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Abstract

Manifold learning theory has seen a surge of interest in the modeling of large and exten-
sive datasets in medical imaging since they capture the essence of data in a way that
fundamentally outperforms linear methodologies, the purpose of which is to essentially
describe things that are flat. This problematic is particularly relevant with medical imag-
ing data, where linear techniques are frequently unsuitable for capturing variations in
anatomical structures. In many cases, there is enough structure in the data (CT, MRI,
ultrasound) so a lower dimensional object can describe the degrees of freedom, such as in
a manifold structure. Still, complex, multivariate distributions tend to demonstrate highly
variable structural topologies that are impossible to capture with a single manifold learn-
ing algorithm. This chapter will present recent techniques developed in manifold theory
for medical imaging analysis, to allow for statistical organ shape modeling, image seg-
mentation and registration from the concept of navigation of manifolds, classification, as
well as disease prediction models based on discriminant manifolds. We will present the
theoretical basis of these works, with illustrative results on their applications from various
organs and pathologies, including neurodegenerative diseases and spinal deformities.

Keywords: manifold learning, medical imaging, discriminant manifolds, piecewise
geodesic regression, spine deformities, neurodegenerative diseases, shape modeling

1. Introduction

Learning on large medical imaging datasets is an emerging discipline driven from the avail-

ability of vast amounts of raw data in many of today’s biomedical studies. However, chal-

lenges such as unbalanced data distributions, complex multivariate data and highly variable

structural topologies demonstrated by real-world samples makes it much more difficult to

efficiently learn the associated representation. An important goal of scientific data analysis in

medicine, particularly in neurosciences or oncology, is to understand the behavior of biological

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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process or physiological/morphological alterations. This introduces the need to synthesize

large amounts of multivariate data in a robust manner and raises the fundamental question of

data reduction: how to discover meaningful representations from unstructured high-dimen-

sional medical images.

Several approaches have attempted to understand how dimension reduction and regression

establishes the relationship in subspaces and finally determine statistics on manifolds that

optimally describe the relationships between the samples [1]. However, certain assumptions

based on the representation of shapes and images using smooth manifolds are made in most

cases, which frequently will not be adequate in the presence of medical imaging data and often

perturbed by nuisance articulations, clutter or varying contrast.

High-dimensional classification methods have shown promise to measure subtle and spatially

complex imaging patterns that have diagnostic value [2, 3]. Defining statistics on a manifold is

not a straightforward process when simple statistics cannot be directly applied to general

manifolds [4]. But while Euclidean estimators have been used for vector spaces, none have

been adapted for multimodal data lying in different spaces. Still, there has been interest in the

characterization of data in a Riemann space [5, 6]. Unfortunately, manifold-valued metrics

based on the centrality theory or the geometric median [7] often lacks robustness to outliers.

A related topic lies in dimensionally reduced growth trajectories of various anatomical sites

which have been investigated in neurodevelopment of newborns for example, based on geo-

desic shape regression to compute the diffeomorphisms with image time series of a population

[8]. These regression models were also used to estimate spatiotemporal evolution of the

cerebral cortex [9]. The concept of parallel transport curves in the tangent space from low-

dimensional manifolds proposed by Schiratti et al. [10] was used to analyze shape morphology

[11] and adapted for radiotherapy response [12]. Regression models were proposed for both

cortical and subcortical structures, with 4D varifold-based learning framework with local

topography shape morphing being proposed by Rekik et al. [13].

This chapter presents several manifold learning methodologies designed to address challenges

encountered in medical imaging. In Section 2, we present an articulated shape inference model

from nonlinear embeddings, expressing the global and local shape variations of the spine and

vertebrae composing it, introduced in [14]. We then present in Section 3 a probabilistic model

from discriminant manifolds to classify the neurodegenerative stage of Alzheimer’s disease.

Finally, a piecewise-geodesic transport curve in the tangent space from low-dimensional mani-

folds designed for the prediction of correction in spinal surgeries is shown in Section 4,

introducing a time-warping function controlling the rate of shape evolution. We conclude this

article in Section 5.

2. Shape inference through navigating manifolds

Statistical models of shape variability have been successful in addressing fundamental vision

tasks such as segmentation and registration in medical imaging. However, the high dimen-

sionality and complex nonlinear underlying structure unfortunately makes the commonly
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used linear statistics inapplicable for anatomical structures. Manifold learning approaches

map high-dimensional observation data that are presumed to lie on a nonlinear manifold, onto

a single global coordinate system of lower dimensionality.

Inferring a model from the underlying manifold is not a novel concept but far from being trivial.

In this section, we model both global statistics of the articulated model and local shape variations

of vertebrae based on local measures in manifold space. We describe a spine inference/segmen-

tation method from CT and MR images, where the model representation is optimized through a

Markov Random Field (MRF) graph, balancing prior distribution with image data.

