The drag coefficient (Cd) is an important component for
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calculating the magnitude of the momentum flux induced by buildings in urban canopy

models. According to previous studies over urban environments and wind-tunnel measure-

ments of, Cd is assumed as a constant (0.4) in default WRF/BEM [40]. However, Cd could vary

with building packing densities. An analytical relation proposed by Salamanca and Martilli

[27] has been implemented into the BEP + BEM system to estimate the drag coefficient as a

function of the building plan-area fraction as follows:

Cdeq λp
� �

¼

3:32x λp0:47 for λp ≤ 0:29

1:85 for λp > 0:29

(

(11)

This formulation represents an improvement compared to using a constant drag coefficient,

and it is necessary to assess this for a real complex urban underlay.

We evaluated the whole summer (from June 1 to September 30) simulation to evaluate the

performance of the RMAPS coupled to the cooling tower model and drag scheme (AC + VD).

The forecast results by default RMAPS were used as control run (CTL).

3. Results

3.1. Effect on diurnal pattern

The significant difference between CTL and AC + VD is in latent heat released from the

building because AC + VD improved the heat flux released from the building to the environ-

ment. Maximum sensible heat flux from air condition in CTL is about 180 W�m�2, while it is

reduced to 20 W�m�2 in AC + VD (Figure 3a and b). Meanwhile latent heat flux from air

condition is increased by AC + VD during daytime. Thermal exchange between building and

Figure 3. Averaged diurnal pattern of heat flux (W∙m�2). (a) Sensible heat flux in dry day; (b) sensible heat flux in wet

day; (c) latent heat flux in dry day; and (d) latent heat flux in wet day.
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its external atmosphere simulation is an inadequate capability in CTL. AC + VD not only

increase the latent heat flux released from building but also improve simulation ability of heat

exchange.

We evaluate sensible and latent heat flux in the dry day first. Based on the heat flux observa-

tion by Beijing tower in 140 m, sensible heat flux is less than 20 W�m�2 in the nighttime, while

CTL overestimate sensible heat flux about 50 W�m�2 in the nighttime (Figure 3a). It has largely

solved this problem by AC + VD during the dry days. But in the wet days, sensible heat flux is

still overestimated in nighttime simulated by both CTL and AC + VD. In the daytime, observed

sensible heat flux reaches the maximum (200 W�m�2) at 1400 LST; both CTL and AC + VD

overestimate the sensible heat flux in urban area (Figure 3a and b). Sensible heat flux simu-

lated by CTL delays the time to reach the maximum of about 1 hour while an hour earlier by

AC + VD. Both CTL and AC + VD overestimate sensible heat flux in urban area, but AC + VD

improve the simulation results from 1500 to 2000 LSTespecially in the dry days. Compared to dry

day result, improvement effect for sensible heat flux by ECs is not obvious in wet day. Different

from the dry day, the sensible heat flux is rapidly decreasing during the 1100–1800 LST in model

results because rainfall often occurs in that duration. And simulated sensible heat flux is more

sensitive to precipitation than observed.

Observed latent heat flux in dry days has the same features as the sensible heat flux in daytime

(Figure 3c). The maximum of observed latent heat flux is about 200 W�m�2, while the latent

heat flux is seriously underestimated by CTL in urban area which further leads to error in

humidity and temperature. But AC + VD result indicates that model performance for latent

heat flux is much improved in both dry day and wet day (Figure 3c and d). The simulated

diurnal pattern of latent heat flux by AC + VD is very close to the observation in the dry days

although the value is still less than observation and there is phase deviation. There are still

errors of latent heat flux simulated by AC + VD in the wet days.

Bowen ratio is a very important index for the energy balance. Because the latent heat flux is

seriously underestimated by CTL, there are big simulation errors for Bowen ratio especially in

nighttime, both in dry days and wet days (Figure 4). That problem has been largely solved by

AC +VD even though there are still underestimated Bowen ratios especially from 600 to 1600 LST.

