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resumo 
 

 

Atualmente, aplicações que acedem a bases de dados utilizam ferramentas 
como o Java Database Connectivity, Hibernate ou ADO.NET para aceder aos 
dados nelas armazenados. Estas ferramentas estão desenhadas para unir os 
paradigmas das bases de dados relacionais e da programação orientada a 
objetos, mas não estão preocupados com as políticas de controlo de acesso a 
aplicar. Portanto, os programadores de aplicações têm de dominar as políticas 
estabelecidas a fim de desenvolver aplicações em conformidade com as 
políticas de controlo de acesso estabelecidas.. Além disso, existem situações 
em que as políticas de controlo de acesso podem evoluir dinamicamente. 
Nestes casos, torna-se difícil adequar os mecanismos de controlo de acesso. 
Este desafio motivou o desenvolvimento de uma extensão ao modelo de 
controlo de acesso baseado em papeis (RBAC) que define como permissões 
sequências de expressões para criar, ler, atualizar e apagar (CRUD) 
informação e as interfaces de acesso a cada uma delas. A partir destas 
permissões podem ser gerados artefactos de segurança do lado dos clientes, 
i.e. de uma forma distribuída, que lhes permitem aceder à informação 
armazenada na base de dados segundo as políticas definidas. Por cima desta 
extenção também foi criada uma camada de segurança para tornar o controlo 
de acesso seguro e obrigatório. Para a extensão do modelo RBAC este 
trabalho baseou-se num trabalho anterior que criou uma arquitectura dinâmica 
de controlo de acesso para aplicações de bases de dados relacionais, aqui 
referida como DACA (Dynamic Access Control Architecture). DACA utiliza 
informação da lógica de negócio e as políticas de controlo de acesso que 
foram definidos para criar dinamicamente os artefactos de segurança para as 
aplicações. Em situações onde as políticas de controle de acesso evoluem de 
forma dinâmica, os artefactos de segurança são ajustados automaticamente. 
Este trabalho base, no entanto, define como permissões as expressões CRUD, 
podendo estas ser executadas em qualquer ordem, e necessita de uma 
camada de segurança adequada para autenticar utilizadores e proteger os 
dados sensíveis de intrusos. Portanto, neste trabalho, pretende-se criar uma 
nova arquitectura, chamada “S-DRACA” (Secure, Dynamic and Distributed 
Role-based Access Control Architecture), que estende o trabalho feito no 
âmbito do DACA para que este seja capaz de garantir que sejam cumpridas 
sequência de expressões CRUD que as aplicações podem executar e que 
estão associados aos seus papéis nas políticas RBAC e desenvolver uma 
camada de segurança adequada para a tornar segura. Discutimos, também, o 
seu desempenho e aplicabilidade em outros ambientes sem ser em bases de 
dados relacionais. 
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abstract 

 
Nowadays, database application use tools like Java Database Connectivity, 
Hibernate or ADO.NET to access data stored in databases. These tools are 
designed to bring together the relational database and object-oriented 
programming paradigms, forsaking applied access control policies. Hence, the 
application developers must master the established policies as a means to 
develop software that is conformant with the established access control 
policies. Furthermore, there are situations where these policies can evolve 
dynamically. In these cases it becomes hard to adjust the access control 
mechanisms. This challenge has led to the development of an extension to the 
role based access control (RBAC) model where permissions are defined as a 
sequence of create, read, update and delete (CRUD) expressions that can be 
executed and the interfaces to access them. From these permissions it's 
possible to generate security artefacts on the client side, i.e. in a distributed 
manner, which allows the clients to access the stored data while satisfying the 
security policies defined. On top of this model extension, a security layer has 
also been created in order to make the access control secure and obligatory. 
For the RBAC model extension this work leverages a previous work that 
created a dynamic access control architecture for relational applications, here 
referred to as DACA (Dynamic Access Control Architecture). DACA uses 
business logic information and the defined access control policies to build 
dynamically the security artefacts for the applications. In situations where the 
access control policies can evolve dynamically, the security artefacts are 
adjusted automatically. This base work, however, defines as permissions 
CRUD expressions, which can be executed in any order, and needs an 
adequate security layer to authenticate users and protect the system form 
intruders. Hence, this work aims to create a new architecture, called “S-
DRACA” (Secure, Dynamic and Distributed Role-based Access Control 
Architecture), which extends the work done with DACA so that it is capable of 
enforcing sequences of CRUD expressions that the applications can execute if 
the sequences are associated with their roles and the development of a 
security layer to make it secure. We discuss as well the performance of this 
system and its applicability to other environments outside of relational 
databases. 
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1 Introduction 

The constant need to store data has been regarded as a crucial part of any area of human 

development (Sumathi, 2007), which led to the storage of information in computer systems.   However, 

there is a need to organize these information and/or data in a way that it could be easily accessed. The 

result is what we refer here as “databases”. Databases can be managed by database management 

systems (DBMS), where the data is traditionally accessed using a standard querying language. Securing 

sensitive data from unauthorized users is a major security concern and is a task to be accomplished in 

the present scenario.  

A well-established solution restricts the access to sensitive data to the authorized users only, 

which is known as access control. This raised security concerns when the information is sensitive, 

especially when allowing only the authorized users to access said information. Existing database 

management solutions, address this concern by creating a security layer separated from the data layer, 

where access control mechanisms such as Role-based access control (RBAC) need to be implemented. 

The separation of these layers has implications when software solutions that provide access to these 

data are used by applications. Some examples of such software solutions are Hibernate (JBOSS, 2001), 

JDBC (Oracle, 1997a), LINQ (Microsoft, 2007), ADO.NET (Microsoft, n.d.-a) etc. These software 

solutions are usually developed having compatibility with many DBMSs in mind and lacked over the 

access control policies concerns. Hence the applications that use these software solutions cannot apply 

these policies automatically. This means that the applications can unknowingly perform an 

unauthorized operation on the sensitive data through one of these software solutions, which raises 

runtime errors on each attempt. This led to the development of the Dynamic Access Control 

Architecture (DACA), an architecture that takes into account, the defined RBAC policies to generate 

security entities that can be used by the applications. If an operation is not authorized, the application 

will not able to execute it via the generated entities. An operation in DACA is a create, read, update or 

delete (CRUD) expression that allows a user to read or modify the sensitive data. The main focus of this 

dissertation is to extend DACA to provide a new architecture solution, named “S-DRACA”, with a more 

refined control over what the users can do and to address some security vulnerabilities that affects it. 

In addition, we further aimed at evaluating its performance.  

This section is divided as follows: Section 1.1 will present the problem addressed with this 

work, section 1.2 proposes the solution developed, section 1.3 presents the contributions made with 

this work, section 1.4 presents the tools and infrastructures used and section 1.5 explains the structure 

of the dissertation. 

1.1 Problem formulation 

In this section we will formulate the problem we are facing. DACA was able to address the lack of 

integration of RBAC policies in the development of applications that use relational databases as a data 

source, i.e. the problem where programmers could write and execute any CRUD expression without 

having any information provided by the tools such as JDBC regarding the database schema or the 
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access control policies. If this information is not provided by these tools then programmers are 

required to have a prior comprehensive knowledge of it. DACA was successful in solving this problem 

by generating security entities that the client applications can use from an extended RBAC model that 

associates CRUD expressions to roles and defines the authorized operations. These security entities 

provide a standard call level interface (CLI) for the applications to use CRUD expressions to access 

sensitive data. This CLI allows the applications to access the data through an interface similar to the 

one provided by JDBC. Additionally, it only provides the methods that are authorized in the access 

control policy. Since the security entities are generated and implemented at runtime, they can be 

adjusted to reflect the access policies changes.  

However, with DACA the applications are allowed to execute any CRUD expression in any order 

they want. The only restriction is that the CRUD expression must be authorized for the role played by 

the user. This can sometimes lead to unintended data disclosure even when the user only uses 

authorized operations. In (Canfora, 2009) is shown that this problem exists even outside of DACA, so  

RBAC policies are not able to prevent this type of exploitation from the start unless the authorized 

CRUD expressions are designed carefully.  

Another problem with DACA is that its implementation was focused on supporting the dynamic 

modification of the defined access control policies. Thus the authentication of users was not made 

secure in the sense that anyone listening to the communication between the client applications and the 

server, where the database is hosted, could easily impersonate the user by stealing his credentials. 

Furthermore, the sensitive data was not encrypted which could lead to sensitive  information leaking 

and the fact that the generated entities used by the applications are in the client side made them 

vulnerable to user manipulation. 

1.2 Proposed solution 

In this section we will introduce the Secure, Dynamic and Distributed Role-based Access Control 

Architecture (S-DRACA), a solution that aims to solve the stated problems. S-DRACA uses an extension 

of the current RBAC model in order to restrict the user’s ability to execute even authorized CRUD 

expressions and uses DACA as a base project. The RBAC model extension will allow a security expert to 

define the sequences of CRUD expressions to be authorized and what happens during their lifecycle, i.e. 

when the client application moves between CRUD expressions in a pre-defined sequence. Each 

sequence is meant to allow a user to perform some high level operation. By requiring the users to 

follow specific sequences it becomes easier to prevent unintended data disclosure. 

To address the security problems raised in the last section we propose to integrate a security 

layer in S-DRACA. This layer will authenticate users by using several different authentication 

mechanisms, each with different security/communication overhead trade-offs. This layer will also 

encrypt data by using the SSL/TLS protocol and address some of the vulnerabilities generated by 

enforcing the access policies on the client side. 
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Therefore, S-DRACA is a dynamic access control architecture that still allows security experts to 

make changes to the access policies at any time with the knowledge that the access control 

mechanisms in the client applications will be adjusted accordingly. Now as compared to DACA, this 

provides the means to restrict the client applications to follow the pre-defined sequences of CRUD 

expressions. Furthermore, it also authenticates and transmits data more securely and many of the 

vulnerabilities that affected the system are also addressed. 

1.3 Contributions 

In this section we will introduce the contributions in the area achieved with S-DRACA. S-DRACA is an 

architecture with significance since it enforces access control policies that can change dynamically 

with the entities it generates. Furthermore, the RBAC model extension, allows the definition of 

sequences of authorized CRUD expressions. This is significant since it helps preventing unintended 

disclosure of information by using together authorized operations in an unforeseen way. These facts 

led to two publications. The paper “Role-Based Access Control Mechanisms”(Ó. M. Pereira, 2014a), 

which presented the new architecture for data access to relational databases and dynamic access 

control policies enforcement. It was submitted and accepted in the 19th IEEE symposium on 

computers and communications (ISCC). And a second paper, entitled “Extending RBAC Model to 

Control Sequences of CRUD Expressions”(Ó. M. Pereira, 2014b), presented the extension made to the 

RBAC model to support the definition and enforcement of sequences of CRUD expressions. It was 

submitted and accepted in the 26th International Conference on Software Engineering and Knowledge 

Engineering (SEKE). 

Another contribution achieved with S-DRACA is the security layer that was developed. Its 

significance resides in its ability to use a secure communication channel, established during the client 

authentication, to allow the client to communicate with the relational database management system 

(RDBMS) and in pushing the CRUD expressions from the client to the server. This contribution will 

have a paper that is yet to be defined. 

1.4 Tools and infrastructures used 

In this section we will present the tools and infrastructures used during the development of S-DRACA. 

Many tools used for the development of DACA were reused for the development of S-DRACA. The main 

programming language used is the version 8 of Java(Oracle, n.d.-a), due to the portability it grants to 

the applications written in it. To develop the new functionalities the Netbeans(Oracle, n.d.-b) 

integrated development environment (IDE) was used. This IDE organized the different components of 

S-DRACA and eased the development process. The DBMS used to host the database with the sensitive 

data and the access control policies was SQL Server 2012(Microsoft, 2012), hosted on a Windows 7 

machine. To ease the manipulation of the databases the SQL Server Management Studio 2012 was 

used, which allowed the execution of queries and the manipulation of the data stored through a 

graphical user interface. 
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1.5 Structure of the dissertation 

In this section we will present the structure of this dissertation. The dissertation is divided in the 

following main sections: section 2, where the state of the art is discussed, which includes some 

discussion of the access control policies, RDBMS and the related work; section 3 presents some 

technological background of technologies used in S-DRACA; section 4 introduces an overview of DACA 

and presents the work done to develop S-DRACA as well as a proof of concept; section 5 draws the 

conclusions of the development of S-DRACA, discusses the future work and the applicability of S-

DRACA in other contexts; Appendix A presents the implementation details on some standard security 

components; Appendix B presents a European project where we are involved and how it can be used in 

the context of this work; and finally the last section contains the references used. 
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2 State of the art and related work 

In this section we will start by presenting the most common access control policies, the RDBMSs and 

how the two are implemented together. Then we will discuss related work and how S-DRACA 

complements or expands on them.  

This section is organized as follows. Section 2.1 introduces the main access control policies. 

Section 2.2 presents the RDBMSs, how the access policies can be enforced and the tools used by 

applications to build their data access layer. Section 2.3 presents the related work and section 2.4 will 

provide a brief summary of the presented material. 

2.1 Access Control Policies 

In this section we will introduce the current access control policies. Access control policies are one of 

many key aspects in order to obtain security in any technological system. The most important 

requirements that must be met are(Samarati, 2001): integrity, availability and secrecy. Integrity means 

that data and resources must be protected from non-authorized modifications. Availability means that 

data and resources must be always available to authorized users. Lastly, secrecy means that data and 

resources must be protected against non-authorized disclosure. 

To protect the data and resources from non-authorized access a security layer is used that 

denies or allows access to them, which we will call access control. This access control layer can be 

implemented at different levels and places, such as at the client side or at the server side. This is 

further discussed in section 2.2.2. 

The development of such an access control mechanism normally follows three distinct 

phases(Samarati et al., 2001): the definition of the access control policies, the creation of the security 

model to be followed and the definition of the access control enforcement mechanisms. 

In the definition of the access control policies phase the rules are defined that specify exactly 

which entities have access to what resources. These are associated with the business logic (e.g. a 

receptionist should not have access to a patient’s more personal information, but a doctor should). 

Because of this association the rules are dynamic and can change when the business logic changes. 

The creation of the security model phase is where the access control policies are formally 

defined and are developed to show the security properties. 

Finally, in the definition of the access control enforcement mechanisms phase the mechanisms 

responsible to actually enforce the policies defined in the previous phases. These mechanisms work as 

a middleware that intercepts every access attempt to the system. Every access attempt must be 

intercepted in order to enforce the defined rules and it must not be possible to change them in any 

way. They must also be confined to a small part of the system and must be small in order to be 

rigorously verifiable. 
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These phases allow for the separation of the policies and the mechanisms that enforce them. 

This separation has many advantages, e.g. the policies become independent from the mechanisms that 

enforce them, which allow us to analyze and discuss the policies without having to worry about the 

enforcement. 

The access control policies can be placed in many different classes, of which we present four: the 

mandatory, the discretionary, the role-based and the attribute-based. The mandatory access control 

(MAC) policies are the ones that are set by a security policy administrator and the users cannot 

override them in any way. The discretionary access control (DAC) policies are the ones that are used to 

control the user’s access taking into consideration their identity and/or groups they belong to. The 

controls are discretionary in the sense that a user with the right permission can grant permissions to 

other users. The role-based access control (RBAC) policies are the ones that are defined around a 

limited set of roles. Users can then be put into one or more roles for that system and the permissions 

they have are passed through the roles they have. Finally, the attribute-based access control (ABAC) 

policies are the ones that are evaluated against the attributes of entities (users and objects), actions 

and the environment that is relevant to the request. These four classes of access control policies are 

further discussed in the next sections. 

This section is divided as follows: Section 2.1.1 will present DAC, section 2.1.2 will MAC, section 

2.1.3 will present RBAC, and section 2.1.4 will present ABAC. 

2.1.1 Discretionary Access Control 

In this section we will present DAC. In computer security, DAC is an access control type defined as a 

means to restrict users’ access to objects based on its identity and/or the groups they belong to, by 

explicitly defining what they can do to each resource(Vimercati, 2007). The controls are discretionary 

in the sense that a user with the permission to do so, is capable of delegating that permission (perhaps 

indirectly) on to any other user (unless restrained by some other access control mechanism), while the 

granting and revocation of permissions are regulated by an administrative policy(Samarati et al., 

2001). In the operating system’s context, the first proposal for the protection of resources was an 

access control matrix(Lampson, 1974) that is indexed by the users in one dimension and the resources 

in the other, where each cell indicates the permission a user has for a resource. Table 1 show an 

example of one such matrix, from where we can notice that users can have read and/or write 

permissions on files and execute permissions if the resource is an executable.  

Table 1. Access control matrix example. 

User File X File Y File Z Executable W 
A Read/Write - - Read/Execute 
B Read - Read/Write - 
C - Read - - 

 

Changes to the matrix are performed using primitive operations, such as inserting/removing 

users and resources, or directly modifying the permissions a user has for a resource. One problem with 
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this approach is that the matrix is usually very sparse because normally only the creator of the 

resource has the permission to read and modify it, meaning the all the other users have no permissions 

unless the owner grants them, which translates into empty cells in the matrix. To prevent the waste of 

disk space there are three other mechanisms proposed in(Vimercati et al., 2007): authorization tables, 

access control lists (ACLs) and capabilities lists. 

An authorization table consists of a table with three columns: one for the user, another for the 

permission and the third one for the resource itself. Table 2 shows an equivalent authorization table 

for the access control matrix in Table 1.  

Table 2. Authorization table example equivalent to the access matrix control in Table 1. 

User Permission Resource 
A Read File X 
A Write File X 
A Read Executable W 
A Execute Executable W 
B Read File X 
B Read File Z 
B Write File Z 
C Read File Y 

 

In the case of ACLs each object is associated with a list of users and the permissions he 

possesses. Capabilities lists can be seen as inverted ACLs in the sense that now it’s the users that have a 

list of resources associated with them. The list of resources contains, for each resource, the permission 

that user possesses.  

2.1.2 Mandatory Access Control 

In this section we will present MAC. MAC refers to a type of access control by which a central entity 

constrains the ability of a subject or initiator to access or generally perform some sort of operation on 

an object or target based on its regulations(Samarati et al., 2001). MAC distinguishes between users 

and subjects, where users are humans that use the system and the subjects are processes created by 

the users. This fact allows the system to control the indirect access to information via leaks or 

modification resultant from the execution of processes. Any operation by any subject on any object will 

be tested against the set of authorization rules (i.e. the policy) to determine if the operation is allowed. 

A DBMS, in its access control mechanism, can also enforce MAC. In this case the objects are tables, 

views, procedures, etc. 

With MAC, users do not have the ability to override the policy and, for example, grant access to 

files that would otherwise be restricted. MAC-enabled systems allow policy administrators to 

implement organization-wide security policies. This allows security administrators to define a central 

policy that is guaranteed (in principle) to be enforced for all users. 

The policies, when they are multilevel, are usually classified based on the associations between 

subjects and objects, named access class. An access class is one element from a partially ordered set of 
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classes, a set that is ordered by a dominance relationship. The set of classes can be any set of labels that 

has a dominance relationship defined on them. Most commonly, an access class is defined consisting of 

two components: a security level and a set of categories. The security level is an element from a 

hierarchically ordered set, such as Top Secret (TS), Secret (S), Confidential (C) and Unclassified (U), 

where TS > S > C > U. The set of categories is a subset of an unordered set, whose members symbolize 

areas of competence or functionality, e.g. NATO, Nuclear, Security, Research, etc. 

The dominance relationship is defined as follows: an access class C1 dominates another access 

class C2 if and only if the security level of C1 is greater than or equal to the security level of C2 and the 

categories of C1 include those present for C2. The mandatory policies can be classified having secrecy or 

integrity in mind.  

The mandatory policies based on secrecy are based on the proposed models in (Bell, 1973). The 

main goal is to protect the information from unauthorized disclosure. The security level associated 

with a user is called a clearance and it reflects the level of trust the user has regarding the non-

disclosure of the sensitive information to users not cleared to see it. The categories are used to provide 

a finer control that was not possible only with security levels. In order to protect the information 

confidentiality, the following properties must be satisfied: no-read-up and no-write-down. No-read-up 

means that a subject can only access and read from an object if the access class of the subject 

dominates the access class of the object. No-write-down means that a subject can access and write to 

an object if the access class of the subject is dominated by the access class of the object. 

If these properties are satisfied, then the information flow from high level subjects/objects 

cannot flow to subjects/objects of lower or incomparable levels. It is important to ensure both 

properties are satisfied. The no-read-up is obvious, i.e. subjects not cleared to access some object 

cannot read it and no information is leaked. The second property, no-write-down, is also important to 

prevent a subject with clearance to read an object from modifying a second object with a lower 

security level, which can later be read by a subject with clearance to read that second object but not the 

first. Although these properties prevent a dangerous flow of information, they can be too restrictive 

and in a real scenario objects might have to be downgraded. 

The mandatory policies based on integrity are based on a model presented in (Biba, 1977). In 

this case the goal is to prevent subjects from modifying information in objects they should not write to. 

Like the mandatory policies based on secrecy, each subject and object are associated to an access class 

with an integrity level and a set of categories. The integrity level in this case refers to the trust put on 

the subject to modify and insert sensitive information. To guarantee that the integrity of the 

information is maintained, the following properties must be satisfied: no-read-down and no-write-up. 

No-read-down means that a subject can only access an object to read if the access class of the subject is 

dominated by the access class of the object. No-write-up means that a subject can only access an object 

to write if the access class of the subject dominates the access class of the object. 
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This model prevents information stored in low objects (less reliable) to flow to higher, or 

incomparable, objects. These properties are the dual of the two properties in the secrecy based 

mandatory policies. 

2.1.3 Role-Based Access Control 

In this section we will present RBAC. RBAC (Ferraiolo, 1992) is a type of access control that restricts 

the ability of a group of subjects to access or perform some operation on a system. The idea is that in 

many organizations, users normally don’t own the information they have access to but the 

organization does. A user in such an organization usually as access to some information because of 

their job, also referred to as their role. 

So, members of that organization are assigned particular roles, e.g. Teacher or Security, and 

through those role assignments they acquire the computer permissions to perform the operations they 

need. Since users are not assigned to the permissions directly, but rather acquire them through their 

role (or roles), the cost of management of individual user permissions becomes a matter of assigning 

appropriate roles to the user's account. This simplifies common operations, such as adding a user, or 

changing a user's department. For each user, the active role is the role that he is using, but he can be a 

member of several roles (see Figure 1). 

There are three primary rules that are defined for RBAC: 1) role assignment, i.e. a user can only 

exercise a permission only if and only if the user has selected or been assigned a role. 2) Role 

authorization, i.e. a user's active role must be one that was authorized for him. With the first rule, this 

rule ensures that users can only use roles that they have been authorized to use. And 3) permission 

authorization, i.e. a user can only exercise a permission if it is authorized for the user's active role. With 

the first two rules, this rule ensures that users can only use permissions for which they are authorized. 

A role can be thought as a set of transactions that can be performed on some resources, and any 

user assigned to that role is capable of performing those transactions given that it is the active role for 

the user’s session.  

