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Abstract

Multiway data analysis and tensorial calibration are gaining widespread acceptance with
the rapid development of multichannel chromatographic instruments. By combining
chromatographic techniques with chemometrics based on high-order calibration methods,
some traditional problems in analysis, such as complicated pretreatment steps, long
elution times, or even worse analysis results, can be avoided/improved. This chapter
presents an overview from second-order to third-order data that cover theories and
applications together with corresponding data processing in chromatography.

Keywords: chemometrics, second-order advantages, trilinear model, high-performance
liquid chromatography-diode array detection, liquid chromatography-mass spectrometry

1. Introduction

Chromatography, first employed in Russia by the Italian-born scientist Mikhail Tsvet in 1900,

is a laboratory technique for the separation of a mixture. In the first decade of the twentieth

century, scientists continued to work with chromatography primarily for the purpose of

separating plant pigments such as chlorophyll, carotenes, and xanthophylls. Since these pig-

ments separated showed various colors (green, orange, and yellow, respectively), they gave the

technique its name. After various types of chromatography had sprung up in the 1930s and

1940s, it became useful for many separation processes. Up to now, many chromatographic

techniques have been developed, and they can be classified according to different properties.

Based on chromatographic bed shape techniques, they can be divided into column chromatog-

raphy and planar chromatography. Also, gas chromatography and liquid chromatography are
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classified by the physical state of mobile phase. In addition, there are also many other catego-

ries classified by other properties (i.e. separation mechanism, special techniques); but the

chromatographic classification is out of scope of this chapter.

The purpose of chromatography is to separate the components of a mixture for later use. The

mixture is dissolved in a fluid called the mobile phase, which carries it through a structure

holding another material called the stationary phase. The separation is based on differential

partitioning between the mobile and stationary phases. Subtle differences in a compound’s

partition coefficient result in differential retention on the stationary phase and thus affect the

separation.

Nowadays, due to its prominent separation properties, chromatography techniques have

become an indispensable tool for the routine analysis and research in pharmaceutical, biomed-

ical, food, and environmental industries [1]. However, there are two main drawbacks needed

to be solved/improved. The first one is about the sample itself; when complex matrix samples

are analyzed, some proper tedious pretreatment procedures, such as extraction and purifica-

tion, are necessary to remove the potential interferences contained in complex matrices. Opti-

mizing these procedures is rather tedious and large sum of solvents’ consumption are

inevitable, making this method become uneconomical and environmentally unfriendly. What’s

more, in traditional chromatography analysis, when a complex sample is analyzed, the overlap

between the analytes and matrix constituents is frequently observed; consequently, a long time

or much more complex chromatography condition is required for the separation. In general,

the elution time for each sample often costs 30–50 min, which is quite time consuming and

inefficient. In the same time, some other problems such as baseline drift, changes in the shape

of the peaks, incomplete extraction of the analytes, and shifts in the elution times may also

decrease the quality of the final result of the analysis. Another problem with chromatography

is due to its universal aspect. There are now hundreds of different chromatographic columns,

which can be obtained from the market and new ones are being developed constantly [2, 3].

However, when faced with the large number of possible columns, it is hard for analysts to

select which could be the most appropriate one for a given condition. Meanwhile, many

laboratories and public institutions may not possess all available stationary phases and the

column performance may become worse during long-term storage and/or usage in LC analysis

[4]. Thus, the analysts often waste a lot of time in search of the most appropriate one from

several different stationary phases for analysis. All of the above shortcomes may hinder the

further development for chromatographic applications.

A current trend in quantitative analysis is to avoid tedious sample preprocessing steps and long

chromatographic elution, exploiting the ability of modern data processing tools for mathematical

resolution of coeluting components [5]. The combination of suitable chemometric tools along with

chromatographic-spectral data or chromatographic-mass data may solve/improve the problem.

With less time and solvent consumption, better quantitative results can be obtained. The multi-

way (second- and third-order) calibration based on “mathematical separation” is a dazzling pearl

in the field of chemical analysis and can calibrate the potential interferences and resolve coeluting

peaks successfully in real samples with minimum sample preparation steps. Accurately concen-

tration profiles of individual components of interest can also be obtained. This property generally
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refers to the prominent “second-order advantage,” which has enormous potential in multiway

analysis and becomes a recent focus of theoretical research and practical uses. Combining chro-

matography with multiway calibration has some distinct advantages because it can simplify the

tedious multistep pretreatment and exploration of complicated chromatography separate condi-

tions, showing the potential abilities for the analysis of various samples with different interfer-

ences at a time. Tedious pretreatment or purification procedures can be discarded by using

prominent “mathematic separation” instead of tradition “physical/chemical separation.” HPLC

coupled with second-order calibration methods is especially popular for it can rapidly and

simultaneously determine multiple compounds in complex backgrounds with unknown interfer-

ences, resolve coeluted peaks, and remove baselines drifts [6–10].

So far, a lot of algorithms for decomposition of multiway data arrays have already been

proposed and genuinely provided alternative tools to analytical chemists for the convenient

study of the body of multiway data arrays. Several methodologies have also been expounded

in “Encyclopedia of Analytical Chemistry” [11] and “Factor Analysis in Chemistry” [12] at

some length. To help readers systematically and intensively understand about concerning

algorithms, a detailed description including multilinear models, the multiway cyclic symmetry

property, the algorithms for multiway calibration, the estimation of the chemical rank, the

toolbox for multiway calibration, and other fundamental issues and applications in chroma-

tography has been presented in this paper.

2. Terminology and nomenclature in multiway data

To facilitate understanding for readers when dealing with multivariate analysis on multiway

data arrays, it is necessary to introduce the terminology and nomenclature used in multiway

data in the following.

