
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 6

Sol-Gel Films: Corrosion Protection Coating for
Aluminium Alloy

Evelyn Gonzalez, Nelson Vejar, Roberto Solis,
Lisa Muñoz, Maria Victoria Encinas and
Maritza Paez

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79712

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Evelyn Gonzalez, Nelson Vejar, Roberto Solis, 
Lisa Muñoz, Maria Victoria Encinas 
and Maritza Paez

Additional information is available at the end of the chapter

Abstract

Aluminum alloys used in aeronautical industry are susceptible to corrosion. The solu-
tion to this problem is base chromate materials, which have been heavily regulated and 
restricted. The development of alternatives begins in the 1970s and the 2000s, where some 
potential methodologies were established. The sol-gel process is one of these methods, in 
which thin oxide layers are deposited on the metal substrate. An important aspect is the 
fact of possible combinations among types of oxides and the incorporation of an organic 
compound to improve the performance of the films; moreover, this allows the addition 
of inhibitors and nanomaterials, making this method an interesting and versatile way to 
obtain a coating. In this chapter, we will describe the importance of the use of coating 
synthesized via sol-gel in the corrosion protection of metal surfaces. The advantages and 
disadvantages of using modified sol-gel polymer films and hybrid system coatings will 
also be discussed, as well as the methodologies for the chemical characterization and the 
feasibility of evaluating the mechanical properties of the coatings.

Keywords: sol-gel coating, aluminum alloy, hybrid, corrosion, biocorrosion

1. Introduction

The 2xxx aluminum alloys are widely used in the aircraft industry due to their high specific 
strength and lightweight [1]. These alloys contain elements, as copper, used to improve their 

mechanical properties. The presence of this element, together with others of lower content, 

and the history of associated thermal treatments, promotes the formation of some copper-rich 
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sites, known as intermetallics. Unfortunately, the heterogeneous microstructures of interme-

tallic make 2024 alloy become more susceptible to pitting corrosion in the media containing 
chloride ions, due to the formation of microscopic galvanic couples [2].

Metallic corrosion occurs because of chemical reactions between the metal surface and the 

environment, changing the metal over its original ore. To prevent the beginning of localized 

corrosion processes and to extend the service life, in the aircraft industry, the most common 

practice is to avoid the direct contact of the electrochemically active matrix with the surround-

ing environment by applying a protective coating system [3].

The traditional surface passivation treatment for aluminum alloy is conversion coating, which 

is produced in two steps: (i) dissolution of the base metal through reaction with the pas-

sivating solution and (ii) precipitation of insoluble compounds, a layer of corrosion product 

capable of resisting further chemical attack [4]. Chromate conversion coatings, typically gen-

erated from mixtures of soluble hexavalent chromium salts and chromic acid, participate in 

oxidation-reduction reactions with aluminum surfaces, precipitating a continuous layer of 

insoluble trivalent chromium and soluble hexavalent chromium compounds [5].

Corrosion protection occurs as hexavalent chromium leaches into defect sites, forming dense, 

insoluble trivalent chromium products. Chromate conversion coatings comparatively promote 

very good adhesion of organic coatings and offer as a whole system excellent corrosion protec-

tion [6]. The hexavalent chromium-containing compounds used in chromate conversion coatings 

are known to be carcinogenic and generally regarded as very hazardous soil and groundwater 

pollutants. Stricter environmental regulations have mandated the near-term removal of Cr(III)-

containing compounds from corrosion inhibiting packages used for the protection of aluminum-

skinned aircraft. Therefore, the need for the development of protection process exists, following 

nontoxic, chromium-free and environmentally friendly materials and protocols.

Several techniques are used for the deposition of coatings on metals; these methods include 
physical vapor deposition (PVD), chemical vapor deposition (CVD), electrochemical depo-

sition, plasma spraying, and sol-gel process. The sol-gel process has emerged as a versatile 

method for preparing a host of oxide materials to protect the metal surface [7]; moreover, sol-
gel materials are candidates as it is possible to form highly adherent, chemically inert films. In 
comparison with other deposition technologies, sol-gel technics offer several potential advan-

tages, such as (i) preparation in room temperature, (ii) diverse and complex system, (iii) cured 

treatment at relative low temperature, and (iv) considered as a “green method” [8]. Thin films 
may be readily prepared from water-based systems, resulting in low volatile organic com-

pound (VOC) content materials and processes. Instead, the primers and topcoats have VOC 

contents of 340 and 420 g/l, respectively, in comparison with the aqueous sol-gel solutions suit-

able for spray coating on aluminum substrates, which have a VOC content of 100–200 g/l [9]. 

On the other hand, the method allows to obtain thin films of sub-micrometer thickness with 
high purity in multiple combinations. By forming dense coatings, sol-gel films act as barriers 
for diffusion of aggressive species, such as chlorine and oxygen, blocking the electron transfer 
of metal surface to and from the environment. Moreover, the flexibility of the sol-gel process 
also permits the incorporation of corrosion inhibiting compounds, thereby providing another 

mechanism for corrosion protection. These characteristics lead to the possibility of forming 
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environmentally compliant coatings capable of improving corrosion resistance without the 

use of metal chromates or the generation of liquid hazardous waste products [6].

The anticorrosion behavior of coating is studied using electrochemical methods, which allow 

to obtain the susceptibility of metal to be corroded. The most important technics used are 

polarization curves and electrochemical impedance spectroscopy.

In the following topics, we will describe the methodology to obtain coating from oxide species 

using sol-gel technics. Moreover, the diversity and complex system of hybrid coating will be 

reviewed. In this way, the advantages and disadvantages of using modified sol-gel polymer films 
for the generation of smart coatings will be discussed also. Finally, the chemical characterization 

and the feasibility of evaluating the mechanical properties of the coatings will be analyzed as well.