 

Role A

User A

User B

User C

Role B

Resource A

Resource B

Resource C

«member of»
A

C

D

B

«transaction»

 

Figure 1. Role relationships. 

The transactions can be more than simple read and write access to resources, e.g. a teller in a 

bank might be able to perform a transaction to make a deposit into some client account, which requires 

permissions to read and write certain fields in the account file and the transaction log, but another 
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transaction might be available to the accounting supervisor that corrects transactions, which requires 

the same read and write permissions, but the process executed and the values written into the files are 

different. 

Sandu et al.(Sandhu, 1996) introduced the model known as RBAC96, which provides a family of 

models from which other variants can be built upon. Figure 2 shows the most complete model of the 

family (RBAC3) that contains the concepts used to build the family of models, which include: users and 

roles, permissions, sessions, role hierarchy and constraints. 

Users are human beings and the roles are a collection of users and a collection of permissions, it 

just serves to connect the two collections. The roles can also create a hierarchy, where roles can have 

child roles. A role with child roles works as if it possesses every permission that is also possessed by its 

children. 

Permissions are the approval of a specific access method to one or more resources in the 

system. They allow the users that have roles associated with them to perform operations on the 

system. The range of the allowed access can vary from many resources, to a single property of a single 

resource. 

A session is a semi-permanent dialog between two or more communication devices. When a 

user creates a session he can select from the roles he wants to use (the active roles). The roles can be 

used by more than one user at a time.  

The role hierarchy is something that many applications have and allows the propagation of 

permissions from the lower level roles to the upper level roles. 

Constraints are fundamental for RBAC that allow more complex organizational policies to be 

created. It can be applied to the relation between users and roles, roles and permission or even in the 

session mappings. 

Users Roles Permissions

Sessions Constraints

 

Figure 2. RBAC96's proposed RBAC3 model. 

The most often mentioned constraint is the mutually exclusive roles. If two roles are mutually 

exclusive, then a user can belong to none or one of them, but not both. This allows to implement 

separation of duties, which is important to prevent fraud and errors. Other constraints involve 

restricting the cardinality of users that are members of a given role, requiring that a user is a member 

of some role in order to be a member of another and even temporary restrictions, such as constraining 

the number of sessions a user can maintain. 
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As mentioned, Sandu et al(Sandhu et al., 1996) defined a family of models, ranging from RBAC0 

to RBAC3. RBAC0 is the base model, consists of every component present in Figure 2 except for the role 

hierarchy and constraints, RBAC1 consists of the elements present in the RBAC0 base model including 

role hierarchy, RBAC2 consists of the elements present in the RBAC0 base model including constraints 

and RBAC3 combines both RBAC1 and RBAC2 models to provide a model with every component. 

Barka et al. (Barka, 2000) defines the action of delegating roles in RBAC. Delegation is the ability 

a user can use to authorize a non-member user to become a member. This can be useful when a 

member of one role is required to perform some operation that is not authorized for that role, e.g. to 

allow a teaching assistant to grade some homework. It is important to revoke the delegation so that the 

delegated user doesn’t keep the permissions longer than necessary.  

One approach consists of defining a time limit for the delegation so that after the defined time it 

becomes automatically revoked. It has the advantage of being a simple way to ensure the delegation 

will be revoked, but it doesn’t provide enough security, if not supervised the delegated user can behave 

badly which can cause harm to the system and if the time is not chosen carefully the delegated user 

might keep the new permissions for longer than necessary or shorter than needed. 

Revocations to delegations can also be done manually, in the case the user with the delegated 

role behaves badly. This can be done only by the user that delegated the role or by any member of the 

delegated role. The latter has the advantage of the original member, if behaves badly, to be revoked by 

any member immediately which reduces the damage done, but has the disadvantage of possibly raising 

conflicts between members of the delegated role if someone other than the member that delegated the 

role revokes the delegation. 

Regarding the hierarchy of roles, since parent roles inherit the permissions of its children, there 

are some delegations that are useless and others have more risks than others. A delegation can fall 

under one of three categories: upward delegation, downward delegation and cross sectional 

delegation. 

Upward delegation is when a user is delegated a child role of the role it originally belonged to. 

Since the parent roles inherit the permissions of its children roles, this type of delegation is useless. 

Downward delegation happens when a user is delegated a role that is a parent role in relation to 

its original role. This works when a partial delegation is made. A partial delegation is the delegation of 

one or many children of that role. If the whole role were to be delegated we would actually shrink the 

hierarchy. This type of delegation effectively “promotes” the user to a higher role. 

Cross sectional delegation is the most useful, for example, a member of the auditing department 

can delegate its role to a member of the sales department to provide it with the capabilities for 

auditing its own department. In this type of delegation, every member of the delegated role or of any of 

the parent roles can delegate that role. 
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2.1.4 Attribute-Based Access Control 

In this section we will present ABAC. ABAC (NIST, n.d.)(Hu, 2014) is a logical access control model that 

is relevant because it controls access to resources by evaluating rules against the relevant environment 

to the request, the attributes of both entities (subject and object) and the actions. Attributes can be any 

property that can be defined and that have some value that can be assigned. The simplest form of ABAC 

checks the attributes of the subject and the object, the environment conditions and the access control 

rules that define the allowed operations for the combinations of these factors. Figure 3 shows a basic 

ABAC model where: 1) the subject requests access to an object; 2) the access control mechanism 

evaluates: rules (a), the subject attributes (b), the object attributes (c) and the environment conditions 

(d) to produce a decision; 3) if authorized, the subject is given access to the object. Every 

implementation of ABAC is capable of this set of functionalities. It can also enforce policies based on 

DAC and MAC models. 

The rules or policies that can be enforced through an ABAC model are only limited by the 

computational language used, which means that ABAC has great flexibility. For example, a subject can 

receive a set of subject attributes when it is hired, e.g. Alice is a teacher in the Biology department. An 

object can receive attributes upon creation, e.g. a door in the biology department with an electronic 

lock. Then the administrator creates an access control rule that controls the set of operations that are 

allowed in the system, e.g. all teachers can open doors with electronic locks in their department. This is 

flexible because if Alice ever changes departments and the same rule is applied to each one, then she 

will be able to open the doors with electronic locks in the new department instead of the ones in the 

biology department just by changing her attribute that specifies what department she belongs to, no 

modifications to existing rules or object attributes are required. This benefit is often referred to as 

accommodating the external user and is one of the primary benefits of employing ABAC.  
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Figure 3. Basic ABAC model. 

In short, ABAC describes attributes for subjects and objects that are managed by an access 

control rule set that dictates what operations are permitted. This allows administrators to apply access 

control policies without knowing the specific subjects and for any number of subjects that might 

require access. When new subjects integrate the organization the rules and objects do not need to be 
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changed provided that they get the proper set of attributes to allow them to access the required 

objects. 

2.2 Relational database management systems 

In this section we will present an overview on RDBMS, the techniques that are used to enforce security 

policies in them and the current tools used to connect client applications with them. 

This section is divided as follows: Section 2.2.1 will present the relational model, section 2.2.2 

will present the different mechanisms that exist for policy control enforcement and section 2.2.3 will 

present current tools to access data stored in RDBMS from applications. 

2.2.1 Relational model 

In this section we will present the relational model used in RDBMS. A DBMS is a set of programs that 

manages and provides ways to access the stored data(Sumathi, 2007). The main objective of a DBMS is 

to provide: data availability, data integrity, data security and data independence. Data availability 

means that the data must be available to many users in a convenient format and at a low cost. Data 

integrity means that the data cannot be corrupted and become unreliable. Data security means that 

only authorized users can access the data and conflicting changes made to the same data must be 

resolved. Finally, data independence means that the manner of how the data is stored shouldn’t be an 

issue for the users, whom must be able to see the data in an abstract way.  

Additionally, a DBMS can provide mechanisms to perform data recovery and to provide 

concurrency access to the data. Data recovery is needed when the storage medium, like a hard disk 

drive, fails or the DBMS process/operating system crashes while an operation is being performed. In 

these cases the DBMS can use many techniques, like using a log file to record the operations done and a 

checkpoint to indicate the operations that were committed to disk. This allows a DBMS to have an 

indicator of what was committed to disk and which operations must be redone, i.e. the operations 

successfully completed after the checkpoint and before the failure. The concurrency mechanism can be 

supported through several techniques, of which we emphasize: locks and timestamps.  

Locks are used to “lock” an item, like a table or a table row, preventing other operations from 

accessing that item while it is being written. Locks can be binary (exclusive) or shared. With binary 

locks the item is either locked or unlocked, with the shared locks many operations can the item 

(sharing its lock) but only one can possess a lock when it intends to write on it. 

Timestamps can be the system time or a logical counter and it allows operations to check the 

“age” of the item they are accessing. Items have a timestamp for the latest read and the latest write 

operation performed on them. When reading, if the timestamp of the operation indicates that it is older 

than the latest write operation on the item then the operation must be rejected, otherwise it is allowed. 

When writing, if the timestamp of the operation indicates that it is older than either the read or write 

operation’s timestamp on the item then the operation is rejected, otherwise it is allowed. 
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S-DRACA concerns a very specific type of DBMS: the relational database management system 

(RDBMS).  The relational model was introduced by E. Codd (Codd, 1970) and a relation is a set of 

tuples in a table, where they are organized in rows. Each tuple can have several elements that are a 

member of a data domain, also known as the data type. The data domains, together with an attribute 

name, make the attribute value for an element. These are represented by the columns in the table, as 

demonstrated in Table 3. 

Table 3. Example relation in a RDBMS. 

ID Product Stock Price 
1 Bread 10 0.50 
2 Yogurt 15 0.89 

 

This table stores products information and we can see that there are four attributes in the 

relation (ID, Product, Stock and Price). Each of these attributes has a type associated with them, i.e. the 

ID attribute can be represented as an integer and the Product as a string. The ID attribute is special in 

this relation because it functions as a key that uniquely identifies a tuple (i.e. a row) in the table. There 

are two types of keys: primary keys and foreign keys. Primary keys uniquely identify a tuple in a table 

and can consist of any number of attributes. The ID attribute in the example is the primary key for that 

table. Foreign keys are references in a table to the primary key of other tables, e.g. a table with sale’s 

information could have a foreign key to our product’s table to associate products with sales. 

The fact that the primary keys must uniquely identity a tuple in a table means that they must 

have a different value in every tuple. So, using the Stock or the Price attributes as the primary key isn’t 

a good idea because they can have repeated values. The name of the product can have the same 

problem but it has another disadvantage to it. Textual attributes should not be used as primary keys 

because they reduce performance, the reason being that integers are compared faster than strings, 

which requires character by character comparison. This means that it can be difficult to find what is 

called a natural primary key, i.e. something about the entity being stored that uniquely identifies it and 

the approach of using an artificial primary key, such as an incrementing integer for an ID, is used 

instead. 

The data in the database is kept consistent by the RDBMS by applying constraints (Codd, 1970), 

of which are included: domain integrity, entity integrity, referential integrity and user defined 

integrity. The domain integrity constraints guarantee that the values of each attribute are valid for the 

defined data-type and if they can be null or not. The entity integrity constraints guarantee that a 

primary key does not have duplicate values. The referential integrity constraints guarantee that the 

value in a foreign key actually exists as the primary key of the referenced table. Finally, the user 

defined integrity constraints are dependent of the specific domain of the data stored in the database, 

e.g. the price and the stock of a product cannot be negative. 
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After a database is created, the data is usually accessed using the Structured Query Language 

(SQL)(Chamberlin, 1974). SQL can also create and manipulate tables and other data such as security 

(users, permissions, etc.).  

2.2.2 Policy control enforcement mechanisms 

In this section we will present the current policy control enforcement mechanisms for RDBMS. The 

current mechanisms for implementing access control policies for RDBMS consists of creating a 

separate layer of security by following one of several possible approaches: traditional, PDP – PEP, 

Secondary and Approximate Authorization Model (SAAM) and some other approaches such as using 

views and query rewriting techniques 

The traditional approach uses a security layer made available by the RDBMS through some tools 

that can define DAC, MAC and RBAC policies. With DAC, a creator of a relation in a database is its owner 

and has the ability to grant other users with the ability to access it using commands such as GRANT or 

to take those permissions back using commands such as REVOKE. With MAC the security levels and 

clearance are applied to databases. Finally, with RBAC, permissions are associated with roles and users 

play one or more roles in each database. These access control types are managed by the RDBMS and 

only if a user attempts to do some operation that is not authorized will it notice the access control 

policies being applied. 

In the PDP-PEP (Policy Decision Point – Policy Enforcement Point, see Figure 4), there are two 

major components responsible for enforcing the access control: the PDP and the PEP. The PDP is an 

independent component responsible for deciding if an access attempt is authorized or not and is 

configured by security experts. To do that it evaluates the access requests against the access control 

policies. The PEP is responsible for intercepting requests made by users to a protected resource and 

enforces a PDP decision for that access authorization. This approach allows the separation of the place 

where the policies are defined and the place where they are enforced. 

 

User PEP

PDP

RDBMS

 

Figure 4. PDP-PEP security layer model. 

Komlenovic et al. (Komlenovic, 2011) propose a distributed enforcement of the RBAC policies 

which aims to solve performance problems at the decision points. To reduce the system delay and 

improve availability, SAAM can be used. It adds secondary decision points (SDP) with cached RBAC 

policy rules, removing the need to query the single PDP every time an access request needs to be 

authorized. These access requests are made by the PEP, which is also distributed, and enforces the 
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decisions made by the SDPs or the PDP. One question to ask is which structure and associated 

algorithms should be used in the SDP in order to avoid querying the PDP. There are six candidates that 

were explored: directed graphs, access matrix, CPOL (Borders, 2005), authorization recycling (Wei, 

2011), bloom and cascade bloom filter (Bloom, 1970).  

User PEP

SDP

RDBMS

PDP

  

Figure 5. SAAM policy enforcement architecture. 

Other mechanisms involve the usage of views (Rizvi, 2004) and parameterized views 

(Roichman, 2007). Views are a result set of a stored query on the data, which the database users can 

query just as they would in a persistent database collection object. By applying constraints on the 

query that creates the view, it is possible to control the data that is available to the users. Since views 

are standard SQL, they have the advantage of not requiring additional tools or techniques to enforce 

the access control policies. However, this approach is not scalable, since its number grows with the 

number of policies and users that have different authorizations require different views. Parameterized 

views accept runtime values in the select statement that defines them, helping with the lack of 

scalability that the non-parameterized views suffer. 

Query rewriting (Rizvi et al., 2004) is also another technique used to control the users access 

attempts, where CRUD expressions are modified before they are executed in order to prevent access to 

unauthorized data. The queries are usually modified in a central server and various different 

approaches can be used (Rizvi et al., 2004)(Chaudhuri, 2007): addition of predicates, replace tables 

with views, masking cells and column removal. 

The addition of predicates is an approach where predicates are added to the CRUD expressions 

in order to filter out the data that should not be disclosed to the users. The replacement of tables with 

views is self-explanatory. The tables accessed in the select statements are replaced by views, which 

provide only authorized data.  The masking of cells is a technique where CRUD expressions are 

modified in order to change the protected values with either named variables, the best solution but not 

supported by all RDBMS, or the SQL null values, which has the problem of becoming mixed with real 

null values. The removal of columns technique removes protected columns from the returned records 

by erasing them from the CRUD expressions. This, however, means that users with different 

authorizations will have access to relations with different schemas and errors occur if the user tries to 

access a removed column. 

The query rewriting technique has the advantages of being transparent to the user, since they 

use CRUD expressions as if no security policies were enforced, and is scalable, since the number of 
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needed CRUD expressions per application remains the same unlike the usage of views. However, 

because the users are unaware of the policies enforced, when a query is discarded for violating a 

security policy, the users themselves have to correct it, sometimes without knowing exactly what the 

problem was. There is also the performance decay that comes with the fact that a central server is used 

to rewrite the CRUD expressions. 

2.2.3 Application’s database access libraries 

In this section we will present various tools and libraries used by programmers to access data stored 

in DBMS from applications. 

This section is divided as follows: Section 2.2.3.1 will present the Java Database Connectivity, 

section 2.2.3.2 will present ADO.NET, section 2.2.3.3 will present Hibernate and finally section 2.2.3.4 

will present the Language Integrated Query. 

2.2.3.1 Java Database Connectivity 

In this section we present Java database connectivity (JDBC)(Oracle, 1997a), which is a Java-based 

technology that allows applications to access data in a database. This technology is an API for Java and 

defines how a client may access the database. It provides methods to for querying, inserting, updating 

and deleting data in a database. JDBC is oriented towards relational databases. 

Figure 6 presents the JDBC architecture. JDBC provides applications with an API which allows 

them to access the data stored in a multitude of different DBMS.  To handle the different 

communication protocols used by the different DBMS, JDBC uses a Driver Manager that manages the 

drivers used to access them. Normally each DBMS provides its own JDBC driver. 

Application

JDBC API

JDBC Driver 
Manager

JDBC DriverJDBC Driver JDBC Driver

Oracle
SQL 

Server
...

 

Figure 6. JDBC architecture. 
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JDBC can have many multiple driver implementations and they can be used by the same 

application, each implementation is responsible to connect to a specific DBMS (e.g. MySQL, SQL Server, 

etc.). The API also provides a mechanism for loading dynamically the correct Java packages and 

registering them with the JDBC Driver Manager. The Driver Manager is then used by the applications 

as a factory to instantiate JDBC connections. 

A Connection object is responsible for creating and executing data manipulation language 

statements, which can be something like a select, an update, an insert or a delete statement, or data 

definition language statements, such as a create statement. Additionally, stored procedures can also be 

invoked. 

A statement can be represented using one of three classes: a Statement, a PreparedStatement or 

a CallableStatement. The Statement class sends the SQL statement to the database each time it is 

executed (see Figure 7).  With a PreparedStatement, the statement is cached and the DBMS builds an 

execution plan that becomes pre-determined, allowing it to be executed many times in a more efficient 

way (see Figure 8). The CallableStatement is used to execute stored procedures defined in the database 

(see Figure 9). 

Insert, update and delete statements return the number of rows affected by the operation. Select 

statements return a result set, which are local data sets (LDS) with each row returned by the database. 

They are used to walk over the rows, whose values in each column can be retrieved (see Figure 10). 

The result set knows the names of the columns and their data types from the metadata information it 

receives. 

 

 

Figure 7. JDBC statement usage example. 

 

Figure 8. JDBC prepared statement usage example. 

 

Figure 9. JDBC callable statement usage example. 

 

Figure 10. Result set row iteration. 

The JDBC API has two paramount sets of interfaces: one for the application side, which was 

described previously and another for the lower-level driver. The JDBC drivers are components that 
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enable Java applications to interact with a database. Most databases have a JDBC driver available, 

allowing Java applications to access a wide variety of RDBMS solutions. 

2.2.3.2 ADO.NET 

In this section we present ADO.NET (Microsoft, n.d.), which is a set of classes that expose services to 

.NET Framework developers. It provides a consistent access to data sources such as databases and 

others such as XML files or exposed through an ODBC interface. It allows to execute query statements 

like JDBC: it connects to a data source using a connection object (e.g. a SqlConnection) and can execute 

query statements or create the equivalent to prepared statements in JDBC, named ‘SqlCommand’. 

Executing a select statement returns a reader that can be used to iterate over the rows of the relation 

returned by the data source. Like JDBC, it is more focused on compatibility rather than the access 

control policies defined in the data source, so the developers must master the database schema and the 

defined access control policies when using ADO.NET manually. 

2.2.3.3 Hibernate 

In this section we present Hibernate (JBOSS, 2001), which is an object-relational mapping library for 

Java that provides a mapping between the object-oriented domain model and the relational paradigm 

in databases. Java classes can be created from the database relational model or vice-versa by some 

IDEs and tools that automate the process, but the library itself requires the creation of the database 

tables, java classes and configuration files/annotations. It provides a persistence engine, which 

transparently does persistence of java objects that have been mapped into a database table. It can be 

seen that the automated mapping only takes into account the access control policies at the time the 

mapping was performed and any changes to them requires the modification of the java objects and 

their mapping configuration. Other related frameworks/libraries include the Java Persistence API 

(Oracle, 2006) and EclipseLink (Eclipse, 2008). 

2.2.3.4 LINQ 

In this section we present the Language Integrated Query (LINQ), which is a Microsoft .NET framework 

that extends .NET languages to add query expressions, similar to SQL statements, which can be used to 

extract data not only from databases, but arrays, enumerate classes and other data sources as well 

(Microsoft, 2007). 

It is an object-relational mapping which models a relational database using .NET classes, and 

then LINQ can be used to query the database using the classes, displaying the tables and columns that 

are available. Furthermore, it fully supports transactions, views and stored procedures. 
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Next we demonstrate how LINQ can be used: 

var orders = from o in db.Orders 

   where o.Order.ShipCountry == “USA” 

   select o; 

This LINQ query selects all orders whose ship country is USA. Note that because .NET classes are 

created to map de relational database, the developer does not need to master the database schema. 

However, if the access control policies are altered the application will not be aware of that fact until 

errors occur in runtime. 

2.3 Related work 

In this section we present the work related to access control enforcement and their major 

contributions in order to understand the current state of art.  

 

Ur/Web 

Chlipala et al. (Chlipala, 2010) present a new tool, Ur/Web, which allows programmers to write CRUD 

expressions that can check statically the access control policies in a system backed by a DBMS. In this 

work, each data that can be accessed is determined by each policy. Then, programs are developed and 

checked to make sure that the data involved in the CRUD expressions is accessible through some 

policy. For the policies to be able to vary from user to user, the queries that check them can use actual 

data and a new extension to the standard SQL to capture ‘which secrets the user knows’. This extension 

is based on a predicate referred to as ‘known’ which models the information users are already aware of 

to decide what information is to be disclosed.  

Consider the table user with each user’s name and password. A policy can be defined using the 

following syntax: 

policy sendClient { 
 Select * 
 From user 
 Where known(user.pass) 
} 
 

In this case, the policy sendClient prevents users from reading data that belongs to other users 

by allowing them to read the rows to which they know the password. 

It is a solution with potential, but it doesn’t check the access control on where clauses allowing 

queries to leak protected data implicitly and since the process of validation takes place during compile-

time, the programmers still have to master the database schemas and the defined security policies 

when the source code is being written. 

 

Integrating access control policies within database development 
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Abramov et al. (Abramov, 2012) present a complete framework that allows security aspects to be 

defined early in the software development process and not at the end. They present a model from 

which access control policies can be inferred and applied.  

Their contribution with their work is a new methodology, from which the security patterns are 

clearly defined using common modeling techniques. Since the security patterns are clearly defined, it is 

possible to enforce them over application designs and to generate the required artifacts from the 

transformation rules that define how to go from the application model to the database code. 

Nevertheless, similarly to (Chlipala, 2010), the validation process takes place only at compile 

time, again requiring the programmers to master the established access control policies.  

