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Abstract

Carbon dioxide (CO
2
) injection at the Citronelle oil field in Alabama has been deployed 

to determine the feasibility of carbon storage and enhanced oil recovery (EOR) in the 
depleted oil field. Citronelle is a small size city right above the oil field, hence, to detect 
geohazard risks, geophysical testing method using wireless sensor, and passive seismic 
technique is used: the non-intrusive measurements were made at well sites along two 
linear arrays. The outcomes of the geophysical monitoring at the Citronelle oil field are 
shear-wave velocity profiles that are correlated to the static stress distribution at different 
injection stages. Injection history interpretation using the stress wave monitoring indi-
cates that CO

2
 injection resulted in the stressing of the strata.

Keywords: geophysical testing, Citronelle oil field, CO
2
-EOR, carbon sequestration, 

strata stressing

1. Introduction

Carbon dioxide (CO
2
) is a greenhouse gas, and the relationship between global warming and 

greenhouse gases has become more and more of a concern to the scientific community [1–3]. 
Because there is continual rise in what is already a high concentration of CO

2
 in the atmo-

sphere, it is imperative that a viable solution be implemented. Carbon capture and geologic 
storage is a promising method for reducing the concentration of CO

2
 in the Earth’s atmosphere 

[4–7]. The technology involves collecting CO
2
 from an emission heavy source, compressing 

and transporting the CO
2
 to a qualified site and injecting the now supercritical CO

2
 at high-

pressure into the reservoir. The qualified storage reservoir must satisfy stringent geological 
storage criteria, which may include anticline, porosity, permeability, void volume, pressure 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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limits, seepage characteristics, and cap rock characteristics. The reservoir should be sufficiently 
distanced from any potable groundwater acquifers to avoid contamination issues. Using 
underground depleted oil and gas reservoirs as CO

2
 storage sites may have secondary advan-

tages of enhanced oil recovery (EOR) or enhanced gas recovery (EGR) [8–10]. The additional 
fossil resources recovery can provide the economic incentives for CO

2
 storage. Currently, there 

are several hundreds of oil field injection sites worldwide and in the US [11, 12].

While no CO
2
 leakage has been reported at any injection sites, it is important to instate care-

ful monitoring programs for such practices to avoid potential geohazards. Recent studies of 
remote sensing data indicate that some of the injection sites may have experienced surface 
deformation [13–15]. Effective monitoring programs should be adopted at the injection sites 
in order to detect changes in geological formation (geomorphology) and the presence and 
migration of CO

2
 within the storage reservoir [16–19].

Since 2010, CO
2
 has been injected for possible CO

2
-EOR at a highly heterogeneous and discon-

tinuous sandstone reservoir of the Citronelle oil field, Alabama. Citronelle oil field is a matured 
oil reservoir and an ideal site for CO

2
-EOR and sequestration, from both reservoir engineering 

and geological perspectives [20, 21]. The Citronelle oil field is located about 50 km north of 
Mobile on the crest of the Citronelle Dome, which is a giant salt-cored anticline in the eastern 

Figure 1. Structural cross sections showing Citronelle dome and location of Citronelle field.
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Mississippi Interior Salt Basin (Figure 1). The field covers an area of 16,400 acres directly below 
the city of Citronelle. In 1955, oil was first discovered by the Gulf Oil Company in the Zack 
Brooks Drilling Company No. 1 Donovan well. Since then, over 500 wells have been drilled 
and cumulative oil production has exceeded 169 million barrels at Citronelle Field.

Citronelle is a small city with a population of 3900 (2010 consensus). With most of the oil wells 
integrated into the cityscape, possible geohazards such as CO

2
 leaks can be detrimental to 

the local citizens, live stocks, and the environment. Some of the wells exist within residents’ 
backyards and farmlands (Figure 2). To detect risks of geohazards and monitor the injection 
process, geophysical testing has been performed at the site. This paper reports the outcomes 
of the field tests due to CO

2
 injection into the Unit B-19-10 #2 well (Permit No. 3232). The goal 

of the geophysical testing is to establish possible relationships between shear-wave velocity 
profiles and the static stress distribution before, during and after the injection. Such relation-
ships are helpful in understanding the site condition changes due to the injection activity.