2. Synthesis and deposition of sol-gel coatings

The sol-gel process can be described as the evolution of an oxide network by continuous 

condensation reactions of molecular precursors in a liquid medium [10]. Two ways to pre-

pare sol-gel coating have been proposed: the inorganic method and the organic method. The 

inorganic method involves the evolution of networks through the formation of a colloidal 

suspension (usually oxides) and gelation of the sol (colloidal suspension of very small par-

ticles (1–100 nm)) to form a network in continuous liquid phase. But the most widely used 

method is the organic approach, which generally starts with a solution of metal/metalloid 

alkoxide precursors, M(OR)n, in an alcohol or other low molecular weight organic solvent, 

where M can represent different elements such as Si, Ti, Zr, Al, Fe, B, etc. and R is typically an 
alkyl/allyl group. Sol-gel processing proceeds in several steps which will be discussed later:  

(i) hydrolysis and condensation of the molecular precursors and formation of sols, (ii)  gelation 

(sol-gel transition), (iii) aging, and (iv) drying [11].

2.1. Hydrolysis and condensation

In the sol-gel process, hydrolysis and condensation are equilibrium reactions and can proceed 

simultaneously once the hydrolysis reaction has initiated. The reaction mechanisms for acid 

or base catalysis are very different and have to be considered separately [12]. The pH is an 

especially important parameter to control the morphology of coatings. At intermediate pH, 

the reaction rate of condensation is proportional to the concentration of the OH− ions. At 

pH lower than about 2, the silicic acid species are positively charged, and the reaction rate 

of the condensation is proportional to the concentration of H+. While under strong alkaline 

conditions, the solutions contain mainly anionic species. For this reason, the rate of Si─O─Si 

cleavage or redissolution of particles is high at alkaline pH.

Under acidic conditions, the oxygen atom of a ≡Si─O−, ≡Si─OH, or ≡Si─OR group is protonated 

in a rapid first step. A good leaving group (water or alcohol) is thus created. In addition, elec-

tron density is withdrawn from the central silicon atom, rendering it more electrophilic and thus 

more susceptible to attack by water (in hydrolysis reactions) or silanol groups (in condensation 
reactions).
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Under basic conditions (Figure 1), the reaction proceeds by nucleophilic attack of either an 
OH− (in hydrolysis reactions) or a ≡Si─O− ion (in condensation reactions) to the silicon atom 

with an SN
2
-type mechanism. The entering OH− or ≡Si─O− group is formed by deprotonation 

of water or a ≡Si─OH group. Under strong alkaline conditions, the Si─O─Si bonds can be 

cleaved again by OH−. Inductive effects of the substituents attached to a silicon atom are very 
important, because they stabilize or destabilize the transition states or intermediates during 

hydrolysis and condensation. The electron density at the silicon atom decreases in the follow-

ing order: ≡Si─R` > ≡Si─OR > ≡Si─OH > ≡Si─O─Si.

For acid catalysis, the electron density at the silicon atom should be high since the positive 

charge of the transition state is then stabilized better. Therefore, the reaction rates for hydro-

lysis and condensation under acidic conditions increase in the same order as the electron 

density. For base catalysis, a negatively charged intermediate must be stabilized.

Therefore, the reaction rates for hydrolysis and condensation increase in the reverse order of 

the electron density.

2.1.1. Gelation, aging, and drying

During the gelation, the colloidal particles and condensed species link together to become a 

three-dimensional network and the viscosity increases sharply. Physical characteristics of the 

gel network will depend greatly upon the size of particles and extent of cross-linking prior 

to gelation [13]. Aging of the prepared sol-gel prior to application on the metallic substrate 

also affects strongly the corrosion protection properties of the resulting coatings. Aging of the 
sol can promote the condensation reactions of the precursors, including formation of further 

crosslinks and increasing the viscosity of the sol-gel, which can eventually lead to the forma-

tion of thick coating with a high defect density [14]. During drying, loss of water, alcohol, and 

other volatile components takes place. The evaporation of the liquid from a wet gel generally 

proceeds in more than one stage, where the liquids flow through the polymer evolving to a 
stable rigid condition, and where the effect of the surface tension on the mechanical properties 
of the final coating, is also considered [15].

Two processes are important for the collapse of the network. First, the slower shrinkage of the 

network in the interior of the gel body results in a pressure gradient that causes crack. Second, 

larger pores will empty faster than smaller pores during drying; that is, if pores with different 

Figure 1. General mechanisms of synthesis sol-gel catalyzed (a) acid, and (b) base conditions.
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radii are present, the meniscus of the liquid drops faster in larger pores. The wall between 

pores of different sizes is therefore subjected to uneven stress and crack. Low-temperature 
drying is normally employed for drying of hybrid sol-gel coatings entrapping organic com-

pounds. Although compact crack-free films can be obtained, room temperature cured sol-gel 
coatings exhibit higher water sensitivity compared to those cured at higher temperatures. 

Higher cure temperatures (up to 200°C) promoting condensation reactions and formation 

of dense hybrid coating improve the barrier properties. By controlling the aging and drying 

conditions, further pore size and mechanical strength control may be achieved.

Despite the fact that the most used alkoxides are the silicon-type in sol-gel coating synthesis, 

it is pertinent to make a brief mention about the transition metal alkoxides.