 

Hippocratic databases 

Hippocratic databases are databases that are designed to integrate privacy policies into their 

architecture. Ten principles (Agrawal, 2002) have been announced that define Hippocratic databases: 

purpose specification (the purpose for which data has been collected must be associated), consent (the 

purpose must have the donor consent), limited collection (the data collected must be the minimal 

amount that satisfies the purpose), limited use (only queries that are consistent with the purpose of 

the collected data may be run),  limited disclosure (the information shall not be communicated outside 

the database for other purposes than those consented), limited retention (the data collected shall only 

be retained as long as necessary to satisfy the purpose of the collection), accuracy (data must be 

accurate and up-to-date), safety (data must be protected against theft and other unauthorized access 

by security mechanisms), openness (the donor of some data must always be able to access all of it) and 

compliance (the donor must be able to verify the compliance of the principles). These principles have 

been attempted to be used in practice like in (Padma, 2009) for PostgreSQL. The next example is based 

on Hippocratic PostgreSQL: 

Select s.saleNumber, s.saleValue, s.taxValue 
  From Sales s 
  Purpose auditing 
  Recipient salesManager 
 

This Select query produces a result that has its columns restricted for the combination of the 

purpose and recipient. Additionally, it will be restricted to only contain data to be shared with the 

purpose of auditing. We can see from this example that databases with Hippocratic principles address 

a different kind of access control, i.e. privacy, which lets the owners of some information specify how, 

when and for what their information can be accessed for. 

(LeFevre, 2004) presents an approach to limit the disclosure of data in Hippocratic databases. It 

employs the query rewriting technique and the policies are defined with either EPAL (Ashley, 2003) or 

P3P (Cranor, 2002) and it describes rules that are used to specify whom may access the data and for 

what purpose. In short, the application first submits the query to the database and retrieves the result. 

Then, the application goes through the returned records and filters out prohibited information. The 

policies can either be enforced at: the table level, where each table is associated with a view that 
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replaces prohibited cell with null values or at the CRUD expression level, where the records returned 

from a select statement are filtered to remove the prohibited values.  

 

SESAME 

SESAME (Zhang, 2003)  is a dynamic context-aware access control mechanism for pervasive GRID 

applications. It complements current authorization mechanisms by dynamically granting and adapting 

permissions to users based on their current context. The dynamic role based access control model, 

which extends the classic RBAC model, is the base model used in SESAME. When subjects log in, it 

assigns a default role hierarchy and then monitors the context of the subjects and delegates roles as 

needed. There are two types of contexts: the object context and the subject context. The object context 

has information such as user’s location, time, local resource and link state. The subject context contains 

information such as the system’s current load, connectivity to a resource and availability. However, 

SESAME enforces the access policies in a centralized system which has the drawbacks in terms of 

stability and performance. 

 

SELINKS 

SELINKS (Corcoran, 2009) extends the LINKS (Cooper, 2007) programming language similar to LINQ 

that can be used to construct secure web applications. A developer using LINKS could write a program 

and the compiler would then create the byte-code for each tier of the application and for the security 

policies as well. These are then encoded on RBDMS as user-defined functions, which check during 

runtime what actions each user is allowed to perform. The access to the data can be mediated using 

functions that enforce the policies by accessing security labels, i.e. types that define the metadata, 

defined by the programmers. A type system named Fable is used to ensure that the data is accessed 

only after consulting the proper policy enforcement function. 

SELINKS has the advantage of integrating a security context in all the application tiers, using Fable 

to prevent the avoidance of the security policies, which is optimized to reduce network load by using 

user-defined functions in the database to check the permissions instead of transferring the required 

data to perform that check in the web servers. Furthermore, it’s a single tool, easing the development 

process by requiring the programmers to learn just one tool. However, the security labels define a 

group-based access control policy that only distinguishes between read and write operations, hence it 

is not possible to apply restrictions on the CRUD expression level. 

 

Jif 

Jif (Zhu, 2012) is a security-typed programming language that extends Java to give support for 

information flow control and access control, enforced at both compile time and runtime. Java is 

extended to support the addition of labels that can express the access control policies to be enforced 

and how the information may be used. The following variable declaration declares not only that the 

variable x is an integer, but also that the information in x is managed by a security policy: 
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    int {Alice→Bob} x; 
 

In this case, the label expresses that the information in x is controlled by the principal Alice and that 

Alice allows this information to be seen by the principal Bob. The other direction in the label, 

{Alice←Bob}, means that information is owned by Alice, and that Alice permits it to be affected by Bob. 

With these labels, the Jif compiler is able to analyze the information flow within programs to determine 

whether they enforce policies expressed by the labels or not. Jif supports labels and principals, as 

shown, but also principal hierarchies, integrity and confidentiality constraints, authority delegation 

between principals, confidentiality (declassification),integrity (endorsement) downgrade and a form of 

label polymorphism. However, the language is mostly used to manage the information flow at the 

application level and not to access data in RDBMS, so other tools must be used to compensate. 

 

Reflective Database Access Control 

In (L. E. Olson, 2008), the Reflective Database Access Control was presented. It is a model in which 

CRUD expressions are the privileges in the database rather than using static privileges defined in the 

ACLs. To express the reflective access control policies the Transaction Datalog(Bonner, 1997) was 

used. An implementation of this access control model was presented in (L. Olson, 2009). 

 

Security-driven model-based dynamic adaptation 

A security-driven model-based dynamic adaptation is presented by Morin et al. (Morin, 2010) to 

address a problem where even with the separation of the policies and the application code that is done 

in theory, it is never fully done is practice, leading to some rules being written directly in the 

application code. The approach uses meta-models that describe the access control policies and the 

application architecture and defines how to map (statically and dynamically) the access control 

policies meta-model to the application architecture meta-model. It does not address how to statically 

implement secure and dynamic security mechanisms. 

 

Java EE 

Java Enterprise Edition (Java EE) is an extension of Java (the standard edition) to build enterprise 

software (Oracle, n.d.-c). It uses the @RolesAllowed annotation to enforce RBAC policies directly at the 

methods level, controlling who has the permission to invoke them. It does not, however, identify who 

is invoking the protected methods, meaning that any user on the allowed roles can get access to the 

protected method. Furthermore, the process of checking if a user calls a protected method to which he 

is not authorized to is only done at runtime, which means that developers have no way to statically 

validate if their code respects the access policies. 

 

Annotated objects 

In (Fischer, 2009), Object-sensitive RBAC (ORBAC) is an extension of RBAC that can be used with 

object-oriented programming languages. It attempts to address the shortcomings in the current RBAC 
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model and other frameworks like the ones just discussed.  It controls the access at the level of single 

objects allowing a fine grained control. Unlike some frameworks, Object-sensitive RBAC allows 

developers to write access code knowing if they are violating any access control policy or not through 

its type system.  

Zarnett et al. (Zarnett, 2010) present a different solution, which can be applied to control the 

access to methods of remote objects via Java RMI (Oracle, n.d.-d), a framework that allows an 

application to use objects that exist in a different application, possibly in a different machine. The 

server, which hosts the remote objects, enriches the methods and objects with metadata about the 

roles that are authorized to use them through the usage of Java Annotations. Then, RMI Proxy Objects 

handle the requests to execute methods on the remote objects hosted in that application, which are 

generated in accordance with the established access control policies (they contain the authorized 

methods only) for the role of the user requesting the access.  

Fischer et al. (Fischer et al., 2009) present a more fine-grained access control, which uses 

parameterized Annotations to assign roles to methods, and the work presented in (Zarnett et al., 2010) 

defined each annotation required for the domain of the application. These approaches, in contrast with 

our concept, do not ease the access to a relational database since the developers still need to acquire a 

deep understanding of the database schema and also the defined access policies to access database 

objects. 

 

Predicated grants 

In (Chaudhuri et al., 2007) is proposed a fine-grained authorization based on adding predicates to 

grants and an extension to the current SQL authorization model in order to support it. It basically 

allows to define which records in a table a user is able to access, the value returned to the public, etc. 

As an example we can have: 

 grant select on Employee 

  where (employeeID=userID()) 

  else nullify to public 

This authorization specifies that each employee can access its own employee information and 

any other information is nullified so that it cannot be accessed. 

This model addresses aspects such as cell-level security by nullifying values, allowing predicates 

to be added to any kind of grant (CRUD expressions, stored procedures and functions), authorizing 

aggregation functions while preventing access to the base data and even mechanisms to manage large 

number of users. 

 

λDB 

λDB is a programming language, presented in (Caires, 2011), that enforces access control policies to 

data by static typing for data-centric programs. It allows data structures to be defined, known as 

entities, which are checked at compile-time against the access control policies and other information 
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that is dependent on the context. A permission in this approach is comprised of: the action granted 

(read or write), the attributes of the entity and a logic condition. An example of such a permission is: 

  entity Person [userid: string; public: string; photo: picture; secret: string] 

   … 

   read public where true; 

   read secret where Auth(uid) and uid = userid; 

   read photo where Auth(uid) and Friends(userid, uid); 

   write where Auth(userid); 

This entity is named Person and has four attributes (userid, public, photo and secret) and the 

conditions shown state that the public attribute can be always read, the secret can only be read by its 

owner and the photo attribute can be read by its owner and its friends. The write condition applies to 

all attributes and only allows the owner to write the attributes. 

This approach provides only a single action to authorize update, insert and delete operations on 

the attributes, not allowing to distinguish between them, but in contrast to other solutions, like 

Ur/Web, the where clauses can be protected. 

 

Assurance management framework 

A similar approach to our work was presented by Ahn et al. (Ahn, 2007), where a tool is used to define 

a security model from which is generated some source code that checks if there is any violation of any 

access control policy. This verification process only takes place the source code has been written, this 

way not addressing the key aspects of our work.  

 

Extensible access control markup language 

The extensible access control markup language (OASIS, 2010) is a declarative access control policy 

language implemented in XML and a processing model that describes how access requests are 

evaluated according to the rules defined in policies. It uses the PEP-PDP model to enforce the access 

control policies, so the PEP component communicates with the PDP and, when the authorization is 

granted, it uses some static business logic to complete the task. When a modification is made to the 

underlying policies the logic in the PEP does not adjust automatically, so they must be modified in 

advance.  

 

Other works 

There are other works related to access control enforcement: Jayaraman et al. (Jayaraman, 2013) 

propose a new technique and a tool to detect errors in the RBAC policies and, finally, Wallach et al. in 

(Wallach, 2000) propose new semantics for stack inspection that solves issues with the traditional 

stack inspection, which is used to detect a dangerous call (e.g. to the file system)  and verify if it is 

allowed. Our work complements these, in regards to the access to relational databases, by generating 

static access control mechanisms automatically that are in accordance the established RBAC policies, 
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this way freeing the programmers from mastering the database schema or the defined access control 

policies. 

The works presented in (ÓM Pereira, 2012) and (ÓM Pereira, 2013) deal with the direct and the 

indirect access modes, but none defines exactly how the RBAC policies are to be enforced from the 

CRUD expressions. The work presented in (ÓM Pereira et al., 2013) can be seen as the initial approach 

to achieve the goals of the work presented in this work. It focuses on the CRUD expressions and on 

both access modes but does not convey how to connect the CRUD expressions and the RBAC-based 

policies. The work presented in (ÓM Pereira et al., 2013) also leverages (ÓM Pereira et al., 2012) but it 

is mainly focused on addressing a distinct key aspect regarding security where the runtime values used 

on the direct and on the indirect access modes are also regulated by the access control policies. 

2.4 Summary 

In this section we presented the state of the art regarding access control policies, the DBMS, the 

existing methods to implement access control mechanisms and the tools used to access them. Then we 

presented some related work and how can S-DRACA complement them.. 
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3 Technological Background 

In this section we will discuss the technologies that are still used or that were introduced to develop S-

DRACA, namely Java and some of its functionalities and various aspects of cryptography and 

authentication. We will also look into the service coordination aspects and languages to be able to 

implement the pre-defined sequences of CRUD expressions that the client must follow.  

This section is divided as follows: Section 3.1 will present some notions of service coordination, 

section 3.2 will present several Java functionalities that were essential for the development of S-

DRACA, section 3.3 will present some information about computer security in the areas of 

cryptography and authentication and section 3.4 will summarize the contents of this section. 

3.1 Service coordination 

In this section we present some notions of service coordination. Its purpose is to use them as a base for 

the implementation of the sequences to be enforced in S-DRACA, which aims to restrict the operations 

a user could perform to the database. The restrictions are enforced, even when the user has the 

permission to perform those operations, in a way that he has to follow a predefined sequence of 

operations. This can be seen as coordination of services and so we will analyze the current 

technologies that provide this type of functionality. 

To encode the sequences in a way that all information required to provide the proposed 

functionalities is available, we could have used two of the technologies that are used to control services 

workflow: 1) service orchestration, which requires every service to be requested by a central control 

point, and 2) service choreography, which allows a service to request the next service.  

Standard languages for each technique were proposed. This section is divided as follows: 

Section 3.1.1 presents the orchestration method for coordinating services and section 3.1.2 presents 

the choreography method. 

3.1.1 Orchestration 

In this section we present orchestration, a service coordination method that can be described as the 

automated arrangement, coordination, and management of complex computer systems, middleware, 

and services. Figure 11 shows a basic implementation of the service orchestration scheme. An 

application makes a request to a central control point, i.e. the orchestrator, which executes the 

requests, calling the different services as needed. 

A solution based on this scheme would require a central component that would provide the 

application with the next authorized CRUD expression in the sequence. 
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Figure 11. Service orchestration. 

OASIS defined a standard language, which is still very active, called Web Services Business 

Process Execution Language (OASIS, n.d.). It provides a set of functionalities that largely exceeds our 

needs, therefore we will use some functionality similar to those provided by it but tailored to our 

specific needs, such as graphs and life-cycle operations of active entities.   

Several other languages exist, such as Yet Another Workflow Language (“YAWL,” n.d.)  and XML 

Process Definition Language (“XML Process Definition Language,” n.d.), but they clearly would not 

bring any advantage to our case.  

3.1.2 Choreography 

In this section we present choreography, a service coordinator method that can be described as the 

interaction protocol used by the services from a global perspective, i.e. every service calls the next 

service as needed, without the intervention of a central control point. The next service that needs to be 

called is defined in the protocol that is defined globally. A basic implementation of this scheme is 

shown in Figure 12. A solution based on this scheme would require  a way to retrieve a reference to the 

next authorized CRUD expression in the sequence from a previous one. 
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Figure 12. Service choreography. 

The Web Service Choreography Description Language (W3C, n.d.) is a language from W3C aimed 

at describing choreographies using the global view of the observable behavior of web services. 
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However, the W3C Web Services Choreography working group was closed in 2009, leaving the 

language just as a candidate recommendation. 

3.2 Java 

In this section we present several functionalities of Java that were critical for the development of S-

DRACA. Java is a computer programming language that is concurrent, class-based, object-oriented, and 

has as few implementation dependencies as possible. It is intended to enable the code that runs on one 

platform to run on another without having to be recompiled. Java applications are typically compiled 

to bytecode (class file) that can be interpreted on any Java virtual machine (JVM) regardless of 

computer architecture. Java was originally developed by James Gosling at Sun Microsystems (which 

has since merged into Oracle Corporation) and released in 1995 as a core component of Sun 

Microsystems' Java platform. The language derives much of its syntax from C and C++, but provides 

less low-level functionalities when compared to any of them. 

There were five primary goals in the creation of the Java language(Oracle, n.d.-a): 1) it should be 

"simple, object-oriented and familiar", 2) it should be "robust and secure", 3) it should be 

"architecture-neutral and portable", 4) it should execute with "high performance", and finally 5) it 

should be "interpreted, threaded, and dynamic". 

It’s these goals that led to the choice of Java as the programming language to implement S-

DRACA, specially the third goal that states the solution should be architecture-neutral and portable, 

which made Java a programming language that runs on its own virtual machine which is available for 

many operating systems. We will now analyze the language’s libraries and frameworks that were used 

in S-DRACA. 

This section is divided as follows: Section 3.2.1 presents the reflection functionality and section 

3.2.2 presents the functionality to write custom annotations. 

3.2.1 Reflection 

In this section we present Reflection, which is the ability that allows a computer program to examine 

and modify the structure and behavior of the program at runtime, like values, metadata, properties and 

functions(Malenfant, 1996). It should not be confused with type introspection, which provides only the 

ability to examine said structure and behavior. Reflection is commonly used in high-level languages 

like Java(Oracle, n.d.-e) and C#(“Reflection (C# and Visual Basic),” n.d.). 

Using its reflection API, Java allows the inspection of classes, interfaces, fields and methods at 

runtime, even without knowing their names at compile time. Furthermore, it is also possible to 

instantiate new objects and even to invoke methods. Figure 13 shows how Reflection can be used in 

Java to instantiate objects and invoke methods. First, we get a Class object that represents the class we 

require using its fully qualified name (line 10), which allows us to retrieve any declared members, 

including modifiers and parameters. The example in the figure instantiates a new String object by 

searching the wanted constructor using the parameter types (line 11) and using it to instantiate an 
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object of that class (line 12). Finally we search for the split method by its name and parameter types 

(line 13) and invoke it, receiving the result from the split operation (line 14). 

 

 

Figure 13. Instantiation and invocation using reflection. 

We are required to use the parameter types to search for methods and constructors because of 

the method overloading feature, which allows us to declare methods with the same name using 

different parameters types. 

Reflection is a powerful technique and a fairly advanced feature that allows us to perform 

operations that would be impossible otherwise. Among its features and applications, we emphasize: 

extensibility features, class browsers, visual development environments, debuggers and test tools. 

Extensibility features allows an application to use external, user-defined classes to create instances of 

extensibility objects using their fully-qualified names. A class browser can use reflection to enumerate 

the members of classes. IDEs can also benefit from the information available about the classes to aid 

the developer to write correct code and provide other features like IntelliSense, i.e. auto-completion 

tips Debuggers need to be able to inspect the private members of a class so that we can successfully 

debug an application. Test frameworks can make use of reflection to discover a set of APIs defined in a 

class and insure a high level of code coverage in a test suite. 

Reflection does, however, have some drawbacks and so it should not be used indiscriminately. If 

an operation can be performed without the use of reflection, then it is preferable to do so.  Its major 

drawbacks are: performance overhead, security restrictions and the exposure of internals. Since 

reflection uses types that are dynamically resolved certain JVM optimizations cannot be performed. 

The result is that reflective operations have a lower performance when compared to their non-

reflective counterpart. Regarding the security restrictions, when an application that uses reflection 

runs in a restricted security context, e.g. in an Applet, a runtime restriction that might not be present is 

required. Finally, the exposure of internals occurs because reflection allows applications to access 

private fields and methods. Furthermore, it allows to perform operations that would be illegal in non-

reflective code. This may lead to unexpected side effects, render it dysfunctional and even destroy the 

application’s portability. This fact breaks abstractions and therefore its behavior may change with 

platform upgrades. 

3.2.2 Annotations 

In this section we present the annotations functionality. In the Java programming language, an 

annotation is a form of syntactic metadata that can be added to Java source code(Oracle, n.d.-f).  



31 A secure, distributed and dynamic RBAC for relational applications. 

 

31 | P a g e  

 

Many of the intended use cases for annotations involve having separate files hold information 

that is used to generate new derived files (source files, class files, deployment descriptors, etc.) that are 

logically consistent with the base file and its annotations(Oracle, n.d.-g). In other words, instead of 

manually maintaining consistency among the entire set of files, only the base file would need to be 

maintained since the derived files are generated. 

Java has always had ad hoc annotation mechanisms, e.g. the transient modifier could be used to 

indicate that a variable should be ignored during the serialization process and the “@Deprecated” 

javadoc tag is another one that indicates that a method should no longer be used. Annotations do not 

directly modify the semantics of a program, but they do affect the way programs are treated by tools 

and libraries. One example of a framework that uses annotations to change a program’s behavior is 

JPA(Oracle, 2006), as shown in Figure 14, where the declared annotations do nothing by themselves, 

but the JPA implementation, at runtime, receives the class object, extracts the annotations and 

generates an object-relational mapping(JBOSS, n.d.). 

Since the Java release 5.0, the platform has a general purpose annotation facility, also known as 

metadata, which allows the creation of custom annotation types. The facility consists of a syntax for 

declaring annotation types, a syntax for annotating declarations, APIs for reading annotations and a 

class file representation for annotations. 

Annotations are processed at compile time by an Annotation Processor that can be extended to 

one’s needs. It provides facilities like objects that allow to create source code (IDE’s can detected these 

files and add them to a project as generated source code), detect special entities such as methods (a 

test framework can make use of annotations by having an “@Test” annotation in methods that are 

designed to test a project and run them at compile time) or make any other type of computation. 

 

 

Figure 14. JPA data class example. 
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3.3 Cryptography and authentication 

In this section we will cover the main technological aspects of computer security used in this 

dissertation. 

Computer security is a field of computer science that covers all the processes and mechanisms 

that protects computer-based equipment and services from unintended or unauthorized access, 

change or destruction. We will cover the encryption of data, the authentication and authorization of 

entities, i.e. users and servers, and some of the security attacks that can be performed against them. 

This section is divided as follows: Section 3.3.1 will introduce the notion of hash function, 

section 3.3.2 will present several aspects of data encryption, section 3.3.3 will present several methods 

for authentication of users and section 3.3.4 will present some attacks that can be performed against a 

computer system. 

3.3.1 Hash functions 

We start the security section by introducing hash functions. Hash functions are very commonly used in 

computer security, hence it’s important to have a good understanding of them. A hash, also known as a 

message digest, is a one-way function(Kaufman, 2002a). It is considered a function because it takes an 

input and generates a fixed-length output. It is considered one-way because it is difficult to determine 

the input that generated a given output. They must be deterministic, i.e. the same input must produce 

always the same hash value. This property is critical for many uses of this type of functions, which 

range from file validation, i.e. to guarantee that a downloaded file from the internet has not been 

corrupted, password verification by using its hash value to keep the password secret, etc. 

Hash functions can also be considered cryptographically secure, but for that it must have a 

couple of additional properties: 

 It must be computationally unfeasible to determine the message that has a given hash; 

 It must be computationally unfeasible to find two different messages with the same hash. 

From these properties it follows that it should be computationally unfeasible to find a different 

message from a given one that produces the same hash value. 

Figure 15 shows an example of a hypothetical hash function being used to hash different values. 

We can see that the inputs Hello and Hello! Only differ from a single character, but the generated hash 

value is completely different. However, the inputs Hello and World generate the same hash value, 

which is called a collision.  

Generally, it would take about 2m/2 messages to find a collision for a hash function that 

generates hash values with m bits. However some exploits can be found in the functions that can 

reduce the number of messages needed. The current hash functions still considered safe from collision 

detection have outputs that are greater than 128 bits, which would require about 264 different 

messages to find a collision with no known exploits.  
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Figure 15. Example of a hypothetical hash function. 