2.1. Data representation

Our spine model S ¼ s1;…; sLf g consists of an interconnection of L vertebrae. For each verte-

bra si, we recover a triangular mesh with vertices vijjj ¼ 1;…;V
n o

, where the jth vertex corre-

sponds to approximately the same location from one shape to another and V the number of

vertices. Additionally, every si is annotated with landmarks on each model to rigidly register

each object to its upper neighbor. Hence, an articulated deformable model (ADM) is

represented by a vector of local intervertebral rigid transformations A ¼ T1;T2;…;TL½ �. To

perform global shape modeling of S, we convert A to an absolute representation Aabs ¼

T1;T1 ∘T2;…;T1 ∘T2 ∘… ∘TL½ � using recursive compositions. The transformations are

expressed in the local coordinate system (LCS) of the lower vertebra. Center of transformation

is the intersection of all three vertebral axes, following anteroposterior, cranial-caudal and left-

right directions. Rigid transformations described here are the combination of a rotation matrix

R, a translation t and scaling s. We formulate the rigid transformation T ¼ s;R; tf g of a

triangular mesh model as y ¼ sRxþ t where x, y, t∈ℜ3.

2.2. Manifold embedding

For nonlinear embeddings, we rely on the absolute vector representation Aabs as given previ-

ously. Let us now considerN articulated shape models expressed by the feature vectorsAi
abs, of

dimensionality D. The aim is to create a low-dimensional manifold consisting of N points Yi,

Yi ∈ℜ
d, i∈ 1;N½ � where d≪D based on [15]. In such a framework, if an adequate number of

data points is available, then the underlying manifoldM is considered to be “well-sampled.”

Therefore, it can represent the underlying population structure. In the sub-cluster corres-

ponding to a pathological population, each point of the training set and its neighbors would

lie within a locally linear patch as illustrated in Figure 1.

The main limitation of embedding algorithms is the assumption of Euclidean metrics in the

ambient space to evaluate similarity between sample points. Thus, a metric in the space of

articulated structures is defined so that it accommodates for anatomical spine variability and

adopts the intrinsic nature of the Riemannian manifold geometry allowing us to discern

between articulated shape deformations in a topological invariant framework. For each point,

the K closest neighbors are selected using a distortion metric which is particularly suited for

geodesics. The metric dM Ai
abs;A

j
abs

� �

estimates the distance of articulated models i, j where
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Ai
abs. The distance measure for absolute representations can therefore be expressed as a sum of

articulation deviations

dM Ai
abs;A

j
abs

� �

¼
X

L

k¼1

dM Ti
k;T

j
k

� �

¼
X

L

k¼1

∥tik � t
j
k∥þ

X

L

k¼1

dG Ri
k;R

j
k

� �

: (1)

While for the translation, the L2 norm is chosen, geodesical distances are used between rotation

neighborhoods. This is expressed as dG Ri
k;R

j
k

� �

¼ ∥ log Ri
k

� ��1
R

j
k

� �

∥F where the log map is

used to map a point in the manifold to the tangent plane.

Afterwards, the manifold reconstruction weights are estimated by assuming the local geome-

try of the patches can be described by linear coefficients that permit the reconstruction of every

model point from its neighbors. In order to determine the value of the weights, the reconstruc-

tion errors are measured using the following objective function:

ε Wð Þ ¼
X

N

i¼1

Ai
abs �

X

K

j¼1

W ijA
j
abs

�

�

�

�

�

�

�

�

�

�

�

�

2

(2)

subject to

W ij ¼ 0 if Ai
abs not neighbor A

j
abs

X

j

Wij ¼ 1 for every i:

8

>

<

>

:

(3)

Thus, ε Wð Þ sums the squared distances between all data points and their corresponding

reconstructed points. The weights Wij represent the importance of the jth data point to the

reconstruction of the ith element.

Figure 1. Representation of intervertebral transformations in manifold space.
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The algorithm maps each high-dimensional Ai
abs to a low-dimensional Yi. These internal

coordinates are found with a cost function minimizing the reconstruction error:

Φ Yð Þ ¼
X

N

i¼1

Yi �
X

K

j¼1

WijYj

�

�

�

�

�

�

�

�

�

�

�

�

2

¼
X

N

i¼1

X

N

j¼1

MijY
T
i Yj

(4)

withM as a sparse and symmetric N �N matrix enclosing the reconstruction weightsWij such

that M ¼ I�Wð ÞT I�Wð Þ, and Y spanning the Yi’s. The optimal embedding, up to a global

rotation, is obtained from the bottom dþ 1 eigenvectors of M and helps to minimize the cost

function Φ Yð Þ as a simple eigenvalue problem. The d eigenvectors form the d embedding

coordinates. The coordinates Yi can be translated by a constant displacement without affecting

the overall costΦ Yð Þ. The eigenvector corresponding to the smallest eigenvalue corresponds to

the mean value of the embedded data Y0 ¼ y1;…; yd
� �

,yi ¼ 0, ∀i. This can be discarded with
P

Yi ¼ 0 to obtain an embedding centered at the origin. Hence, a new ADM can be inferred in

the embedded d-space as a low-dimensional point Ynew by finding its optimal manifold

coordinates yi.