There are two important differences between silicon and transition metal alkoxides that have to 
be considered when we want to synthesize a sol-gel coating [16]: (i) metals are more electroposi-

tive (Lewis acidic) than silicon and therefore more susceptible to a nucleophilic attack and (ii) 
the preferred coordination number is higher than their valence. The increase of the coordination 

number beyond the valence is reached by interaction with any nucleophilic (Lewis basic) entity 
in the system. When we compare SiO

2
 and TiO

2
, both central atoms are in the IV oxidation state. 

However, silicon is always four coordinated (tetrahedral SiO
4
 building blocks) while titanium in 

rutile is six coordinated (octahedral TiO
6
 building blocks). The mechanisms of condensation reac-

tions of metal alkoxides are similar to those of silicon alkoxides in a sense that an M─OH group 

undergoes nucleophilic attack by another metal atom. Due to the higher propensity of metal 
atoms to interact with nucleophilic agents, base or acid catalysts are not needed in most cases.

When a silica network grows, the question that decides the morphology of the obtained 

coating is whether condensation occurs preferentially at the end of chain of corner sharing 

SiO
4
 tetrahedra or at a central atom. For transition metals, this issue is more complicated and 

hardly understood in detail in most cases. An additional difference between metal alkoxide 
and silicon alkoxide-driven sol-gel process is the morphology of the final material. While in 
the silicon-based sol-gel process only amorphous materials are produced, the metal alkoxides 

can form crystalline compounds.

2.1.2. Considerations

Two points are considered by the time of synthesis of sol-gel coating, alkoxy group/H
2
O ratio 

(Rw) and solvent. Alkoxides are employed as precursors for the sol-gel process, as mentioned 

above. In the case of silicon, the most prominent alkoxides are tetramethoxysilane (TMOS) 

and tetraethoxysilane (TEOS) (Figure 2) [10]. Both precursors are liquid under standard con-

ditions, and TMOS shows a faster hydrolysis reaction compared to TEOS but, at the same 

time, generates methanol, which is avoided for its toxicity. The application of these precursors 

in the sol-gel process would lead to a three-dimensional network and finally, after heating, 
to a coating. Considering that alkoxides must first be hydrolyzed before condensation reac-

tions can take place, the hydrolysis rates of alkoxysilanes are influenced by both the inductive 
effects and steric factors. Any branching of the alkoxo group or increasing of the chain length 
lowers the hydrolysis rate of the alkoxysilanes. It means that the reaction rate decreases in the 

order Si(OMe)
4
 > Si(OEt)

4
 > Si(O``Pr)

4
 > Si(O`Pr)

4
.
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The overall reaction for sol-gel processing of tetraalkoxysilanes implies that two equivalents 

of water (Rw = 2) are needed to covert Si(OR)
4
 if no condensation takes place. Increasing the 

water proportion generally favors the formation of silanol groups over Si─O─Si groups. The 

Rw, together with the kind of catalyst, strongly influences the properties of the silica gels [17].

A solvent may be necessary to homogenize the reaction mixture of alkoxide-based systems, 

especially at the beginning of the reaction. Polarity, dipole moment, viscosity, and protic or 

non-protic behavior of the solvent influence the reaction rates and thus the structure of the 
sol-gel coating. Polar and particularly protic solvents (H

2
O, alcohols, etc.) stabilize polar spe-

cies such as (Si(OR)
x
(OH)

y
)n by hydrogen bridges. The latter generally play a very important 

role in sol-gel systems. Nonpolar solvents (dioxane and tetrahydrofuran) are sometimes used 

for organotrialkoxysilanes (R`Si(OR)
3
) or incompletely hydrolyzed alkoxide systems [17].

2.2. Application techniques of the sol-gel coatings

A sol-gel coating can be applied to a metal substrate through various techniques, such as dip 

coating and spin coating, which are the two most commonly used coating methods. Spraying 

[18] and electrodeposition [19] also emerged recently and could be the major sol-gel coating 
application methods in the future. In both methods, spin coating and dip coating, the sol-gel is 

directly deposited onto the support. The condensation reaction can also occur between silanol 

and hydroxyl groups of the metal (obtained by the activation of the surface with bases), lead-

ing to the covalent bonding of silane to the surface: ─SiOH + HO-surface → ─Si─O-surface  

+ H
2
O (1).

It is generally accepted that during the sol-gel process, the sol precursor first hydrolyzes, and 
then, the hydrolyzed species are adsorbed onto the surface undergoing cross-linking to form 

a continuous film.

2.2.1. Spin and dip coating

The production of thin films by spin coating was initially reported by Ogawa in the 1996 [20]. 

Among other techniques, spin coating is the most easily applicable one for obtaining uniform 

thin layers on flat surfaces [21]. Experimentally, a small amount of the coating material is 

deposited onto the center of the support. Subsequently, the support is rotated at high speed 

in order to spread the coating material by the centrifugal force. In general, the higher the rota-

tion speed, the thinner the film. Therefore, by selecting the appropriate spin rate, it is possible 
to modulate the film thickness [21].

Figure 2. Examples of some precursors commonly used in sol-gel coatings.
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Besides the very interesting results obtained and the very good performances of this simple 

deposition technique, spin coating possesses some drawbacks concerning the size and shape 

of the substrates. In fact, as reported by Tyona [22], large supports are difficult to be homoge-

neously deposited by this method. Additionally, in a typical spin-coating deposition, minor-

ity of the 5% of the starting solution is deposited successfully onto the substrate forming 

the thin film, whereas the complement percentage is lost due to the rotation of the spinner. 
Further, the final morphology of the coated substrate can be influenced by several parameters 
such as spin speed, time of spin, acceleration, fume exhaust, etc.