2. Geophysical monitoring strategies

The intent of the carbon injection is to explore the feasibility of EOR in the tertiary produc-
tion of an existing oil reservoir, as well as the potential of subsequent CO

2
 sequestration. The 

geophysical monitoring strategy is used to assess the site geostability and potential geohaz-
ards. Site geostability for mineral extractions can be associated either with the site geological 
conditions pertaining to sustained production or with the large geological deformations such 

Figure 2. Typical locations of the oil wells at Citronelle, Alabama.
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as land subsidence or landslides. In the context of the current study, the association is with 
the latter definition. The key purpose of a geostability analysis is to determine the possibilities 
of significant geohazards due to formation instabilities, which may result from the CO

2
-oil 

replacement in the Rodessa formation.

Geo-instability of an oil-producing stratum can result from the collapse of voids during the 
oil extraction process. The repercussions may include global subsidence, localized straining 
and possible microtremors to earthquakes. Figure 3 shows a schematic of the geomaterial 
straining at an oil extraction well. The hypothesis is that as oil is being depleted, the surround-
ing geomedium may experience straining due to interfacial shear stresses resulting from the 
settlement and collapse of the strata. Geostability in a narrow oil field within a deep stratum, 
such as the Citronelle oil field, is typically not a major concern since relatively small settlement 
is anticipated. The geo-instability concerns in such cases can be generalized as compressibility 
potential assessment as well as localized stability projection.

The compression or settlement issue may involve both local elastic settlement (non-permanent 
deformation) and long-term creep (long-term deformation due to sustained loading). Elastic set-
tlement is instantaneous and is a function of the weight of overburden above the layer of interest. 
For an oil-producing layer, elastic settlement is also a function of the system pressurization, where 
pressure is kept to ensure the injection fluids remain in the oil layer. Creep is difficult to assess 
since it is a function of time. Current geostability analysis does not include considerations of ther-
moelastic effects or micro-poroelastic effects for the pressurized system, for example, the Biot’s 
equations. The rationale is that the difficulties in establishing geomaterial properties based on cur-
rent geophysical measurements and assumed values only allow a grossly simplified bulk material 
analysis. As a result, the extensive works by Biot on poroelasticity has been greatly simplified.

Stresses in geomaterials are derived essentially from the self-weight of the overburden mate-
rials (predominantly the geo-matrix), the liquid within the voids (pore water pressure), and 

Figure 3. Poroelastic stresses due to extensive oil extraction (hollow arrows indicate surface strains and line arrows 
indicate interplanar shear stresses).
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the externally induced pressures. Hence, the total stress within the geomaterial system is 
equal to the summation of stress within geo-matrix and pore water pressure. The geostability 
study considers the effective stress, σ’, which is defined as the stress carried by geomaterial 
skeletons and not pore water that causes elastic deformation of the oil-producing layer:

   σ   '  = σ − μ  (1)

where σ is the vertical total stress derived from unit weight of material and μ is the pore pres-
sure. Neglecting thermal effects, the effective stress equation is further modified to include 
injection pressure   σ  

injection
   :

  σ″ = σ′ − ( σ  
injection

   − μ)  (2)

The effective stress pressure is then used to compute the producing layer elastic deforma-
tion (non-permanent settlement) using simplified computation of rock bulk modulus (P-wave 
modulus), M [22]:

  M = ρ  V
p
2  
 
    (3)

where ρ is the rock density,   V  
p
    is the P-wave velocity derived from geophysical testing con-

ducted at Citronelle.

2.1. Geophysical testing at Citronelle field

Micro-seismicity tests have been successfully applied to address specific issues in the oil 
and gas industry [23, 24]. The basic principle of passive seismic monitoring is to detect small 
movements (regarded as microseismic events) from unknown seismic sources that can be 
recorded on geophones placed on site. Contrast to active geophysical testing, the passive 
seismic monitoring is a testing method that does not rely on a source of ground excitation. 
The main advantage of the passive monitoring is that it can be carried out at any time and 
does not require regulated field access. The disadvantage of passive sensing is the uncertainty 
introduced due to the lack of controlled input energy, which can result in both poor data 
sensitivity and poor detection accuracy.

