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Chapter

Petri Net Models Optimized for
Simulation
Juan-Ignacio Latorre-Biel and Emilio Jiménez-Macías

Abstract

Petri nets and simulation are a modeling paradigm and a tool, respectively,
which may be successfully combined for diverse applications, such as performance
evaluation, decision support, or training on complex systems. Simulation may
require significant computer resources; hence, in this chapter, two Petri net-based
formalisms are analyzed for profiting from their respective advantages for model-
ing, simulation, and decision-making support: a set of alternative Petri nets and a
compound Petri net. These formalisms, as well as the transformation algorithms
between them, are detailed and an illustrative example is provided. Among the
main advantages of these formalisms, their intuitive application for modeling dis-
crete event systems in the process of being designed, as well as the compactness that
may present the resulting model, in the case of a compound Petri net, leading to
efficient decision making, can be mentioned.

Keywords: alternative Petri nets, compound Petri nets, parametric Petri nets,
modeling and simulation, decision support systems

1. Introduction

Simulation can be considered as a tool able to mimic, in an approximated way,
some of the properties and the behavior of a certain system. This system can be real
or imaginary; hence, simulation can imply a significant saving of money and time,
when applied to large and expensive systems, such as manufacturing facilities or road
networks, and when implemented to systems that do not exist, such as in the design
of products or the development of computer games. The purposes for the application
of simulation can be to improve the knowledge of a certain system, to train and
educate, to develop games, or to test certain features of systems, such as safety issues.
However, the main application field of simulation is decision making. In this context,
simulation allows knowing in advance the effects of making certain decisions on a
system of interest. As an outcome of a series of simulations, testing different deci-
sions, it is possible to select the best solution or to provide to a human decision maker
some information on the effects of certain decisions and how these effects are com-
patible with the objectives of the decision process. This chapter will focus mainly on
the simulation applied to the broad field of decision-making support.

1.1 Decision support systems

Our present technological civilization offers many opportunities for the applica-
tion of decision support systems. Decision making is a demanding task in systems
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that show a complex behavior, such as manufacturing systems, supply chains,
hospitals, educative institutions, communication networks, just to give a few
examples.

Decisions made by experts, who base their choices on their intuition and expe-
rience, present evident limitations, since these professionals are scarce resources
and expensive to hire. Additionally, human decision makers may be influenced by
personal affinities and prejudices and they might tend to simplify reality, limiting
the number of feasible solutions to be considered, as well as to skip information that
might be relevant in the decision problem.

One solution to the challenge of decision making in complex systems can be the
development of a decision support system and its application to solve a specific
problem [1]. Different types of decision support systems can be developed for a
variety of complex systems and decision problems. A particular kind of methodol-
ogy for the construction of such support systems is based on the development of a
model of the complex system of interest. This model can be analyzed to deduce
some properties that may be useful to understand the system itself, as well as to
improve it according to the objectives of the decision makers.

1.2 Petri nets in decision support systems

Many complex systems of technological, financial, and social interest can be
considered as discrete event systems [2]. The development of a quantitative model
of a discrete event system requires the use of a certain formal language to describe
it. Petri nets have proven to be very suitable for modeling complex discrete event
systems. A large amount of theoretical results and applications of this formalism are
available in the scientific literature [3–5].

Petri nets, as a formal language, have been used extensively to model success-
fully complex discrete event systems in a broad range of application areas: industrial
manufacturing, food industry, transportation systems, road networks, railway
networks, communication networks, ports, airports, etc.

A Petri net model of a discrete event system can be considered as a mathematical
description of this system. This description contains numbers that quantify certain
features of the original system. Depending on the class of Petri net, considered to
represent the model of the system, the roles these numbers may play are more or
less diverse. For example, an autonomous generalized Petri net would present
numbers that represent the initial marking of the places of the net, as well as the
weight of every arc between places and transitions [6]. A timed Petri net would
present numbers associated to the delay time of firing certain transitions once they
are enabled. A prioritized Petri net may present numbers associated to the priority
in firing any transition involved in effective conflicts. These are just some examples
of the richness of the feasible meaning that a certain number in a Petri net model
can show.