There is one use where their deterministic nature can lead to information leaking. If the 

passwords of users are stored in a database hashed and we see the hashed values, we can notice 

patterns in those hashed values. For example, when we see that two different users have the same hash 

value, which together with the fact that the same password has always the same hash value 

(deterministic property), we can deduce that both users have the same password if the probability of it 

being a collision is extremely low. To avoid this kinds of patterns, systems usually concatenate random 

data to each password, called a salt. This way if two users use the same password, different salts are 

concatenated and the hash values are different (or they have a high probability of being so). The salt 

does not need to be secret and is usually stored with the hashed password, but to detect that two users 

have the same password it is now required to actually be able to guess the password. 

3.3.2 Encryption 

In this section we will introduce several aspects regarding data encryption in computer systems. In 

cryptography, encryption is the process by which messages and information are encoded in such a way 

that only authorized parties can read it (see Figure 16). It does not completely prevent an 

unauthorized party from reading the data, but it reduces the likelihood of it happening. Encryption 

uses a sequence of bytes (key) to encrypt and decrypt the data. If the keys are short/weak then it is 

easier for an attacker to crack the encryption, i.e. determine the key used for the message, and read the 

encrypted data, whereas strong keys can take a very long time, making any attempt to do so unfeasible. 

Hello! Hello!
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Unsecure Communication 
Channel

Alice Bob

 

Figure 16. Basic usage of encryption to send data over an unsecure channel. 

This section is divided as follows: Section 3.3.2.1 will present the usage of keys and how they 

can be exchanged and used for the encryption of data. Section 3.3.2.2 presents a standard protocol for 

data encryption. 



34 A secure, distributed and dynamic RBAC for relational applications. 

 

34 | P a g e  

 

3.3.2.1 Keys 

In this section we will present the notion of keys and how they can be used for data encryption. There 

are two main types of keys in computer security: symmetric keys and asymmetric keys. Symmetric 

keys are simpler and faster to use when compared to their asymmetric alternative, since the same key 

is used to encrypt and decrypt the data and involves simpler mathematics. However, we have the 

drawback of having to exchange them between the two parties in a secure way. This drawback can be 

mitigated by using a key exchange protocol (e.g. Diffie-Hellman key exchange protocol), which allows 

to exchange a symmetric key between two parties in a secure way. Asymmetric keys do not have this 

drawback since it uses a key pair, one of the keys is public and can be exchanged normally, and the 

other key is private and is kept secret. When a message is encrypted with one of the keys then the 

message can only be decrypted using its counterpart. However, they are more complex to use since the 

algorithm used to encrypt a message with one of the keys has to decrypt the message with the other 

key and not with the first, involving more complex mathematics. 

This section is divided as follows: Section 3.3.2.1.1 presents symmetric keys, section 3.3.2.1.2 

presents a protocol for exchanging symmetric keys, i.e. the Diffie-Hellman key exchange protocol, 

section 3.3.2.1.3 presents the asymmetric keys and section 3.3.2.1.4 presents public key certificates. 

3.3.2.1.1 Symmetric Keys 

In this section we will present symmetric keys and how they can be used. Symmetric key algorithms 

are a class of algorithms that are used in cryptography that are able to encrypt plaintext and decrypt 

the encrypted plaintext using the same cryptographic key, hence the name symmetric keys. In practice, 

the symmetric keys represent a shared secret that two or more parties can know and that can maintain 

a private communication channel by encrypting and decrypting the data with it. Figure 17 represents a 

generic use of this type of keys. Alice and Bob possess the same symmetric key and they use it to 

encrypt and decrypt the messages. 
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Figure 17. Message encryption over an unsecure channel using a shared symmetric key. 

There are two types of symmetric-key algorithms: stream ciphers and block ciphers. Stream 

ciphers encrypt the messages typically byte by byte. Block ciphers take a number of bits and encrypt 

them as a single unit, padding the messages if necessary to match the block size. 

Some algorithms that use symmetric keys include Twofish(Schneier, 1998), Serpent(Biham, 

1998), AES (Rijndael)(Daemen, 1999), Blowfish(Schneier, 1998) and 3DES (i.e. DES(National Bureau 

Of Standards, 1999) applied three times). 
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3.3.2.1.2 Diffie-Hellman Key Exchange 

In this section we will present the Diffie-Hellman key exchange protocol. The Diffie-Hellman key 

exchange is a method for exchanging cryptographic keys. It allows two parties that have no prior 

knowledge of each other to jointly establish a shared secret symmetric key over an insecure 

communications channel. This key can then be used to encrypt subsequent communications using a 

symmetric key cipher. 

The simplest and the original implementation of this protocol is shown in Table 4 and uses two 

public values: a prime number p and a generator g. The generator is a primitive root(Abramowitz, 

1972) modulo p. The values a and b are Alice and Bob’s secret values, respectively. A and B are the 

values that are calculated from the public common values (p and g) and the private values a and b, 

respectively, that are sent over the network. Finally, the value s is the agreed private shared secret.  

Using this method both Alice and Bob arrive at the same value, because (ga mod p)b and (gb mod 

p)a are both equal mod p. Note that only a, b, and (s = gab mod p = gba mod p) are kept secret. All the 

other values – p, g, A = ga mod p, and B = gb mod p – are sent in the clear. Once Alice and Bob compute 

the shared secret they can use it as an encryption key, known only to them, for sending messages 

across the same open communications channel.  

Large values of a, b, and p are be needed to make this method secure, since the security in this 

method relies in the unfeasibility of determining the secret values a or b from the public values A or B. 

The problem such a computer needs to solve to break this method is called the discrete logarithm 

problem. 

Of all the numbers used, g is only one that is not required to be large. It can actually be a small 

prime number like 2 or 3 because the primitive roots are usually quite numerous. 

Table 4. Diffie-Hellman protocol original implementation using encryption mathematics. 

Alice 

 

Bob 

Secret Public Calculates Sends Calculates Public Secret 

a p, g 

 

p, g  

  

b 

a p, g, A ga mod p = A A  

 

p, g b 

a p, g, A 

 

 B gb mod p = B p, g, A, B b 

a, s p, g, A, B Ba mod p = s 

 

Ab mod p = s p, g, A, B b, s 
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If an intruder were to capture every value that was transmitted, he would only have the values 

p, g, A and B. Since s, to be calculated, requires the knowledge of both private values a and b and given 

that they are unfeasible to be determined from the public values A and B (with a big enough p), then s 

remains secret.  

This protocol is, however, vulnerable to man-in-the-middle (MITM) attacks since neither Alice 

nor Bob are authenticated and an intruder could intercept the communication and agree two different 

keys (one for Alice and another for Bob) and then relay the communication while being able to decrypt 

it. 

3.3.2.1.3 Asymmetric Keys 

In this section we will present asymmetric keys and how they can be used. Public (or asymmetric) key 

cryptography involves using asymmetric key pairs which have a public part that can be known by 

anyone and a private part that only the owner of the asymmetric key pair should possess. An algorithm 

that allows to generate pairs of asymmetric keys is the RSA algorithm, created by Ronald (R)ivest, Adi 

(S)hamir e Leonard (A)dleman, which became one of the most successful implementations. 

Asymmetric keys can used to encrypt a piece of data using one part of the asymmetric key and 

the result can only be decrypted using the other part. This property, together with the fact that one 

part of the key is made public and the other isn’t, leads to two different scenarios: Encryption using the 

public part of the key and encryption using the private part of the key. 

When some data is encrypted using the public part of the key, then it must be decrypted using 

the private part. This means that only the owner of the private part of the key will be able to decrypt 

the data, meaning that the data is kept secret to other people.  
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Figure 18. Message encryption over an unsecure network using an asymmetric key pair. 

On the other hand, if the data is encrypted using the private part of the key then only the owner 

of the key could have encrypted it, assuming the private part of the key is kept secret. Because the data 

can be decrypted with the public part of the key, which is known to anyone, the data is not actually 

secret, but if the public part of the key decrypts the data then the person who decrypts it can assume it 

was the owner of the private key that encrypted it. This can be used as a digital signature. This last 

scenario has the drawback of actually sending the same message twice, which increases the overhead 

in the communication. To address this situation, a hash of the message is signed instead of the actual 

message. This means that the receptor must hash the message received using the same hashing 

algorithm and compare it with the decrypted signature. Since hashes are usually much smaller than the 

message hashed the overhead is decreased, but messages that generate the same hash (a collision) will 
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carry the same signature, meaning that the actual signed message could be swapped by one such 

collision by an attacker, so a good hash algorithm where collisions for a given message are hard to find 

should be used. 
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Figure 19. Message signing using an asymmetric key pair. 

It is important to note that these cases are not mutually exclusive in the sense that both can be 

used on the same message. By signing the data using one’s private key and then encrypting everything 

with the receiver’s public key will mean that only the receiver will be able to decrypt the data and the 

signature and use the sender’s public key to verify the signature of the data, allowing to authenticate 

the sender and preventing anyone else from reading the data. 

3.3.2.1.4 Public Key Certificates 

In this section we will present the notion of public key certificates and how can be used for data 

encryption. The distribution of keys becomes easier using public key cryptography. Each node is 

responsible for knowing its own private key and all the public keys can be accessed from one place. But 

there is a problem as well. The public keys can be listed in a journal or stored in a directory service, but 

if an intruder changes the public key associated with someone, the intruder can then impersonate 

them, because no one other than the owner of the private key can verify that the public key is 

incorrect. Public key certificates are an electronic document that can solve this problem to some 

degree. It uses a digital signature to associate a public key (from an asymmetric key pair) to an entity, 

which can contain information such as the name of a person or organization, the address and the email 

address. Public key certificates can be used to verify that a public key belongs to an entity, by having a 

trusted entity (Certificate Authority) to sign the public key and its owner information, as shown in 

section 3.3.2.1.3. When a client wants to verify the entity that signed some data, the server will send its 

own public key certificate with the public key that can decrypt the signature of the data it sent. The 

client, by having the trusted certificate authority’s public key preconfigured, can verify the signature 

on the public key certificate received from the server, allowing the client to have some confidence in 

the identity of the server. The level of confidence depends on the level of trust the client has on the 

certificate authority in its ability to sign certificates that associate the public keys to their legitimate 

owners. 

If the private key associated with the public key in a certificate is compromised, then the entity 

that owns the public key certificate must revoke it so that it no longer remains valid. This mechanism 

uses certificate revocation lists (CRL), also signed by the certificate authority, that the client can check 

to determine if a given public key certificate is still valid or not. A public key certificate is only valid if it 
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has a valid certificate authority signature, if it is still not expired and if it isn’t listed in the most recent 

CRL from the certificate authority. A public key certificate expires after a given amount of time, 

typically a year. 

An alternative to the CRL was designed to keep the servers from having to keep CRLs updated 

and to parse them, called Online Certificate Status Protocol (OCSP)(IETF, n.d.-a). This protocol, 

compared to CRLs, carries less information in the responses, so it can use the network and the OCSP 

client resources more efficiently.  

3.3.2.2 SSL/TLS 

In this section we will present Secure Sockets Layer (SSL)(IETF, n.d.-b) and its successor, Transport 

Layer Security (TLS)(IETF, n.d.-c). They are cryptographic protocols that provide communication 

security over the internet and allow client/server applications to communicate in a way that is 

designed to prevent eavesdropping, tampering and message forgery. 

SSL and TLS are protocols that can use public key certificates to authenticate a server and, 

optionally, the client. It also encrypts the communication channel using a set of keys that are calculated 

during the initial handshake process, where information required to establish a secure communication 

channel is exchanged, such as the protocol version, ciphers, public key certificates and other values 

that may be required by the cipher. 

This section is divided as follows: Section 3.3.2.2.1 will present the basic SSL/TLS protocol and 

section 3.3.2.2.2 will present the anonymous version of it. 

3.3.2.2.1 Basic protocol 

In this section we will present the SSL/TLS basic protocol. The SSL/TLS protocol uses the 

Transmission Control Protocol (Kaufman, 2002b), a reliable transport layer that provides a reliable, 

ordered and error-checked stream of octets (a unit of information consisting of 8 bits). It also provides 

congestion and flow control, which prevents the sender from congesting the network or overflowing 

the receiver with information, respectively. SSL/TLS puts together these octets into records, which 

contains headers and cryptographic protection to further provide a stream with integrity and 

encrypted protection on top of the reliable delivery of data. 

There are four types of records: handshake, change cipher spec (which are used during 

handshake but have been made into a different type of record), data and alerts (to alert about errors or 

notifications of connection termination). 

In the basic protocol, the client (Alice) connects to the server (Bob), whom sends its public key 

certificate. Alice verifies the certificate, obtains the public key from the certificate, generates a random 

number S that will be used to derive the session keys and sends it to Bob encrypted with his public key. 

The session keys are calculated and then used to guarantee the integrity and encryption of the data. 

Figure 20 shows a simplified form of the protocol, which we will discuss in more detail. 
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In the first message, Alice indicates that she wants to communicate with Bob using a ClientHello 

message, but doesn’t say who she is. Provides Bob with a list of ciphers she supports and a random 

number RAlice that will be used to derive the session keys from S. The second message, a ServerHello 

sent by Bob, contains the cipher that he chose from the list received that he supports and a random 

number RBob which will serve the same purpose as RAlice. Bob then sends a Certificate message with his 

public key certificate (if the chosen cipher requires it) followed by a ServerHelloDone to finish the 

handshake negotiation. Next, Alice choses the random number S (known as the pre-master secret) and 

sends it, encrypted with Bob’s public key, in a ClientKeyExchange message.  

Now both parties use this pre-master secret and the random values to generate the master 

secret. All the other required keys for this connection are derived from this master secret and the 

random values RAlice and RBob using a pseudorandom function. 

Alice then sends a ChangeCipherSpec record message to indicate that future messages will be 

encrypted and then an encrypted Finished message indicating that the client’s handshake has finished, 

together with an hash and a message authentication code (MAC, i.e. a hash function that takes a 

cryptographic key as input) of the previous handshake messages. Bob decrypts the message and 

verifies both the hash and the MAC.  Finally, Bob also sends a ChangeCipherSpec message and an 

equivalent Finished message indicating that its handshake has also finished. Alice performs the same 

decryption and verification. From this point on the handshake is completed and the SSL/TLS protocol 

moves to the application phase, allowing Alice to communicate with Bob using integrity-protection and 

data encryption.  

Alice Bob

ClientHello, TLS version, RAlice, ciphers

ServerHello, TLS version, RBob, cipher

Certificate

ClientKeyExchange, Bob{S}

ServerHelloDone

ChangeCipherSpec

K{Finished, hash, MAC}

ChangeCipherSpec

K{Finished, hash, MAC}

{data}

 

Figure 20. Basic TLS protocol using server certificate. 
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Note that only Bob was authenticated in this exchange. The protocol could be used to 

authenticate both Bob and Alice, e.g. if Alice used a certificate of her own, but the most common way to 

authenticate the client Alice is for her to send the username and password through the encrypted 

communication channel to the server Bob once it is created. 

3.3.2.2.2 Anonymous SSL/TLS 

In this section we will present the anonymous version of the SSL/TLS protocol and what differs from 

the basic version. The SSL/TLS protocol can use many combinations of authentication mechanisms and 

key exchange protocols, among other aspects like the encryption mode, mechanism and MAC 

algorithm. 

Cipher suite’s names follow a common format, e.g. in SSL_RSA_WITH_DES40_CBC_SHA: SSL 

means SSLv3. Other values are SSL2 for SSLv2 or TLS for TLS version 1.2. RSA is the algorithm used to 

encrypt the material used to generate the session keys that are sent over the network with asymmetric 

keys. The algorithm uses certificates with RSA keys. WITH does not have any special meaning, it serves 

no other purpose than increasing the suite’s name length. DES40 means that DES with 40 bit keys will 

be using as the encryption algorithm. CBC stands for cipher block chaining and it’s the encryption 

mode(Kaufman, 2002c). SHA is the algorithm used for generating MAC values. 

The most interesting section for the purpose of implementing S-DRACA is the key exchange 

algorithm. The basic protocol presented previously would use RSA as the key exchange algorithm since 

the server Bob provided its public key certificate, which is used for asymmetric key encryption. 

The usage of certificates means that the owner of the server Bob and each client must trust the 

CA that signed the server certificate to never provide to an entity a certificate declaring that they are 

another. If that is possible then there’s no guarantee that a server certificate actually authenticates the 

server, it could be other entity that was able to get the CA to sign the impersonating certificate. 

To disable the usage of certificates, the algorithm used to securely exchange the material that is 

used to generate the session keys must be changed. One example is DH_anon, which uses Diffie-

Hellman to exchange the material needed (the agreed key becomes the pre-master key). Since no 

entity is authenticated using Diffie-Hellman it is considered that the communication is anonymous. 

Because the Diffie-Hellman protocol requires both parties to send each other material to be able 

to arrive at the agreed key, a change to the previous basic protocol is required: the server no longer 

sends its public key certificate and sends a ServerKeyExchange message instead with the Diffie-

Hellman public parameters. 

3.3.3 Authentication 

In this section we will present authentication and other related protocols. Authentication is the process 

of reliably confirming the identity of something or someone who identifies itself. There are three 

categories of mechanisms in which the entity can be authenticated based on the type of proof (or factor 

of authentication) needed, which can be:  
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 Something that the user is, e.g. a fingerprint or a retinal pattern; 

 Something that the user has, e.g. a smartcard or a cell phone; 

 Something that the user knows, e.g. a password or an answer to a particular question. 

We will analyze some mechanisms and protocols for entity authentication that were used in this 

dissertation. SSL/TLS, presented in the last section due to its encryption capabilities, can also 

authenticate the client and the server. 

This section is divided as follows: Section 3.3.3.1 presents the basic password authentication 

protocol, section 3.3.3.2 presents the challenge-response authentication mechanism, section 3.3.3.3 

presents how authentication can be obtained using encrypted key exchange and section 3.3.3.4 

presents smart cards and how they can be used for authentication. 

3.3.3.1 Password Authentication Protocol 

In this section we present the password authentication protocol, which is a very simple protocol (see 

Table 5), where the client (Alice) sends her username and password in clear text on the network, and 

the server Bob just acknowledges the authentication if the password matches the username or he 

doesn’t acknowledge it if it doesn’t. 

This protocol requires that both Alice and Bob share a common secret (the password). It doesn’t 

require anything more complex than an equality check to authenticate the client and the 

communication is minimal, which means that this protocol has a low overhead, but it is only suitable in 

constrained environments where eavesdropping in the network is not an issue, or else the password is 

very easily stolen. 

Table 5. Password authentication protocol. 

# Alice Network Bob 

1 username, password → username, password username, password 

2 username, password ← ack/nack username, password 

3.3.3.2 Challenge-Response Authentication Mechanism 

In this section we present the challenge-response authentication mechanism, which is a family of 

protocols where one party presents a question, the “challenge”, which can be anything, and the other 

party provides the answer, the “response”. If the response is the expected one to the challenge, then it 

is authenticated. 

One simple example of a mutual authentication scheme (where both the client and the server 

are authenticated) is shown in Table 6. The challenge in this example is a random value, to which the 

correct response is the hash of the challenge sent to the other party with the received challenge and 

the password. 

First the client (Alice) identifies herself and sends a random challenge C1 to the server (Bob). 

Bob then generates a random challenge C2 and sends the response to Alice’s challenge, together with 
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his challenge, in the second message. In the third message Alice sends her response to Bob’s challenge 

if Bob’s response matches the expected value, who replies with an acknowledge message if Alice’s 

response matches the expected value or with a not acknowledge otherwise. 

Table 6. Challenge-Response authentication mechanism protocol. 

# Alice Network Bob 

1 
username, password, C1 = 
random() 

→ username, C1 username, password 

2 username, password, C1 ← C2, hash(C2, C1, password) 
username, password, C1, C2 
= random() 

3 username, password, C1, C2 → hash(C1, C2, password) username, password, C1, C2 

4 username, password, C1, C2 ← ack/nack username, password, C1, C2 

 

Note that Alice’s password is never transmitted in clear text on the network, but it can be easily 

guessed from the responses if it is a weak password (small with low complexity like only using lower 

case characters). 

3.3.3.3 Encrypted Key Exchange 

In this section we present the Encrypted Key Exchange (EKE)(S. Bellovin, 1992)(S. M. Bellovin, n.d.), 

which is a family of protocols that provide key agreement mechanisms that are password-

authenticated. The protocols of this family take a shared password and use it to generate a shared key. 

The basic form of EKE consists of one party of the communication to encrypt an ephemeral (one-time) 

public key and sending it to the other, who decrypts it and uses it to negotiate a shared key. 

The Simple Password Exponential Key Exchange (SPEKE)(Jablon, n.d.) is a cryptographic 

method for password-authenticated key agreement. This variation of the Diffie-Hellman key exchange 

protocol derives the generator g used from the shared password. Since the generator g can only be 

obtained from the password, only the entities that know this password can calculate it, hence Alice and 

Bob will arrive at the same shared secret only if they have used the same password. Once they have the 

shared secret they can prove to each other that they know the password by confirming that each 

arrived at the same shared secret, e.g. by sending an asymmetric hash of it concatenated with different 

known strings. 

 An augmented version of this family of protocols, called Augmented Encrypted Key Exchange 

(S. Bellovin, 1993), describes a concept where it is ensured that password verification data stolen from 

a server cannot be used directly by an intruder to impersonate as a client. The Secure Remote 

Password (SRP)(Wu, 1998) is one such protocol, therefore it prevents someone who was able to steal 

the server database from being able to impersonate the user. The protocol creates a shared private key 

between two parties similarly to Diffie-Hellman, but it is more complex as it uses a password verifier in 



43 A secure, distributed and dynamic RBAC for relational applications. 

 

43 | P a g e  

 

the server side instead of the client’s own password that, if stolen, cannot be used directly to allow the 

intruder to impersonate the user. 

In short, here are some of the properties that make SRP a strong authentication protocol. 1) SRP 

is safe against replay attacks (explained later in section 3.3.4.1). None of the data transmitted during 

authentication can be re-used to authenticate to a server using SRP. 2) SRP is safe against 

eavesdroppers. The password is never transmitted, either in clear text or encrypted. 3) SRP supports 

mutual authentication. 4) SRP transmits a session key in the process of authentication. This key can be 

used to encrypt the user's session and protect it from both eavesdropping and malicious active attack. 

5) SRP is safe from off-line dictionary attacks against the transmitted messages. The messages 

exchanged over the network are insufficient to verify a guess of a user's password. 6) SRP provides 

perfect forward secrecy. A compromised password does not enable an intruder to decrypt past 

sessions and a compromised session key will not enable an intruder to find out the user’s password. 7) 

SRP can tolerate a compromise of the verifier database on the host. Even though such a compromise 

may enable some attacks against the system (dictionary attack (explained later in section 3.3.4.3), host 

impersonation, etc.), it may not be catastrophic, because the password verifiers can only be used for 

validation of a user's password (i.e. they are not the plaintext-equivalent to the actual passwords). 

Therefore, they cannot be used by an intruder to gain direct access to a server. 