A modified passive sensing Refractive Microtremor (ReMi) technique, Derivative of ReMi 
(DoReMi), as discussed below, is used at the Citronelle oil field, Alabama [25]. To improve 
mobility and avoid the cumbersome wiring, wireless triaxial micro-electro-mechanical system 
(MEMS) accelerometers have been used for the field testing. The MEMS sensors are encased 
in hard metal boxes and buried into the ground at sufficient depth to ensure good coupling 
between the sensor and the surrounding soil (at least 1 ft. (0.3 m) deep with fully compacted 
soil on top). The wireless sensor unit with the three directional acquisition channels can 
record seismic energy in three Cartesian directions (vertical and two horizontal directions). 
The vibration signals obtained by the wireless accelerometer are acceleration time histories, 
which are processed in spectral domain using p-τ transformation, or slant-stack analysis [26]. 
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Since passive sensing assumes the signals are random in nature and the analysis is done in 
the spectral domain, time sequence of the sampled data is not considered. Only the vertical 
direction has been used in the wave motion analysis for this study.

To monitor the responses of the reservoir throughout the CO
2
 injection process, two linear 

test arrays were conducted at the Citronelle oil field. Each test array consists of 24 mea-
surement points, which are all located near the oil wells. The site test layout is shown in 
Figure 4. The Line 1 is generally aligning with the north to south direction, whereas, Line 2 
is in general in the northeast to southwest direction. Line 1 covered approximately a distance 
of 30,102 ft. (9175 m) in total with approximately 1309 ft. (399 m) for sensor spacing. Line 2 is 
25,603 ft. (7804 m) in total span and has a sensor spacing of 1113 ft. (339 m) between pickup 
points. CO

2
 is injected in well No. B-19-10 #2, which is located near the intersection of the two 

survey lines and is in the top north end of the Citronelle oil field. The sensors were buried 
at each measurement point, and the recording duration for each set was set at 39.06 s. The 
sampling frequency was set at 512 Hz.

Background measurement was deployed prior to the start of CO
2
 injection in the field. It should 

be noted that in order to restore the pressure in the well to the level suitable for production, 
water injection at the well has been conducted since 2007. CO

2
 injection in well No. B-19-10 #2 

started in December 2009 and at the rate of 46.5 tons/day. The CO
2
 injection was stopped from 

December 30, 2009 to January 26, 2010, due to the triplex pump not being able to maintain the 
injection pressure. After a thorough problem detection process, the pumping was resumed 
and, as a result, the average injection rate of CO

2
 was stabilized at 31.5 tons/day. The CO

2
 injec-

tion history in short tons until late September 2010 is presented in Figure 5. Final amount of 
CO

2
 injected in the pilot well is about 8036 short tons. The record of well head pressure at Well 

Figure 4. The testing lines at the Citronelle oil field.
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B-19-10 #2 from the beginning of CO
2
 injection to the end of the injection is shown in Figure 6. 

The pressure has been normalized in order to compare it with the normalized stresses at the 
oil-bearing layer quantified based on the geophysical testing results to be presented later.

In the first month of CO
2
 injection, the well head pressure changed from 2400 psig (16,547.4 

kPA) to 3800 psig (26,200.1 kPA). After CO
2
 injection was resumed on January 27, 2010, the range 

of well head is between 3800 psig (26,200.1 kPA) and 4200 psig (28,957.9 kPA). Passive tests were 
conducted at the Citronelle oil field in December 2009 when the start of significant CO

2
 injection, 

Figure 5. Record of CO
2
 injection during Phase II at Well B-19-10#2.

Figure 6. Normalized well head pressure at Well B-19-10#2 during CO
2
 injection with geophysical test data.
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and during steady CO
2
 injection in March 2010, May 2010, and September 2010, respectively. 