Dip coating is one of the most convenient methods used in the laboratory and industry to 

deposit films onto a metallic surface with a controlled thickness from a sol-gel solution. This 
method is simple and provides excellent reproducibility [23]. Basically, the method may be 

separated into three important stages: (1) Immersion and dwell time: The substrate is immersed 

into the precursor solution at a constant speed followed by a certain dwell time in order 

to leave sufficient interaction time of the substrate with the coating solution for complete 
wetting. (2) Deposition and drainage: By pulling the substrate upward at a constant speed, 

a thin layer of precursor solution is entrained. Excess liquid will drain from the surface.  

(3) Evaporation: The solvent evaporates from the fluid, forming the as-deposited thin film, 
which can be promoted by heated drying. Subsequently the coating may be subjected to fur-

ther heat treatment to obtain a more dense film [10].

2.2.2. Electrochemical deposition

The electrochemical deposition of sol-gel films provides an alternative for shifting the pH on the 
substrate. In aerated aqueous media, it is well known that by applying cathodic potential, the 

following reactions occur at the electrode surface:

   O  
2
   + 2  H  

2
   O + 4e → 4  OH   −   (1)

  2  H  
2
   O + 2e → 2  OH   −  +  H  

2
    (2)

Both reactions generate OH− ions that increase the interfacial pH near the cathode, which 

catalyzes the sol-gel process facilitating the film formation. There are three advantages of elec-

trodeposition technic: (1) pH varies only close to the cathode, so the stability of the bulk solu-

tion is not affected, (2) the deposition process is controllable by electrochemical parameters, 
and (3) the film deposition is restricted to the conducting part of the surface and controlled by 
the kinetics of the electrochemical process [24].

2.3. Hybrid organic-inorganic sol-gel coatings

In order to overcome the limitations associated with conventional inorganic sol-gel coatings, 

such as brittle oxide films, thicker coatings (>1 μm), crack-free, and relatively high tempera-

tures (400–800°C), the hybrid coatings by the incorporation of organic groups in the inorganic 

sol-gel network have shown good results [24].
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Two different approaches can be used for the incorporation of organic groups into an inorganic 
network by sol-gel processing, namely, embedding of organic molecules into gels without 

chemical bonding (class I hybrid materials) and incorporation of organic groups through cova-

lent bonding to the gel network (class II hybrid materials). Embedding of organic molecules 

is achieved by dissolving them in the precursor solution. The gel matrix is formed around 

them and traps them, and the organic and inorganic entities interact only weakly with each 

other. The inorganic network and the organic network interpenetrate but are not bonded to 

each other [14]. Despite the presence of weak dispersion forces and Van der Waals interac-

tions between organic and inorganic components of such hybrids, the physical bonds are not 

stable enough for long-term applications involving weathering. Formation of strong covalent 

bonds between organic and inorganic components can significantly improve corrosion protec-

tive properties of the hybrid coatings. Very important sol-gel materials are obtained when 

functional or nonfunctional organic groups are covalently linked to oxide networks (class II 

hybrid materials). Silicate hybrids are mostly done by using organotrialkoxysilanes, R`Si(OR)
3
, 

as precursors to sol-gel processing. Nearly any organic group R` can be employed; the only 
requirement is that the group R` must be hydrolytically stable. Since Si─C bonds are hydrolyti-

cally stable, the organic groups are retained in the final material after sol-gel processing.

Different functional groups impart different corrosion protective properties to hybrid coat-
ings. Moreover, the corrosion protective properties of the hybrid coatings dramatically 

depend on the presence, the type, and the number of the reactive groups of the used agent. 

For this reason, organotrialkoxysilanes are typically copolymerized with tetraalkoxysilanes 

or metal alkoxides to obtain the properties characteristic of highly cross-linked networks. 

This allows incorporation of organic groups without lowering the network connectivity 

because one Si─O─Si entity is replaced by Si─R``─Si. The groups R`` can range from simple 

alkylene or arylene groups to more complex entities. The hybrid sol-gel coatings containing 

functional groups show a higher cross-link density and better mechanical properties [25]. Not 

only the nature of organic components but also their content in the hybrid sol-gels plays a 

very important role in the final properties of the hybrid coatings. An increase in the organic 
content of the hybrid coatings leads to the formation of less porous and thicker films appro-

priate for barrier protection of metals. However, a high concentration of organic component 

can lower the adhesion and the mechanical properties of the final coating. So it is impor-

tant to point out that there is an optimum ratio for inorganic-organic components to deliver 

maximum corrosion resistance. The optimum organic/inorganic ratio varies depending on 

the precursors employed and on the coating application technique [26]. Hydrophobic hybrid 

coatings can reduce the kinetics of the corrosion processes by delaying penetration of water 

and other electrolytes toward the metal/coating interface. However, a prolonged exposure of 

the hybrid coatings to water/electrolyte will eventually result in moisture penetration of the 

metal/coating interface. Considering the reversible nature of hydrolysis and condensation 

reactions involved in the creation of the coating, water penetration can promote hydrolysis 

of the bonds formed during condensation reaction resulting in delamination [27]. The final 
film can carry specific organic functions, which can present certain properties, such as good 
adhesion, self-healing, abrasion resistance, scratch resistance, hydrophobicity, etc. Network 

formation is only possible if the precursor used has at least three possible cross-linking sites. 