A decision problem, implying a Petri net model of a discrete event system,
involves one or several decision variables, which are usually associated to one of the
numbers of the mathematical description that constitutes the Petri net [7]. The
objective of the decision process is to determine a value for every decision variable
that meets the objectives of the decision makers and the additional constraints the
problem might present [8]. According to this approach, the decision variables can
be called parameters of the Petri net model and they might be the initial marking of
certain places, weight of some arcs between nodes of the net, delay times associated
to a given set of transitions, etc. [9].

The most common parameters of a Petri net, involved in a decision-making
process, are associated to the initial marking of the net and to the weight of the arcs.
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The weight of the arcs of a Petri net is ranked as elements of the so-called incidence
matrices. It is known that the structure of the Petri net model, and hence the
structure of the original system, is represented by means of the incidence matrices,
or the weight of the arcs between nodes of the net. This structure is, somehow, the
part of the model that remains unchanged, when the Petri net evolves.

Furthermore, the dynamics of the Petri net is described by the changing marking
of the net, as a consequence of firing a sequence of transitions. In fact, it is said that
the places, which hold the tokens of the marking, are the state variables of the
discrete event system, and their values are the marking at a given frame in the
evolution of the net.

As a consequence, a decision problem related to the operation of a system, such
as specifying the number of resources a certain production in a manufacturing
facility would require, is likely to involve Petri net with parameters in the initial
marking of certain places [10]. These parameters can be called marking parameters.
Moreover, a decision problem involving the design of a new system or a significant
redesign of an existing one is probably related to a Petri net containing parameters
in the incidence matrices, which can be called structural parameters [11]. The
former is a relatively common problem in the scientific literature, while the latter is
a much scarcer case. In fact, the design of a discrete event system is, commonly, a
much more difficult problem than its mere operation. Not in vain, the design of a
discrete event system can be carried out solving in parallel the problem of operating
it, in order to obtain from the designed system its maximal “benefit.”

1.3 Simulation as a tool for decision making

One group of methodologies to solve decision problems associated to Petri net
models is based on simulation [12]. This approach has been successfully applied to a
diversity of case studies described in the literature. Basically, the use of simulation
in conjunction with a Petri net model may imply the following steps:

a. Select one solution to the decision problem. This step can be carried out by
intuition, randomly, using a heuristic or metaheuristic algorithm, etc.

b.Assign values from the chosen solution to every parameter of the Petri net
(decision variables).

c. Simulate the evolution of the Petri net until a certain stop criterion is met.

d.Analyze the outcome of the simulation process. This step can be developed by
calculating a quality parameter that quantifies the degree of verification of the
objectives of the decision maker by the tested solution.

e. Select and test another solution and compare the outcome of its simulation
with the previously tested solutions.

f. When a certain stop criterion is met, finish the procedure.

Simulation is a very useful methodology for decision making in systems that
cannot stop their operation for testing their performance after different decisions or
these tests are too expensive or the feasible outcome is too risky to be carried out
[13]. For example, this situation arises in the case of a manufacturing facility, where
the change of the manufacturing strategy may present important implications for
the survival of the company [3, 14]. Furthermore, simulation is even more
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important in the design of systems, since in the design process it is not always
possible to test solutions in a system that does not exist yet.

The feasible solutions of a decision problem can be found in the solution space.
This space might be huge, in particular when a combinatorial process can be used to
build up solutions for the decision problem. This is the case when the structure of a
solution contains the decision variables (parameters) of a Petri net and by combin-
ing in different ways the diverse values the decision variables can take; the solution
space is constructed.

To be confident in making good decisions, the number of tested solutions should
be large, when comparing it to the size of the solution space. However, testing one
solution implies to carry out one simulation. However, simulation can consume a
large amount of computer resources. Adding this fact to a huge solution space
implies that, in general, it is not possible to analyze a significant percentage of the
solutions contained in the solution space. As a consequence, it is crucial to use
efficient search algorithms to select good solutions to be tested. Furthermore, it is
very convenient to use efficient simulation methodologies to reduce the computer
resources a simulation process requires [15].