Water injection was switched back immediately after CO
2
 injection was completed. In addition, 

measurements were made after CO
2
 injection in November 2010, March 2011, and May 2011, 

respectively. A summary of the monitoring history at the Citronelle oil field is shown in Table 1.

2.2. Injection history analysis

Since the monitoring process involved the three injection stages, namely, water injection 
(pressure building), CO

2
 injection, and post-injection, it is of interest to interpret the results 

according to the stages. For each stage, at least three monitoring tests were performed. Hence, 
there are three test group data. To compare the field pressure responses at different injection 
stages, statistical parameters have been adopted including average shear-wave velocities and 
coefficient of variations.

Statistical analysis is performed first by determining the averaged shear-wave velocities at 
different strata for each test group along each of the test lines. The average wave velocities are 
defined as [27]:

  θ =   
1
 __ 

N
    ∑ 

i=1

  
N

     x  
i
    (4)

where θ represents the average wave speed,   x  
i
    represents the wave speed data at the corre-

sponding depth for each test group, and  N  represents the number of tests in each test group. 
After calculating the average shear-wave velocities, the standard deviations, α, of the cor-
responding data are determined as:

  α =  √ 

___________

    
1
 __ 

N
    ∑ 

i=1

  
N

      ( x  
i
   − θ)    2     (5)

Test no. Injection Monitoring date

1 Water 8–10 October 2008

2 Water 21–22 January 2009

3 Water 15–16 June 2009

4 CO
2

9–10 December 2009

5 CO
2

11–12 March 2010

6 CO
2

18–19 May 2010

7 CO
2

8–9 September 2010

8 Water 17–18 November 2010

9 Water 16–17 March 2011

10 Water 17–18 May 2011

Table 1. Summary of monitoring history at the Citronelle oil field.
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The average and standard deviation values are then used to compute the coefficient of varia-
tion (COV), C

v
:

   c  
v
   =   

α
 __ θ    (6)

The coefficient of variation illustrates how far a set of numbers deviates from the average 
value—an indication of the consistency of the layer responses as well as the repeatability of the 
measurements. The CO

2
 injection process instigated a continuous stress building within the 

oil-bearing layer at the Citronelle oil field. Due to the presence of the anhydrite layer, the CO
2
 

remains within the oil-bearing rock and will slowly flow into the oil-bearing rock resulting in 
the stress built-up dissipating throughout the oil-bearing layer. As long as the anhydrite retains 
its integrity and that there are no break-throughs within the rock medium, the pressure at the 
oil-bearing layer should be consistently higher than in the strata above. Thus, the stress wave 
velocity at the oil-bearing layer should be higher than in the strata above. The COV and average 
values of the wave speed profile will be used to determine the stress state in the strata system. 
Table 2 lists the C

v
 values from both Line 1 and Line 2 tests. Table 2 shows that the C

v
 values for 

each layer are reduced during the injection history, indicating a stressing of the strata.

The C
v
 values of the wave speed at the oil-bearing layer is an indication of the stabilization 

of the strata pressurization process: as the oil-bearing layer pressure is building up, a larger 
C
v
 value is expected, which dropped later indicating stable pressure in the oil-bearing rock. 

Layer Before CO
2
 injection During CO

2
 injection After CO

2
 injection

Line 1 Line 2 Line 1 Line 2 Line 1 Line 2

1 0.05 0.06 0.03 0.07 0.02 0.05

2 0.06 0.06 0.09 0.11 0.01 0.07

3 0.08 0.07 0.06 0.18 0.02 0.03

4 0.16 0.08 0.05 0.20 0.01 0.05

5 0.15 0.08 0.10 0.17 0.03 0.04

6 0.13 0.05 0.14 0.15 0.03 0.04

7 0.16 0.07 0.14 0.14 0.01 0.03

8 0.14 0.03 0.15 0.14 0.02 0.01

9 0.13 0.05 0.11 0.11 0.01 0.03

10 0.17 0.05 0.04 0.09 0.01 0.03

11 0.16 0.06 0.05 0.06 0.01 0.04

12 0.08 0.05 0.07 0.06 0.002 0.02

13 0.04 0.06 0.05 0.03 0.004 0.003

14 0.07 0.03 0.06 0.05 0.01 0.001

Table 2. Summary of C
v
 values for results from both Line 1 and Line 2 tests.
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Table 2 shows the C
v
 values for each layer and each survey line. The table shows that in all 