The last three issues are difficult constraints to satisfy. If one considers only protocols that resist 

dictionary attacks, one is left with the EKE family of protocols discussed in this section and a few other 

public-key assisted protocols such as SSL/TLS. If one also requires perfect forward secrecy, that leaves 

only the strongest of the EKE family protocols, like DH-EKE and SPEKE. SRP is able to satisfy both 

those constraints and the final requirement for non-plaintext equivalence. 

3.3.3.4 Smart card 

In this section we present smart cards, which are pocket-sized cards that have integrated circuits 

embedded into them and can be used for many reasons, including entity identification, authentication, 

data storage and processing. An example of such cards are the cellphone’s SIM card which can perform 

the processing required for the cellphone to be able to use the radio network. 

In terms of the type of authentication factor, they are something that the user has and must use 

to authenticate with the systems that require them. These cards usually have to be unlocked with a PIN 

to be used, meaning that these also require something the user knows. 

When two factors of authentication from different categories are required to authenticate an 

entity then it is known as a two factor authentication (TFA). Because this type of authentication 

requires more than one type of proof they are usually safer and the probability of a successful 

impersonation is decreased.  

Smart cards that can authenticate and prove the identity of an entity are our main focus. These 

usually provide a public key infrastructure (i.e. a set of hardware, software, people, policies and 

procedures needed to create, manage, distribute, use, store and revoke digital certificates), which 
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stores digital certificates issues by the public key infrastructure provider together with other relevant 

information. Note that, by design, it isn’t usually possible to extract the asymmetric private key from 

the cards and only the card itself can use it to sign data. 

The smart card used in this dissertation was the Portuguese Citizen Card (CC)(“Cartão de 

Cidadão,” n.d.). It will be used by our system as part of its TFA. 

The card itself publicly provides access to information such as the card holder’s name, the 

several identification numbers associated with the card owner (e.g. the social security number, the 

identification number, etc.) and the public key certificates, i.e. the signature and the authentication 

digital certificates. After unlocking the card we have access to more personal information such as the 

current address of the card’s owner and the ability to request the usage of the private keys associated 

with the public keys in the digital certificates. 

The digital certificates in every CC are signed by a Portuguese government certificate, which 

changes every year. Those certificates are signed by a stable certificate that also belongs to the 

Portuguese government. Since the government’s public key certificates are available online we can 

download them to authenticate a user, for which we have to request its public key certificate. Then we 

use another authentication mechanism, like the challenge-response, where the challenge must be 

signed using the private key associated with the public key in the received certificate. If the signature is 

valid (i.e. decrypting the signature using the public key produces the original challenge or a hash of it, 

depending on the implementation) and the public key certificate states that the user is, in fact, who he 

claims to be, then all that remains is to determine that the public key certificate is actually signed by 

the government’s certificate (our trust anchor). If the signature of the public key certificate is validated 

using the public key certificate of the government’s certificate AND none of the certificates have been 

revoked, then we can assume the user is who he claims to be and authenticate him. 

To simplify the revocation verification process and prevent the server from having to parse the 

CRLs the Portuguese government has OCSP responders publicly available. 

3.3.4 Security attacks 

In this section we will discuss some of the possible attacks that can be performed against computer 

systems. After discussing the various forms of user (and optionally the server) authentication, we 

analyze in this section the possible attacks that can be performed against such mechanisms and show 

how to prevent them if possible. It is important to understand the vulnerabilities that can affect each 

authentication method to safely decide which mechanism is the most appropriate for a given scenario. 

This section is divided as follows: Section 3.3.4.1 presents the replay attack, section 3.3.4.2 

presents the exhaustive key search attack, section 3.3.4.3 presents the dictionary attack, section 3.3.4.4 

presents the pre-computed dictionary attack, section 3.3.4.5 presents the reflection attack and section 

3.3.4.6 presents the man-in-the-middle attack. 
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3.3.4.1 Replay attack 

In this section we present the replay attack, which is a simple attack that targets systems where the 

client’s password (or a hash of it) is sent through the network to authenticate the client. The attack 

consists of an eavesdropper that captures an authentication interaction between a client and a server, 

collecting the client’s (hashed) password in the process. Then the attacker can authenticate with the 

server impersonating the previous client by providing its (hashed) password. 

To prevent this kind of attacks a more sophisticated authentication protocol can be used, such 

as Challenge-Response, EKE or SSL. One-time passwords are another alternative, which are passwords 

that are sent to the server through the network but that can only be used once. 

3.3.4.2 Exhaustive key search 

In this section we present the exhaustive key search attack, sometimes called a brute-force attack, 

which is an attack that can be used against any encrypted data given that it the attacker has enough 

information to break the encryption (e.g. the attacker has to know something about the data that is 

encrypted, such as its structure, so that he can validate a decryption attempt).  

This attack consists of checking all possible keys or passwords that are valid until the correct 

one is found. This process can be done online or offline. The online attack tries to guess the password 

by attempting to authenticate with the server, for example. A way to prevent online attacks is to limit 

the number of tries a client can perform, introducing delays between consecutive attempts, using 

CAPTCHAs, etc. In the offline attack the attacker has access to encrypted data that he can try to decrypt 

without the risk of discovery or interference.  

This attack can be fast when checking small passwords, but for longer passwords it becomes 

unfeasible and a dictionary attack is performed instead (discussed in section 3.3.4.3). In the worst case 

it would require traversing the entire search space.  

A password with 6 letters has a search space of just over three hundred million passwords, 

which can be easily tested with some computational power. Using bigger passwords, especially with 

numeric digits, upper case, lower case and special characters, the search space becomes too big to be 

feasible. Human beings, the main users of passwords, do not usually use random passwords but known 

words with few variations such as adding a digit to the end, which leads to more effective attacks such 

as the dictionary attack discussed next. 

3.3.4.3 Dictionary attack 

In this section we present the dictionary attack, which is similar to the exhaustive key search. This 

attack consists of trying to guess the password or key to decrypt data. However, this attack does not 

attempt to go through the entire search space. Instead, it tries all the words defined in a list called a 

dictionary. The words in the list are the most likely words to be used for a password, typically from an 

actual dictionary, since passwords are used by people and it’s easier to remember an actual word 
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instead of random characters. The list used can also test variations of words, e.g. by appending a digit 

to the end of a word, which makes those variations easy to guess. However, if the word has a random 

character in the middle it becomes difficult to guess. This attack reduces the time it takes to guess the 

password, but unlike the exhaustive key search it is not guaranteed to succeed. 

3.3.4.4 Pre-computed dictionary attack 

In this section we present the pre-computed dictionary attack, also known as a rainbow table attack, 

which allows achieving a time-space tradeoff by storing a password in a map and indexing them using 

their hash value. If the hash of the user’s password is intercepted in any way then the attacker can use 

this map to quickly determine the original password of the user. The creation of the map requires 

some preparation, since the hash of every word in the list needs to be calculated and stored, but it only 

needs to be created once, since the hash values never change for a particular hashing algorithm. 

These types of attacks can be thwarted with the use of a salt. A salt is random data that is used 

as an additional input to the hash function. Using different salts for the same password will result in a 

different hash value, so provided that the salt is large enough it is impossible to use a pre-computed 

dictionary attack because the map would have to contain an entry for each password-salt pair. 

3.3.4.5 Reflection attack 

In this section we present the reflection attack. Regarding the authentication mechanisms, an attack 

known as the reflection attack can be performed against some implementations of the challenge-

response mutual authentication mechanism shown in section 3.3.3.2. The idea is to use the other party 

to provide the answer to their own challenge. 

Assuming the target is Bob and the attacker is Alice, the general attack goes as follows: 

1. Alice connects to Bob and sends a challenge to authenticate him; 

2. Bob sends its challenge Cb to Alice to attempt to authenticate her and the response to Alice’s 

challenge; 

3. Alice starts another connection to Bob and sends the challenge Cb previously obtained from 

Bob; 

4. Bob responds with its own challenge and the response Rb to the challenge Cb; 

5. Alice goes back to the first connection and sends Bob the response Rb as the answer to the 

challenge Cb and finishes the authentication. 

As we can see the target ends up sending the response to the challenge that was sent by him on 

a separate connection. This leaves Alice with one fully authenticated channel connection (the second 

connection is simply dropped). 

There are several ways to protect a system against this type of attack: the challenges used by the 

client and the server can be exclusive, e.g. a client’s challenge might have to be even or have the client’s 

identifier appended and the server’s challenge has to be odd or have the server’s identifier added; the 
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system can require a client to answer its challenge before the server responds, preventing an attacker 

from acquiring responses to challenges without being authenticated; or require the key used to 

calculate the responses from the challenges to be different on both parties. 

3.3.4.6 Man-in-the-middle attack 

In this section we present the man-in-the-middle attack. MITM attacks are a type of attack where the 

attacker takes an active stance in the communication between two parties in which the attacker makes 

independent connections between each of the victims, making them think that they are talking directly 

to one another in a private communication channel (see Figure 21).  

 

Alice Eve Bob

 

Figure 21. MITM attack exemplification where Eve is the attacker. 

Most cryptographic protocols use some sort of endpoint authentication to prevent this type of 

attacks specifically. As shown previously, SSL can authenticate one or both parties using a trusted 

certification authority and key agreement protocols of the EKE family allows for two parties to agree 

on a secret key based on a shared password while preventing this type of attacks. 

To exemplify let’s go through a scenario where Alice wants to communicate with Bob while Eve 

wants to listen to the conversation and send a false message to Bob (optional step). 

Table 7 illustrates the messages sent by each party in the communication. Alice starts by 

requesting Bob’s public key to encrypt the message (1). Eve intercepts the message and forwards it to 

Bob. Then Bob replies with this public key, which is intercepted by Eve and stored, sending Eve’s 

public key instead (2). Finally, Alice believing to have Bob’s public key encrypts a message and sends it. 

Eve intercepts the message, decrypts and modifies it, encrypts it with Bob’s public key and sends it to 

him (3). 

Table 7. MITM attack scenario. 

# Alice Eve Bob 

1 
→ Bob, it’s Alice. What’s 

your key? 
→ Bob, it’s Alice. What’s 

your key? 
 

2  ← [Eve’s Key]. ← [Bob’s Key]. 

3 
→ Meet me at seven! 

[encrypted with Eve’s 
key] 

→ Meet me at eight! 
[encrypted with Bob’s 

key] 
 

 

Protocols that do not authenticate any of the parties involved in the communication are 

vulnerable to this type of attack. One example is the Diffie-Hellman key exchange protocol, where a 
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MITM attack can be used to intercept the agreed keys. However, variants to the protocol in the EKE 

family, such as DH-EKE, solve this problem by authenticating the parties in various ways. 

3.4 Summary 

In this section we discussed the background of some technologies which were used in S-DRACA, in an 

attempt to enable the reader to be able to understand the work without having to rely on outside 

sources of information. This included some service coordination notions that will be used when 

explaining the implementation of the sequences of CRUD expressions, some essential Java 

functionalities and an overall view of some computer security aspects such as cryptography and 

authentication of users since we will be implementing mechanisms to provide these functionalities.   
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4 Secure, dynamic and distributed RBAC Architecture 

In this section we describe S-DRACA, the secure, dynamic and distributed access control architecture 

which is built upon previous research [14][56][57]. We will present its architecture, how it enforces 

the access control policies and their respective sequences. We will also present the security layer to 

secure S-DRACA, a performance evaluation and a proof of concept. 

S-DRACA is an access control architecture that aims to provide an easy interaction between 

relational applications and relational databases, similar to the interaction offered by other API’s like 

JDBC(Oracle, 1997b), ADO.NET(Microsoft, n.d.), JPA(Oracle, 2006), LINQ(Microsoft, 2007) or 

Hibernate(JBOSS, 2001), while controlling the access to sensitive information. S-DRACA, like JPA and 

Hibernate, builds a framework in compile-time that users can use to access the sensitive information 

removing the need for them to master the database schemas and the enforced RBAC access policies. It 

does, however, enforce changes made to the RBAC policies in runtime. This means that an application 

can change its behavior when a change is made, avoiding security exceptions and the need to change 

the application. Furthermore, the generated framework is easily updatable during the compilation of 

the application, which means that if the application is trying to access information it does not have 

authorization to a compilation error is generated, instead of a runtime exception in the case of the 

existing solutions that can only be found using tests or during production, decreasing the application’s 

time to market and increasing user satisfaction.  

This section is divided as follows: Section 4.1 will present the overall architecture of S-DRACA, 

including an overview of DACA since it was used as the starting point, section 4.2 will present the 

changes made to the access control policies’ layer, section 4.3 will explain the new sequence controller, 

section 4.4 will present the overall system security concerns and mechanisms implemented, section 

4.5 will show a study on the overall performance of the solution and section 4.6 will present a proof of 

concept that uses S-DRACA to access sensitive data with dynamic modification of policies. 

4.1 S-DRACA overall architecture 

In this section we will present the architecture stack, the overall architecture of DACA and S-DRACA 

and finally the process of implementing the RBAC policies.  

 We start by presenting the architecture stack, shown in Figure 22. The application layer 

interacts with the Sequence Controller layer, which provides the application with a set of services that 

are regulated by the access control policies and provides a finer control over how the access control 

mechanisms are used. The data access itself is done by the access control mechanisms, which interacts 

with the security (SSL/TLS and Authentication) layer to provide increased security. Finally the data 

layer contains the sensitive information we want to provide access to. 

 



50 A secure, distributed and dynamic RBAC for relational applications. 

 

50 | P a g e  

 

Application

Sequence Controller

Access Control Mechanisms

AuthenticationSSL/TLS

Data

S-
D

R
A

C
A

 

Figure 22. S-DRACA stack. 

S-DRACA can be divided in two different sections: the client side, where the users’ access to the 

sensitive data is controlled using the generated architectures’ access control mechanisms, and the 

server side, where the RBAC policies that regulate the mechanisms in the client side are stored. The 

security layer stays between them to provide secure communication and authentication. 

Unlike the PEP-PDP architecture, where each user request to the PEP implies a verification with 

the PDP, or the SAAM architecture, shown in Figure 5, where such a request to the PDP is still made if 

the SDP cannot authorize the request, S-DRACA always decides if the user’s request is allowed or not in 

the client side. This has several advantages over the alternatives, of which we emphasize: the decision 

to allow a request or not is made at the client side, which implies that the time to authorize a request is 

lower, the user experiences less wait time and the requests are no longer sent to a PDP in the server 

side, meaning that a central point of failure and a possible performance bottleneck is removed. It has 

some disadvantages, however: the initialization time is greater, since the client has to receive the 

permissions a user has, given its role. This problem is minimized if the user uses the same session for a 

long time, because the initialization is only required to be done once per session. The security 

management also has to be carefully designed, given that a request is authorized at the client side. It 

should be made impossible to bypass S-DRACA using any means. 

This section is divided as follows: Section 4.1.1 will present an overview of DACA, used as the 

starting point, Section 4.1.2 will present an overview of the S-DRACA and how it differs from DACA. 

Section 4.1.3 will detail the S-DRACA’s architecture which was worked on, section 4.1.4 will explain 

how the interfaces the programmers use to access the data are generated and implemented and 

section 4.1.5 briefly summarizes the contents presented. The layers that were developed will follow 

afterwards. 

4.1.1 DACA overview  

In this section we present a brief overview of DACA, which was used as a starting point to provide S-

DRACA with the capabilities to adjust to policy changes and relieve programmers from having to 

master the database schema and the access control policies. 

Figure 23 shows a block diagram of DACA. It is comprised of four main components: the Policy 

Manager, the Policy Extractor, the Business Manager and the access mechanisms. 
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The access control policies, which regulate what a client application can do with the sensitive 

data, are available to the Policy Manager in a database called Policy Server. It can send the access 

control policies to the client side components and notify the clients when these policies change. To do 

this, it keeps a list of active clients with their IP address and port number.  

The Policy Extractor is responsible for obtaining the access control policies from the Policy 

Manager and generates interfaces that make the client application aware of the access mechanisms, 

which the client application can use to access the data in the database. In DACA, the Policy Extractor is 

a separate application, which bundles the generated interfaces in a Jar file that can be used in client 

applications.  

When the client application wants to access the sensitive data using the access mechanisms, it 

requests their instantiation to the Business Manager. The Business Manager also receives the access 

control policies from the Policy Manager in order to implement the access mechanisms used by the 

client application.  

The access mechanisms are where the enforcement of the access control policies is made, 

providing the client application with only the authorized operations. These are only implemented and 

loaded in runtime, to prevent the manipulation of the implemented source code. 
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Figure 23. DACA architecture block diagram. 

4.1.2 S-DRACA overview 

In this section we will present a brief overview of S-DRACA and how it evolved from DACA. Looking at 

Figure 24 and comparing it with Figure 23 we can see that the main four components, i.e. the policy 

manager, the policy extractor, the business manager and the access mechanisms are still present. 
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However, these components are not exactly the same. Although they provide the same 

functionalities, they have been given new ones.  

The Policy Manager, additionally to sending the access control policies back to the client side 

components and notify the clients when these policies change it now performs the authentication of 

clients and can establish encrypted communication channel to protect the sensitive data from 

intruders listening to the network. 

The Policy Extractor has been re-implemented to be directly integrated in the client application 

using java annotations, but its main functionality of obtaining the access control policies from the 

Policy Manager and generating the  awareness components for the access mechanisms remains the 

same.  

The Business Manager still receives the access control policies from the Policy Manager in order 

to implement the access mechanisms used by the client application, but it now also manages the 

enforcement of the sequences of CRUD expressions. Hence, it keeps track of the state of the sequences 

being executed, authorize their execution and adjust them dynamically when the defined sequences 

are changed in the Policy Server. 
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Figure 24. S-DRACA architecture block diagram. 

The access mechanisms remain where the enforcement of the access control policies is made, 

providing the client application with only the authorized operations, but now they also allow the client 

application to request the next CRUD expression to be used in a sequence. Since the Business Manager 

is the component responsible for authorizing these operations, the access mechanisms now also make 

requests to it. 

In addition to these components a new one has been created, named “Authentication / Data 

Encryption” in the previous figure. This component mediates the communication between the client 
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side S-DRACA components and the Policy Manager in the server side, providing authentication and 

data encryption mechanisms. Additionally, DACA would send the CRUD expressions to the client side 

so that the access mechanisms could access the data. Because of that, the CRUD expressions are now 

pushed to the server side to prevent intruders in the client’s side from being able to access and modify 

them. This component is further explained in section 4.4. 

4.1.3 S-DRACA’s architecture 

In this section we will present the S-DRACA architecture for the enforcement of the extended RBAC 

policies. Figure 25 shows the S-DRACA’s architecture that evolved from DACA with the exception of the 

authentication and data encryption component which mediates the communication between the client 

and the server. Furthermore, there is a software architectural model, presented in section 4.2.3, used 

to build entities known as Business Schemas, which are the generated access mechanisms.  

The Business Schema is the most important entity in DACA, and therefore in S-DRACA as well, 

since they allow the clients to access the data in the database while providing only the authorized 

operations, through a CLI that abstracts the JDBC connection and statement object’s interfaces. Note 

that they are also implemented at runtime and they possess all the information required to enforce the 

defined access control policies at the client side, creating a distributed solution. To build these 

Business Schemas we make use of a small set of interfaces that define protocols for basic operations, 

such as execute a CRUD expression, update a row in a LDS, etc. Then, depending on whether these 

operations are authorized or not, these smaller interfaces are implemented by a Business Schema or 

not. This way, only authorized operations are implemented and available to the client, even using 

functionalities like Java Reflection. This process is further explained in section 4.2. 

The overall architecture is very similar, but a new component has been added to the Business 

Manager: the sequence controller. The sequence controller is the component responsible for deciding 

if an action being executed is in a valid context, i.e. the order in which the previous actions are been 

executed, together with the new action being requested, remains a valid sequence. The sequence 

controller is further explained in section 4.3. Another major difference from DACA, is that the Business 

Schemas implementation no longer connects directly to the database with the sensitive data, reason 

being that having the client possess the credentials to the database would be a security vulnerability. 

With them, the client would be able to completely bypass the S-DRACA access control enforcement 

layer by connecting directly to the database.  

Figure 25 also shows the normal usage of S-DRACA. First, a policy extractor (an external tool) 

connects to the Policy Manager and requests the defined policies (1). From these policies and the 

architectural model shown in, the policy extractor is capable of generating the interfaces for the 

Business Schemas that the application developers can use (2). Then, at runtime, the Business Manager 

requests, on behalf of the application, the policies from the Policy Manager (3) and implements the 

interfaces generated previously by the Policy Extractor (4). Modifying the interfaces does not allow a 

user to use some unauthorized operation, because the implementation of the Business Schemas does 
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not take into account the interfaces generated by the Policy Extractor. If they do not match, a runtime 

exception occurs when the Business Manager tries to compile the generated implementations at 

runtime. Then the application can instantiate and use the Business Schemas it is allowed to use (5). If 

any operation or instantiation is not in the defined allowed sequence, the Sequence Controller will 

generate a runtime exception. Finally, when an operation is requested to a Business Schema, it uses a 

connection to the Policy Manager to talk to the database (6). The Policy Manager relays the 

communication between them. 
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Figure 25. The S-DRACA architecture. 

4.1.4 Static implementation of the RBAC policies 

In this section we present our solution to statically implement the Business Schemas, used by a 

developer to access the information in the database. The extension can be formalized by several 

approaches and it depends entirely on the practical scenario at hand. 

We decided to store the Business Schemas’ interfaces in the policy server as a jar file (a jar file is 

an archive with the class files and some other information). When the Policy Extractor tool wants to 

generate a new set of Business Schemas interfaces, it starts by connecting to the Policy Manager, 

authenticates, and then sends a GetBus message. The GetBus message, shown in Figure 26, is intended 

to request the list of authorized Business Schemas and CRUD expressions, as well as the authorized 

sequences (with the revoke lists and list of allowed CRUD expressions, for each Business Schema in a 

sequence position).  

First the GetBus message is sent, and the Policy Manager sends back a session ID that is 

randomly assigned to the client when it authenticates and is used to execute queries on the database. 

Then the number of Business Schemas is sent, so the client knows how many to read, and then the list 
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itself is sent. The list has the Business Schema URL and the list of valid CRUD expressions, which the 

size is also sent followed by each CRUD ID, session ID and the statement itself. The CRUD session ID is 

the temporary ID that the client can use to execute that CRUD statement and it is associated with the 

client session ID sent previously. This process of executing a query based on a temporary session ID is 

explained later in section 4.4.2. Then the status of the Sequence Controller is received, this means that 

the Sequence Controller can be deactivated if it is not required. Finally the information regarding the 

sequences are received, it starts with the number of sequences, followed by the list of sequences. Each 

sequence sent has an ID, the size of the sequence and each position has the list of revoked Business 

Schema and the list of allowed CRUDs. 

Then the Policy Extractor sends a GetJar message, which requests the jar file with the Business 

Schema interfaces from the policy server. The Policy Manager retrieves the jar file and sends it back to 

the client, which reads each Business Schema interface using Java Reflection and generates the source 

code of the interfaces that the application is allowed to use. 
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#businessSchemas
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statement

seqControllerStatus
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sequenceId
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loop
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Figure 26. GetBus communication process. 