The heat flux change by AC + VD will further influence temperature and humidity in urban

area. So next part we will force on evaluating the model performance of temperature and

humidity at 2 m. For the dry day, temperature is obviously overestimated by CTL during the

Figure 4. Averaged diurnal pattern of Bowen ratio. (a) Dry day and (b) wet day.
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whole day. But performance is largely improved by AC + VD especially in nighttime. Temper-

ature at 2 m is decreased around 3� by AC + VD in nighttime which is very close to the

observation (Figure 5a). There are still obvious errors during 1200–1600 LST. For the dry days,

improvement for nighttime is still significant (2�) but not as good as wet days when compared to

the observation (Figure 5b). Although AC + VD improves the temperature about 1.5�, the

maximum simulation deviation still occurred from 1200 to 1600 LST. That is related to

overestimating the sensible heat flux. Another error of phase is still in the simulation in dry day.

For the dry day, absolute humidity is underestimated by CTL during the whole day, while it is

improved by AC + VD especially in nighttime (Figure 5c). For the wet day, absolute humidity

is increasing from 1200 to 1600 because rainfall will more likely occur in this period. While

simulated absolute humidity in both CTL and AC + VD lags behind the observation, increas-

ing period is from 1800 to 2300 LST (Figure 5d). Simulated value is improved by AC + VD

although the phase difference still remained in both dry day and wet day.

3.2. Effect on spatial distribution

294 meteorological stations are used to evaluate model performance of temperature and

humidity spatial distribution. Spatial distribution of averaged temperature error shows

that CTL overestimate daily mean temperature in most of urban station (Figure 6a), and

the errors of most stations reach 1–2�. Errors of temperature are obviously reduced by

EC in urban area and errors of about half stations <0.5� (Figure 6b). Both CTL and

AC + VD underestimate daily mean absolute humidity at most urban stations. And there

is no significant difference or improved effect by AC + VD in mean absolute humidity in

urban area.

Figure 5. Averaged diurnal pattern of temperature (�C) and absolute humidity (g∙kg�1). (a) Temperature in dry day;

(b) temperature in wet day; (c) absolute humidity in dry day; and (d) absolute in wet day.
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Maximum temperature (at 3 pm) simulated by CTL is more than 35�C in urban and suburban

area in the dry day and 33�C in most of the plains (Figure 7a). While temperature is reduced to

about 2� in AC + VD in both urban and suburban areas, and the area in which temperature is

more than 36�C is obviously decreased (Figure 7b). There are the same characteristics for wet

days (Figure 7c and d).

Spatial distribution of maximum sensible heat flux shows that sensible heat flux simulated by

CTL in urban area is more than 350 W�m�2 in the dry day (Figure 8a). The sensible heat flux

simulated by AC + VD in most urban areas is about 320 W�m�2 which is a little smaller than

CTL (Figure 8b) in the dry day. And the maximum region (more than 350 W�m�2) of sensible

heat flux is also reduced by AC + VD. In the wet day, sensible heat flux maximum simulated by

AC + VD is smaller about 50–100 W�m�2 than CTL (Figure 8c and d).

Latent heat flux maximum simulated by CTL is less than 50 W�m�2 in downtown area which is

obviously underestimated compared to the observation in both dry day and wet day

(Figure 9a and c). Simulation of latent heat flux in urban area by AC + VD improves the value

to 100 W�m�2 in dry day and 150 W�m�2 in wet day (Figure 9b and d).

Maximum sensible heat flux released by air condition in CTL is more than 100 W�m�2 in urban

area, and there is a little difference between dry day and wet day. AC + VD reduce the

maximum sensible heat flux released by the building’s air condition in both dry days and wet

Figure 6. Spatial distribution of averaged temperature (�C) and absolute humidity (g∙kg�1) errors (difference between

modeling and observation) at 2 m, the black circles show the second to sixth ring roads. (a) Temperature error in CTL;

(b) temperature error in AC + VD; (c) absolute humidity error in CTL; and (d) absolute humidity error in AC + VD.
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Figure 7. Spatial distribution of averaged temperature (�C) at 2 m in 3 pm. (a) Simulated by CTL in dry day; (b) simulated

by AC + VD in dry day; (c) simulated by CTL in wet day; and (d) simulated by AC + VD in wet day.