2.1. Terminology

The relationship and difference between the concepts of “data order” and “data way” should

be investigated firstly. The term “order” is the dimensions for data of a single sample and term

“way” represents the data arrays stacked by all samples with similar properties. As shown in

Figure 1, zeroth order corresponds to instruments producing a single response per sample,

such as the reading of a pH meter or the absorbance at a single wavelength. First-order data

are arranged as a vector or first-order tensor for a single sample, such as UV, fluorescence,

infrared, and nuclear magnetic resonance spectra. At the same time, second-order data are

formed when matrix data can be obtained for a single sample. There are two ways that second-

order data can be obtained: (i) using a single instrument such as excitation-emission spectro-

fluorimeter (EEMs) or diode-array spectrophotometer to monitor the kinetics of a chemical

reaction and (ii) using the hyphenated instruments such as high performance liquid

chromatography-photodiode array detection (HPLC-DAD) or liquid chromatography-mass

spectrometry (LC-MS). When the second-order data that obtained from a series of samples
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(calibration and prediction samples) are stacked in one direction, three-dimensional array,

which is also called as three-way array can be obtained, and the corresponding data are

usually known as three-way data. Hence, when a series of samples are stacked into a single,

zeroth-order (a scalar), first-order (a vector), second-order (a matrix), third-order (a three-way

array), and higher order tensors can yield the corresponding one-way, two-way, three-way,

four-way, and N-way data sets, respectively. The zeroth-order tensor calibration is also called

as univariate calibration. This method has great restraint on its application as it needs full

selectivity for the signals of target analytes. Except univariate calibration for the analysis of

data, others are known as multivariate calibration, the analysis of second-order tensor and

higher order tensor is denoted as multiway multivariate or multicomponent calibration.

Meanwhile, a detailed description for various sample types is also provided. Based on differ-

ent functions, samples can be divided into calibration, prediction, and actual sets. Actual sets

include predicted samples (the target analyte(s) is (are) unambiguously included) and/or real

samples (whether the target analyte(s) is (are) included or unknown). Constituents present in

the samples used for calibration and validation are regularly called “known” or “expected,”

which is expected in these sets as they are expected to be existed in actual samples. The

expected constituents can be further divided into “calibrated” and “uncalibrated.” The con-

centrations of former ones used for calibration are predesigned and known, while those of

“calibrated” components in actual sets can also be available, involving the analyte(s) of inter-

est. On the other hand, the constituents which are only included in actual sets are called

“unknown” or “unexpected” and also potential interferences.

2.2. Nomenclature

In this chapter, lowercase italics represent scalars; two-way matrices are denoted by bold

capitals; underlined bold capitals designate three-way arrays, the superscript T represents the

transpose of a matrix, and the superscript + is the Moore-Penrose generalized inverse of a

matrix. || � ||F designates the Frobenius matrix norm. To have a better understanding about

Figure 1. Relationships and differences between the concepts of “data order” and “data way” described with symbols.
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the multiway calibration, readers are advised to comprehend an inner cyclic symmetry prop-

erty of trilinear decomposition proposed by our laboratory in 1996 and also called as three-

way cycle symmetry. As shown in Figure 2, elements, vectors, subscripts, and physical modes

in resolved matrices, sliced matrices, and unfolded matrices, together with residue and resolu-

tion formulas, all obey the principle of inner cyclic symmetry property, circumrotating along

the same way. Table 1 provides the detailed information of the nomenclature mentioned.

Figure 2. Schematic representation for three-way cyclic symmetry property.

X Three-way data array

I, J, K The three dimensions of three modes of X

xijk The ijkth element of X

AI � N, BJ � N, CK � N The three underlying profile matrices of X with I � N, J � N, and K � N, respectively

ain, bjn, ckn The inth, jnth, and knth elements of the three underlying profile matrices A, B, and C,

respectively

a(i), b(j), c(k) The ith, jth, and kth row vectors of profile matrices A, B, and C, respectively

diag(a(i)), diag (b(j)), diag(c(k)) Diagonal matrices with elements equal to the elements of a(i), b(j), and c(k), respectively

Xi.., X.j., X..k The ith horizontal, jth lateral, and kth frontal slices of X, respectively

Ei.., E.j., E..k The ith horizontal, jth lateral, and kth frontal slices of the three-way array residue E,

respectively

eijk The ijkth element of the three-way residue array E

Table 1. Detailed information of the nomenclature mentioned.
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Similar to the three-way cyclic symmetry, the four-way and five-way cyclic symmetries for

quadrilinear and quinquelinear decomposition can be obtained easily by simple mathematical

manipulation of exchanging the symbols similar to three-way cyclic symmetry. These regular-

ities provide useful instructions for the standardization of symbol systems in multiway data

analysis, for better understanding the essence of multiway multilinear decomposition, devel-

oping newmultiway calibration algorithms, and exploring multilinear algebra in mathematics.

3. Theory

3.1. Multilinear models

According to the data type and its inner cyclic symmetry property, the multilinear models can

be divided into trilinear, quadrilinear, quinquelinear, and even higher linear models. In chro-

matographic analysis combined with multiway calibration, the trilinear and quadrilinear

models are commonly used.

3.1.1. Trilinear model

Harshman [13] together with Carroll and Chang [14] first proposed the PARAFAC (PARallel

FACtor analysis) model with the name of CANDECOMP in the year of 1970. In this trilinear

model, each element xijk of a three-way array X (I�J�K) can be reasonably fit to the following

equation:

xijk ¼
XN

n¼1

ainbjnckn þ eijk, i ¼ 1, 2,…, I; j ¼ 1, 2,…, J; k ¼ 1, 2,…, K: (1)

where N represents the total number of detectable components including the component(s) of

interest, uncalibrated background(s), and unknown interferences. Figure 3 illustrates the

graphical representation of a trilinear model of three-way data array X. A, B, and C are the

three underlying profile matrices of X with I � N, J � N, and K � N, respectively; I is the three-

way diagonal core array of size N � N � N with ones on the superdiagonal and zeros

Figure 3. Schematic representation of trilinear model.
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elsewhere; and E is the three-way residue data array of size I � J � K. To further comprehend

the mathematic meaning of the trilinear model graphically expressed, the response data array

X is returned with three inverse steps as described in Figure 4.