To obtain the articulation vector for a new embedded point in the ambient space (image

domain), one has to determine the representation in high-dimensional space based on its

intrinsic coordinates. We first assume an explicit mapping f : M ! ℜ
D from manifold space

M to the ambient space ℜD. The inverse mapping of Yi is then performed by estimating the

relationship between ℜD and M as a joint distribution, such there exists a smooth functional

which belongs to a local neighborhood. Theoretically the manifold should follow the condi-

tional expectation:

f Yið Þ � E Ai
absjM Aið Þ ¼ Yi

� �

¼

ð

Ai
p Yi;Aið Þ

p
M Aið Þ Yið Þ

dD (5)

which captures the overall trend of the data in D-space. Here, both p
M Aið Þ Yið Þ (marginal

density of M Aið Þ) and p Yi;Aið Þ (joint density) are unknown. Based on the Nadaraya-Watson

kernel regression [16], we replace densities by kernel functions as p
M Aið Þ Yið Þ ¼ 1

K

P

j∈N ið Þ

Gh Yi;Yj

� �

and p Yi;Aið Þ ¼ 1
K

P

j∈N ið ÞGh Yi;Yj

� �

Gg Ai;Aj

� �

[17]. The Gaussian regression kernels

G require the neighbors A
j
abs of j∈N ið Þ to determine the bandwidths h, g so it includes all K

data points (N ið Þ representing the neighborhood of i). Plugging these estimates in Eq.(5), this

gives:

fNW Yið Þ ¼

ð

Ai

1
K

P

j∈N ið ÞGh Yi;Yj

� �

Gg Ai;Aj

� �

1
K

P

j∈N ið ÞGh Yi;Yj

� � dD: (6)
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By assuming G is symmetric about the origin, we propose to integrate in the kernel regression

estimator, the manifold-based distortion metric dM which is particularly suited for geodesic

metrics and articulated diffeomorphisms. This generalizes the expectation such that the obser-

vations Y are defined in manifold space M:

fNW Yið Þ ¼ argmin
Ai

abs

P

j∈N ið ÞG Yi;Yj

� �

dM Ai
abs;A

j
abs

� �

P

j∈N ið ÞG Yi;Yj

� � (7)

which integrates the distance metric dM Ai
abs;A

j
abs

� �

defined in Eq. (1) and updates fNW Yið Þ

using the closest neighbors of point Yi in the manifold space. This constrains the regression to

be valid for similar data points in its vicinity since locality around Yi preserves locality in Ai
abs.

2.3. Optimization on manifold

Once an appropriate modeling of spine shape variations is determined with a manifold, a

successful inference between the image and manifold must be accomplished. We describe here

how a new model is generated. We search the optimal embedded manifold point Y ¼

y1;…; yd
� �

of the global spine model. Such a strategy offers an ideal compromise between the

prior constraints, as well as the individual shape variations described by the weight vector

W ¼ w1;…;wnð Þ in a localized sub-patch. The energy E of inferring the model S in the image I

is a function of the set of displacement vectors Δ in the manifold space for global shape

representation. This involves: (a) a data-related term expressing the image cost and (b) a global

prior term measuring deformation between low-dimensional vectors with shape models. The

third term represents (c) a higher-order term which is expressed by the reconstruction weights

Ω for local vertebra modeling. The energy E can be expressed as the following combination of

a global and local optimization:

E S0
; I ;Δ;Ω

� �

¼ V Y0 þ Δ; I
� �

þ α V N;Δð Þ þ β V H;Δ;Ωð Þ: (8)

The global alignment of the model with the target image primarily drives the deformation of

the model. The purpose is to estimate the set of articulations describing the global spine model

by determining its optimal representation Y0 in the embedded space. This is performed by

obtaining the global representation using the mapping in (7) so that: fNW Yi þ Δð Þ ¼

fNW y1 þ δ1;…; yd þ δd

� �� �

. This allows to optimize the model in manifold space coordinates

while retrieving the articulations in I . The global cost can be expressed as:

V Y0 þ Δ; I
� �

¼ V fNW y1 þ δ1;…; yd þ δd
� �� �

; I
� ��

: (9)

The inverse transform allows to obtain Ai
abs þD, with D as deformations in the image space.

Since the transformations Ti are implicitly modeled in the absolute representation A0
abs, we can

formally consider the singleton image-related term as a summation of costs associated with

each L vertebra of the model:
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V A
0
abs þD; I

� �

¼
X

L

i¼1

V i si
∗ T0

i þ di
� �

; I
� �

(10)

where V i s; Ið Þ ¼
P

vi ∈ s
nT
i við Þ∇I við Þ minimizes the distance between mesh vertices of the

inferred shape and gradient image I by a rigid transformation. Here, ni is the normal pointing

outwards and ∇I við Þ the image gradient at vi.

The prior constraint for the rigid alignment are pairwise potentials between neighboring

models yi such that the difference in manifold coordinates is minimal with regards to a prior

distribution of neighboring distances P:

αV N;Δð Þ ¼ α
X

i∈G

X

j∈N ið Þ

V ij y0i þ δi; y
0
j þ δj;P

� �

: (11)

This term represents the smoothness term of the global cost function to ensure that the

deformation δi applied to point coordinates are regular, with V ij ¼ 0; 1ð Þ a distance assigning

function based on the distances to P.