This chapter is devoted to studying different approaches for modeling with Petri
nets a system in the process of being designed, whose Petri net model contains at
least one structural parameter. This analysis aims at providing modeling tools to
improve the simulation of a Petri net, when compared with a classic approach. In
particular, some of the advantages for simulation the presented formalisms would
provide are:

a. Removal of redundant information in the model of the system, hence, reducing
its size.

b.Feasibility of automatic solving of the decision problem, hence, testing a large
number of solutions.

c.More efficient exploration of the solution space, hence focusing on the most
promising regions to obtain good solutions.

Petri nets and their graphical and matrix-based representations are the topic of
the second section of this chapter. This overview of some properties of the Petri nets
will be applied in the following section.

In Section 1 of this chapter, it was shown how a decision problem could be stated
to solve the design of a discrete event system. This kind of decision problem is usually
related to the specification of the structure of the system in the process of being
designed. One possibility to represent a model of a Petri net, whose structure is not
completely defined, is to consider structural parameters or decision variables in the
incidence matrices of the net. However, there are other different feasible representa-
tions of a discrete event system with a noncompletely specified structure, such as the
set of alternative Petri nets, which is the topic of the third section of the chapter.

The description of a Petri net, whose structure is not known, because its design
has not been completed or it is being modified, can also be done by means of
parameters in its incidence matrices. This type of Petri net can be called parametric
Petri net. Section 4 of this chapter devotes to the compound Petri nets, a particular
type of parametric Petri net, which contains at least one structural parameter.

The following section describes and illustrates the transformation of a set of
alternative Petri nets into a compound Petri net and vice versa. These transforma-
tion algorithms allow profiting from the advantages of the different formal lan-
guages at the diverse stages of the decision-making process.
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The chapter ends with the conclusions and bibliographical references.
The main objective of this chapter is to show the application of Petri net models

optimized for simulation in a decision support system. The adaptation of the Petri
net models to these systems is based on the development of formal languages that
profit from the characteristics of the discrete event systems and the decision sup-
port methodology to reduce the computational resources applied to decision
support.

2. Petri nets

2.1 Graphical representation of a Petri net

Among the more outstanding characteristics of a Petri net model, it is possible to
mention a double graphical and matrix-based representation. The former may
show, in a very intuitive way, the components or subsystems of the discrete event
system and how they relate. Additionally, the tokens, representing the marking of
the Petri net, configure a distributed state of the system, which informs about the
dynamics of the system.

On the contrary, the matrix-based representation is an appropriate description
of the discrete event system to process the model in a computer, in order to develop
a structural analysis or a performance evaluation [5]. Among the tools that can be
used to study the structure and behavior of the system, simulation can be men-
tioned. Moreover, the structure of the Petri net model is also shown in this matrix-
based representation, by means of the incidence matrices. Subsystems appear as
boxes in the matrices, while their interrelations, in the form of transitions, are
shown as columns of the incidence matrices.

These ideas are very useful for the development and application of Petri nets–
based formalisms to represent appropriate models in the frame of decision-making
processes.

In this section, some ideas on the graphical representation of a Petri net are
stated [3].

Definition 1. Marked generalized Petri net

A marked generalized Petri net is a 5-tuple:

N ¼ P;T;pre;post;m0h i: (1)

where
P and T are disjoint, nonempty, finite sets of places and transitions, respectively.
Pre: P � T ! N is called the input or preincidence function.
Post: T � P ! N is called the output or postincidence function.
m0 is the initial marking of P and m0 = (m1, m2, …, mn)

T
∈ N

n. The ith compo-
nent of m0 is the marking of place pi ∈ P.

□

The sets of places and transitions in addition to the input and output functions
determine the structure of a Petri net, while the marking characterizes its dynamics.

A Petri net can be seen as a bipartite graph with oriented arcs, where the nodes
can belong to a set of places or a set of transitions and the arcs relate to couples of
nodes of different types. In other words, an arc cannot relate a place with another
(or the same) place or a transition with another (or the same) transition. Addition-
ally, an arc can be represented from a place to a transition or from a transition to a
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place. In both cases, there is a clear and different implication of the arc in the
behavior of the Petri net model. In certain classes of Petri nets, generalized Petri
nets, natural numbers are represented in conjunction with the arcs. These weights
represent different things depending on the type of arc:

a. If the arc starts in a place and finishes in a transition, the weight of the arc
presents two meanings. The first one is the number of tokens in the place that
constitutes a necessary condition to enable the transition, previous step to
firing it. The sufficient condition to enable the transition is that the number of
tokens in all the input places of the transition is equal or greater to the weight
of the arcs from the input places to the mentioned transition. The second
meaning of one of these input arcs is the number of tokens that are removed
from the place, when the transition fires.

b.If the arc starts in a transition and finishes in a place, the weight of the arc
corresponds to the number of tokens added to the output place, once the
transition is fired.