3.1.2. Quadrilinear model

Considering a model of the real-valued four-way data array X (I � J � K � L), in which each

element xijk can be expressed as [8, 15]:

xijkl ¼
XN

n¼1

ainbjnckndln þ eijkl, i ¼ 1, 2,…, I; j ¼ 1, 2,…, J; k ¼ 1, 2,…, K; l ¼ 1, 2,…, L: (2)

where ain, bjn, ckn, and dln correspond to the underlying profile matrices AI � N, BJ � N, CK � N,

and DL � N of X (I � J � K � L), respectively. The term eijkl is the element of the four-way

residual array E (I � J � K � L). Then, the modeled part of xijkl is quadrilinear in the parameter

sets ain, bjn, ckn, and dln. The graphical representation of a quadrilinear model of four-way data

array X is shown in Figure 5.

3.2. Data preprocessing

The correctness of decomposition of a multilinear model requires that the multilinear model

holds multilinearity. However, there are some nonmultilinear factors which can cause a

multilinear model to deviate the multilinearity. For example, in the chromatography type of

trilinear model such as HPLC-DAD and LC-MS data, the time shift and baseline problem

among different runs will cause the trilinear model to deviate the trilinearity. Thus, the data

Figure 4. The inverse procedures to return three-way data array X.
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arrays in multivariate calibration must need appropriate data preprocessing procedures before

a multilinear decomposition. The schematic representation of entire chemometrics-assisted

LC-DAD and LC-MS analytical strategy is shown in Figures 6 and 7, respectively.

3.3. Algorithm

3.3.1. ATLD

The ATLD algorithm is a universal second-order calibration method for decomposition of

three-way data arrays. It is based on an alternating least squares principle without any con-

strains and an improved iterative procedure that utilizes the Moore-Penrose generalized

inverse based on singular value decomposition. It has been widely used in three-way data

analysis due to the advantages of being insensitive to excessive component numbers and fast

convergence.

According to its cyclic symmetry property, the trilinear model can also be expressed in matrix

notation as follows:

Figure 5. Schematic representation of quadrilinear model.

Figure 6. Schematic representation of entire chemometrics-assisted LC-DAD analytical strategy.
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Xi:: ¼ Bdiag a ið Þ

� �

CT þ Ei::, for i ¼ 1, 2,…, I, (3)

X
:j: ¼ Cdiag b jð Þ

� �

AT þ E
:j:, for j ¼ 1, 2,…, J, (4)

X
::k ¼ Adiag c kð Þ

� �

BT þ E
::k, for k ¼ 1, 2,…, K, (5)

Due to the property called as cyclic symmetry of the trilinear model, the three expressions are

equal to each other in mathematics. According to Eqs. (3)–(5), the loss function to be mini-

mized is the sum of the squares of the elements of the residual matrices, which can be

expressed as:

σ a ið Þ

� �

¼
X

I

i¼1

Xi:: � Bdiag a ið Þ

� �

CT
�

�

�

�

2

F
, (6)

σ b jð Þ

� �

¼
X

J

j¼1

X
:j: � Cdiag b jð Þ

� �

AT
�

�

�

�

2

F
, (7)

σ c kð Þ

� �

¼
X

K

k¼1

X
::k �Adiag c kð Þ

� �

BT
�

�

�

�

2

F
, (8)

By using the loss functions abovementioned, ATLD alternately minimizes the three objective

functions over C on fixed A and B, over A on fixed B and C, and then over B on fixed C and A.

Figure 7. Schematic representation of entire chemometrics-assisted LC-MS analytical strategy.

High-Order Calibration and Data Analysis in Chromatography
http://dx.doi.org/10.5772/intechopen.78624

87



The updates for the three profile matrices (A, B, and C) are based on the least squares principle

and can be represented as follows:

a
T
ið Þ ¼ diagm B

þ
Xi:: C

T
� �þ

� �

, for i ¼ 1, 2,…, I, (9)

b
T
jð Þ ¼ diagm C

þ
X:j: A

T
� �þ

� �

, for j ¼ 1, 2,…, J, (10)

c
T
kð Þ ¼ diagm A

þ
X::k B

T
� �þ

� �

, for k ¼ 1, 2,…, K, (11)

herein diagm(�) stands for a column N-vector and its elements are diagonal elements in square

matrix. In every iteration cycle, A and B are normalized column-wise with unit length. With

the help of the resolved profile matrices C, we can get the concentrations of analytes of

interests in actual samples via regression of the appropriate column of C corresponding to

each analyte against its standard concentrations.

Due to the operation based on sliced matrices with less size and two other major strategies,

ATLD holds the fastest convergence. The truncated least squares method employs the tolerance

to truncate the small singular values in the singular value decomposition. In addition, selecting

diagonal elements makes ATLD retain trilinearity property indeed and be insensitive to the

excessive estimation of component numbers. The advantages have been reviewed by Fleming

and Kowalski [16]. Based on the above advantages, it is very suitable to handle second-order

data obtained from hyphenated instruments, such as HPLC-DAD, LC-MS, and GC-MS.

3.3.2. SWATLD

The SWATLD algorithm, as a derivative of ATLD, is also widely employed as it can yield

better results in many cases. It alternately minimizes three objective functions with intrinsic

relationship and also holds the characteristics of fast convergence and being insensitive to

excessive component numbers. The detail explanations of these properties have been provided

by authors in the original paper [17]. Three new residues can be expressed as:

B
þ
Xi:: ¼ diag a ið Þ

� �

C
T þ B

þ
Ei::, Xi:: C

þ
� �T

¼ Bdiag a ið Þ

� �

þ Ei:: C
þ

� �T
, for i ¼ 1, 2,…, I, (12)

C
þ
X:j: ¼ diag b jð Þ

� �

A
T þ C

þ
E:j: X:j: A

þ
� �T

¼ Cdiag b jð Þ

� �

þ E:j: A
þ

� �T
, for j ¼ 1, 2,…, J, (13)

A
þ
X::k ¼ diag c kð Þ

� �

B
T þA

þ
E::k, X::k B

þð Þ
T
¼ Adiag c kð Þ

� �

þ E::k B
þð Þ

T
, for k ¼ 1, 2,…, K, (14)