One can integrate the global data and prior terms along with local shape terms parameterized

as the higher-order cliques, by combining (9), (11):

E S
0
; I ;Δ;Ω

� �

¼ V fNW y1 þ δ1;…; yd þ δd

� �� �

; IÞ
� �

þ α
X

i∈G

X

j∈N ið Þ

V ij y0i þ δi; y
0
j þ δj

� �

þ β
X

c∈ C

Vc w
0
c þ ωc

� �

:

(12)

The optimization strategy of the resulting MRF (12) in the continuous domain is not a straight-

forward problem. The convexity of the solution domain is not guaranteed, while gradient-

descent optimization approaches are prone to nonlinearity and local minimums. We seek to

assign the optimal labels L
Δ ¼ l1;…; ldf g and L

Ω ¼ l1;…; lnf g which are associated to the

quantized space Δ of displacements and local weight parameters Ω respectively. We consider

that displacing the coordinates of point y0i by δ
li is equivalent to assigning label li to y0i . An

incremental approach is adopted where in each iteration t we look for the set of labels that

improves the current solution s.t. yti ¼ y0i þ
P

tδ
lit, which is a temporal minimization problem.

Then (12) can be rewritten as:

Et
L
Δ

;L
Ω

� �

¼ V fNW yt�1
1 ; lΔ1 ;…; yt�1

d ; lΔd
� �� �

; IÞ
� �

þ α
X

i∈G

X

j∈N ið Þ

V ij yt�1
i ; yt�1

j ; lΔi ; lΔj

� �

þ β
X

c∈ C

Vc w
t�1
c ; lΩc

� �

:

(13)

We solve the minimization of the higher-order cliques in (13) by transforming them into

quadratic functions [18]. We apply the FastPD method [19] which solves the problem by

formulating the duality theory in linear programming.
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2.4. Results

Manifold learning. The manifold was built from a database containing 711 scoliotic spines

demonstrating several types of deformities. Each spine model in the database was obtained

from biplanar radiographic stereo-reconstructions. It is modeled with 12 thoracic and 5 lumbar

vertebrae (17 in total), represented by 6 landmarks on each vertebra (4 pedicle extremities and

2 endplate center points) which were manually identified by an expert on the radiographic

images. The resulting manifold is shown in Figure 2.

Adaptation of the articulated model was done on two different data sets. The first consisted of

volumetric CT scans (512� 512� 251, resolution: 0:8� 0:8 mm, thickness: 1� 2 mm) of the

lumbar and main thoracic regions obtained from 21 different patients acquired for operative

planning purposes. The MR dataset comprised multi-parametric volumetric data

(256� 256� 160, resolution: 1:3� 0:9 mm, thickness: 1 mm) of 8 patients acquired for diag-

nostic purposes. For this study, only the T1 sequence was selected for the experiments. All

patients on both datasets (29 in total) had 12 thoracic and 5 lumbar vertebrae. Both CTand MR

data were manually annotated with 3D landmarks by an expert in radiology, corresponding to

left and right pedicle tips as well as midpoints of the vertebral body. Segmentation of the

vertebrae from the CT and MR slices were also made by the same operator.

CT imaging experiments. We first evaluated the model accuracy in CT images by computing

the correspondence of the inferred vertebral mesh models to the segmented target structures.

As a preprocessing step, a rough thresholding was performed on the whole volume to filter

out noise artifacts. The overall surface-to-surface comparison results between the inferred 3D

Figure 2. Low-dimensional manifold embedding of the spine dataset comprising 711 models exhibiting various types of

deformities. The sub-domain was used to estimate both the global shape pose costs and individual shape instances based

on local neighborhoods.
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vertebral models issued from the articulated model and from known segmentations were first

calculated. The mean errors are 2:2� 1:5 mm (range: 0:6� 5:4 mm) for thoracic vertebra and

2:8� 1:9 mm (range: 0:7� 8:1 mm) for lumbar vertebra.

MR imaging experiments. For the experiments involving the segmentation of 3D spine

models from MR images, the surface-to-surface comparison showed encouraging results (tho-

racic: 2:9� 1:8 mm, lumbar: 3:0� 1:9 mm) based on differences to ground-truth. As in the

previous experiments with CT imaging, ground-truth data was generated by manually

segmenting the structures models which were validated by an expert in radiology. As difficult

as the CT inference is, the MR problem represent an even greater challenge as the image

resolution is more limited and interslice spacing is increased compared to CT. Modeling of

the statistical properties of the shape variations and global pose becomes even more important

in this case, as it relies heavily in the nonlinear distribution of the patient morphology.

3. Probabilistic modeling of discriminant nonlinear manifolds in the

identification of Alzheimer’s

Neurodegenerative pathologies, such as Alzheimer’s disease (AD), are linked with morpho-

logical and metabolic alterations which can be assessed from medical imaging and biological

data. Recent advances in machine learning have helped to improve classification and progno-

sis rates, but lack a probabilistic framework to measure uncertainty in the data. In this section,

we present a method to identify progressive mild cognitive impairment (MCI) and predict

their conversion to AD fromMRI and positron emitting tomography (PET) images. We show a

discriminative probabilistic manifold embedding where locally linear mappings transform

data points in low-dimensional space to corresponding points in high-dimensional space. A

discriminant adjacency matrix is constructed to maximize the separation between different

clinical groups, including MCI converters and nonconverters, while minimizing the distance in

latent variables belonging to the same class.