The application can then use the Business Manager to request the instantiation of a Business 

Schema and request operations with it. The developer now does not need to master the defined 

policies or the database schema, because the Business Schemas can abstract the schema by providing 
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methods to access the authorized data only. The Business Manager, when is being initialized at 

runtime, sends the same GetBus message as the Policy Extractor, but this time this information is also 

used to validate the usage of a CRUD expression in a Business Schema and to validate if a Business 

Schema is instantiated or used out of order. The GetJar message is also sent and the retrieved Business 

Schema’s interfaces are used to implement the interfaces. A generator is used for this process, which 

takes Business Schemas interfaces and generates the implementation of each method (i.e. execute, 

moveNext, etc.) for a specific database (several generators are supported, but only one can be used at 

the same time). For example, the Business Schemas receive a JDBC connection object in their 

constructor, which means that a Business Schema associated with a select statement generates a 

ResultSet when executed. The moveNext() method, shown in Figure 27, then is only required to call the 

moveNext() method on the ResultSet. The ‘validationSourceCode’ is the code responsible for checking 

with the Sequence Controller if the request can be executed or not. 

These implementations are compiled and then loaded into the JVM when needed.  

 

Figure 27. Sample code from the SQL Server generator. 

4.1.5 Summary 

In this section we presented an overview of DACA and S-DRACA and the S-DRACA architecture, which 

is based on the DACA architecture but with the modifications needed to support the enforcement of 

sequences of Business Schemas and to address some security vulnerabilities. Finally we discussed the 

mechanism used to implement the Business Schemas and the messages exchanged between the client 

and the server during this process. 
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4.2 Access control policies 

In this section we will present the access control policies, used to generate the access control 

mechanisms shown in Figure 22. These policies are based on an extension made to RBAC that allows to 

define, for each role, the permissions a user has in the CRUD expression level. Furthermore, these 

CRUD expressions are associated with Business Schemas, i.e. entities whose interfaces are created 

during the compilation process and implemented at runtime, that guarantee that the client application 

can only follow the defined access control policies. To provide an increased level of control to security 

experts while defining the access control policies, the extension also allows the definition of sequences 

of Business Schemas. The sequences restrict the order in which the applications can execute the 

authorized CRUD expressions. 

This section is divided as follows: Section 4.2.1 introduces our conceptual extension to RBAC, 

section 4.2.2 discusses the concretization of the conceptual model and section 4.2.3 defines the 

software architectural model that is used to enforce the extended RBAC policies. 

4.2.1 Conceptual RBAC policy extension 

The basic RBAC policy used to supervise requests to access data stored in RDBMS is comprised of: 

users, roles that can be hierarchized, permissions, delegations and actions. When a user wants to 

perform some action, he will only be able to do so if he plays the role that rules that action. In the end, 

the actions can be defined as one of the four main operations on database objects (tables and views): 

read, insert, update and delete operations. 

In DACA, actions were formalized by what can be done on the direct and on the indirect access 

modes. This means that actions are the CRUD expressions that can be executed (direct mode) and also 

the operations that can be performed on the LDS (indirect mode). On one hand we have the granularity 

of the direct access mode, which is defined by each CRUD expression, on the other hand the granularity 

of the indirect access mode must be defined at the protocol level (read, insert, update and delete) and 

at the attribute level (except for the delete protocol, which must always be at the row level). The 

granularity at the LDS level provides full control for the security expert to define exactly which 

protocols are to be made available and, of those, which attributes should also be available. In terms of 

cardinality, each role is defined by a set of un-ordered CRUD expressions.  

We kept this extension to the RBAC policy and further extended it to support the definition of 

sequences, which restricts the order CRUD expressions (through the Business Schemas) can be used. 

From this extension, security experts can now define new restrictions over the actions ruled by a role, 

particularly the ordered sequences of actions (execution of CRUD expressions) users can perform. 



58 A secure, distributed and dynamic RBAC for relational applications. 

 

58 | P a g e  

 

4.2.2 RBAC model extension 

In this section will present a model that formalizes the presented extension to RBAC. In DACA, we 

started by analyzing the CRUD expressions, because every data access request starts through the direct 

access mode and only then can the indirect access mode be used. Furthermore, only a select (read) 

expression executed in the direct access mode allows the usage of the indirect access mode. 

Each CRUD expression type (Select, Insert, Update, Delete) can be expressed by general schemas 

and each individual CRUD expression can be represented by specializing one of the general schemas. 

While the CLIs were being assessed, including JDBC, we found out that the schema of each CRUD 

expression type can be built upon a small set of smaller schemas. The functionalities provided by the 

smaller schemas are: only Select expressions return relations, all CRUD expression types can use 

runtime values for clause conditions, some CRUD expressions return the number of affected rows 

(Insert, Update, Delete) and finally, some CRUD expressions use runtime values for column values 

(Insert and Update). Some other perspectives for the LDS can also be elicited, such as some LDS are 

scrollable (where no restrictions are placed upon which the next selected row can be) while others are 

forward-only (where only the next row can be selected). 

To address this set of smaller schemas, the general schema needs to be flexible and adaptable. 

This challenge was solved by the design of entities, previously introduced as Business Schemas. 

Business Schemas are responsible for hiding the actual direct and indirect access modes driven by the 

access control policies. After some research, the cardinality between the Business Schemas and the 

CRUD expressions was found to be many-to-many. This means that one Business Schema can manage 

several CRUD expressions and that one CRUD expression can be managed by several Business 

Schemas. To explain why let us consider two Select expressions: 

1. SELECT column1 FROM table; 

2. SELECT column1 FROM table WHERE column2 < 1024; 

We can analyze first the direction “one Business Schema → many CRUD expressions”. From the 

direct access mode perspective, both expressions are exactly the same: both are select expressions that 

take no runtime values and the schemas of the returned relations are identical. If the security policy for 

both expressions is the same then the Business Schema can be reused. The other direction “one CRUD 

expressions → many Business Schemas” can be more easily explained. When different security policies 

are applied to the same CRUD expression, it has to be managed by several Business Schemas because a 

single Business Schema can only provide one security policy. 

This previous extension allows us to define which Business Schemas and CRUD expressions are 

authorized for each user through their roles, but to be able to define the sequences, in which those 

Business Schemas and CRUD expressions can be used, and what their life-cycle is when a sequence 

moves forward one position we had to further extend the RBAC model. 

This new extension must take into account two main aspects. The first aspect is the functionality 

to connect Business Schemas and, therefore, to build sequences of Business Schemas. The second 
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aspect is related to the life-cycle of Business Schemas when the sequence moves forward to the next 

Business Schema. 

We start by presenting the first one of those aspects. To formalize our approach of sequences (S) 

we will use directed graphs (usually known as digraphs) of Business Schemas. In short, one directed 

edge (e) connects one source vertex to a destination vertex, where each vertex (v) is one Business 

Schema. From a general digraph, it is possible to define several different paths (i.e. a sequence of 

vertices that are connected in pairs by directed edges). This level of freedom can potentially be a cause 

for concern, especially where security is imperative. Hence, and although our model is defined using 

digraphs, some strong restrictions need to be established in order to prevent the usage of digraphs in 

its most general form. Notwithstanding this fact, we can start the design phase of the sequences using 

generic digraphs, although we will have to identify the paths that are compliant with the access control 

policies. A path is nothing more than a sequence of vertices which are connected by one edge only 

(except the last one, which has no edge). Only these valid paths can be used and assigned to roles. This 

means, then, that users authorized to play a role: 1) can execute the Business Schemas (vertices) 

defined by the associated path and no other and 2) in the order they are defined in the path (direct 

edges). The assignment of several paths to one role is permitted and our model does not enforce any 

restriction at that level. This can be important in situations where a role is defined to control the use of 

several forms, each one controlled with its own path, this way avoiding the need to define one role for 

each form. 

Some definitions are now introduced. A root vertex (r) is the vertex where a path starts. A leaf 

vertex (l) is, by opposition, a vertex with no edges and, therefore, is the last vertex of a path. A front 

vertex (f) is the vertex where the sequence is currently running. We now present the properties that 

the paths in our model possess. The properties of paths are: 

 one path comprises one and only one root vertex; 

 one path comprises one and only one leaf vertex; 

 self-edged vertices are not allowed in paths; 

 loop-back vertices are not allowed in paths; 

 any vertex of a digraph can be the root vertex of a path; 

 any vertex of a diagraph can be the leaf vertex of a path; 

 any vertex of a digraph can appear zero, one or more times in one path; 

 adjacent vertices in paths must also be adjacent vertices in the parent digraph and connected 

with the same direct edge. 

Next we present a simple example of a digraph, shown in Figure 28. It comprises 5 vertices and 

6 edges, where one of them is a self-edge (on vertex C). It is possible to define an infinite number of 

paths from this digraph, due to the loopback vertices (B to A) and the buckle (self-edge) on vertex C. 

Three of the possible paths that can be defined from Figure 28 are shown in Figure 29. 
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Figure 28. Example of a digraph. 
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Figure 29. Examples of valid paths derived from Figure 28. 

The second aspect is related to life-cycle of Business Schemas when a sequence moves to the 

next Business Schema. The basic idea is that when the sequence moves to the next Business Schema, it 

is up to the security manager to decide which Business Schemas are to remain active (i.e. their 

instances run normally) from the list of active Business Schemas and which are not to remain active 

(their instances are running but their methods now raise an exception). The process to disable 

Business Schemas instances is hereafter referred to as the revocation process. In our model, each 

Business Schema has an associated list with all the previous Business Schemas to be revoked and a 

subset of the allowed CRUD expressions for that Business Schemas, this way also allowing a security 

expert to disable specific CRUD expressions in certain positions of a path. 

Finally, we present a possible and simplified model to formalize our proposal, shown in Figure 

30. From it we can see that one role comprises one or more sequences (paths). The quaternary 

association indicates that a sequence comprises one or more Business Schemas (vertices) and that 

each sequence position (an entry in the sequence table) has associated a list of Business Schemas to be 

revoked and the subset of valid CRUD expressions to authorize. Finally, a Business Schema manages 

one or more CRUD expressions. 

 

Role
BusinessSchema

-sequence
-order

Sequence

-role

*

Revocation

-sequence
-businessSchema
-order

*

*

CRUD

* *

*

*

 

Figure 30. Extension for the RBAC model. 

Figure 31 shows the implemented RBAC model. Parts of it comes from DACA, which includes: 

the subjects (Ses_Subjects), the hierarchy of roles (Rol_Roles), permissions (Per_Permissions), 

applications (App_Applications), delegations (Del_Delegations), sessions (Ses_Sessions), Business 

Schemas (Bus_BusinessSchema) and the CRUD expressions (Crd_Crud). To support the definition of 
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sequences of Business Schemas we added: sequences (Seq_Sequences), Business Schema’s aliases 

(BSA_Alias) and revocations (Rev_Revocation). 

 

Figure 31. The implemented RBAC model. 

It is clear that this implementation is derived from the extension presented in Figure 30, where 

we instead of associating Business Schemas to roles directly, we associate them with sequences that 

are associated with Business Schemas (one authorized per sequence position), revocation lists (the 

Business Schemas to revoke) and CRUD expressions (the subset of the valid CRUD expression for the 

Business Schema that is authorized). Another change that can be easily seen is the introduction of 

Business Schema aliases. They are meant to differentiate several instances of the same Business 

Schema in the sequences, so that when the application developer needs to get the next Business 

Schema in a sequence, only the valid options are available. If the same Business Schema were to be 

used, e.g. Business Schema A in Figure 28, it would have to have the option to obtain any of the 

possible Business Schemas that comes next, i.e. Business Schemas B and E in the example, which would 

require the developers to master the defined sequences. The problem and the solution are later 

addressed in section 4.3. 

4.2.3 Software architectural model 

In this section we present the software architectural model, shown in , for building the access control 

mechanisms from the extended RBAC model. The presented architectural model represents the 

implementation of one role. It is up to each system architect to decide how to expand it to support 

several roles. Moreover, it is focused on how to implement RBAC mechanisms and not how to build 

complete and feasible implementations. For example, the architectural model does not address key 

issues such as the scrolling policy on LDS and database transactions. These and other issues are out of 

the architectural model context. We start by describing the Business Schema interface, herein known 
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as IBusinessSchema, which is the most complex entity. From it we will present and describe the 

architectural model. This interface, as we can infer from what has been already presented, needs to 

cope with the two access modes. The functionalities to be provided depend mainly on the CRUD 

expressions type and on the necessary runtime values. This is translated into the architectural model 

where the IBusinessSchema extends two interfaces: direct access mode interface (IDAC) and the 

indirect access mode interface (IIAM). 

4.2.3.1 Direct access mode interface 

This interface manages the direct access mode. Depending on the type of CRUD expressions and on the 

runtime values, it can extend 1, 2 or 3 interfaces: 

 IExecute - This interface is mandatory.  It is responsible for the execution of CRUD expressions 

of any type and also for setting the runtime values for clause conditions. 

 ISet – This interface is used with Insert and Update expressions when there is the need to set 

runtime values for columns. 

 IRows – This interface is used only with Update, Insert and Delete expressions to notify 

applications about the number of affected rows.  

4.2.3.2 Indirect access mode interface 

This interface manages the indirect access mode. Depending on the mechanisms to be implemented, it 

can extend at most four interfaces: 

 IRead – This interface is mandatory. It can comprise services to read any sub-set of attributes 

of returned relations. 

 IUpdate – This interface is only available if the established access control policies authorize 

the attributes of LDS to be updated. In this case, only the updatable attributes can be updated. 

 IInsert - This interface is only available if the established access control policies authorize the 

insertion of new rows on LDS. In this case, only the insertable attributes can be inserted. 

 IDelete – This interface is only available if the established access control policies authorize the 

rows of LDS to be deleted. 

 

 

Regarding the relation between Business Schemas and, Roles and CRUD expressions, we can see 

from  that the architectural model is consistent with the RBAC model. Please remember that the 

architectural model represents the implementation of one role only. The model says that one role 

comprises one or more Business Schemas and each Business Schema comprises one or more CRUD 

expressions. From the presented architectural model and also from the RBAC model, security 

components can be automatically built, a process shown in Figure 33. To achieve this goal, a tool is 
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necessary to automate the process. It is not part of our proposal but the tool is a key component to 

transform the modeled RBAC policies into security components.  
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Figure 32. Software architectural model for one role. 
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Figure 33. Automated building process of Business Schemas. 

4.2.4 Summary 

In this section we presented the extension proposed to the RBAC model in the access control policies 

layer and the software architectural model. When this software architectural model is used together 

with the defined policies in the extended RBAC model, it allows the generation of security components 

that enables client applications to access the sensitive data while relieving the programmers from 

having to master the database schema or the access control policies. 
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4.3 Sequence controller component 

In this section we will present the sequence controller component. The idea of sequence control is to 

enable a security expert to define the order in which the Business Schemas can be executed and which 

CRUD expressions can be used in each step of each sequence. Figure 29 shows a simple graph encoding 

of three possible sequences. The sequence controller, given the information provided in that figure, 

would be able to enforce the application to instantiate the Business Schemas in that order. To provide 

further functionality, the sequence controller can receive a list of Business Schemas to be revoked in 

each step of each sequence, along with the list of CRUD expressions that can be used and it will also 

enforce that. 

Figure 25 show that after the application receives the implementation of the Business Schemas 

in step 4, each action that the application requests will be validated with the sequence controller (step 

5). If the Business Schema is requested to execute a CRUD expression that is not authorized for that 

step in the sequence being followed or if the Business Schema has been revoked, as explained in 

section 4.2.2, then the sequence controller will not authorize the Business Schema to execute that 

action and an exception will be generated. To control the execution of the Business Schemas and to 

obtain the reference to the next Business Schema in the sequence there are two possible solutions: 

using an orchestration based solution or a choreography based solution. 

This section is divided as follows: Section 4.3.1 will present the conceptual model of the 

sequence controller, section 4.3.2 will present possible implementation solutions found, section 4.3.3 

presents the details of the solution adopted and section 4.3.4 summarizes the contents of this section. 

4.3.1 Conceptual model 

In this section we will present the conceptual model for the sequence controller. Our approach is to 

define sequences of Business Schemas that can only be executed in that order (see Figure 34). For each 

sequence position we have the Business Schema that is to be authorized and the associated lists of 

Business Schemas for revocation and CRUD identifiers that are allowed to be used with the authorized 

Business Schema. The RBAC model extension presented in section 4.2.2 already accounts for this 

model as it can associate with a role multiple sequences. Each sequence is then associated with 

multiple aliases that reference the Business Schemas, which is explained further in section 4.3.2.4, and 

also with a revocation table for the revocation lists. The allowed CRUD expressions are associated with 

the Business Schemas and they provide a way to authorize only a subset of them at each position. 
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Figure 34. Sequence controller conceptual model. 

4.3.2 Implementation solutions 

In this section we will present the studied implementation solutions of the sequence controller 

component. To implement the sequence control functionality we needed to choose one the two 

possible approaches shown: orchestration or choreography. After some though and experimentation 

we came to the conclusion that obtaining a reference to the next Business Schema from each Business 

Schema is a more intuitive way to use this feature. 

We will now present the solutions that we analyzed that led to our final solution. The first 

solutions explored the orchestration approach by allowing the application to request the next Business 

Schema in the sequence to the class with the user’s role security data structures. The last solution tried 

the choreography approach and the application would then retrieve the reference to the next Business 

Schema from the Business Schemas. 

This section is divided as follows: Section 4.3.2.1 will discuss a solution based on enumerated 

classes declared in the role’s security data structures, section 4.3.2.2 will discuss a similar solution but 

using references to the next Business Schema instead of enumerated classes, section 4.3.2.3 will 

present a distributed solution on the Business Schemas and section 4.3.2.4 will discuss the problems of 

each solution and which was chosen. 

4.3.2.1 Using the role’s security data structures interface with enumerated 

classes 

In this solution, enumerated classes are used, i.e. classes with an ordinal name. This allows grouping 

the Business Schemas by their position in the sequences.  

Figure 35 shows an example of this approach in practice. We have used three different Business 

Schemas: IS_Orders, which allows to select data from the Orders table, IS_Customers, which allows to 

select data from the Customers table and II_Orders, which allows to insert data into the Orders table. 

We also defined two different sequences: Sequence 1 (S1), which is composed of only the 

IS_Orders Business Schema and Sequence 2 (S2), which contains the IS_Customers followed by the 

II_Orders Business Schemas. 
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The number of enumerated internal classes inside the role’s security data structures interface 

depends on the sequence with the greatest number of Business Schemas, since there is an enumerated 

class for each possible position. This means that our example has two internal classes (lines 9 and 16) 

due to sequence S2 having two Business Schemas. 

 

Figure 35. Security data structures using enumerated classes 

Note that this approach bundles together all Business Schemas and CRUD expressions that are 

used in the same position in every sequence in the same internal class. The internal class First (line 9 to 

14) contains both IS_Orders and IS_Customers Business Schemas. To differenciate the sequence that 

each one belongs to, the name of the sequence is added to the name of the Business Schema reference 

(lines 10, 12 and 17). To know which CRUD expressions can be used with which Business Schema, the 

name of the Business Schema is added to the CRUD expression’s name (lines 11, 13 and 18). To avoid 

this, a data structure could be used that would contain the Business Schema reference and the allowed 

CRUD expressions. 

Figure 36 shows an example of the usage of this approach. The application would use the 

Business Manager (variable manager, lines 71 and 75) to instantiate the Business Schema. To indicate 

which Business Schema to instantiate the role’s security data structure interface would be used. The 

first Business Schema would be requested using the First internal class, indicating the Business Schema 

and the CRUD expression to use (lines 71 and 72). Then the instantiated Business Schema could be 

executed (line 73) and other operations requested. To instantiate the next Business Schema in the 

sequence, the same process would be required but this time the application uses the Second internal 

class (line 75 and 76). The Business Manager has the responsibility to authorize the instantiations and 

to validate the execution of every request made to each Business Schema, a process detailed in section 

4.3.3. 

 

Figure 36. Example of the usage of Business Schemas with sequence control using enumerated classes where 

customers are selected and a new order inserted. 
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This solution accomplishes the objective of controlling the execution and instantiation of the 

Business Schemas while allowing the application to follow the defined sequences. However, the idea 

that a sequence is being followed becomes lost, and the only reference to a sequence is in the names of 

the internal classes, i.e. First, Second, etc.). Moreover, the goal of each sequence is not clearly stated, 

although this could be solved by using a meaningful name to each sequence instead of S1 or S2, like 

insert_Order_for_Customer in case of S2.  

4.3.2.2 Using the role’s security data structures interface with ‘next’ 

references 

This solution uses the role’s security data structures interface with ‘next’ references. The idea was to 

have a data structure that would contain the Business Schema reference, the allowed CRUDs to use and 

a reference to another class with the same structure that would create the sequences the application 

could follow, called “next”. The interface’s (see Figure 37) several classes would be named after the 

Business Schema they hold (lines 12, 17 and 23). The Business Schemas and sequences used are the 

same as the last solution presented in section 4.3.2.1. For the application to distinguish between the 

entry points for the sequences and the classes that reference intermediate Business Schemas, there 

would be attributes in the interface (lines 9 and 10), named be_<X>, that would reference the entry 

point for the sequence <X>.  The classes are dynamically generated using the sequence’s metadata 

received from the policy server database. 

 

Figure 37. Security data structures with next references. 

Figure 38 shows how this approach would be used in practice. The application would have to 

access one of the internal classes using one of the attributes in the role’s security data structure 

interface (line 74). Then the application would be able to use the Business Manager to instantiate the 

Business Schema refereciated by the internal class (line 75 and 76). The Business Manager would then 

be responsible for authorizing the instantiation and keep the sequence lifecycle information. 
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After the application receives the Business Schema instantiation, it can start requesting 

operations using it, like executing the underlying CRUD expression (line 77). 

To request the next Business Schema in the sequence the application can access the next 

reference in the internal class obtained previously (line 79) and request the Business Manager to 

instantiate it (line 80 and 81). Finally the application can use the newly instantiated Business Schema 

to request operations (line 82). 

 

Figure 38. Example of the usage of Business Schemas with sequence control using next references where customers 

are selected and a new order inserted. 

This solution accomplishes the objective of controlling the execution and instantiation of the 

Business Schemas while allowing the application to follow the defined sequences. However, we are 

required to use several data structures in the application in this solution: the role’s security data 

structures interface, the internal classes declared in the role’s security data structures interface and 

the Business Manager. Using this amount the classes just to use Business Schemas and request the next 

one in the sequence can become a little confusing. Another problem with this approach is that, since 

each internal class in the role’s security data structures interface can only contain one “next” reference, 

two sequences that start with the same Business Schemas will require different internal classes for 

each one of them, which increases the number of internal classes considerably. In this case the name of 

the sequence is only in the name of the entry point reference (b1 and b2), which does not clearly state 

the end goal of each sequence. Again, this problem could be solved by adding a meaningful name to 

them, but after using the entry point reference it is no longer used and can be hard for someone 

reading the source code to understand what is being done if the sequence is long enough. 