By introducing some reasonable weight terms, three new objective functions are established

and can be expressed as follows:

S Að Þ ¼
X

I

i¼1

B
þ
Xi:: � diag a ið Þ

� �

C
T

� �T
� diag sqrt 1:=diagm C

T
C

� �� �� �

�

�

�

�

�

�

2

F

þ
X

I

i¼1

Xi:: C
T

� �þ
� Bdiag a ið Þ

� �

� �

� diag sqrt 1:=diagm B
T
B

� �� �� �

�

�

�

�

�

�

2

F
,

(15)
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S Bð Þ ¼
X

J

j¼1

C
þ
X:j: � diag b jð Þ

� �

A
T

� �T
� diag sqrt 1:=diagm A

T
A

� �� �� �

�

�

�

�

�

�

2

F

þ
X

J

j¼1

X:j: A
T

� �þ
� Cdiag b jð Þ

� �

� �

� diag sqrt 1:=diagm C
T
C

� �� �� �

�

�

�

�

�

�

2

F
,

(16)

S Cð Þ ¼
X

K

k¼1

A
þ
X::k � diag c kð Þ

� �

B
T

� �T
� diag sqrt 1:=diagm B

T
B

� �� �� �

�

�

�

�

�

�

2

F

þ
X

K

k¼1

X::k B
þð Þ

T
�Adiag c kð Þ

� �

� �

� diag sqrt 1:=diagm A
T
A

� �� �� �

�

�

�

�

�

�

2

F
:

(17)

Due to the unique optimizing strategy, this algorithm is more efficient than others. It can provide

more satisfactory results than ATLD with moderate noise levels. Moreover, it can deal with the

problem of moderate collinearity, but it is not so effective when data are collinear severely.

3.3.3. APTLD

The APTLD algorithm was developed by Xia et al. [18], and it can provide some improved

properties. It alternately minimizes three new least squares-based objective functions by using

the constraint functions as penalty terms of the PARAFAC error. Eqs. (12)–(14) are the new

objective functions, which alternately used as the constraint terms. By introducing large pen-

alty terms and combining them with residue functions (18)–(20) to establish three objective

functions, APTLD transforms these constrained problems into non-constrained ones. Then, it

alternately minimizes the following three objective functions to resolve the model:

S Að Þ ¼
X

K

k¼1

X::k �Adiag c kð Þ

� �

B
T

�

�

�

�

2

F
þ qð

X

J

j¼1

diag sqrt 1:=diagm B
T
B

� �� �� �

C
þ
X:j: � diag b jð Þ

� �

A
T

� ��

�

�

�

2

F

þ
X

K

k¼1

X::k B
T

� �þ
�Adiag c kð Þ

� �

� �

diag sqrt 1:=diagm C
T
C

� �� �� �

�

�

�

�

�

�

2

F
Þ,

(18)

S Bð Þ ¼
X

I

i¼1

Xi:: � Bdiag a ið Þ

� �

C
T

�

�

�

�

2

F
þ rð

X

K

k¼1

diag sqrt 1:=diagm C
T
C

� �� �� �

A
þ
X::k � diag c kð Þ

� �

B
T

� �
�

�

�

�

2

F

þ
X

I

i¼1

Xi:: C
T

� �þ
� Bdiag a ið Þ

� �

� �

diag sqrt 1:=diagm A
T
A

� �� �� �

�

�

�

�

�

�

2

F
Þ,

(19)

S Cð Þ ¼
X

J

j¼1

X:j: � Cdiag b jð Þ

� �

A
T

�

�

�

�

2

F
þ pð

X

I

i¼1

diag sqrt 1:=diagm A
T
A

� �� �� �

B
þ
Xi:: � diag a ið Þ

� �

C
T

� �
�

�

�

�

2

F

þ
X

J

j¼1

X:j: A
T

� �þ
� Cdiag b jð Þ

� �

� �

diag sqrt 1:=diagm B
T
B

� �� �� �

�

�

�

�

�

�

2

F
Þ,

(20)
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where p, q, and r represent penalty factors. The performance of APTLD depends on the choice

of the penalty factor values. When the values are very small, it will lead to a lot of iterations

and sensitivity to excess factors, which is close to that of PARAFAC algorithm; particularly,

when p = q = r = 0, APTLD can be regarded as a variant of PARAFAC. However, this algorithm

will become insensitive to excess factors and speed up convergence when larger values of p, q,

and r are selected. According to the variance among different trials and computational bur-

dens, a further increase in p, q, and r values will make APTLD perform theoretically better.

Therefore, its performance can be exquisitely improved by adjusting the penalty factors p, q,

and r on the basis of particular circumstances and special needs.

3.3.4. APQLD

The APQLD algorithm [19] as an extension of APTLD for decomposition of quadrilinear data is

applied to third-order calibration. Similar to APTLD, four objective functions can be obtained as:

S Að Þ ¼
X

K

k¼1

X

L

l¼1

X
::kl �Adiag d lð Þ

� �

diag c kð Þ

� �

B
T

�

�

�

�

2

F

þ qð
X

K

k¼1

X

L

l¼1

X
::kl B

T
� �þ

�Adiag d lð Þ

� �

diag c kð Þ

� �

� �

sqrt WBð Þ
�

�

�

�

�

�

2

F

þ
X

J

j¼1

X

K

k¼1

sqrt WDð Þ D
þ
Xjk:: � diag c kð Þ

� �

diag b jð Þ

� �

A
T

� �
�

�

�

�

2

F
Þ,

(21)

S Bð Þ ¼
X

L

l¼1

X

I

i¼1

Xi::l � Bdiag a ið Þ

� �

diag d lð Þ

� �

C
T

�

�

�

�

2

F

þ rð
X

L

l¼1

X

I

i¼1

Xi::l C
T

� �þ
� Bdiag a ið Þ

� �

diag d lð Þ

� �

� �

sqrt WCð Þ
�

�

�

�

�

�

2

F

þ
X

K

k¼1

X

L

l¼1

sqrt WAð Þ A
þ
X

::kl � diag d lð Þ

� �

diag c kð Þ

� �

B
T

� �
�

�

�

�

2

F
Þ,

(22)
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(23)

whereWA = diag(1./diagm(AT
A)),WB = diag(1./diagm(BT

B)),WC = diag(1./diagm(CT
C)), andWD =

diag(1./diagm(DT
D)). APQLD algorithm decomposes the quadrilinear model by alternatively

minimizing the four objective functions abovementioned. The performance of APQLD also
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depends on the selection of the penalty factors p, q, r, and s. Obviously, it can be considered as a

variant of the four-way PARAFAC when the four penalty factors equal to 0.