cases, C
v
 values are less than 0.2 indicating that the strata responses are slow, and consistent 

and that there are no drastic events occurring during the whole injection process. The C
v
 val-

ues also are consistently dropping during the three stages indicating that the pressurization is 
gradually stabilized during the process.

Careful evaluation of Table 2 indicates that there is a difference between the results from both 
survey lines: for the after CO

2
 injection stage, it is seen where the C

v
 value is shown to be 0.01 

for Line 1 and the value is 0.001 for Line 2 (Layer 14). This is an order of magnitude different. 
For the before CO

2
 injection (initial water pumping) stage, where the C

v
 value is 0.07 for Line 

1 and is 0.03 for Line 2. This observation may be detrimental considering the experimental 
resolution of the geophysical testing method, which is discussed below.

3. Geophysical response analysis and interpretations

3.1. Shear-wave speed determination

As mentioned earlier, each test line has 24 measurements points representing a total of 24 
channels in data processing. To process the shear-wave velocity data, SeisOpt ReMi software 
was used [26]. The procedure of stress wave signal processing involves first a wave field 
data transformation (ReMi Vspect module was used), which converts the time domain data 
acquired in the field to frequency domain. An interactive Rayleigh-wave dispersion modeling 
was then conducted with the outcomes is 1-D shear-wave velocity models. At the end, the 
dispersion curves were generated [28].

Figure 7 shows the typical averaged shear-wave velocity profiles as a function of depth (mea-
sured from Line 1 and Line 2). The shear-wave velocity curve was obtained based on the 
averaging of the test data sets during each test stage and is shown to have a total of 14 strata. 
The 14th strata correspond to the measurements of shear-wave velocity to depths at around 
12,500 ft. (3810 m), which is about the oil-bearing Donovan sand. As described earlier, most 
of the injection pressures were retained within the oil layer at around 12,500 ft. (3810 m). 
Hence, the test results confirmed about the pressurization of the Donovan sand and that the 
anhydrite layer has maintained its leak prevention integrity.

In order to compare the changes of the shear-wave velocity obtained from the geophysical 
tests, the data were divided into three groups: before CO

2
 injection, during CO

2
 injection, 

and after CO
2
 injection. Figures 8–10 show the shear-wave velocity curves from both Line 1 

and Line 2 tests for the three stages: Figure 8 shows the results of average shear-wave veloc-
ity versus depth curve for test 1, test 2, and test 3 (before CO

2
 injection) for Line 1 and Line 

2, respectively. Error bars are used to indicate the deviation of shear-wave velocity in the 
measurements of each group.

Both Line 1 and Line 2 show that different strata experienced different stress histories: for 
Line 1, the top seven layers (approximately at 6000 ft. (1829 m) depth) are shown to experience 
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initial increase in wave speed (during CO
2
 injection) and then decreasing wave speed (after 

CO
2
 injection); the trend reversed after 6000 ft. (1829 m) depth showing increasing wave 

speeds for both during and after CO
2
 injections; and finally, the oil-bearing layer [around 

12,000 ft. (3658 m) depth] showed slowly decreasing wave speeds. Line 2, on the other hand, 
showed an increase decrease trend up to 3000 ft. (914 m) depth; followed by an increasing 
pattern above the oil-bearing layer; and decreasing wave speeds at the oil-bearing layer. The 
explanation of the response history is that the oil-bearing layer experienced strata expan-
sion due to the injection pressure and the inability of oil to escape quick enough from the 
oil sand; hence, the pressure is transferred to the strata above the oil-bearing layer (mostly 
salient saturated material), which experienced stressing (increasing wave speed). This trend 
reversed for the upper layer above the salient layers, which is dependent upon the balancing 
act of the weight of the overburden and the upward lifting of the injection pressure.