Tokens may flow from one or several places to other ones through fired transi-
tions. This flow represents the evolution of the Petri net model by means of the
variation of the state of the model (represented by means of the Petri net marking).

The input and output functions can be represented in a matrix-based way by
means of the so-called input and output incidence matrices W� and W+. These
matrices contain the weight of the arcs from places to transitions and from transi-
tions to places, respectively. Each row is associated to a given place of the Petri net
and each column to a certain transition.

2.2 Matrix-based representation of a Petri net

The input incidence matrix, W+, ranks the weight of the arcs from places to
transitions. The element of the matrix placed in the ith row and jth transition, wþ

ij ,
corresponds to the weight of the arc that starts in the jth place and finishes in the ith
transition. It is a natural deduction that interchanging the name (number) between
two places or two transitions has two implications:

a. The structure and behavior of the Petri net do not change, since the graphical
representation of the Petri net remains the same, as well as the initial marking
and other features of the net.

b.The two rows (columns) associated to the places (transitions) that have
interchanged the names are swapped, thus leading to a different incidence
matrix.

c. Swapping rows or columns of the incidence matrices does not modify the
structure or the behavior of the Petri net.

As it has been seen, the input incidence matrix represents the number of tokens
that the firing of a transition removes from each input place.

The output incidence matrix is composed of the weight of the arcs from transi-
tions to places. The element of the matrix that is located in the ith row and jth
column, w�

ij , consists of the weight of the arc beginning in the jth transition and
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finishing in the ith place. This output incidence matrix represents the number of
tokens that the firing of each transition adds to each output place.

From the point of view of the ith place, pi, the number of tokens that remain
after the firing of the jth transition, tj, is the balance between the following:

a. The weight of the arc that starts in the jth transition and ends in the ith place,
wþ

ij . This number adds wþ
ij tokens to the place pi.

b.The weight of the arc that starts in the ith place and ends in the jth transition,
w�

ij . This number subtracts w�
ij tokens to the place pi.

This balance can be represented as wþ
ij � w�

ij . As a consequence, a single inci-
dence matrix can be built up from the input and output incidence matrices:

W ¼ Wþ �W�
: (2)

From the graphical representation of the Petri net or from the input and output
incidence matrix, it is possible to obtain this single incidence matrix W. However,
the reconstruction of the original Petri net (described by its graphical representa-
tion or by the input and output incidence matrices) is not possible in the case when
at least one of the element of the incidence matrix wij = wþ

ij � w�
ij is obtained by the

subtraction of two elements of the input and output incidence matrices different to
zero: wþ

ij 6¼ 0 and w�
ij 6¼ 0. This situation corresponds to a Petri net, where at least

one transition is, both, input and output transition of a given place.
A Petri net not presenting any transition that is simultaneously input and output

transition of the same place is called pure Petri net. The simulation of a Petri net
requires the calculation of a sequence of markings (states) that are allowed by the
Petri net structure, the initial marking, and other additional restrictions that might
arise (such as delay times, priorities, etc.).

3. Set of alternative Petri nets

3.1 Definition and properties

One classic and usually intuitive way to represent a system with a noncompletely
specified structure is a set of alternative Petri nets [16]. This approach arises natu-
rally, when considering a discrete event system in the process of being designed as a
Petri net with alternative structural configurations [17].

The classic approach, when a discrete event system is to be designed, or, more
generally, its structure is to be specified, consists of selecting (manually) a small set
of alternative structures to be tested as final solutions for the decision problem.

This modeling strategy may lead to a lack of generality by focusing on a reduced
set of alternative structural configurations. However, it is intuitive, simple to apply,
and, in general, its analysis requires a reduced amount of computer resources.