APQLD retains the second-order advantage possessed by second-order calibration and holds

additional advantage. By introducing a new fourth mode, it can relieve the serious problem of

collinearity, which cannot be solved by three-way algorithms.

3.4. Rank estimation

It is always an important and intractable problem to estimate chemical ranks (the number of

factors or components) for the trilinear model before decomposing a three-way data array.

Theoretically, it can be seemingly solved by selecting the appropriate algorithms, which are

insensitive to the excessive component numbers (chemical ranks). Nevertheless, these algo-

rithms also guarantee that the component number (chemical rank) chosen should be no fewer

than the underlying one. As a matter of fact, when the component number selected is far more

than the actual one, it may lead to a model fitting error and a large deviation for the predicted

results. On the contrary, the performances of the algorithm on providing accurate solutions

will be largely improved when the most appropriate factors are chosen in analytical system.

Based on this, a lot of methods have been developed for estimating the chemical ranks. In

general, they can be roughly fallen into two main categories. The first one is on the basis of the

trilinear model, which includes split-half analysis [20], Wu’s maximum rank method [21], core

consistency diagnostic (CORCONDIA) [22], ADD-ONE-UP [23], and self-weighted alternating

trilinear decomposition and Monte Carlo simulation (SWATLD-MCS) [24]. The core of split-

half analysis concerns a relatively complex splitting skill, and hence the result depends on

splitting schemes greatly. CORCONDIA and ADD-ONE-UP are two of the most commonly

used methods in determining the chemical ranks. However, they are quite time consuming

sometimes. Furthermore, the severe collinearity data may also lead to a heavy computation

burden and even get error results. Self-weighted alternating trilinear decomposition and

Monte Carlo simulation (SWATLD-MCS) operate in two main steps. First of all, Monte Carlo

simulation is applied to generated one pseudo three-way data array. Sorted mean relative

concentration values can then be obtained by applying SWATLD to decompose the three-way

data array created by MCS. By comparing the sorted mean relative concentration value, this

method can determine the chemical rank. The other ones belong to nonmodel methods such as

orthogonal projection approach (OPA) [25], two-mode subspace comparison (TMSC) [26],

factor indicator function (IND) [27], subspace projection of pseudo high-way array (SPPH)

[28], linear transform method incorporating Monte Carlo simulation (LTMC) [29], and region

based on moving windows subspace projection technique (RMWSPT) [30]. Though all of the

above methods can be applied to rank estimation, it is impossible to find one among them

which can guarantee the correct results under all situations. Actually, more than one method is

often utilized in analysis to ensure the accuracy of the analytical results [8, 15].

3.4.1. Maximum rank method

The maximum rank method was firstly proposed by Wu et al. [21] to estimate the chemical

rank for ATLD and ATLD’s variants, as the following form shows:
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rank X ¼ max rank XI�JK

� �

; rank XJ�KI

� �

; rank XK�IJ

� �� �

, (24)

In practice, the number of factors will also be determined as follows:
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X
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0

@

1
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 !
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<

:

9

=

;

, (25)

rank X ¼ max rank XI�JKX
T
I�JK

� �

; rank XJ�KIX
T
J�KI

� �

; rank XK�IJX
T
K�IJ

� �n o

, (26)

where rank (.) denotes the numerical rank estimate of a matrix based on a singular value

decomposition procedure with a default tolerance. This method is universal and suitable to

be used in any instance and can get satisfactory results when estimating the chemical rank of

the three-way data.

3.4.2. ADD-ONE-UP

ADD-ONE-UP was proposed by Chen et al. in [23] for determining the chemical rank. It

operates by fitting two reconstructed three-way data arrays by PARAFAC with a gradually

increasing component numbers and then determines the chemical rank by examining the resid-

ual sum of squares (SSR). The method is convenient and powerful, and some nonideal experi-

mental conditions (such as slight collinearity and unknown backgrounds) can be handled.

1. Unfold the obtained three-way data array X into a two-way data set XI � JK.

2. Decompose XI � JK by SVD, XI � JK = USV
T.

3. Define Xc =UcScVc
T,Uc andVc consist of the first c columns ofU andV, respectively; Sc is a

diagonal matrix with diagonal elements equal to the first c diagonal elements of S.

4. Fold Xc into a three-way data array Xc, then resolve it by PARAFAC with N = c (c = 1, 2, 3,

…,). The residual sum of squares is denoted by SSRc.

5. Repeat steps 3 and 4 until SSRc reaches its minimum or satisfies the equations below:

SSRc1 < sc1
2 and SSRc1 + 1 > sc1 + 1

2 and SSRc1 + 2 > sc1 + 2
2 (si represents the ith diagonal

element of matrix S and sc1
2 denotes the variance obtained by the inclusion of c1th

component in the truncating step).

6. Unfold X in another dimension to obtain XIK � J, then perform the same steps from 2 to 5 to

get c2, which meets similar relationships like c1.

7. The factor numbers applied in decomposing the trilinear data array X should be the

smaller one between c1 and c2, i.e. F = min(c1, c2).

This method utilizes the eigenvalues of factor analysis and the residuals of trilinear decompo-

sition. It can cope with nonideal experimental conditions like varying backgrounds and mod-

erate collinearity. However, as it is based on the PARAFAC algorithm, ADD-ONE-UP has
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some drawbacks. It is rather time consuming due to the need to run PARAFAC for many

times. Furthermore, this method may suffer from a heavy computational burden by reason of

two-factor degeneracies and may yield inaccurate results.