Both, tetraalkoxysilanes Si(OR)
4
 and trialkoxysilanes (RO)

3
SiR´, possess this ability.
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2.3.1. Sol-gel coatings synthesized in the presence of a performed polymer

This route of synthesis means that the polymer is mixed with the precursors and hydrolysis 

and condensation are started [28]. It is important to determine the best reaction conditions 

to avoid phase’s separation. Therefore, the right choice of solvent is of major significance. 
Typical polymer solvents depending on the functional groups and polarity of the polymers 

are tetrahydrofuran (THF), dimethoxyethane (DME), alcohols (methanol, ethanol, isopropa-

nol, etc.), acetic acid, etc. During sol-gel reaction, alcohols are liberated which can change 

the solvent properties resulting to precipitation of the initially soluble polymers, leading to 

heterogeneous films. Therefore, the choice of the polymer and solvent is important in this 
synthetic route. Polymers with functional groups can interact with the sol-gel structures, for 

example, by hydrogen bonding, such as alcohols or amines. In many cases, an effective inter-

action between the polymer and the inorganic structure results in a homogeneous distribu-

tion of small inorganic structures in the polymer matrix.

2.4. Doping of the sol-gel coatings

Despite the effective barrier protection of metallic substrates by hybrid sol-gel coatings, these 
systems are prone to fail because of water ingress into the films. For this reason, incorporation 
of active species such as binding agents and corrosion inhibitors, which add active protection 

mechanisms to the system, can improve the protective properties of the hybrid sol-gel coatings. 

Thus, incorporation of nanoparticles such as silica, ceria, zirconia, alumina, titania, and zeolite, 

as mechanical reinforcement, were the first proposed approaches for modification of hybrid 
sol-gel coatings [29]. The improved mechanical properties, increased thickness, and lower crack 

sensitivity achieved by addition of a controlled amount of the particles resulted in enhanced 

corrosion protection of the underlying substrate. However, the particle size and surface modifi-

cation have shown to be critical, as agglomeration of the embedded particles promoted by gela-

tion process could lead to coating rupture and deterioration of the coating barrier properties 

[14]. It is important to point out that the critical dopant concentration, which physical/mechani-

cal properties in the coating starts to degrade, must always be considered. Moreover, a strong 

interaction between particle and matrix interfaces is required. Corrosion inhibitors can either be 

added (i) directly to the coating formulation or (ii) immobilized in carriers to reduce the possible 

interactions with the matrix and control release of the inhibitor [30]. In addition, nanoparticles 

not only can be added but also can be formed in situ in the coatings, eliminating some of the 

challenges associated with the strong interfacial forces between matrix and particles [31].

2.4.1. Direct and indirect addition of inhibitors

The most common way of inclusion of corrosion inhibitors into sol-gel systems is mixing 

them with the coating formulation [32]. The most important factor to be considered in such 

systems is the solubility of inhibitor in the corrosive media. While a low solubility of inhibitor 

can lead to a weak self-healing effect due to the low concentration of active agents at damaged 
site, a high solubility will limit prolonged healing effect because of rapid leach out of the 
active agents from coating, producing the coating degradation by blistering and delamina-

tion. Despite the potential drawback of this class of extrinsic self-healing sol-gel coatings, 
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they have been extensively studied for protection of different metallic substrates due to ease 
of preparation. The corrosion inhibitors used can be divided according to their nature into  

(i) inorganic and (ii) organic inhibitors [33]. Some of the most used inorganic inhibitors are the 

rare earth metals and some transition metals such as Ce, La, and Zr which have showed an 
improved anticorrosive performance in the doped hybrid coatings compared to the undoped 

ones [34]. Incorporation of the active Ce ions not only facilitates preparation of dense and 

defect-free hybrid coatings but also increases the protection mechanism via selective leach-

ing of Ce ions to the damage site restoring the coating’s protective properties [35]. Organic 

inhibitors prevent corrosion by either increasing the anodic or cathodic polarization resis-

tance of the corrosion cell or retarding diffusion of corrosive agents to the metallic surface 
[36]. However, their inhibition efficiency depends on the chemical composition, molecular 
structure, and affinity of the metal surface. Organic inhibitors such as phosphonic acid, 2-mer-

captobenzothiazole (MBT), 2-mercaptobenzimidazole (MBI), benzotriazole (BTA), etc. have 

been successfully incorporated into sol-gel systems to improve their corrosion protection 

properties by inducing active protection [37]. In several cases, release of organic molecular 

species from the hybrid sol-gel matrix is based on a pH-triggered release mechanism. With 

this method, it is possible to release inhibitors only at damaged areas due to local pH changes.

Although incorporation of corrosion inhibitors into sol-gel coatings is a promising route in 

the development of active corrosion protective hybrid coatings, there are inevitable draw-

backs associated with direct mixing of active agents into coating formulation. Firstly, it is 

quite difficult to control leach out of entrapped inhibitors especially when they are poorly 
soluble within the coating matrix. Secondly, inhibitors can chemically interact with the coat-

ing matrix losing their own activity and lowering the barrier properties of the matrix. A 

probable solution to this problem is the encapsulation of active species or complexing them 

with other chemicals [38]. A quite simple approach for inhibitor entrapment/immobiliza-

tion is based on the complexation of organic molecules with β-cyclodextrin. Cyclodextrins 

are cyclic oligosaccharides that possess a unique molecular cup-shaped structure with a 

hydrophilic exterior and a hydrophobic interior cavity. They are able to form complexes 

with various organic guest molecules which fit within their cavities. Organic aromatic and 
heterocyclic compounds are normally the main candidates for the inclusion complexation 

reaction. 2-Mercaptobenzothiazole (MBT) and 2-mercaptobenzimidazole (MBI) were success-

fully loaded in β-cyclodextrin [33]. In the case of cyclodextrin complexes, incorporation of 

the inhibitor-loaded particles in sol-gel coatings has been more efficient than direct inhibitor 
loading in imparting long-term self-healing function. On the other hand, ceramic particles 

such as silica and alumina can be employed as micro-/nano-containers to immobilize corro-

sion inhibitors. The selected inhibitors can be entrapped on the carriers through controlled 

hydrolysis of the relevant precursors in the inhibitor-containing aqueous solutions [39].