4.3.2.3 Using the Business Schemas  

Using the Business Schemas themselves we were able to apply the idea of choreography, which allows 

a simpler usage and understanding by the developers, at the cost of implementing the sequence 

control logic over all the Business Schemas instead of a single interface. The benefit of this is that the 

developers no longer have to use an additional class to use S-DRACA, relying directly on the 

preexisting Business Schemas. It does, however, make the generation of the Business Schemas slightly 

more complex, since the sequence control logic also has to be generated at compile time in the 

interfaces. 
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Figure 39. Security data structure comprising information about Role_B1. 

In the role’s security data structures interface we now have the Business Schemas references 

and CRUD expressions declared in an unsorted manner (see Figure 39). We will no longer use this 

interface directly to instantiate Business Schemas, so it does not require any sort of human readable 

structure. Instead we wrap the instantiation of each entry point of each sequence in a new class named 

Factory, as shown in Figure 40. After instantiation, the Business Schema is used in the same manner as 

before. 

 

Figure 40. Interaction between application and the Factory class. 

Figure 41 shows how the Factory class instantiates a Business Schema. To remove the need for 

the developer to match each Business Schema to an allowed CRUD expression like the in the previous 

proposed solutions, we created a service in the Factory for each allowed Business Schema – CRUD 

expression pair, using the name of the service to distinguish each of them, e.g. line 25 shows a service 

called get_S_Customers_all which implies that the Business Schema instantiated will be S_Customers 

with the CRUD expression that returns all tuples in the table. Like before, it isn’t clear what the end 

goal of the sequence will be, so adding a meaningful name to this service and the services in each 

Business Schema to obtain the next one in the sequence would solve this problem. This Factory class is 

generated by S-DRACA as well from the access policies retrieved at compile-time. 

 

Figure 41. The Factory requests an instance for a Business Schema. 

Obtaining the next Business Schema in the sequence is a manner of calling the respective service 

from the current Business Schema being used. If the Business Schema S_Customers’ instance was 

obtained previously (from the Factory class or another Business Schema) then the process of 

requesting the next Business Schema is shown in Figure 42, using the get_S_Orders_by_shipCountry 
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(line 65), which returns an instance of the S_Orders Business Schema, associated with the CRUD 

expression that selects the orders of a customer using the ship country as a filter (line 66). 

 

Figure 42. The S_Orders Business Schema provides an edge method to step forward to next Business Schema. 

Figure 43 shows how the instantiation of the next Business Schema is done in each intermediate 

Business Schema. It first validates the execution of the method in the current Business Schema (lines 

20 to 24), which is done in every public service of the Business Service. It uses the sequence identifier 

and the URL of the current Business Schema. If the Business Manager does not validate the execution 

an exception is thrown (line 22). 

After that the Business Schema requests the next one from the Business Manager (line 26). Since 

the name of the service already defines the Business Schema to be instantiated and the underlying 

CRUD expression, the developer does not need to indicate them and they are passed to the Business 

Manager in the generated service (line 27 and 28). The active sequence is an identifier for the context 

of the sequence being executed and it is explained later in section 4.3.3. 

Both Figure 40 and Figure 42 show how to use the Business Schemas with the sequence 

controller mechanism deployed. 

 

Figure 43. Validation process for the instantiation process of Business Schemas. 

This approach is easier to use because we no longer have to manually indicate which CRUD 

expression we want for each schema by using the semantically more rich set of services. A similar 

solution for the previous approaches would require a similar Factory class, but since the sequence 

control logic isn’t distributed it would have to offer all the services for getting every single allowed 

Business Schema – CRUD expression pair. Nor only that, but the developer would have to be able to 

distinguish the entry points to each sequence and the services for intermediate Business Schemas. The 

services names could be used for that, but having all the services in one place could prove confusing 

with complex policies. 
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4.3.2.4 Common problems and the chosen solution 

Having in mind the problems that each solution has, we tried to choose the approach that: 1) does not 

involve too many different data structures, 2) gives the idea that a sequence is being followed, 3) the 

next Business Schema required is easily identifiable and 4) prevents attempts to instantiate Business 

Schemas in the wrong order. 

The first two solutions are not the best considering the above objectives, either they have many 

data structures or they do not show the idea that a sequence is being followed. The third objective can 

be easily reached in any approach by using meaningful names in the services/variables provided to 

instantiate the Business Schemas. 

The last objective is not reached by any of the previous approaches and does not have a trivial 

solution. The first two solutions based on orchestration can’t reach this objective since it is the 

developer that requests the Business Manager directly for the Business Schemas’ instances and he can 

request the wrong Business Schema or CRUD expression by mistake. In the third approach, where the 

methods exist in the Business Schemas themselves, Business Schemas can be used in more than one 

sequence. This implies that a Business Schema will have a service for each next Business Schema and 

allowed CRUD expression pair in every sequence it appears unless it is the leaf node (i.e. there is no 

next Business Schema). We can see now that a Business Schema can have services to request the next 

Business Schema for multiple sequences, which means that a developer can mistakenly call the wrong 

one. This is where the Business Schemas’ aliases, shown in section 4.2.2, come into place. By having 

different versions of the same Business Schema under different aliases it is possible to use the aliases 

in the sequence policies instead of the Business Schemas. This allows the client application to generate 

slightly different versions of the same Business Schema, which only allows the developer to request the 

next authorized Business Schema alias in the sequence being executed. 

 

Figure 44. Using the Business Schema's to get the next one without aliases. 

Figure 44 shows an example of the third approach, i.e. using the Business Schemas to request 

the next ones in the sequence, when no aliases are used. The example has three Business Schemas: 

IS_Customers, IS_Orders and II_Orders. The Business Schemas are used in two different sequences: 

sequence 1, defined by IS_Customers followed by IS_Orders, and sequence 2, defined by IS_Customers 

followed by II_Orders. When we want to request a Business Schema (line 93) the Business Schema has 

to be bound to a sequence, which should be declared in the method name or the documentation, but 

from the autocomplete feature of the IDE we still have access to the services to get the next Business 

Schemas from both sequences. 



73 A secure, distributed and dynamic RBAC for relational applications. 

 

73 | P a g e  

 

 

Figure 45. Using aliases in place of Business Schemas for sequence 1. 

The aliases solution allows to prevent that problem by returning a different Business Schema 

specialization, i.e. one of its aliases. Figure 45 show, in practice, how this solution works. By selecting at 

the Factory the sequence we require (line 95) we are presented with an alias of the Business Schema, 

which is functionally identical but only allows to request the next valid Business Schema alias (line 96). 

Figure 46 shows the same outcome for the other sequence when using aliases. Henceforth, when we 

mention the Business Schemas, we also reference their aliases. The original Business Schemas alone 

will be referenced as the Master Business Schemas. 

 

Figure 46. Using aliases in place of Business Schemas for sequence 2. 

4.3.3 Implementation of the sequence controller 

In this section we will present the implementation details of the sequence controller component. 

Considering the solutions explored for controlling the sequence of execution of the Business Schemas 

and the problems associated with each of them, we decided to implement the third solution where we 

use the Business Schemas to provide the service to request the next one in the sequence. Because of 

this we require an entity, i.e. the sequence controller, which can authorize the execution of requests 

and instantiation of Business Schemas to avoid replicating the sequence access policies in each 

Business Schema instance. It is important to note that the sequence controller does not execute the 

requests made to each Business Schema, but instead is responsible for providing each Business 

Schema with the decision whether they can execute a request and if a Business Schema can be 

instantiated given a sequence context which is henceforth known as an ActiveSequence.  

Figure 47 shows the implementation details of the sequence controller interface and the 

required data structures required to support the functionality at the Business Manager that 

implements the interface. Two data structures are defined: the SequenceEntry data structure and the 

ActiveSequence data structure. The SequenceEntry holds a Business Schema URL, the associated list of 

Business Schemas URLs to revoke and the list of allowed CRUD identifiers. The ActiveSequence data 

structure holds the list of active Business Schemas URLs, the associated sequence identifier being 

executed and the relative position in that sequence. Furthermore, the Business Manager possesses the 

list of all sequences, which maps a sequence identifier with a list of SequenceEntry objects, and the list 

of active sequences, which maps the ActiveSequence’s identifiers to each ActiveSequence object. An 

identifier of the ActiveSequence is given to each Business Schema instead of the actual object to 

prevent possible misuses. As for the services provided by the sequence controller, it contains services 
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for configuration, lifecycle manipulation and execution decision. The configuration services provided 

are: addBSToSequence(), removeSequence(), setControlStatus() and clearControl(). The services for 

lifecycle manipulation are authorize() and requestNewActiveSequence(). As for the execution decision 

service there’s the validateExecution(). 

To configure the sequence controller we have the service addBSToSequence which adds a new 

SequenceEntry to a sequence and requires the sequence identifier, the Business Schema alias URL, a 

list with Business Schema aliases’ URLs as the revoke list and the list of allowed CRUD identifiers. The 

service removeSequence requires a sequence identifier and removes the associated sequence from the 

controller. The service setControlStatus requires a boolean value and allows the sequence controller to 

be enabled or disabled. When disabled every request is allowed. The service clearControl resets the 

sequence controller to a state where no sequences are configured. 

To manipulate the lifecycle of a sequence we have the requestNewActiveSequence service, 

which initializes a new ActiveSequence and returns the associated identifier. We also have the 

authorize service, which is used to authorize a new instantiation of a Business Schema and if it is 

authorized it steps forward the sequence position. A Business Schema is only authorized if it is the next 

Business Schema in the associated sequence. It also revokes the Business Schemas that are alive that 

have their URL in the associated revoke list. 

Finally, to validate the execution of Business Schemas we have the validateExecution service. It 

requires an ActiveSequence identifier and the Business Schema URL trying to execute a request. Only if 

the Business Schema is authorized, i.e. it has been authorized for instantiation and not yet revoked, will 

the service validate the execution and return true. 

This section is divided as follows: Section 4.3.3.1 will discuss the initialization phase of the 

sequence controller and section 4.3.3.2 will discuss the management of the lifecycle of a sequence. 

-BS_URL : String
-revokeList : List<String>
-CRUDList : List<Integer>

SequenceEntry

-activeBS : List<String>
-sequence : Integer
-position : Integer

ActiveSequence

+validateExecution(in AS, in BSUrl) : Boolean
+authorize(in AS, in BSUrl) : Boolean
+addBSToSequence(in seq, in BSUrl, in revokeList, in crudList)
+removeSequence(in seq)
+requestNewActiveSequence() : Integer
+setControlStatus(in status)
+clearControl()

IBSSequenceController

+instantiateBS() : BS

-sequences : Map<Integer, List<SequenceEntry>>
-activeSequences : Map<Integer, ActiveSequence>

BusinessManager

«implements»

 

Figure 47. Implementation of the sequence controller component in the Business Manager. 
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4.3.3.1 Initialization 

As described in the section 4.1.4, when the application requests the policies from the Policy Manager 

using the “getBus” method, the Policy Manager replies with a list of each Business Schema that the 

application has permission to use, along with their CRUD expressions. 

The process has been changed so that the client also receives the information required for the 

sequence controller, i.e. the status of the sequence controller (enabled or disabled),the sequence’s 

identifiers, the Business Schema’s URL for each sequence position and its associated revoke and 

allowed CRUD identifiers lists. 

Since the client has to instantiate the Business Manager to use S-DRACA, it requests this 

information to implement the Business Schemas and to configure the sequence controller with the 

received data. After receiving the sequence controller status from the Policy Manager, the 

setControlStatus service is called to set it to the enabled or disabled mode. After that, when a full entry 

for a sequence position is received from the Policy Manager, i.e. the Business Schema URL of the 

Business Schema to authorize, the list of Business Schemas to revoke and the list of allowed CRUD 

expressions allowed, the service addBSToSequence is called to configure the sequence controller with 

the new sequence entry.  

4.3.3.2 Sequence control lifecycle 

After configuring the sequence controller, the Business Schemas can start being instantiated and their 

execution validated. Figure 48 shows the software model for the sequence control mechanism.  

+getBS1_Select_By_Param1() : BS1
+...()
+getBS1_Select_By_ParamY() : BSy

-businessManager : BusinessManager

Factory

+instantiateBS() : Map<Integer, List<SequenceEntry>>
+validateExecution() : Boolean

-sequences : Map<Integer, List<SequenceEntry>>
-activeSequences : Map<Integer, ActiveSequence>

BusinessManager

+BusinessSchema_1(in bm : BusinessManager)
+getBS2_Select_By_Param1() : BS2
+...()
+getBS2_Select_By_ParamX() : BSx

BusinessSchema_1

-factory : Factory

Application

+BusinessSchema_2(in bm : BusinessManager)

BusinessSchema_2

1

1.1 / instantiate

2.1.1 / validate
2.2 / instantiate2

3

3.1.1 / validate

2.1

-BS_URL : String
-revokeList : List<String>
-CRUDList : List<Integer>

SequenceEntry

«uses» 

«uses» 

3.1

«uses» 

«uses» 

-activeBS : List<String>
-sequence : Integer
-position : Integer

ActiveSequence

 

Figure 48. Software model for the sequence control mechanism. 

The application starts by requesting a Business Schema to the Factory class (1). The Factory 

class then forwards the request of the Business Schema instantiation to the Business Manager (1.1), 

which authorizes the instantiation and then the first Business Schema becomes available to the 

application (2). The application then uses the Business Schema by requesting operations on it (2.1), 
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which are validated with the Business Manager (2.1.1). The application, when it requires it, can request 

the next Business Schema to the one it instantiated previously, which forwards the request to the 

Business Manager that authorizes the instantiation (2.2). The next Business Schema then becomes 

available to the application (3), which can use it to request operations on (3.1). These operations are 

also validated with the Business Manager (3.1.1). The process repeats for the length of the entire 

sequence. 

Figure 49 shows a detailed sequence diagram of the instantiation process and the operations the 

application can request to the instantiated Business Schema. 

As previously explained, the application starts by requesting a Business Schema from the 

Factory class, which forwards the request to the Business Manager. The Business Manager then 

requests a new ActiveSequence identifier and tries to authorize the Business Schema. If the 

authorization is granted, then the Business Schema is instantiated. A process that checks if the 

constructor can be executed using the same code that appears in Figure 43 (lines 20 to 24). The 

instance of the Business Schema is then returned to the application. 

Each operation that the application requests to the Business Schema is validated in the same 

way and, if valid, it’s executed. The result is then returned to the application. 

ApplicationApplicationApplication Business Schema Sequence Controller Business Manager

true/false

instantiate

validateExecution

true/false

authorize

instance

instance

Factory

instantiateBS

loop action

validateExecution

true/false

action

result

requestBS

requestNewAS

AS

instance

 

Figure 49. Sequence diagram of the sequence control mechanism for requesting the first Business Schema and 

making requests. 
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Figure 50 shows another detailed sequence diagram of the process of requesting the next 

Business Schema from an existing Business Schema. The application requests the next Business 

Schema to the one it already possesses. The execution is validated and, if valid, the instantiation 

request is made to the Business Manager. If it authorizes the instantiation the Business Schema is 

instantiated and the instance returned to the application. The process in the Business Manager is 

almost the same, except that a new ActiveSequence identifier is not requested this time, since the 

instantiation must refer to an existing ActiveSequence, which is passed as a parameter on the Business 

Schema instantiation request. 

ApplicationApplication Business Schema 1 Sequence Controller Business ManagerBusiness Schema 2

nextBE

validateExecution

true/false

instantiateBS

authorize

true/false

instantiate

validateExecution

true/false

instance

instance

instance

 

Figure 50. Sequence diagram of the sequence control mechanism for requesting the next Business Schema. 

To exemplify the process, Table 8 shows a possible set of data on roles, Business Schemas and 

associated CRUDs that are allowed to be executed. Table 9 shows two possible sequences that could be 

encoded in the proposed solution for Role_B1. Each position in each sequence then has the authorized 

Business Schema, the revocation list and the CRUDs authorized to be executed. 

An application using the role B1 would be able to access two different sequences. The sequence 

with the identifier 2 has a length of 3. The application would request the Business Schema I_Orders to 

the Factory class which would associate the CRUD expression 3. After the application has finished 

using it the application can then request the next Business Schema, i.e. S_Customers. We can see that by 

instantiating this Business Schema the revoke list, when applied, will revoke the first Business Schema. 

If the application tries to execute any service from the first Business Schema an exception will be 

raised. 

Finally, the application can request the final Business Schema S_Orders to the S_Customers. Note 

that originally S_Orders has two authorized CRUD expressions, but the sequence data only contains 

one of them in the authorized CRUD list. Because of this S_Customers only provides a service to get the 

S_Orders associated with the CRUD expression 1. 
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Table 8. Roles, Business Schemas and CRUD expressions. 

Role 
Parent 
 Role 

BS 
CRUD 

Id Ref Expression 

Role_A      

Role_B1 Role_A S_Orders 1 byShipCountry Select * From Orders 
Where CustomerId = ? and ShipCountry = ? 

   2 byFreightLimit Select * From Orders 
Where CustomerId = ? and Freight < ? 

  I_Orders 3 withCustomerID Insert Into Orders 
Values (?,?,?,?,?,?,?,?,?,?,?,?,?) 

  S_Customers 4 all Select * From Customers 

Role: Role Reference 

BS: Business Schema alias 

Id: CRUD Identification 

Ref: CRUD reference 

Expression: CRUD Expression 

 

Table 9. Roles, sequences, revocation and CRUD lists. 

Role Sequence Position 
Sequence Entry 

BS RL CRUDs 

Role_B1 1 1 S_Customers  4 

  2 S_Orders  1, 2 

 2 1 I_Orders  3 

  2 S_Customers I_Orders 4 

  3 S_Orders  1 

Role: 
Sequence: 
Position: 
BS: 
RL: 
CRUD: 

Role Reference 
The sequence identification 
The position in the sequence 
Business Schema alias 
The revocation list 
The list of authorized CRUDs 

 

4.3.4 Summary 

In this section we discussed the conceptual model of the sequence controller that would enable a 

security expert to define sequences of Business Schemas for the roles. The users then would be 

required to follow those sequences. To provide a finer control over the sequences, the security expert 

can define which CRUD expressions are available for a given Business Schema in a sequence and which 

Business Schemas should not be usable anymore after the client application reaches a certain point in a 

sequence. Then we discussed different solutions for the implementation and tried to find one that 

enforced the defined sequences while being easy to use by programmers. We chose to use a solution 

based on service choreography, where a programmer can get the next Business Schema in a sequence 

from the one that he already possesses. We finally discussed how this solution was implemented and 

integrated with S-DRACA.  
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4.4 Security layer 

In this section we will present the proposed security layer. The proposed extension to the RBAC model 

provides developers with the ability to easily write client applications that use information stored in a 

data store, without the need to master its schema or the RBAC policies defined. We haven’t, however, 

concerned with the security aspects of the architecture as a whole. 

DACA had a very naïve client authentication mechanism, no data encryption and the client had 

access to the CRUD expressions being used. The latter exposes some of the underlying schema of the 

database, effectively leaking information that can be regarded as sensitive. 

The authentication mechanism was based on PAP, a very rudimentary protocol which is nothing 

more than a message from the client to the server, which in our case is the Policy Manager, with the 

client’s username and password in the clear, i.e. anyone watching the network could read this 

information, and a response from the server indicating if the authentication was successful or not. We 

propose several authentication methods that require different levels of trust in the network, the client 

and the server. 

The data encryption from/to the database is only an issue when the network cannot be trusted. 

In these cases the client and the server, during authentication, establish a secure channel (with data 

encryption and at least client authentication). We propose using this channel for the client to 

communicate with the database. 

Finally, to prevent the client from accessing the CRUD expressions used on the database we 

propose a mechanism protect the queries where the client uses a stored procedure to execute the 

desired query using only an identifier. This stored procedure, called RemoteCall, does not provide any 

information about the underlying database schema nor about the query executed.  

Another security concern is the ability for the client to execute unwanted queries on the 

database. DACA was vulnerable to Java Reflection, which can expose the connection objects used and, 

through them, an attacker can easily execute unwanted queries. One way to prevent this in S-DRACA is 

to make use of stored procedures, instead of CRUD expressions for the defined queries for each 

Business Schema, and configuring the database to allow only the execution of stored procedures. This 

solution would prevent the execution of unwanted queries, but the whole sequence control mechanism 

could still be bypassed and, if the stored procedures do not receive a session identifier, even 

unauthorized ones for the application’s role could be executed. Another solution could make use of the 

fact that Java Reflection cannot be used through sockets, so having the generated implementation code 

in a proxy on the server side and have the generated code on the client side request the operations to 

the proxy would solve this problem, but that would quite possibly introduce performance issues and 

bottleneck concerns. This security problem was not addressed in S-DRACA. The implementation 

details of standard security mechanisms can be found in Appendix A. Implementations that required 

deviations from the standard are discussed in this section.  
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This section is divided as follows: Section 4.4.1 will discuss the authentication methods 

implemented, section 4.4.2 will present a method of protecting the CRUD expressions from being 

accessed by intruders, section 4.4.3 will present a method for accessing a database securely while the 

client application only has access to credentials with no permissions associated and section 4.4.4 will 

summarize the presented contents in this section. 

4.4.1 Authentication and data encryption 

In this section we will present the authentication and data encryption mechanisms used or developed 

for S-DRACA. Security in communications starts generally with an initial authentication handshake, 

and sometimes even integrity protection and/or encryption of data. There isn’t an authentication 

method that is the best of every scenario. Different protocols have different trade-offs and some 

security threats are more probable in some scenarios than in others(Kaufman et al., 2002b). For this 

reason we provide several authentication methods that can be used depending on the scenario at hand. 

The authentication mechanism in S-DRACA for the client side followed a modular approach, 

where an abstract authentication class, shown in Figure 51, defines the basic authentication operations 

and delegates the authentication protocol to the classes that extend it. 

+authenticate(in appName : String, in username : String, in password : String) : Socket
#getHostIP() : String
#getHostListeningPort() : Integer
#getSalt(in username : String, in socket : Socket) : String
#hashPasswordBytes() : byte[]
#hashPasswordToString() : String
#secondStepAuthentication() : Boolean

#listeningPort : Integer
#socket : Socket

DacaClientAuthenticator

 

Figure 51. The abstract DacaClientAuthenticator class. 

The only abstract method is the authenticate method. Extending classes must implement this 

method, in which they can use the socket to communicate with the server and implement a specific 

authentication method. Other methods, implemented in the abstract class DacaClientAuthenticator, 

can provide a way to hash user’s password to a byte array or a string with the byte array values in 

hexadecimal and to request the user’s salt that was used to hash the password. Furthermore, it also 

implements the second step authentication, which will be explained later in this section.  

The server has each authentication mechanism implemented in a class that handles the client’s 

connections. 