3.4.3. CORCONDIA

The principle of CORCONDIA is to assess the similarity between the superdiagonal array T and

the least squares-fitted G with a gradually increasing number of components. CORCONDIA is

defined as:

core consistency ¼ 100� 1�

PN
d¼1

PN
e¼1

PN
f¼1 gdef � tdef

� �2

PN
d¼1

PN
e¼1

PN
f¼1 t

2
def

0

B

@

1

C

A
, (27)

where gdef stands for the element of G, tdef represents the elements of T, and N denotes the

number of factors in the model.

For an ideal trilinear model, gdef is equal to tdef and the value of core consistency will be equal to

100%. Usually, the model can be regarded as “very trilinear” as the value of the core consis-

tency above 90%, whereas a value nearly 50% will indicate a problematic model, which

contains both trilinear and non-trilinear variations. A value close to zero or even negative

means that the model is not valid. Although it is an effective method, it suffers from the

drawbacks of PARAFAC.

3.5. Some related fundamental issues

3.5.1. Chromatographic peak alignment procedure

Chromatographic peak alignment is a challenge in the field of complex system analysis by

multiway calibration methods. Some methods for peak alignment have been developed based

on the second-order instruments, which generate a matrix data for per sample. These methods

[31], for example iterative target factor analysis coupled to COW (ITTFA-COW), rank minimi-

zation (RM), parallel factor analysis alignment, and other recently proposed methods based on

multivariate curve resolution-alternating least squares, employ signals of two-way structure to

align chromatographic peaks shifts. In theory, these methods are aimed at the alignment of

local chromatographic regions and therefore satisfactory results can be obtained for the time

shifts existed in the whole chromatogram. They can achieve accurate time alignment regard-

less of the presence of unknown interferences. Not long ago, Yu and co-workers developed a

new algorithm for chromatographic peak alignment, derived from the famous rank minimiza-

tion method. It aligns time shift among samples and then utilizes trilinear decomposition

algorithm to interpret the overlapping chromatographic peaks to quantify target analytes [31].

Figure 8(A) depicts the graphical representation of the rank minimization method (RM). A

significant advantage of this method is that alignment can be successfully carried out even

when the potential interferences coeluted with the analyte of interest. To have a better view on
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Figure 8. Graphical illustration of RM (A) and ASSD (B).
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this method, a series of fixed-size time window (rectangles) along the retention time directions

is applied in Figure 8(A). In particular, the red rectangleM0 stands for the retention time range

of analyte in the response of reference sample, and the retention time range between green and

blue rectangles in the response of a test sample is the underlying time shift ranges of the

analyte. By row-wisely moving the fixed-size time window on the test sample along the

retention time direction, the rectangles from M1 to Mn, can be extracted from the response of

the test sample; then, augmented matrices, which are defined as [M0 | M1],…, [M0 | Mn]

[stage 2 in Figure 8(A)] in the retention time direction, can be obtained. Finally, the singular

value decomposition is performed on these augmented matrices and results in a list of residual

variance. Consequently, the percentage of the residual variance plotted against each chromato-

graphic time shift will mark clearly the time shift point correction corresponding to the

minimum residual variance.

The abstract subspace difference (ASSD) method uses abstract chromatographic profiles for

alignment. Accordingly, the response matrix X can be expressed in the form of singular value

decomposition (SVD) notations as follows:

X ¼ USVT
þ E (28)

herein, the column vector U represents the abstract chromatographic profiles, while the V is

the abstract spectra profiles; in the strict sense, all of them are not necessarily correspond to the

real ones. Suppose that two data matrices have been collected: a reference data, Xref, which

includes only one analyte, and a test data, Xtest, which collects the analyte together with other

unknown interferences. Hence, based on the singular value decomposition, the abstract chro-

matographic profiles for reference and test samples can be acquired separately:

Xref ¼ UrefSrefVref
T
þ Eref , (29)

Xtest ¼ UtestStestVtest
T
þ Etest: (30)

In the ideal situation, no noise is present, and there is no time shift between reference and test

samples. In this case, the mathematical rank of the augmented matrix [Uref | Utest] will be

identical to that of Utest. However, in the situations where the chromatographic retention time

of the analyte is not the same for the reference and test samples, the mathematical rank of the

augmented matrix, [Uref | Utest], will become larger than the actual ones. Therefore, the core of

ASSD method is to look for the augmented matrix with minimum mathematical rank for

alignment, which is the same as the rank minimization method, except that ASSD uses the

abstract chromatographic profiles for alignment instead of the underlying ones.

Figure 8(B) shows the graphical illustration of the ASSD method. In order to calculate the

abstract chromatographic profiles for each of the extracted matrices M1 to Mn, an additional

step, SVD, has been introduced in the Stage 1 of Figure 8(B). Additionally, this new method

uses the last singular value instead of the percentage of residual variance in the last stage to
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represent time shift correction. In practical measurement, aligning time shift for target analyte

between the reference and a test sample according to the critical criterion of the mathematical

rank of the augmented matrix is impractical. However, the augmented matrix, [Uref | Utest],

will become a seriously ill-conditioned matrix provided that the time shift has been success-

fully aligned. Hereby, chromatographic peak alignment can be transformed to find the most ill-

conditioned augmented matrix among the augmented matrices as shown in the Stage 3 of

Figure 8(B). As the total variance is the sum of the squared elements of the augment matrix,

[Uref | Utest], it will be a steady state value and equal to the column numbers. Hence, a smaller

last singular value will definitely correspond to a more ill-conditioned matrix.

3.5.2. Background drift

Non-trilinear factors such as background drift is unavoidable sometimes in the chromato-

graphic analysis due to the composition of gradient elution and/or nature of complicated

matrices, which may lead to wrong analysis results by the aforementioned chemometric

algorithms. Amigo and co-workers have summarized the intuitive graphics and mathematical

models used in handling chromatographic data issues [32]. Multivariate curve resolution

(MCR) methods are typical examples.