3. Physical-chemical characterization

The proposal of this topic is to show an overview of some methodologies of characterization 

in order to understand the information related to properties of film coating. The most useful 
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and used technics to characterize the sol-gel coating are infrared spectroscopy (IR), X-ray 

photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM).

3.1. Infrared spectroscopy (IR)

Infrared spectroscopy is based on the vibrations of atoms of a molecule. An IR spectrum is 

obtained by passing an IR radiation through a sample and determining what fraction of the 

incident radiation is absorbed at determinate energy. The energy at which any peak in an 

absorption spectrum appears corresponds to the frequency of a vibration of a part of a sample 

molecule. The interactions of IR radiation with matter may be understood in terms of changes 
in molecular dipoles associated with vibrations and rotations [40].

IR technic allows characterize bonds Si─O, Si─Si, and Si─C. Furthermore, this analysis is used 

to determine the presence of active molecules in hybrid sol-gel film which has been modi-
fied using, among others, organic substituent such as hydrocarbon chain (C─H, C─C) [41], 

organic compound [42], and inhibitor [43].

3.2. X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy is an established quantitative method for the determina-

tion of elemental abundance and the assessment of chemical binding [44]. Photoelectron 

production in its simplest form describes a single-step process in which an electron initially 

bound to an atom/ion is ejected by a photon. Since photons are a massless (zero rest mass), 
charge less package of energy, these are annihilated during photon-electron interaction with 

complete energy transfer occurring. The general equation for this process is  hv = BE + KE +  ϕ  
spec

   .  

If this energy is sufficient, it will result in the emission of the electron from the atom/ion as 
well as the solid. The kinetic energy (KE) that remains on the emitted electron is the quantity 
measured. This is useful since this is of a discrete nature and is a function of the electron 

binding energy (BE), which, in turn, is element and environment specific, and ϕspec  is the 
work function of the electron spectrometer, which is usually quite small (< 5 eV) compared 

to BE and KE [45]. It is convenient in surface analysis to measure BE and KE with respect to 

the Fermi level. Since the binding energies of core electrons are different in different atoms, 
XPS is capable to identify the elemental compositions of materials by measuring the KEs of 

their ejected electrons. XPS can detect all the elements except for H and He. In addition, XPS 
is sensitive to the chemical environments of the atoms it detects.

The popularity of XPS stems from its ability to: (a) Identify and quantify the elemental com-

position of the outer 10 nm or less of any solid surface with all elements from Li-U detectable. 
Note: This is on the assumption that the element of interest exists at >0.05 atomic %. (b) Reveal 

the chemical environment where the respective element exists in, that is, the speciation of 

the respective elements observed. (c) Obtain the information above with relative ease and 

minimal sample preparation [45].

In this way, the XPS help in the analysis of sol-gel coating in order to determine the oxide 

state of doped polymer [46], the presence of metal [47], and the bond between metal and 

polymer [6].
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3.3. Scanning electron microscopy (SEM)

A basic SEM consists of an electron gun (field emission type or others) that produces the 
electron beams; electromagnetic optics guide the beam and focus it. The detectors collect the 
electrons that come from the sample (either direct scattering or emitted from the sample), and 
the energy of the detected electron together with their intensity (number density) and location 

of emission is used to put the image together. SEM also offer energy dispersive photon detec-

tors that provide analysis of X-rays that are emitted from the specimen due to the interactions 
of incident electrons with the atoms of the sample [48].

SEM technic allows to characterize the coated metallic surface [49] and determine the thick-

ness of deposited polymer [41].

4. Mechanical characterization

The properties of sol-gel coatings have a strong dependence on the substrate on which they 

have been generated. The requirements for the coating vary depending on the type of sub-

strate, ranging from purely physical (e.g., optical properties), through chemical (e.g., anti-

corrosion properties), to purely mechanical (e.g., resistance to wear). The type of coating 

generated is a direct function of the desired final properties, being able to choose between 
inorganic coatings or hybrid coatings (organic-inorganic).

The main qualities required of any coating generated on a metallic substrate, regardless of its 

application in service, are:

• Homogeneity of the thickness of the obtained coating

• Homogeneity in the chemical composition of the coating, to present the same mechanical 

behavior throughout the sample

• High adhesion to the substrate, guaranteeing structural and mechanical stability over time

The first two requirements are easily achievable with sol-gel coatings. Regarding the adhe-

sion, ceramic coatings obtained following the sol-gel route present a high adhesion to the 

metallic substrates due to the presence of hydroxyl radicals (─OH) on the surface of the latter 
which manage to form a chemical bond between atoms of the deposited gel and atoms of the 

outer surface of the substrate.

Aluminum alloy substrates have been coated with sol-gel to improve their corrosion behav-

ior, using mainly alloys with aeronautical or automotive applications, as well as structural 

interest in the civil field. The surface preparation of the substrates to be coated is usually 
initiated with chemical degreasing. Subsequently, the substrate can be simply coated, or it can 

be subjected to the generation of a certain roughness by roughing or polishing. The coating 
generated by the sol-gel route can be the only protection system, or it can be used in combina-

tion with other systems, such as special paint for aeronautical applications.
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The main characteristics of the sol-gel coatings on aeronautical aluminum alloys are anticor-

rosive and mechanical together with wear behavior.