Figure 9 shows the results of average shear-wave velocity versus depth curve for test 4, test 
5, test 6, and test 7 (during CO

2
 injection) for Line 1 and Line 2, respectively. Wave speeds 

results of the last four layers shown in Figure 9 are higher than the corresponding results 
shown in Figure 8. The increase in shear-wave velocity is associated with CO

2
 injection, which 

caused an increase in the effective stresses in layers above the injection zone (pressurization). 
Figure 10 shows the results of average shear-wave velocity versus depth curve for test 8, 
test 9, and test 10 (after CO

2
 injection) for Line 1 and Line 2, respectively. The deviations on 

the graphs shown in Figure 10 are significantly smaller when compared to Figures 8 and 9 

indicating that the strata pressurization has stabilized.

Figure 7. Average shear-wave velocity profiles versus depth from sensor survey Line 1 (left) and Line 2 (right), September 
8–9, 2010.
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It is important to point out that the test line selection is constrained by available monitoring 
sites and is selected in order to help determine possible directional effects of the CO

2
 migra-

tion at the oil field. Hence, the first test line would determine the likely CO
2
 migration in 

the north-east direction, and the second test line would determine the flow in the northeast 
and southwest directions. When comparing the average velocity at the oil-bearing layer, the 
results from Line 1 indicates that the wave speed has reached 12,392 ft./s (3,777 m/s) dur-
ing water injection, 11,365 ft./s (3,464 m/s) during CO

2
 injection, and has dropped slightly to 

11,109 ft./s (3,386 m/s) after the CO
2
 injection. This indicates that there is a possibility that the 

supercritical CO
2
 may be migrating slowly in the north-east direction.

Figure 9. Average shear-wave velocity profile versus depth before CO
2
 injection, average of test 4, 5, 6, and 7 (Line 1 and 

Line 2).

Figure 8. Average shear-wave velocity profile versus depth before CO
2
 injection, average of test 1, test 2, and test 3 (Line 1  

and Line 2).
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On the other hand, Line 2 has wave velocity reaching 12,667 ft./s (3,861 m/s) during water 
injection, 11,570 ft./s (3,527 m/s) during CO

2
 injection, which has dropped to 11,236 ft./s 

(3,425 m/s) post CO
2
 injection. Again, there is a possibility of mobilization of oil/CO

2
 flow—a 

likelihood of enhanced oil production in the months to come.

It is noticed that the strata pressure above the oil-bearing layer is slow in building up as it 
takes time for the pressure to dissipate into the upper strata. To study this effect, the wave 
speed responses above the oil-bearing layers are studied: it is shown for Line 1, the wave speed 
above the oil-bearing layer has increased from 8144.6 ft./s (2,482.5 m/s) initially, to 9512.9 ft./s 
(2,899.5 m/s) during CO

2
 injection, and finally, increased to 9963.7 ft./s (3,036.9 m/s) post-injec-

tion. This indicates a slow building up of pressure. For Line 2, the wave speed immediately 
above the oil-bearing layer has increased from 8207.6 ft./s (2,501.7 m/s) before injection to 
9664.0 ft./s (2,945.6 m/s) during CO

2
 injection, and finally, to 9935.8 ft./s (3,028.4 m/s) post-

injection. The interpretation of this observation is that the oil pressure is pushing against the 
strata above the Donovan sand and has resulted in the strata pressurization. It is concluded 
that the pressure build-ups are almost identical in both directions indicating uniform build-
up of pressures at all directions at the Citronelle oil field.