A chromatographic background drift correction strategy [33] was developed in 2007 by our

group for LC � LC � DAD data. The core idea is to perform trilinear decomposition, which is

based on the alternating trilinear decomposition (ATLD) algorithm for the instrumental

response data. In analysis, the background drift can be eliminated by regarding it as an extra

component or factor. This method uses trilinear decomposition to resolve the raw data, to

extract, and subtract the background component from the raw data for acquisition of the signal

of analytes with a flat baseline. A detailed schematic description on how to subtract the

background drift from raw three-way chromatographic data is illustrated in Figure 9.

Recently, a method that uses orthogonal spectral signal projection (OSSP) to simultaneously

solve various kinds of chromatographic background drift was studied [33]. The analytical

results indicated that OSSP coupled with PARAFAC can be used for handling coelution and

background drift problems in chromatographic analysis. It indicates that more accurate anal-

ysis results can be obtained, regardless of the presence of background drift and unknown

interferences.

4. Application

Based on the “second-order or high-order advantages” provided by chemometrics methods,

some actual applications have been developed for the analysis of pharmaceuticals, biological

matrices, foods, cosmetics, environmental matrices, and others. Multiway calibration algo-

rithms have been employed to enhance the selectivity and can obtain accurate predicted

concentration of analyte(s) of interest free from interference of potential interfering matrix.

These applications summarized in Table 2 are reviewed in the following six aspects.
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4.1. Pharmaceuticals

In this field, two or three drugs have been simultaneously detected in aqueous solution or

Chinese traditional medicine. The data analyzed are second-order tensors, which are obtained

by high performance liquid chromatography-photodiode array detection (HPLC-DAD).

Su et al. proposed a method for simultaneously quantifying the main effective constituents

such as puerarin, daidzin, and daidzein in traditional Chinese medicine kudzuvine root by

using HPLC-DAD with ATLD algorithm [34].

Nowadays, traditional Chinese medicine (TCM) plays an important role in the healthcare

system. Thus, considerable attention has been paid to Chinese patent medicine (CPM), which

generally consists of several TCMs and other ingredients. It is significantly important to

quantify the constituents of CPM and plasma for pharmacological analysis. Liu et al. deter-

mined two effective constituents, costunolide and dehydrocostuslactone, in plasma sample

and Chinese patent medicine Xiang Sha Yang Wei capsule by using HPLC-DAD coupled with

alternating trilinear decomposition (ATLD) algorithm [35].

Besides, Ding et al. determined isoniazid and pyrazinamide by using HPLC-DAD coupled

with three different second-order calibration algorithms including ATLD, alternating fitting

residue (AFR), and self-weighted alternating trilinear decomposition (SWATLD). The results

showed that all the three algorithms could be used for solving overlapped chromatograms and

unknown interferences successfully, and the analysis results obtained from AFR were slightly

better in this situation [36].

Figure 9. Schematic description on how to remove the background drift from three-dimensional instrumental data.
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4.2. Biological matrices

Biological samples often contain various endogenous substances such as amino acids, hormones

and neurotransmitters. Determining the concentrations of these molecules or metabolites is an

integral part of clinical research and also helpful for understanding pathophysiology and mech-

anism of diseases. Human urine and plasma are commonly primary research systems.

High blood pressure, widely called hypertension, is a cardiac chronic disease with a symptom

of sustaining rise in systemic arterial blood pressure. Zhao et al. carried out the simultaneous

quantification of 11 antihypertensives, human serum, health product, and Chinese patent

medicine samples by using HPLC-DAD with the aid of second-order calibration based on

ATLD algorithm [37].

Tyrosine kinases are critical regulators of cell growth and differentiation growth and differen-

tiation. The measurement of concentration of TKIs in different biofluids plays a significant role

in optimizing the individual dosage regimen and reducing the risk of inapposite dosages. For

the analysis of four tyrosine kinase inhibitors in different plasma samples, HPLC-DAD was

utilized without absolutely chromatographic separations by resorting to ATLD algorithm. The

contents of four tyrosine kinase inhibitors in different complex plasma samples can be accu-

rately determined [38].

Liu et al. simultaneously determined vincristine, vinblastine, vindoline, catharanthine, and

yohimbine in Catharanthus roseus and human serum samples utilizing ATLD algorithm to

analyze the resulting three-way data array stacked by HPLC-DAD [39].

β-blockers are the first-line therapeutic agents for treating cardiovascular diseases and also a

class of prohibited substances in athletic competitions. Therefore, rapid screening for multiple β-

blockers in a single analysis has been of growing demand in clinical toxicology, forensic science,

and antidoping control as well. Gu et al. proposed a smart strategy that combines three-way

liquid chromatography-mass spectrometry (LC-MS) data with second-order calibration method

based on alternating trilinear decomposition (ATLD) algorithm for simultaneous determination

of 10 b-blockers in human urine and plasma samples [40]. The quantitative results were vali-

dated by the LC-MS/MS operated in multiple reaction monitoring (MRM) mode.

4.3. Foods

The applications in this field cover the analysis of contaminants, essential ingredients, and

additives.

Synthetic phenolic antioxidants as foodadditiveswere successfullydetermined in edible vegetable

oil by usingHPLC-DADandAPTLD [9]. Some extraction procedures, inwhich the antioxidants of

interest would be separated, is unnecessary and the 10 antioxidants can be elutedwithin 6min.

Yin et al. proposed a smart strategy that combined HPLC-DAD with ATLD algorithm to solve

varying interfering patterns from different chromatographic columns and sample matrices for

the rapid simultaneous determination of six synthetic colorants in beverages with little sample

pretreatment [1].
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Tea is one of the most widely consumed beverages in the world. The biological functions

of tea have been reported in numerous studies, such as anti-inflammation, antiathero-

sclerotic, antioxidant, anticarcinoma, antiobesity, and antiviral properties. These beneficial

effects are related to the presence of purine alkaloids and polyphenols in tea. An attractive

chemometrics-enhanced HPLC-DAD strategy was proposed by Yin et al. for simultaneous

and fast determination of eight coeluted compounds including gallic acid, caffeine, and six

catechins in 10 kinds of Chinese teas by using second-order calibration method based on

ATLD algorithm [41]. Subsequently, based on the quantitative results, principal component

analysis (PCA) was used to conduct a cluster analysis for these Chinese teas.