García-Heras et al. [50] demonstrate the importance of the surface preparation of the substrate 

and the concentration of alkoxide precursor in the anticorrosive efficiency of silica coatings 
manufactured on the 2024 T6 aluminum alloy. Hamdy and Butt [51] demonstrate the effec-

tiveness against corrosion of inorganic silica coatings, starting from TEOS as a precursor, on 

the 6063 aluminum alloy without anodizing and anodizing prior to deposition, as well as the 

influence of the treatment thermal densification. It has been reported that the use of hybrid 
coatings generates, on the one hand, greater coating thicknesses, and in addition, a very adher-

ent surface is formed for the subsequent painting system on the 2024 alloy [52]. The same 

degree of protection as by coating and painting systems has been achieved by Liu et al. [53]. An 

alternative way of generating hybrid coatings is by adding inorganic particles to sol solutions 

of alkoxides with non-hydrolyzable groups [54], although the percentage of added particles 

must be optimized, since an excess means the formation of thicker coatings but with pores, 

favoring the formation of pitting corrosion. The amount of inorganic particles added to the 
sol-gel is not the only determining factor to obtain a good behavior against corrosion, since 

hydrophobic particles generate greater resistance to corrosion than hydrophilic particles [55].

It should be noted that hybrid coatings have greater thickness than inorganic coatings, so 

their effectiveness against corrosion is usually greater. The greater thickness of these coat-
ings is due to the presence of residual internal porosity, generated by the non-hydrolyzable 

organic groups of the structural network of the coating [56]. These pores are closed and are 

not detrimental to the anticorrosive behavior of the coating, although they do significantly 
reduce their mechanical behavior.

Currently, it is sought that the sol-gel coatings on aluminum alloys, in addition to having a 

good corrosion behavior, also have a good mechanical behavior. The mechanical properties of 

the coatings made by the sol-gel route are not easy to determine; the modulus of elasticity, the 
hardness, the adhesion of the coatings to the metallic substrates, and the tribological proper-

ties (wear) are the main properties that have been evaluated in this type of coatings.

4.1. Mechanical properties: determination of modulus of elasticity, hardness, and 

fracture toughness of coatings

Parameters such as modulus of elasticity (E), hardness (H), or fracture toughness must be 

known to anticipate the in-service performance of such coatings. The most used technique 

for the determination of the modulus of elasticity of materials is the tensile test, which is not 

applicable to characterize a coating. The coatings generated by sol-gel have thickness in the 

order of microns, so that the usual techniques of characterization of the hardness of the mate-

rials, hardness or microhardness, apply too much load to the coatings, obtaining the mechani-

cal response of the substrate also. The main obstacle that exists when knowing the mechanical 

properties of the coatings by hardness tests is to avoid the influence of the substrate on the 
results of the test, which leads to perform tests at micro- or nanometric scale, depending on 

the thickness of the covering.
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The microhardness test instruments (micro-durometers) do not allow to apply forces small 

enough to provide penetrations of the order of 10% of the thickness of the coating, necessary 

to avoid the influence of the substrate in the measurements made, an essential factor when the 
coating has small thickness. In addition, the durometers base the determination of the hardness 

in the measurement of the size of the residual footprint left by the penetrator on the surface 

tested, but at such a low load, to achieve low penetration, this residual trace cannot be deter-

mined with sufficient accuracy as to provide acceptable hardness values. As an example, the 
uncertainty associated with the determination, by conventional optical methods, of a diagonal 

measuring 5 μm corresponding to the residual footprint made with Vickers indenter is of the 

order of 20%. This uncertainty increases as the size of the diagonal decreases, being able to 

reach 100% for a size of 1 μm.

This leads to the need of developing new mechanical characterization techniques for thin 

coatings. Among them the most used, and that allows the determination of both E and H, is 

nanoindentation. The nanoindentation technique overcomes the limitation of the measure-

ment of the size of the footprint basing the determination of the hardness (H) and the modu-

lus of elasticity (E) of the material in continuous measurement of the depth of penetration and 

the known geometry of the indentator.

In this technique, the applied load displacement curve inside the material is recorded continu-

ously. In the initial part of the load cycle, at low applied load, the tested material elastically 

deforms, to become plastically deformed at higher loads. If the plasticization of the mate-

rial has taken place during the loading process, the load-displacement data of the discharge 

branch are different from those of the load branch. In this way, a trace is generated on the 
surface of the material tested, because the plastic deformation generated has not been recov-

ered, only the elastic deformation. The Berkovich indentator is the one commonly used in 

nanoindentation tests, because it has a three-sided pyramid geometry in which it is easier to 

achieve a point vertex than with a four-sided pyramid (Vickers), allowing better control of the 
process of indentation.

The nanoindentation tests in this type of coatings are generally carried out by means of a 

nanoindentation module coupled to an AFM equipment, avoiding the mechanical response 

of the substrate. This allows having the resolution of the AFM in the horizontal and vertical 

displacement and therefore carrying out the tests in the selected areas with high precision.

The mechanical properties of the coating, as well as its resistance to corrosion, are also 

modified by the densification temperature used, since it conditions the microstructure 
of the obtained coating, being able to go from an amorphous state to a crystalline state. 

Olonfinjama and collaborators [57] proved the improvement of the mechanical properties 

obtained in mononane and multilayer titania coatings with crystalline microstructure (den-

sification at 500°C) deposited on metal substrates, with respect to obtaining amorphous 
microstructure (densification at room temperature). The results obtained by nanoindenta-

tion at very low load show that the obtaining of crystalline coatings implies a 25% increase in 

the hardness of the coating (1.5 GPa) and an increase of approximately 40% of the modulus 

of elasticity (85 GPa) with respect to the coating values in the amorphous state. This shows 

that by means of the heat treatment at high temperature, the coating has gone from an 
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amorphous initial state to a crystalline structure, beneficial for the mechanical performance 
of the coating. The influence of the thickness of the coatings in the mechanical properties 
of these is null.