Basically, a set of alternative Petri nets contains exclusive models for a certain
discrete event system presenting different static structures. Any pair of nets
belonging to such a set verifies the following property, which guarantees the exclu-
siveness between the feasible models for the original discrete event system.
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Definition 2. Mutually exclusive evolution

Given two Petri nets R and R’, they are said to have mutually exclusive evolu-
tions if they verify:

i. If m(R) 6¼ m0(R) ) m(R’) = m0(R’).

ii. If m(R’) 6¼ m0(R’) ) m(R) = m0(R).

□

In addition to the previous property, any couple of Petri nets should meet an
additional constraint to be considered as alternative Petri nets.

Definition 3. Pair of alternative Petri nets

Given two Petri nets R and R’, they are said to be alternative Petri nets if they
verify:

i. R and R’ have mutually exclusive evolutions.

ii. W(R) 6¼W(R’), where W(R) 6¼W(R’) are the incidence matrices of R and R’,
respectively.

□

Definition 4. Set of alternative Petri nets

Given a set of Petri nets SR = {R1, …, Rn}, SR is said to be a set of alternative Petri
nets if it verifies:

i. n > 1.

Figure 1.
Manufacturing line under a push strategy.
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ii. ∀ i, j ∈N, such that i 6¼ j and 1 ≤ i, j ≤ n, then Ri and Rj are a pair of alternative
Petri nets.

□

Figure 2.
Manufacturing line under an SKCS strategy.

Figure 3.
Manufacturing line under an IKCS strategy.
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3.2 Examples

In order to illustrate the concept of set of alternative Petri nets, an example from
[18] is shown. In this example, different manufacturing strategies are shown for
their application to a manufacturing line composed of two manufacturing stages
followed by an assembly stage. Figure 1 represents a basic pull control strategy,
named base sock control system (BSCS). Figure 2 shows a simultaneous Kanban
control system (SKCS) and Figure 3 depicts an independent Kanban control system
(IKCS). All these figures contain a graphical and a matrix-based representation of
the Petri net models. More examples of sets of alternative Petri nets can be found in
[19, 20].

4. Compound Petri net/parametric Petri net

4.1 Definition and features

In this section, a compound Petri net is defined as a parametric Petri net
that presents structural parameters [20]. Additionally, the equivalence between
alternative Petri nets and a compound Petri net is analyzed. Furthermore,
transformation algorithms are provided and an illustrative example of application is
detailed.

As it has already been mentioned, a compound Petri net can be seen as a
parametric Petri net with structural parameters. These are parameters in the inci-
dence matrices or, what is the same, in the weight of some of the arcs of the net.

Definition 5. Compound Petri net

A compound Petri net is a 7-tuple Rc = 〈P,T, pre, post, m0, Sα, Svalα〉, where

i. S
α
is the set of parameters of Rc.

ii. Svalα is the feasible combination of values for the parameters.

iii.∃ Sstrα ⊆ S
α
, a set of structural parameters of Rc, such that Sstrα 6¼ ∅, that is, a

compound Petri net should contain at least one structural parameter.

□

An example of a compound Petri net can be seen in Figures 6 and 7. In the first
of these figures, the incidence matrix is shown. The structural parameters have been
represented by means of the symbol α and an ordinal subindex. In this example, the
set of structural parameters Sstrα coincides with the set of parameters S

α
. These sets

have been detailed in Figure 6.
Additionally, the set of feasible combinations of values for the parameters of the

Petri net, Svalα, can be found in this same figure. This important set should be given
as a part of the Petri net model, in addition to the incidence matrices or the
graphical representation of the net, since it provides the constraints that the values
of the parameters should meet.