3.2. Discussion on geophysical sensing for CO
2
 injection studies

Geophysical testing has been applied to projects similar to the Citronelle field study for the 
purposes of determining production induced stress changes in the oil-bearing strata and site 
anisotropy changes. In most high-resolution seismic detections, the tests are performed with 
controlled excitations such as the use of explosions, seismobile vibrations, or gun shots. The 
results have sensitivities that can indicate possible migration of injected fluids. However, 
the interpretation of strata stress changes based on wave speed changes is inherently chal-
lenging, as a result of the constrained temporal and spatial resolutions. As a result, the 

Figure 10. Average shear-wave velocity profile versus depth during CO
2
 injection, average of test 8, test 9, and test 10 

(Line 1 and Line 2).
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velocity change ratio function   (∆ v / v)   has been suggested as a means to establish the detection 
of geomechanical condition changes due to oil production or fluid injection [29] and has 
been successfully implemented in a study to synchronized field measurements to localized 
microtremors [30].

To determine the stress wave speed changes, the velocity change functions are computed for 
before, during and after CO

2
 injection:

  (7)

  (8)

  (9)

Figure 11 shows   (∆ v / v)   for different stages of the injection process at Citronelle field indicating 
different strata stress plays: for both Line 1 and Line 2, it is shown that the stress waves have 
reduced in the injection layer (Layer 14) after CO

2
 injection indicating that the CO

2
 gas may 

have migrated at this stage. The velocity change functions for Layers 8–10 (corresponding to 

Figure 11. Velocity change functions vs. strata layers for (a) injection histories for Line 1; (b) injection histories for Line 2 
and (c) injection histories for Line 1 and Line 2.
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salient layer) are negative, most likely indicating a reduction in effective stress. Following 
Eq. (1), this may be interpreted as an increase in pore water pressure in the salient formation.

The last figure in Figure 11 shows a comparison between Line 1 and Line 2 using Eq. (9). This 
figure shows that the two trends are in consistent in general and that both show the same 
trend of velocity increase right above the oil production strata (which shows negative velocity 
change functions). This further enhances the interpretation that the stress within the injection 
may be reduced due to migration of CO

2
 plum.

A reduction of the strata pressure (shear-wave velocity) could mean a likely leak occurs 
within the system, which has not been identified at the Citronelle field. The shear-wave 
velocities at the Donovan oil-bearing layer are normalized by their average value and are 
plotted against the normalized well head pressure in Figure 6. Assuming the shear-wave 
velocity is a good representation of the stress level within the oil-bearing stratum, the well-
fitting of the two sets of data represents that the geophysical testing method has accurately 
quantified the stresses within the reservoir.

4. Conclusions

Carbon sequestration through injection into a depleted oil field is an effective method to 
reduce atmospheric CO

2
. However, proper monitoring of the CO

2
 injection process is essen-

tial in order to ensure the geomechanical stability of the storage reservoir and to minimize 
risks of potential geohazard to the terrestrial and sub-terrestrial environments. This chapter 
reports the use of a passive microseismic sensing technique to monitor the CO

2
 injection 

process at the Citronelle oil field, Alabama. The ability of the passive DoReMi technique to 
monitor the CO

2
 sequestration process in the heterogeneous oil reservoir is demonstrated 

through analysis of the wave speed profiles indicating that there are strata stress build-ups 
during and after the injection of CO

2
, which resulted in the pressurization of the Rodessa 

oil-bearing layers. Clear demarcation of the shear-wave velocity profile is shown for before, 
during, and after the CO

2
 injection in the field. The detection of geomechanical deformation 

within the overburden of the reservoir is important for monitoring the long-term CO
2
 stor-

age—continued monitoring may provide information on possible reservoir breakthroughs 
and possible pathways for CO

2
 leakage.

The COV value associated with the shear-wave velocity changes is suggested as a measure of 
the conditions at the oil field and is observed to drop in value during the CO

2
 injection pro-

cess, indicating that the stress state in the oil-bearing layer has reached a stable state. Thus, the 
COV values can be used as an indication of oil field stability during the CO

2
 injection opera-

tion and have the potential for long-term monitoring of the strata stress change throughout 
the field operations. Further studies are needed to develop the COV value into risk index that 
can be used to indicate geohazard. The strata stressing is especially important to the City of 
Citronelle, where the oil wells (potential CO

2
 leak sites) are in close vicinity to humans and 

livestock. Continued geophysical monitoring of the strata stress changes can help mitigate 
potential geohazards due to the CO

2
 injection operation.
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