By means of thermal treatments at a high-temperature furnace, the densification of the coat-
ings is achieved, although there are other ways to achieve this densification. The influence 
of the densification technique on the mechanical properties of the coating is evident in the 
research carried out by Jämting et al. [58], which densify titania sol-gel coatings by bombard-

ment with hydrogen ions and by heating in an oven. The nanoindentation technique demon-

strates that by bombardment the highest densifications are obtained in the coating in contact 
with the substrate, while densifying in the furnace the greater densifications of the coating is 
achieved in the surface area. The time used in the densification also modifies the mechanical 
properties of the coating, as Lucca et al. [59] confirm in zirconia coatings made by sol-gel and 
coatings by immersion on metal substrates.

The nanoindentation technique was also used to calculate the fracture toughness of coatings 

[60], since the load-displacement curves obtained from the tests make it possible to determine 

the load at which the coating cracks.

Mammeri et al. [61] investigated the mechanical properties of hybrid silica coatings by 

nanoindentation, demonstrating that the test discharge curve does not reflect only the 
elastic properties of the coating but shows the creep induced by the response of the poly-

meric zones of the coating. Therefore, the time in which the discharge is performed must 

be designed to avoid this temporary response of the coating as much as possible, making a 

series of corrections [62] for the calculation of the modulus of elasticity and the hardness of 

the material.

A novel way of obtaining and densifying sol-gel coatings are by using the laser technique [63] 

with which coatings with high values of E and H are obtained, possibly due to the refinement 
by laser densification of the structure of the obtained coatings.

4.2. Adherence: determination of the adhesion of coatings

The usual techniques for determining the adhesion of coatings such as three-point bending 

techniques or the technique of peeling with adhesive tapes lose effectiveness when evaluating 
the adhesion of fine ceramic coatings. This is normally because the failure of these coatings is 
due to cracking, since they are fragile coatings.

Techniques such as nanoindentation or nanoray are being used to determine the adhesion of 

this type of coatings, including coatings obtained by sol-gel. In nanoindentation tests, crack-

ing at the interface is detected in the load-displacement curve since a change in slope occurs 

during the loading process. By means of the nanoray tests, in which the normal load applied 

to the material increases while the indenter moves over the surface of a series of microns, the 

loads can be detected at which the separation between coating and substrate occurs, either 

by acoustic methods, by sudden increase in the coefficient of friction, or by the subsequent 
observation of the scratching track.
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The surface roughness of the substrate and the densification temperature of the coating are 
factors that influence the adherence of the coatings. Xie and Hawthorne [64] show that the 

adhesion of the sol-gel coatings increases with increasing surface roughness of the substrates 

and the densification temperature. When the generated sol-gel coating is hybrid, increasing 
the proportion of the non-hydrolyzable alkoxide increases the adhesion of the coating to the 

substrate [65].

Another way to determine the adhesion between coating and substrate is the use of traction 

tests on pieces joined to a simple overlap using an epoxy base adhesive.

4.3. Tribological properties: weathering

So that the coating can be used in anti-wear applications, it must have thicknesses between 

0, 5, and 10 μm, with which multilayer systems are used when the sol-gel route is chosen to 

manufacture the said coatings. Normally, high temperatures are used for the densification of 
the coating, so it can meet the anti-wear requirements [65]. The temperature must be selected 

considering that the mechanical properties of the substrate do not decrease. This is espe-

cially important when working with substrates of aluminum alloys, since the temperatures 

at which this change in properties occurs are much lower than in the case of titanium alloys 

or carbon steels. The densification temperatures influence the final structure of the coating. 
Thus, high temperatures tend to form crystalline coatings, while low temperatures tend to 

form amorphous coatings.

Sol-gel coatings for anti-wear applications are usually fundamentally inorganic, with the most 

common being those of alumina, zirconia, or silica. The use of hybrid coatings is less wide-

spread, due to the mechanical limitations that often appear in these coatings because of their 

high percentage of porosity. However, the use of modified inorganic coatings is extended, 
either by the addition of lubricating particles that reduce the coefficients of friction or by the 
addition of organic modifiers to the starting sol that generate a decrease in the roughness of 
the coating.

Taktak and Baspinar [66] demonstrated an augment of the wear resistance by increasing the 

crystalline and decreasing of the coefficient of friction. These effects were explained based on 
two concepts: First, the presence of crystalline phase in an amorphous matrix prevents the 

propagation of cracks originated during the wear process, due to the presence of crystalline 

grain boundaries [67]. The presence of crystalline phase in an amorphous matrix increases the 

strength and the fracture tenacity of the material, due to the compression stresses that the said 

phase generates [68].

The doping of hard coatings is another of the widely ways used to improve their mechanical 

or tribological properties [69].

A typical way to evaluate the wear behavior of the coating is through pin-on-disc tests without 

lubrication and at room temperature. Once the tests have been carried out, the wear tracks are 

observed by means of SEM in order to correlate the values obtained after the tests with the 

morphology of the wear tracks.
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5. Conclusions

The coating obtained using sol-gel processing has shown good performance as corrosion bar-

rier in the protection of metal substrate. The versatility along with the “green” methodology 

makes this process an excellent alternative to replace the conventional coating.

The hybrid polymer improves the mechanical properties and allows a better control in the 
preparation of coat. Moreover, the process to obtain the polymer allows the incorporation of 

organic and inorganic compounds. Thus, considering these points, the effort of the scientific 
community is obtaining a “smart coating,” which present multiple properties.
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