From this set, it is possible to determine the sets of feasible values for each one of
the parameters of the Petri net. It is important to notice that the opposite statement
is not true. In effect, given the set of feasible values for the different parameters of
the Petri net:
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Svalα1 ¼ 0; 1; 1f g; Svalα2 ¼ 1;0;0f g; Svalα3 ¼ 0; 1;0f g

Svalα4 ¼ 1;0;0f g; Svalα5 ¼ 0;0; 1f g; Svalα6 ¼ 1; 1;0f g

Svalα7 ¼ 0;0; 1f g; Svalα8 ¼ 1; 1;0f g; Svalα9 ¼ 0;0; 1f g

Svalα10 ¼ 0; 1; 1f g; Svalα11 ¼ 0; 1; 1f g; Svalα12 ¼ 0;0; 1f g

Svalα13 ¼ 0;0; 1f g; Svalα14 ¼ 0;0; 1f g; Svalα15 ¼ 0;0; 1f g

Svalα16 ¼ 0;0; 1f g; Svalα17 ¼ 0;0; 1f g

It is not possible to obtain from them the set of feasible combinations of values
for the parameters of the Petri net, Svalα, since not all the combinations of values for
each parameter is allowed. For example, even though α1 and α2 can take both 0 and
1 as feasible values, only the combinations α1; α2ð Þ∈ 0; 1ð Þ; 1;0ð Þf g are allowed but
the combinations α1; α2ð Þ∉ 0;0ð Þ; 1; 1ð Þf g are forbidden, since they do not take part
in the Petri net intended as model of the original discrete event system.

4.2 Advantages and drawbacks

A compound Petri net presents a series of advantages, when compared to a set of
alternative Petri nets, as model for a discrete event system with a structure that has
not been completely designed yet:

(a.1) Compact model: if some alternative structural configurations present
strong similarities, a compound Petri net as a metamodel representing all these
configurations might imply a reduced set of structural parameters and the
removal of a large amount of shared data. As a consequence, the resulting
compound Petri net might present a size, which has been considerably
reduced, when compared to an equivalent set of alternative Petri nets. In
certain cases and applications, a more compact model may lead to faster
computer processing of the model and, hence, faster decision-making support.

(a.2) Unified solution space: all the parameters of the Petri net are variable
decisions, that is, components of a solution of a decision problem. The feasible
combination of values for these parameters configures the solution space.
There is no particular difference between structural parameters and other type
of parameters of the Petri net, regarding the composition of a solution of the
decision problem. As a consequence, a search for promising solutions is
simplified and the search process itself can be performed more efficiently,
since it can focus in the most promising regions of the solution space.

(a.3) Better understanding of the original discrete event system: a compound
Petri net might point out the common structure in all the different feasible
structures for the discrete event system, as well as constrain the differences in
the structural parameters of the Petri net. This fact might enhance the
knowledge of the system.

(a.4) Intuitive modeling: in case of a discrete event system in the process of
being designed, the alternative structures that can be considered for the final
model can be very similar. It is possible to think of a range of machines
provided by the same supplier, which are essentially the same but presenting
specific differences. It might be possible to develop a single model for all the
machines, describing the common features of all of them. Then, this single
model can be particularized for every different machine by representing with
parameters their specific characteristics.
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Despite these advantages, a compound Petri net may present certain drawbacks,
when compared to a set of alternative Petri nets for describing a model of a discrete
event system. In fact, depending on the real discrete event system to be modeled by
Petri nets, some of the mentioned advantages can be considered as drawbacks of the
compound Petri nets if a set of alternative Petri nets is more suitable to fulfill the
needs of the decision makers.

(b.1) Novel approach: it is not difficult to find, in the scientific literature, sets of
alternative Petri nets as feasible models for discrete event systems, even
though they might not be referred by this name. Analyzing a small set of
alternative Petri nets might be easier than analyzing a compound Petri net due
to the larger availability of theoretical results that can be applied to the
former, as well as due to the existence of efficient tools for simulation and
performance evaluation, which are much more scarce for parametric Petri
nets than for a set of alternative Petri nets.

(b.2) Nonintuitive modeling: this feature can be an advantage or a disadvantage
of a set of alternative Petri nets, depending on the particular case study. In the
case where the alternative structural configurations for the Petri net lead to
very different incidence matrices, developing the model of the discrete event
system may be much more difficult if the formalism of the compound Petri
nets is used in the case where each structural configuration is modeled
separately. This last approach produces a set of alternative Petri nets.

The next section will focus on the transformation algorithms between a set of
alternative Petri nets and a compound Petri net. These algorithms allow
transforming the formal language that describes the model of a system. However,
the structure and dynamics of the model itself remain unchanged. These transfor-
mation algorithms allow profiting from the advantages of both, compound Petri
nets and a set of alternative Petri nets, since certain stages of problem solving can
be developed using one of the formalisms, while the other stages may be carried
out describing the system with another formalism.