3.1. Probabilistic model for discriminant manifolds

Manifold learning algorithms are based on the premise that data are often of artificially high

dimension and can be embedded in a lower dimensional space. However the presence of

outliers and multiclass information can on the other hand affect the discrimination and/or

generalization ability of the manifold. We propose to learn the optimal separation between

four classes (1) normal controls, (2) nonconverter MCI patients, (3) converter MCI patients and

(4) AD patients, by using a discriminant graph-embedding. Here, n labeled points Y ¼

yi; li
� �� �n

i¼1
defined in R

D are generated from the underlying manifoldM, where li denotes

the label (NC, cMCI, nMCI or AD). For the labeled data, there exists a low-dimensional (latent)

representation of the high-dimensional samples such that X ¼ xi; lið Þf gni¼1 defined in R
d. We

assume here that the mapping Mi ∈R
D�d between high and low-dimensional spaces is locally

linear, such that tangent spaces in local neighborhoods can be estimated with yj � yi and
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xj � xi, representing the pairwise differences between connected neighbors i, j. Therefore the

relationship can be established as yj � yi ≈Mi xj � xi
� �

.

In order to effectively discover the low-dimensional embedding, it is necessary to maintain the

local structure of the data in the new embedding. The graph G ¼ V;Wð Þ is an undirected

similarity graph, with a collection of nodes V connected by edges, and the symmetric matrix

W with elements describing the relationships between the nodes. The diagonal matrix D and

the Laplacian matrix L are defined as L ¼ D�W, with D i; ið Þ ¼
P

j 6¼iW ij∀i.

Using the theoretical framework from [20], we can determine a distribution of linear maps

associated with the low-dimensional representation to describe the data likelihood for a specific

model:

log p YjGð Þ ¼ log

Z Z

p Y;M;XjGð ÞdxdM (14)

This joint distribution can be separated into three prior terms: the linear maps, latent variables

and the likelihood of the high dimensional points Y:

p Y;M;XjGð Þ ¼ p YjM;X;Gð Þp MjGð Þp XjGð Þ (15)

We now define the discriminant similarity graphs establishing neighborhood relationships, as

well define each of the three prior terms included in the joint distribution.

Within and between similarity graphs: In our work, the geometrical structure of M can be

modeled by building a within-class similarity graphWw for feature vectors of same group and

a between-class similarity graph Wb, to separate features from all four classes. When constru-

cting the discriminant locally linear latent variable embedding, elements are partitioned into

Ww andWb classes. The intrinsic graph G is first created by assigning edges only to samples of

the same class (ex: nMCI). Each sample is therefore reconstructed only from feature vectors of

the same clinical group. Local reconstruction coefficients are incorporated in the within-class

similarity graph, such that Ww is defined as:

Wwi, j ¼
1 if yi ∈N w yj

� �

or yj ∈N w yi
� �

0, otherwise:

(

(16)

with N w containing neighbors of the same class. Conversely, Wb depicts the statistical proper-

ties to be avoided in the inference process. Distances between samples from different clinical

groups are computed as:

Wbi, j ¼
1 if yi ∈N b yj

� �

or yj ∈N b yi
� �

0, otherwise

(

(17)

with N b containing neighbors having different class labels from the ith sample. The objective

is to transform points to a new manifold M of dimensionality d, i.e., yi ! xi, by mapping

connected samples from the same group in Ww as close as possible to the class cluster, while

moving NC, nMCI, cMCI and AD samples of Wb as far away from one another.
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Model components: The prior added on the latent variables X are located at the origin of the

low-dimensional domain, while minimizing the Euclidean distance of neighboring points that

are associated with the neighborhood of high-dimensional points and maximizing the distance

between coordinates of different classes. In order to set the variables with an expected scale α

and H representing the probability density function, the following log prior is defined:

log p XjW;αð Þ ¼ �
1

2

X

n

i¼1

α∥xi∥þ
X

n

j¼1

Wwi, j∥yi � yj∥
2 �

X

n

j¼1

Wbi, j∥yi � yj∥
2

0

@

1

A� logHX (18)

The prior added to the linear maps defines how the tangent planes described in low and high

dimensional spaces are similar based on the Frobenius norm. This prior ensures smooth mani-

folds:

log p MjWð Þ ¼ �
1

2

X

n

i¼1

xi

�

�

�

�

�

�

�

�

�

�

2

F

�
X

n

i¼1

X

n

j¼1

Wwi, j �Wbi, j

� �

∥Mi �Mj∥
2
F

0

@

1

A� logHM (19)

Finally, approximation errors from the linear mapping Mi between low and high-dimensional

domains are penalized by including the following log likelihood:

log p YjX;W;γð Þ ¼ ∥
X

n

i¼1

yi∥
2 �

1

2

X

n

i¼1

X

n

j¼1

Wwi, jΔ i; jð ÞTγIΔ i; jð Þ

þ
1

2

X

n

i¼1

X

n

j¼1

Wbi, jΔ i; jð ÞTγIΔ i; jð Þ � logHy

(20)

with Δ i; jð Þ the difference in Euclidean distance between pairs of neighbors in high and low-

dimensional space and γ the update parameter for the EM inference. Samples of y are drawn

from a multivariate normal distribution.