Figure 8. Spatial distribution of averaged sensible heat flux (W∙m�2) in 3 pm. (a) Simulated by CTL in dry day;

(b) simulated by AC + VD in dry day; (c) simulated by CTL in wet day; and (d) simulated by AC + VD in wet day.

Understanding of Atmospheric Systems with Efficient Numerical Methods for Observation and Prediction114



days (Figure 10a and c). And sensible heat flux in dry day is obviously larger than wet days

simulated by AC + VD (Figure 10b and d). That means sensible heat flux released by air

condition in AC + VD is affected by outdoor temperature. Model performance of indoor and

outdoor exchange is significantly improved by AC + VD.

There is no latent heat flux released by air conditioning used in the potential temperature

equation when coupled to the WRF/BEP + BEM in CTL. However, in AC + VD the maximum

latent heat flux released is more than 120 W�m�2 in dry days and 80–100 W�m�2 in wet days

(Figure 11a and b) over urban core areas.

3.3. Effect on wind field

The observed daytime change of urban area averaged wind speed appeared as single peak.

The wind speed reaches maximum and minimum at 700 LSTand 000 LST in summer in Beijing

(Figure 12a). The diurnal feature of wind speed is well captured by CTL and AC + VD.

However, CTL overestimated wind speed in daytime especially during 500–1000 LST. This

problem has been largely solved by AC + VD (Figure 12a). RMSE is also obviously reduced by

AC + VD in the whole day (Figure 12b).

Figure 9. As in Figure 8 but for latent heat flux.

Evaluating Cooling Tower Scheme and Mechanical Drag Coefficient Formulation in High-Resolution Regional Model
http://dx.doi.org/10.5772/intechopen.80522

115



Spatial distributions of wind speed by CTL show that the average wind speed in urban area is

3.5 W∙m�2 (Figure 13a), while the wind speed is reduced in AC + VD about 1.5 W∙m�2

(Figure 13b). The averaged wind speed simulated by AC + VD is about 1.8 W∙m�2. Wind speed

in CTL is overestimated in all Beijing areas (Figure 14a). Spatial distributions of wind speed

errors also indicated that wind speed error is obviously revised by AC + VD (Figure 14b).

Figure 10. Spatial distribution of sensible heat flux (W∙m�2) released by building air condition in 3 pm. (a) Simulated by

CTL in dry day; (b) simulated by AC + VD in dry day; (c) simulated by CTL in wet day; and (d) simulated by AC + VD in

wet day.

Figure 11. Spatial distribution of latent heat flux (W∙m�2) released by building air condition at 3 pm. (a) Simulated by

AC + VD in dry day and (b) simulated by AC + VD in wet day.
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4. Conclusions and discussions

A cooling tower scheme considering quantitative sensible and latent heat flux released from air

condition was coupled to RMAPS. A mechanical drag coefficient formulation was implemented

into the RMAPS to improve the representation of the wind speed in complex urban environ-

ments. The computing method is based on the heat transfer between temperature and humidity

Figure 12. Averaged diurnal pattern of wind speed and its RMSE (W∙m�2). (a) Averaged of study period and (b) RMSE.

Figure 13. Spatial distributions of wind speed and wind fields (W∙m�2). (a) CTL and (b) AC + VD.

Figure 14. Spatial distributions of wind speed errors (m∙s�1) (difference between modeling and observation) at 10 m.

(a) CTL and (b) AC + VD.
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and between condenser and outdoor inlet air. Two simulations use default RMAPS and impro-

ved RMAPS to estimate the improvement effect focusing on dry day and wet day, respectively.

The cooling tower system in commercial area not only induces the significant increase of the

anthropogenic heat partition by 90% of the total heat flux releasing as latent but also further

changes the surface heat flux feature. When cooling tower is introduced, averaged surface latent

heat flux in urban area is increased to about 60 W�m�2 with the peak of 150 W�m�2 in dry day

and 40 W�m�2 with the peak of 150 W�m�2 in wet day. Further new cooling tower scheme

improves the model performance of temperature and humidity. Maximum and minimum tem-

perature error improves 2–3� especially in dry day. The drag coefficient formulation induced the

simulated wind speed to about 2.5 m∙s�1 that improve the wind speed error of about 2–3 m∙s�1

in urban area.
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