4.3 Transformation algorithms

4.3.1 Transformation of a set of alternative Petri nets into a compound Petri net

This section provides a sequence of steps to transform the formalism in which a
model is represented, from a compound Petri net to a set of alternative Petri nets
[21]. The application of this algorithm may allow the modeler to profit from the
advantages of both formalisms in different stages of the process in which he or she
is involved (e.g., a decision-making problem).

4.3.1.1 Step 1: development of a set of alternative Petri nets

This first step consists of building up a set of alternative Petri nets as feasible
models of a discrete event system. As it has been explained in the previous section,
in some cases, modeling a discrete event system by a set of alternative Petri nets can
be a very intuitive process.

In Figures 1–3, three alternative Petri nets for a manufacturing line can be
found. In each one of the mentioned figures, both the graphical representation
and the incidence matrix of one of the alternative Petri nets are given. This set of
alternative Petri nets is transformed in this section into a single compound Petri net.

12

Simulation Modelling Practice and Theory



4.3.1.2 Step 2: equaling the dimensions of the incidence matrices

In order to merge the three alternative Petri nets into one single compound Petri
net requires having the same number of places and transitions in each case.

The first alternative Petri net presents 7 places and 6 transitions, the second, 8
places and 6 transitions, while the last one contains 11 places and 8 transitions. The
variation of size of the alternative Petri nets should be made without changing the
structure or the behavior of the nets. It is not always possible to reduce the size of a
Petri net without modifying the structure or behavior. However, it is always possi-
ble to increase the size of a Petri net meeting these conditions by adding isolated
places and/or transitions. An isolated place or transition does not present any input
or output arc and, hence, it cannot participate in the dynamics of the Petri net and,
of course, it cannot modify the behavior of the net.

The minimal size of the Petri nets, modified by adding places and/or transitions,
is the size of the large alternative Petri net: 11 places and 8 transitions. As a conse-
quence, four isolated places and two isolated transitions are added to the first
alternative Petri net. Moreover, three places and two transitions are added to the
second alternative Petri net. The third alternative Petri net remains unchanged. The
incidence of the incorporation of isolated places and transitions to a Petri net in the
incidence matrix is the addition of rows (one for each new place) and columns (one
per new transition) of zeros. Figure 4 shows partially the modified incidence
matrices.

Figure 4.
Overlapping the incidence matrices of the alternative Petri nets.
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4.3.1.3 Step 3: comparing the elements of the incidence matrices

Before merging the alternative Petri nets into a single compound Petri net, the
elements of their incidence matrices at the same position should be compared. As an
outcome of this comparison, it is possible to identify which elements of the resulting
compound Petri net present a specific value or its value should be chosen from a set
of feasible values, leading to a structural parameter.

In general, all the numbers defining the different features of the Petri net should
be compared to identify the parameters of the resulting compound Petri net.

This comparison has been depicted in Figure 4, where the incidence matrices of
all the alternative Petri nets have been depicted. These incidence matrices are
overlapped in order to ease the comparison of each element in the three matrices.
Additionally, the comparison of the element was placed in the first row and fourth
column. Due to the fact that the elements at this position do not present the same
value in all the incidence matrices, the resulting compound Petri net would have a
structural parameter in this position.

A result of the comparison of the elements of the incidence matrices can be seen
in Figure 5. At the positions where all the values of the incidence matrices are the
same, these values have been represented in the matrix of Figure 5. Additionally,
where the values are not the same, the complete range of feasible values, depending
on the incidence matrix, has been represented.

4.3.1.4 Step 4: defining the parameters of the compound Petri net

Once the comparison of the different numbers defining the Petri net has been
performed, it is possible to define a parameter for each set of noncoinciding num-
bers. As it can be seen in Figure 5, there are 17 positions, where the elements of the
depicted matrix do not present a single value, but a set of 3 different possibilities. As
a consequence, the resulting compound Petri net would include 17 structural
parameters.