3.2. Variational inference

The objective is to infer the low-dimensional coordinates and linear mapping function for the

described model, as well as the intrinsic parameters of the model Φ ¼ α; γð Þ. This is achieved

by maximizing the marginal likelihood of:

log p YjW;Φð Þ ¼

Z Z

r M;Xð Þ log
p Y;M;XjW;Φð Þ

r M;Xð Þ
dxdM: (21)

By assuming the posterior r M;Xð Þ can be factored in separate terms r Mð Þ and r Xð Þ, a varia-

tional expectation maximization algorithm can be used to determine the model’s parameters,

which are initialized with Φ. The E-step updates the independent posteriors r Xð Þ and r Mð Þ,

while the parameters of Φ are updated in the M-step by maximizing Eq. (21).

The discriminant latent variable model can then be used to perform the mapping of new image

feature vectors to the manifold. The variational EM algorithm described in the previous section
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can be used to transform a set of new input points yq without changing the overall neighbor-

hood graph structure, by finding the distribution of the local linear map yq and it is low-

dimensional coordinate using the E-step explained above. Once the manifold representation

xq is obtained, a cluster analysis finds the corresponding class in the manifold, yielding a

prediction of the input feature vector yq.

3.3. Experiments

We used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with 1.5 or 3.0 T

structural MR images (adni.loni.usc.edu) and FDG-PET images. For this study, 187 subjects

with both MRI and PET images during a 24 month period were used to train the probabilistic

manifold model, including 46 AD patients, 94 MCI patients, and 47 normal controls. During

the follow-up period, 43 MCI subjects converted to AD and 56 remained stable. All groups are

matched approximately by age (mean of 76:7� 5:4) and gender. Images were non-rigidly

registered to a standard template, which was then segmented using FSL-FIRST automatic

segmentation [21].

A 9-fold cross-validation was performed to assess the performance of the method. The optimal

manifold dimensionality was set at d ¼ 8, when the trend of the nonlinear residual reconstruc-

tion error stabilized for the entire training set. We evaluated the classification performance of

the proposed method for discriminating between cMCI and nMCI patients, by training the

model with MRI, PET and with MRI + PET biomarkers from the ROIs illustrated in Figure 3.

Figure 4 presents ROC curves obtained by the proposed and comparative methods such as

SVM (nonlinear RBF kernel), LLE and LL-LVM [20]. The discriminative nature of the proposed

framework clearly shows an improvement to standard learning approaches models which

were trained using MRI only, PET only and combined multimodal features. It illustrates that

increased accuracy (77.4%) can be achieved by combining MRI and PET features, showing the

benefit of extracting complementary features from the dataset for prediction purposes. When

comparing the performance of the proposed method to the other learning methods (SVM, LLE,

Figure 3. Selected FSL segmented brain regions for feature selection on (left) MRI and (right) PET images.
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LL-LVM), the probabilistic model integrating similarity graphs shows a statistically significant

improvement p < 0:01ð Þ to all three approaches based on paired t-test.

4. Spatiotemporal manifold prediction model for surgery prediction

In this final section, we present a statistical framework for predicting the surgical outcomes

following spine surgery of adolescents with idiopathic scoliosis. A discriminant manifold is

first constructed to maximize the separation between responsive and nonresponsive groups of

patients. The model then uses subject-specific correction trajectories based on articulated trans-

formations in order to map spine correction profiles to a group-average piecewise-geodesic

path. Spine correction trajectories are described in a piecewise-geodesic fashion to account for

varying times at follow-up exams, regressing the curve via a quadratic optimization process.

To predict the evolution of correction, a baseline reconstruction is projected onto the manifold,

from which a spatiotemporal regression model is built from parallel transport curves inferred

from neighboring exemplars (Figure 5).

Figure 4. ROC curves comparing the SVM, LLE and LL-LVM with the proposed method for cMCI/nMCI prediction

using MRI, PET and multimodality data.

Figure 5. Proposed prediction framework for spine surgery outcomes. In the training phase, a dataset of spine models are

embedded in a spatiotemporal manifoldM, into responsive (R) or nonresponsive (NR) groups. During testing, an unseen

baseline 3D spine reconstruction yq is projected onM using fNW based on Nadaraya-Watson kernels. The closest samples

to the projected point x are selected to regress the spatiotemporal curve γ used for predicting the correction due with

surgery.
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4.1. Discriminant embedding of spine models

We propose to embed a collection of nonresponsive (NR) and (2) responsive (R) patients to

surgery which will offer a maximal separation between the classes, by using a discriminant

graph-embedding. Here, n labeled points Y ¼ yi; li; ti
� �� �n

i¼1
defined in R

D are embedded in

the low-dimensional manifoldM, where li describes the label (NR or R) and ti defines the time

of follow-up. We assume that for the sampled data, an underlying manifold of the high-

dimensional data exists such that X ¼ xi; li; tið Þf gni¼1 defined in R
d. We rely on the assumption

that a locally linear mapping Mi ∈R
D�d exists, where local neighborhoods are defined as

tangent planes estimated with yj � yi and xj � xi, describing the paired distances between

linked neighbors i, j. Hence, the relationship can be established as yj � yi ≈Mi xj � xi
� �

.