Type of data Algorithm Analytes Ref.

Pharmaceuticals

HPLC-DAD ATLD Puerarin, daidzin, and daidzein [34]

HPLC-DAD ATLD Costunolide and dehydrocostuslactone [35]

HPLC-DAD ATLD, SWATLD, AFR Isoniazid and pyrazinamide [36]

Biological matrices

HPLC-DAD ATLD Eleven antihypertensives [37]

HPLC-DAD ATLD Four tyrosine kinase inhibitors [38]

LC-MS ATLD Ten β-blockers [40]

LC-MS ATLD Six antidiabetic agents [48]

HPLC-DAD ATLD Five vinca alkaloids [39]

Foods

HPLC-DAD PARAFAC, ATLD, SWATLD Sudan I and Sudan II [49]

HPLC-DAD ATLD Six synthetic colorants [1]

HPLC-DAD APTLD Synthetic phenolic antioxidants [9]

HPLC-DAD ATLD,PCA Eight coeluted compounds in tea [7]

HPLC-DAD ATLD Eight flavonoids [42]

HPLC-DAD ATLD nine polyphenols [43]

HPLC-DAD ATLD Twelve quinolones [44]

HPLC-DAD ATLD, PCA-LDA Thirteen phenolic compounds [45]

HPLC-DAD ATLD Twelve polyphenols [46]

LC-MS ATLD Ten mycotoxins [47]

Environmental matrices

HPLC-DAD SWATLD Three pre-emergence herbicides [50]

HPLC ATLD 1-Chloro-2,4-dinitrobenzene and 3,5-dinitrobenzoic acid [51]

HPLC ATLD Five dimethylphenol isomers [53]

HPLC ATLD Catechol, resorcinol and hydroquinone [52]

Table 2. Reviewed applications.
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Propolis is a naturally occurring resinous hive product gathered by worker honeybees from

buds and barks of different plant species. Sun et al. developed a fast analytical strategy by

combining HPLC-DAD with ATLD algorithm for simultaneous determination of eight flavo-

noids in propolis capsule samples [42].

Honey is a wholesome natural food product well known for its high nutrition. The antioxidant

ability of a number of honeys has been determined and found to be significantly correlated to

the contents of polyphenols, which can affect the quality of honeys and their products benefi-

cial for improving overall health and preventing some diseases. By using second-order cali-

bration for development of HPLC-DAD method, Zhang et al. quantified nine polyphenols in

five kinds of honey samples successfully [43]. Quinolones, a kind of antibacterial, which is

widely used in agriculture for its high antimicrobial activity, were also detected by HPLC-

DAD with ATLD algorithm in honey samples [44].

Wine phenolic compounds, as secondary metabolites and functional components, determine

the important sensorial characteristics of wines, such as mouth-feel, fragrance, and color. The

combination of HPLC-DAD and second-order calibration method based on ATLD has been

used for the determination of 13 phenolic compounds in red wines, and linear discriminant

analysis (PCA-LDA) was applied for distinguishing wines aged for years [45]. Similarly, the

same strategy was carried out by Wang et al. for simultaneously quantify 12 polyphenols in

different kinds of apple peel and pulp samples [46].

Mycotoxins are a class of highly carcinogenic substances often naturally occurring in the moldy

foods, especially cereals. Liu et al. proposed a smart strategy that combines three-way LC-MS

data with second-order calibration method based on ATLD algorithm for direct, fast, and

interference-free determination of multiclass regulated mycotoxins in complex cereal samples

[47]. Ten mycotoxins with different property could be fast eluted out and detected by full

scanning MS with a segmented fragment program to enhance the sensitivity.

By using LC-MS in combination with second-order calibration method based on ATLD algo-

rithm, Gu et al. simultaneously green determined six coeluted sulfonylurea-type oral

antidiabetic agents in healthy herbal teas and human plasma samples [48]. The strategy pro-

ved to be a promising method for resolution and determination of coeluted multianalytes of

interest in complex samples while avoiding elaborate sample pretreatment steps and compli-

cated experimental conditions as well as more sophisticated high-cost instrumentations.

For the determination of Sudan dyes in hot chilli samples, HPLC-DAD was employed without

completely chromatographic separations by using PARAFAC, ATLD, and SWATLD [49]. The

low contents of Sudan I and Sudan II could be accurately determined in complex chilli mixtures.

4.4. Environmental matrices

In this field, we analyzed the analytes in aqueous solution, soil, tap water, river, and effluent

water, mainly containing organic contaminants and pesticides.

Herbicides, which are chemicals often employed to kill weeds without causing injury to

desirable vegetation, have been widely used. These may lead to their accumulation in the

environment and cause continuous and serious pollution or even toxicity to crops and

Chemometrics and Data Analysis in Chromatography100



humans. Qing et al. developed a novel strategy for analysis of three pre-emergence herbicides

in environment samples using HPLC-DAD with SWATLD algorithm [50].

Chemometrics-assisted HPLC-DAD strategy has a great potential in analysis of target analytes

in complex environmental matrices. So far, this strategy has been utilized for determination of

1-chloro-2,4-dinitrobenzene and 3,5-dinitrobenzoic acid [51], catechol, resorcinol, and hydro-

quinone [52] as well as five dimethylphenol isomers [53] in environment successfully.

5. Conclusion

This chapter scientifically describes in detail the various multiway chemometrics methodolo-

gies and applications in chromatography. We have built more canonical symbol systems, noted

the inner mathematical cyclic symmetry property for multilinear decomposition, introduced

several multiway calibration algorithms, explored the rank estimation of multiway data array,

and analyzed numerous actual systems by homemade methods. Some fundamental issues

related to chromatographic analysis such as peak alignment and background drift were also

discussed and solved. By combining chromatographic techniques with chemometrics based on

multiway calibration methods, complicated and tedious sample pretreatment can be greatly

simplified and long chromatographic elution can be avoided. All the applications above-

mentioned are universal, rapid, and sensitive for the determination of a variety of analytes in

complex matrices.
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