As it has been mentioned in Section 2.2, rows and columns of an incidence
matrix can be swapped without modifying the structure or the behavior of the net.
It is possible to profit from this property trying to rearrange the elements of the
incidence matrices of the alternative Petri nets in order to minimize the number of
structural parameters in the resulting compound Petri net.

The incidence matrix of the resulting compound Petri net has been detailed in
Figure 6. This incidence matrix presents the 17 structural parameters in the

Figure 5.
Analysis of differences in the elements of the three incidence matrices.
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positions deduced in the previous step. Additionally, two sets that complete the
description given by the incidence matrix are presented:

The set with the 17 parameters (all of them are structural parameters) is given
under the name S

α
.

The set with the feasible combinations of values for the parameters has also been
presented, named Svalα. In this example, it is verified that Svalstrα. = Svalα. In other
words, all the parameters are structural ones; hence, the set of feasible combinations
of values for the structural parameters is the same as the set of feasible combina-
tions of values for the parameters of the Petri net.

4.3.1.5 Step 5: building up the resulting compound Petri net

With the previous information, it is possible to detail all the remaining features
of the resulting compound Petri net.

In Figure 7, the graphical representation of the compound Petri net is provided.
This description should be complemented with the set of feasible combinations of
values for the parameters of the Petri net, which detail the constraints applied to the
parameters of the Petri nets.

4.3.2 Transformation of a compound Petri net into a set of alternative Petri nets

This transformation is quite straightforward.
Given a set Svalstrα of feasible combination of values for the structural parameters

of the Petri net, let us call q = card(Svalstrα), number of these combinations of values.
This set can be represented as Svalstr = {cv1, cv2, …, cvq}.

4.3.2.1 Step 1: obtaining the first alternative Petri net

Let us consider cv1 ∈ Svalstr. Let us substitute the k components of cv1 in the k
structural parameters of the compound Petri net Sstrα = {α1, α2, …, αk}.

The resulting Petri net from this substitution might contain nonstructural
parameters but not structural ones. As a consequence, it is a component of a set of
alternative Petri nets.

Figure 6.
Incidence matrix of the compound Petri net, set of parameters, and set of feasible combination of values for these
parameters.
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4.3.2.2 Step 2: obtaining the rest alternative Petri nets

Let us choose sequentially the elements of Svalstr and, for each one of them,
repeat Step 1.

5. Conclusions

Simulation is a very useful tool for analyzing the structure and, specially, the
behavior of the model of a discrete event system. It is a particularly interesting tool,
when applied to the development of decision support systems.

However, simulation is a demanding task for a computer, requiring a certain
amount of resources, such as memory and processing time.

A Petri net is a modeling formalism that has been broadly and successfully used
in a large range of applications. A Petri net model of a discrete event system in a
decision process may present degrees of freedom in the initial marking, the inci-
dence matrices, or other components of the model, such as delay times or priorities.

In order to alleviate the modeling process by Petri nets of discrete event systems
with degrees of freedom, as well as with the purpose of increasing the efficiency of
simulation-based decision making, an analysis of two Petri net–based formalisms
has been studied.

In particular, a set of alternative Petri nets and a compound Petri nets has been
defined, compared, transformed one into the other, and applied to an illustrative
example.

Figure 7.
Compound Petri net.
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As a conclusion, both formalisms allow modeling a Petri net with alternative
structural configurations and provide different characteristics that can be useful in
different stages of the application of the model, for example, in the development of
a decision support system.

Furthermore, the transformation of one model described using the formalism of
the set of alternative Petri nets into an equivalent model represented as a compound
Petri net is feasible and may be automated easily. Additionally, the inverse trans-
formation can also be developed and it is even more straightforward than the
previous one. These algorithms allow disconnecting the different stages of decision-
making support, since the modeling process might be developed using a set of
alternative Petri nets, if it is more intuitive, and an equivalent compound Petri net
can be developed to be applied for simulation.

Compound Petri nets may produce a significant reduction in the size of the
model of a discrete event system, which might alleviate significantly the computer
resources required by a decision support system. This statement is based on the fact
that when the different alternative structural configurations are similar, which is
very common in the design of products, the size of the incidence matrix of the
compound Petri net is very similar to the largest incidence matrix of the alternative
Petri nets, and the amount of structural parameters may not be large.
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