Because the discriminant manifold structure in R
d requires to maintain the local structure of

the underlying data, a undirected similarity graph G ¼ V;Wð Þ is built, where each node V are

connected to each other with edges that are weighted with the graph W. The overall structure

of M is therefore defined with Ww for feature vectors belonging to the same class and Wb,

which separate features from both classes. During the embedding of the discriminant locally

linear latent manifold, data samples are divided between Ww and Wb.

4.2. Piecewise-geodesic spatiotemporal manifold

Once sample points xi are in manifold space, the objective is to regress a regular and smooth

piecewise-geodesic curve γ : t1; tN½ � that accurately fits the embedded data describing the

spatiotemporal correction following surgery within a 2 year period. For each sample data xi,

the K closest individuals demonstrating similar baseline features are identified from the

embedded data, creating neighborhoods N xq
� �

with measurements at different time points,

thus creating a low-dimensional Riemannian manifold where data points xi, j, with i denoting a

particular individual, j the time-point measurement and j ¼ 0 the preoperative model. By

assuming the manifold domain is complete and piecewise-geodesic curves are defined for each

time trajectories, time-labeled data can be regressed continuously in R
D, thereby creating

smooth curves in time intervals described by samples in R
d.

However, due to the fact the representation of the continuous curve is a variational problem of

infinite dimensional space, the implementation follows a discretization process which is

derived from the procedure in [22], such that:

E γð Þ ¼
1

Kd

X

Kd

i¼1

X

tN

j¼0

wi∥γ ti, j
� �

� xi, j � xi,0 � xq
� �� �

∥2

þ
λ

2

X

Kd

i¼1

αi∥vi∥
2 þ

μ

2

X

Kd

i¼1

βi∥ai∥
2
:

(22)

This minimization process simplifies the problem to a quadratic optimization, solved with LU

decomposition. The piecewise nature is represented by the term Kd ∈N xq
� �

, defined as
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samples along γ. The first component of Eq.(22) is a penalty term to minimize the geodesic

distance between samples xi, j and the regressed curve, where wi are weight variables based on

sample distances. This helps regress a curve that will lie close to xi, j, shifted by xq in order to

have the initial reconstructions co-registered. The second term represents the velocity of the

curve (defined by vi, approximating _γ tið Þ), minimizing the L2 distance of the 1
st derivative of γ.

By minimizing the value of the curve’s first derivatives, this prohibits any discontinuities or

rapid transitions of the curve’s direction, and is modulated by αi. Finally, an acceleration

penalty term (defined by ai) focuses on the 2nd derivative of γ with respect to ti by minimizing

the L2 norm. The acceleration is modulated by βi. Estimates for vi and ai (weighted by λ;μ
� �

,

respectively), are generated using geometric finite differences. These estimates dictates the

forward and backward step-size on the regressed curve, leading to directional vectors inM

as shown in [22]. In order to minimize E γð Þ, a nonlinear conjugate gradient technique defined

in the low-dimensional space Rd is used, thus avoiding convergence and speed issues. The

regressed curve γ is therefore defined for all time points, originating at t0. The curve creates a

group average of spatiotemporal transformations based on individual correction trajectories.

4.3. Prediction of spine correction

Finally, to predict the evolution of spine correction from an unseen preoperative spine model,

we use the geodesic curve γ : R
D !M modeling the spatiotemporal changes of the spine,

where each point x∈M is associated to a speed vector v defined with a tangent plane on the

manifold such that v∈TxM.

Based on Riemannian theory, an exponential mapping function at x with velocity v can be

defined from the geodesics such that eMx vð Þ. Using this concept, parallel transport curves

defined in Tx can help define a series of time-index vectors along γ as proposed by [10]. The

collection of parallel transport curves allows to generate an average trajectory in ambient space

R
D, describing the spine changes due to the corrective forces of tethering. The general goal is to

begin the process at the preoperative sample, and navigate the piecewise-geodesic curve

describing correction evolution in time, where one can extract the appearance at any point

(time) in RD using the exponential mapping. For implementation purposes, the parallel trans-

port curve are constrained within a smooth tubular boundary perpendicular to the curve (from

an ICA) to generate the spatiotemporal evolution in the coordinate system of the preoperative

model.

Hence, given the manifold at time t0 with v defined in the tangent plane and the regressed

piecewise-geodesic curve γ, the parallel curve is obtained as:

ηv γ; sð Þ ¼ eMγ sð Þ xγ, t0, s vð Þ
� �

, s∈Rd
: (23)

Therefore by repeating this mapping for manifold points seen as samples of individual pro-

gression trajectories along γ sð Þ, an evolution model can be generated. Whenever a new sample

is embedded, new samples points along γ sð Þ, denoted as ηv γ; �ð Þ can be generated parallel to

the regressed piecewise curve inM, capturing the spatiotemporal changes in correction.
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A time warp function allowing s to vary along the geodesic curve is described as ϕi tð Þ ¼

θi t� t0 � τið Þ þ t0. Here, we propose to incorporate a personalized acceleration factor based

on the spine maturity and flexibility derived from the spine bending radiographs and Risser

grade. A coefficient θi ¼ Ci � Ri describing the change in Cobb angle Ci between poses, and

modulated by the Risser grade Ri. This coefficient regulates the rate of correction based on the

K neighboring samples. Finally, to take under account the relative differences between the

group-wise samples and the query model once mapped onto the regressed curve, a time-shift

parameter τi is incorporated in the warp function.

For spine correction evolution, displacement vectors vi are obtained by a PCA of the hyper-

plane crossing TxiM in manifold M [10]. Hence, for any query sample xq which represents the

mapped preoperative 3D reconstruction (prior to surgery), the predicted model at time tk can

be regressed from the piecewise-geodesic curve generated from embedded samples x inN xq
� �

such that:

yq, tk ¼ ηvq γ;ϕi tkð Þ
� �

þ εq, tk (24)

which yields a predicted postoperative model yq, tk in high-dimensional space RD, and εq, tk

a zero-mean Gaussian distribution. The generated model offers a complete constellation of

interconnected vertebral models composing the spine shape S, at first-erect (FE), 1 or 2-

year visits, including landmarks on vertebral endplates and pedicle extremities, which can

be used to capture the local shape morphology with the correction process.

4.4. Experiments

The discriminant manifold was trained from a database of 438 3D spine reconstructions

generated from biplanar images [23], originating from 131 patients demonstrating several

types of deformities with immediate follow-up (FE), 1 and 2 year visits. Patients were recruited

from a single center prospective study. Patients were divided in two groups, with the first

group composed of 94 responsive patients showing a reduction in Cobb angle over or equal to

10 ∘ between the FE and follow-up visit. The second group was composed of 37 nonresponsive

(NP) patients with a reduction of less than 10 ∘ . We evaluated the geometrical accuracy of the

predictive manifold for 56 unseen surgical patients (mean age 12� 3, average main Cobb

FE visit 1-year visit 2-year visit

3D RMS Dice Cobb 3D RMS Dice Cobb 3D RMS Dice Cobb

Biomec. sim 3.3 � 1.1 85 � 3.4 2.8 � 0.8 3.6 � 1.2 84 � 3.6 3.2 � 0.9 4.1 � 2.3 82 � 3.9 3.6 � 1.0

LL-LVM [20] 3.6 � 1.4 83 � 4.0 3.8 � 1.5 4.7 � 3.3 79 � 4.4 5.5 � 2.6 6.6 � 4.4 71 � 5.9 7.0 � 3.9

Deep AE [24] 4.1 � 1.5 80 � 4.4 5.1 � 2.7 5.0 � 1.9 77 � 4.9 5.8 � 3.0 6.3 � 4.6 72 � 5.7 6.6 � 4.2

Proposed 2.4 � 0.8 92 � 2.7 1.8 � 0.5 2.9 � 0.9 90 � 2.8 2.0 � 0.7 3.2 � 1.3 87 � 3.1 2.1 � 0.6

Predictions are evaluated at FE, 1 and 2-years.

Table 1. 3D RMS errors (mm), dice (%) and cobb angles (o) for the proposed method, and compared with biomechanical

simulations, locally linear latent variable models (LL-LVM) and deep auto-encoders (AE).
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angle on the frontal plane at the first visit was 47� 10 ∘ ), with predictions at t ¼ 0 (FE), t ¼ 12

and t ¼ 24 months. For the predicted models, we evaluated the 3D root-mean-square differ-

ence of the vertebral landmarks generated, the Dice coefficients of the vertebral shapes and in

the main Cobb angle. The results are shown in Table 1. Results were confronted to other

techniques such as biomechanical simulations performed on each subject using finite element

modeling with ex-vivo parameters [25], a locally linear latent variable model [20] and a deep

auto-encoder network [24]. Results from the predicted geometrical models show the regressed

spatiotemporal geodesic curve yields anatomically coherent structures, with accurate local

vertebral morphology.

5. Discussion

Algorithms capable of extracting clinically relevant and meaningful descriptions from medical

imaging datasets have become of widespread interest to theoreticians as well as practitioners

in the medical field, accelerating the pace in recent years involving varied fields such as in

machine learning, geometry, statistics and genomics to propose new insights for the analysis of

imaging and biologic datasets. Towards this end, manifold learning has demonstrated a

tremendous potential to learn the underlying representation of high-dimensional, complex

imaging datasets.

We presented frameworks describing longitudinal, multimodal image features from neuroim-

aging data using a Bayesian model for discriminant nonlinear manifolds to predict the conver-

sion of progressive MCI to Alzheimer’s disease. This probabilistic method introduces class-

dependent latent variables which is based on the concept that local structure is transformed

from manifold to the high-dimensional domain. This variational learning method can ulti-

mately assess uncertainty within the manifold domain, which can lead to a better understand-

ing of relationships between converters and nonconverters for patients with MCI.

Finally, a prediction method for the outcomes of spine surgery using geodesic parallel trans-

port curves generated from probabilistic manifold models was presented. The mathematical

models allow to describe patterns in a nonlinear and discriminant Riemannian framework by

first distinguishing nonprogressive and progressive cases, followed by a prediction of struc-

tural evolution. The proposed model provides a way to analyze longitudinal samples from a

geodesic curve in manifold space, thus simplifying the mixed effects when studying group-

average trajectories.
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