Note that in the beginning of each authentication mechanism, the client knows the application 

name (appName), its IP address and its listening port, used by the server to connect to the client to 

disseminate the changes made to the defined policies. The server also has access to each client’s 

hashed password and the salt used. 
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When the server authenticates the client then the process of generating the random session 

identifier and the random CRUD expression identifiers mentioned in the previous section takes place.  

This section is divided as follows: Section 4.4.1.1 presents the hash-based password 

authentication protocol, section 4.4.1.2 presents the challenge-response authentication mechanism, 

section 4.4.1.3 presents the data encryption methods and section 4.4.1.4 discusses the integration of a 

TFA with the CC. Keep in mind that only the non-standard implementation details are presented in this 

section and that the implementation details of standard security mechanisms can be found in Appendix 

A. 

4.4.1.1 Hash-based Password Authentication Protocol 

The hash-based password authentication protocol is based on the password authentication protocol 

where the username and password of the client is sent in clear text over the network. Instead of the 

password being sent in clear text, a hash of the password concatenated with a salt is sent. This way, 

even if an intruder eavesdrops on the communication, he will only be able to get the original password 

using a dictionary attack. 

This method, however, does not prevent the intruder from authenticating with the server, since 

the intruder knows the username and the hashed password, but it protects the user of the client 

application if he uses the same password for other services.  

This method of authentication provides very little protection against an intruder that eavesdrop 

the communication, since it isn’t encrypted and the hashed password can be used to impersonate the 

client, so its usage should be restricted to scenarios where the network itself is trusted and secure. It is, 

however, the simplest authentication method implemented and provides the lowest communication 

overhead of all. 

4.4.1.2 Challenge-Response based protocol 

The challenge-response authentication mechanism is one where the client does not send its password 

(hashed or not) through the network. Instead, the server sends the client a challenge and waits for a 

response. This authentication mechanism also allows mutual authentication, since the client can also 

send a challenge of its own and validate the response. This mechanism, if implemented correctly to 

prevent reflection attacks (the attack, which is explained in section 3.3.4.5, not to confuse with the 

reflection functionality of programming languages like Java), can prevent an intruder from 

impersonating a client or the server until he can discover the user’s password using a dictionary 

attack, both preventable by using a strong password. 

This authentication method is more secure than the hash-based password authentication 

protocol. Not only it provides mutual authentication, but it also prevents an eavesdropper from 

collecting the user’s password (at least not without a dictionary attack) and thus preventing the 

impersonation of the clients or the server. 
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It does suffer from a bigger communication overhead, and when the hash-based password 

authentication protocol only required the server to compare values, this solution requires the creation 

of challenges and the calculation of responses, as well as comparing the responses to check if they 

match. It is, however, a good solution when the network can’t be trusted but the data transmitted 

to/from the database can’t be sensitive, because it still travels through the network in clear text. 

4.4.1.3 SSL/TLS 

To solve the issue of the data being communicated in clear text we turned to SSL/TLS. The normal use 

of SSL/TLS relies on certificates to allow the endpoints to agree on a symmetric key for the session. 

Another way to use SSL/TLS is to use the anonymous Diffie-Hellman method, which does not 

authenticate either the client or the server but avoids the usage of certificates. We propose a solution 

using a server side certificate, a variation of the anonymous Diffie-Hellman method with added mutual 

authentication, and two other variations, SPEKE and SRP, that we could not implement but we still 

analyze. 

This section is divided as follows: Section 4.4.1.3.1 discusses using SSL/TLS with certificates, 

section 4.4.1.3.2 discusses a variation of the Diffie-Hellman key exchange protocol that uses a pre-

shared key (PSK) to authenticate the client and the server and sections 4.4.1.3.3 and 4.4.1.3.4 introduce 

similar standard solutions that were not possible to implement due to restrictions on the programming 

language level. 

4.4.1.3.1 Server Certificate 

The authentication mechanism using SSL/TLS with a server certificate didn’t require a lot of changes 

to work with S-DRACA. A private key had to be loaded in the server side and a public key certificate 

distributed to the client. For this mechanism to remain secure, the client must take great care in not 

allowing an intruder to replace it, or the server could be impersonated. Note that the client remains 

unauthorized with this method alone because it does not use a private key that the server can validate 

with a public key certificate. To prevent this and to authenticate the client, we use the challenge-

response mechanism after the encrypted channel is created to authenticate both the client and the 

server. 

This method has an even higher communication overhead, because the challenge-response 

mechanism is used in this method along with the request for upgrading the communication channel 

and the whole SSL/TLS handshake process. Unlike the previous mechanisms, however, it encrypts the 

data sent and received, protecting it from eavesdroppers in the network and authenticates both the 

client and the server. MITM attacks are also prevented by having the public key certificate distributed 

beforehand. 
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4.4.1.3.2 Pre-Shared Key + Anonymous Diffie-Hellman 

The usage of certificates places extra responsibility on the clients, whom have to maintain the public 

key certificate of the server secure. This fact may require a level of trust in the clients that is not 

compatible with the business policies. Even with the added challenge-response mechanism, replacing 

the public key certificate means that an intruder can still impersonate the server and obtain the user’s 

username, which can be used on the real server to obtain a challenge-response pair. Then it’s a matter 

of running a dictionary attack to find the password that transforms the challenge into the response. 

The anonymous Diffie-Hellman method uses the Diffie-Hellman key exchange protocol so that 

the two endpoints can agree on a shared secret that is then used to derive the session key for 

encrypting the rest of the communication. This is, however, vulnerable to MITM attacks since the 

endpoints are not authenticated before the key exchange takes place. Doing it after, such as using the 

challenge-response mechanism, is ineffective since the intruder only has to relay the messages back 

and forth. 

We analysed a small variation introduced in the Diffie-Hellman protocol that aims to change the 

agreed key the same way on both endpoints using a PSK that only the real client and server should 

know. This PSK that we used was the hash of the password of the client and, if the agreed key was K, 

then the new agreed key used to calculate the session key becomes K’= hash(K + hash(s + salt)), being s 

the client’s password and salt the salt value used to calculate the hash of the password. 

This transformation of the agreed key cannot be performed by an intruder in a MITM attack, 

since he should not know the password of the client. This way, when no MITM attack is in effect, both 

the client and the server can communicate using the SSL/TLS channel as normal, but if an MITM attack 

is in effect, then the intruder cannot decrypt the data coming from the channel. He cannot relay the 

data back and forth either, since the agreed key a client gets is different from the one the server gets, so 

the server also cannot decrypt the data. 

This method, which we called PSK-SSL, still contains a big vulnerability, however. In a MITM 

attack scenario, after the agreed key has been hashed and the new session key calculated, the client 

will send a message to the server with a known structure, such as a GetBus message. The intruder can, 

then, perform a dictionary attack to transform the known agreed key with the client and attempt to 

decrypt the message until the known structure is obtained. However, it is possible to detect that a 

MITM attack has occurred. If a client does not receive a response from the server inside a time window 

then it’s best to assume a MITM attack has occurred and a warning stating that the user’s password 

should be changed should be raised and the current password disabled. 

We faced a problem while trying to implement this method. Since the SSL/TLS implementation 

in Java is closed and can’t be extended we couldn’t directly change the agreed key K. We relied on the 

reflection functionality of Java to access the Java implementation of the SSL/TLS protocol and to 

perform the necessary changes to make it work. 

Figure 52 shows how an anonymous SSL/TLS connection is established using Diffie-Hellman 

and where the agreed key is altered. First, an SSL socket is created (line 32) and the desired cipher suit 
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is specified (line 33). The cipher suit is a named combination of authentication, encryption and MAC  

algorithms and a pseudorandom function. The cipher suit TLS_DH_anon_WITH_AES_128_CBC_SHA 

states that the key exchange protocol to be used is Diffie-Hellman (DH) and no authentication will be 

made (anon), which removes the need to use certificates since they are used to provide authentication. 

 

Figure 52. Server socket creation process with the password-authenticated key exchange. 

The server then waits for a client to connect (line 34). When a client connects, the server saves 

the reference to the handshaker, which is an internal object of the clientSocket that handles the 

handshaking process of the SSL/TLS protocol (line 35). ReflectionUtils is a class that provides several 

functionalities based on reflection, where getFieldValue(obj, fieldName) retrieves variable with the 

name fieldName form the object obj. It is required to save this reference because after the handshaking 

process finishes, its reference is set to null. 

Then a normal handshaking process takes place (line 36), after which the agreed key is changed 

(line 37). 

 

 

Figure 53. Client socket creation with the password-authenticated key exchange. 

Figure 53 shows the same process from the client point of view. First we attempt to connect to 

the server (line 46). Since the cipher suit used is disabled by default we have to enable it in the client as 

well (line 47). Then we save the reference to the handshaker object for the same reason we did in the 

server (line 48) and then start the normal handshake process (line 49). Finally we change the agreed 

key using the same process as the one used by the server (line 50). 

This handshake process uses Diffie-Hellman to agree on a preMasterKey (the shared secret) 

which is then used to derive a masterKey from which the read and write ciphers are initialized. Since 

the preMasterKey is disposed of after the masterKey is created we couldn’t change it, so we decided on 

changing the masterKey instead since it remains available. 

Only changing the masterKey isn’t enough, however, because the read and write ciphers that 

read and write into the communication channel have already been initialized. We will now explain the 

complete process required to change the masterKey and update the read and write ciphers. 1) First, we 

obtain the current private state of the socket (should be cs_DATA since the handshake has finished). 2) 

Obtain the masterKey from the SSL session. 3) Hash the masterKey bytes with the shared secret (the 
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user’s hashed password) and truncate the output to the original size of the masterKey. 4) Invoke the 

calculateConnectionKeys private method from the handshaker object that calculates the connections 

keys for the read and write ciphers. 5) Set the handshaker reference in the socket, since it has been set 

to null after the handshake. This is required for step 7. 6) Set the socket state to cs_HANDSHAKE. The 

methods invoked in step 7 assert that the socket is still handshaking. 7) Call the private methods 

changeReadCiphers and changeWriteCiphers declared in the socket class. 8) Cleanup by setting the 

socket’s state back to the original value and the socket’s handshaker reference back to null. 

The previous process requires the usage of Java Reflection in every step except step 3, because 

the variables set and methods invoked in the socket are private. 

Our reliability on the reflection functionality has the big problem of destroying the abstraction 

created by the public interface. Any changes made to the Java SSL/TLS internal structure could 

potentially break the solution since it is dependent on the implementation. 

4.4.1.3.3 Simple Password Exponential Key Exchange 

This method is not currently supported by the SSL/TLS implementation of Java and we could not 

implement it because it required the Diffie-Hellman protocol itself to be modified. Furthermore, Java 

does not allow us to extend it with a new key exchange protocol. 

This variation prevents MITM attacks like the previous variation, but has the big advantage of 

also preventing the usage of dictionary attacks. This is true because the generator, which is the value 

based on the password, is set to the power of the secret random number of the client/server and it’s 

these values that are sent over the network (see Table 4, values A and B are related), which means that 

an attacker who is able to read and modify all messages between Alice and Bob cannot learn the agreed 

secret (value s) and cannot make more than one guess for the password in each interaction with a 

party that knows it. An intruder, to test a password, needs to calculate the public value to send (A or B), 

which depends on the password, and send it to the other party. If the password is wrong the generator 

g will be different and the agreed secret s will also be different. When the involved parties were to 

confirm that they both have arrived at the same key (by performing a different hash of the agreed key 

on both ends) the communication would be taken down. 

It remains as future work to provide this authentication mechanism due to its advantages over 

the previous authentication methods. 

4.4.1.3.4 Secure Remote Password 

We did not implement the SRP authentication method, because it is not natively supported by the Java 

SSL/TLS implementation and no other providers for Java were found that did have SRP integrated in 

SSL/TLS, although Bouncy Castle(“The Legion of the Bouncy Castle,” n.d.) is in the process of 

implementing it. Another reason is that it requires a different set of user information in the database, 

like a password verifier, to be able to authenticate it, so the presence of the hashed password, required 

for the other authentication methods, would nullify the benefit of using a password verifier. 
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Although it isn’t currently implemented, it is our goal to do so in the future due to the major 

benefits that it has when used in non-trusted networks with no mutual trusted third party certificate 

authority. 

4.4.1.4 Two Factor Authentication 

A TFA is an authentication method that requires two elements for authentication, i.e. a user to access 

his bank account at an ATM must use his bankcard (something that he has) and then input a PIN 

(something that he knows). In our case we decided to allow the usage of the CC, a smartcard that 

contains certificates and cryptographic capabilities for authentication and signing. These certificates 

can be read without the user having to input the required PIN but to perform any authentication 

operation, such as signing data, it has to be requested to unlock the card. 

The authentication certificate, among other data, contains a unique identifier (BI) which is 

stored in the database along with the user’s hashed password and salt value when the user is 

registered. This identifier is then later used to match a received public key certificate to the user that is 

trying to authenticate. 

4.4.2 Query protection 

In this section we will present our solution to the problem of the users being able to disclose the SQL 

statements used and learning about the database schema, by pushing them to the server side instead of 

residing in the clients, using the RemoteCall stored procedure and the session identifiers that we 

mentioned in the beginning of section 4.4. The RemoteCall stored procedure is defined in the database 

and allows each client to execute any CRUD expression that is defined in the policy server through an 

identifier. This effectively pushes the CRUD expressions to the server side, protecting them from 

malicious users that could target DACA since it would send the CRUD expressions to the client side. 

The stored procedure can be parameterized, which allows the execution of parameterized CRUD 

expressions. To avoid SQL injection attacks(Halfond, 2006), i.e. the unrestricted execution of SQL 

statements by embedding them into authorized ones, the execution of the defined CRUD expressions in 

the RemoteCall stored procedure uses, in the case of SQL Server, a special command called 

sp_executesql, which takes a parameterized CRUD expression and a list of parameters. Not only it is 

resilient against SQL injection attacks by treating the parameters differently from the CRUD 

expression, but it enables the RDBMS to optimize the queries. 

The usage of the RemoteCall stored procedure involves two different phases: a preparation 

phase and an execution phase. The preparation phase is where randomly generated identifiers are 

associated with each CRUD expression that a client application can use and an equally random session 

identifier that is given to a client application when it first authenticates with the server. When the 

Business Schemas are instantiated, they automatically set the CRUD identifier and the session 

identifier in the statement that contains the RemoteCall stored procedure. The execution phase is 

where the client application executes the RemoteCall stored procedure, passing the respective CRUD 
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identifier that it wants to execute and the required parameters, if any. Since the result of the 

RemoteCall stored procedure is exactly the same as if the CRUD expression had been executed, no 

further changes where required in S-DRACA. 

The sp_executesql command takes one (when the query isn’t parameterized) or three arguments 

(when the query is parameterized). Its syntax is: 

 

sp_executesql [ @statement = ] statement 

[  

  { , [ @params = ] N'@parameter_name data_type [ OUT | OUTPUT ][ ,...n ]' }  

     { , [ @param1 = ] 'value1' [ ,...n ] } 

] 

 

We can see that it always receives a statement, which is the query to execute. The other two 

arguments are optional, of which the first contains some metadata about the parameters of the 

statement to execute, i.e. their names and data types in a single string. The name is in the format 

@ParameterName and the data type is the name of a SQLServer name type, such as int or nvarchar. 

The third argument is also a single string with the parameters’ values in the format @ParameterName 

= <parameter_value>. Several parameters are separated using a comma in both arguments. A query 

executed using the sp_executesql that retrieves every order from an Orders table where the Customer 

identifier is greater than a certain value can be written as: “EXEC sp_executesql N’SELECT * FROM 

Orders WHERE CustomerID > @CustomerID’, N’@CustomerID nchar(5)’, N’@CustomerID = 10’;” 

Figure 54 shows the signature of the RemoteCall stored procedure. It receives three arguments: 

a SessionID, which is the random identifier assigned to the client application, the QuerySRID, which is 

the random query’s session identifier and the Params, which by default is an empty string and contains 

the parameter values for the CRUD expression being executed. 

 

Figure 54. Signature of the RemoteCall stored procedure. 

The RemoteCall stored procedure requires three tables: Queries, SessionQueries and Operands. 

The Queries table stores the actual CRUD expressions. The SessionQueries table maps a generated 

session identifier and a generated random CRUD indentifier to the real identifier of each CRUD 

expression. The Operands table stores the list of operands required by each CRUD expression and their 

data type, information that is required by the sp_executesql command. 

The RemoteCall stored procedure, upon being executed, performs the following operations: 1) 

retrieves the identifier of the original CRUD expression using the SessionID and the QuerySRID from 

the SessionQueries table, 2) retrieves the CRUD expression to execute from the Queries table, 3) builds 

the parameter definition string, which contains the name of each parameter and its type and 4) 
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executes the sp_executesql command with the CRUD expression retrieved, the parameter definition 

that was built and the @Params parameter that contains the actual values of the parameters. 

Consider the next two CRUD expressions in the Queries table and the operands in the Operands 

table: 

Table 10. Example of two CRUD expressions in the Queries table. 

QueryRID CRUD Reference CRUD Expression 
1 S_Custumers_all SELECT * FROM Customers 
2 S_Orders_byShipCountry SELECT * FROM Orders WHERE CustomerId = 

@CustomerId and ShipCountry = 
@ShipCountry 

 

Table 11. Example of information in the Operands table for the Queries in Table 10. 

QueryRID Position Name Type 
2 1 @CustomerId nchar(5) 
2 2 @ShipCountry nvarchar(15) 

 

A client application with permission to use both CRUD expressions, when a new session is 

started, is assigned the session identifier 12345678 and the SessionQueries table is added the 

following information: 

Table 12. Example of the generated identifiers for a client session. 

SessionID QuerySRID QueryRID 
12345678 13572468 1 
12345678 24681357 2 

 

The queries that the client receives that he is able to execute are: 

1. EXEC PolicyServer2._remote.RemoteCall @SessionID = ?, @QuerySRID = ?; 

2. EXEC PolicyServer2._remote.RemoteCall @SessionID = ?, @QuerySRID = ?, @Params = 

'@CustomerID = ?, @ShipCountry = ?'; 

 

As previously stated, each Business Schema, when instantiated, automatically sets the value of 

the SessionID and the QuerySRID parameters. The first RemoteCall call does not have a @Params 

parameter, since the original CRUD expression is not parameterized, but the second one does because 

the original CRUD expression has two parameters. 

If the second query were to be executed, the RemoteCall stored procedure would: 1) retrieve the 

identifier of the original CRUD expression from the SessionID = 12345678 and QuerySRID = 24681357 

- @QueryRID = 2, 2) retrive the CRUD expression - @Query = N’SELECT * FROM Orders WHERE 

CustomerId = @CustomerId and ShipCountry = @ShipCountry’, 3) build the parameter definition 

string - @ParamsDef = N’@CustomerID nchar(5), @ShipCountry nvarchar(15)’ and 4) execute the 

sp_executesql command - EXEC('EXEC sp_executesql N''' + @Query + '''' + @ParamsDef + @Params). 
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4.4.3 Secure data store communication 

The Business Schema’s implementation, shown in Figure 25, communicates with the Policy Manager to 

access the database. This was not the case in DACA, where the communication was made directly 

between the Business Schemas and the database. This was a big security vulnerability, since the user 

had access to the credentials used to access the database with the sensitive data, which allowed him to 

bypass the security components completely and execute any CRUD expression uncontrollably. Not only 

that, but the sensitive information was transmitted through the network in clear text, so any 

eavesdropper could see the information. 

To prevent this problem we present in this section a mechanism where the user could connect 

to the database without ever knowing the real credentials used to access it, while preventing 

eavesdroppers from collecting any of the sensitive data. The idea is to use the previously created and 

authenticated communication channel to transmit the interaction between the client and the database 

with the sensitive data. Since we want to encrypt the communication, the channel has to use one of the 

SSL/TLS enabled authentication mechanisms presented. 

Obviously the channel does not connect directly to the database, but to the Policy Manager, 

which would connect to the database and then relay the communication between it and the client. 

We ran into some problems trying to implement this, however. The JDBC implementation does 

not allow us to use an existing socket to connect to the database. We used the DriverManager provided 

by Java, which receives a connection string. The connection string has the following syntax for SQL 

Server: 

“jdbc:sqlserver://[serverName[\instanceName][:portNumber]][;property=value[;property=value]]”. 

The jdbc part indicates the protocol to use, which in this case is JDBC. The sqlserver part allows 

the DriverManager to determine which driver should be used, which in this case is the JDBC driver 

provided by Microsoft. Then it receives the server name and the port number to connect to a target 

DBMS. Using the connection string and successfully connecting to the database is the only option 

available to get the Connection object, from which we can create statements to execute queries. The 

Connection object then contains the socket that was created when the connection to the database was 

made, which we can manipulate only through reflection since it is inaccessible from the public 

interface. 

In short, we require a connection object so that the Business Schemas can execute the CRUD 

expressions and to get the connection object we have to establish a connection to the database, since 

we can’t use an existing socket to do it, and then access the internals of the connection object to change 

the socket so that the existing authenticated and encrypted channel to the server is used instead. 

To create the connection object we noticed that the real credentials aren’t required, just the 

credentials to an account that has no permissions to execute queries will provide the client with the 

necessary connection object. Then, using reflection, the internal socket and input/output streams are 

set to those of the socket used to communicate with the server. The usage of reflection has the 

downside of making this process work only for the Microsoft SQLServer driver. Other drivers may use 
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other internal structure for the connection object, requiring different approaches to change the socket 

used. 

The client then sends a Data message, changing the server’s thread that is handling the client 

requests to data mode. In this mode the server connects to the database using the real credentials and, 

using reflection, relays the data that comes from the client to the database and vice versa.  

It is possible to configure the DBMS to use certificates and establish connections using SSL/TLS, 

but that would require the creation of a second secure communication channel and the client would 

still have to use the credentials for the account with the permissions to execute CRUD statements. 

The Connection class implementation for SQL Server has several variables, but one is of 

particular interest for our goal: a variable named tdsChannel. This is the variable that holds the socket, 

named channelSocket, two identical input streams, named inputStream and tcpInputStream, and finally 

two identical output streams, named outputStream and tcpOutputStream. When we say that they are 

identical, we mean that they hold the same reference. The input/output streams are the streams used 

by the socket to read and write data. With this information it is easy to understand how the 

communication to the database can the transmitted through the socket that is connected to the server 

(i.e. the Policy Manager) instead of the database itself. 

First, after the authentication process and other communications are finished, a connection 

object is obtained from the client, using the dummy account with no permissions. After that, the client 

sends the string Data to the server, indicating that he wants to change to data mode. The client then 

takes the socket that he is using to communicate with the server and its input/output streams and sets 

them in the Connection object, which was obtained in the first step. Meanwhile, the server creates its 

own Connection object using an account with the required permissions and starts copying the data 

from the client’s socket into the socket of the Connection object that he just created and the opposite 

communication direction in a separate thread. With this setup, the client can continue to use the 

original Connection object that he created to communicate with the database without ever knowing 

the real account’s credentials. 

4.4.4 Summary 

This section presented the developed security layer that was integrated into our solution. This security 

layer was presented in three parts: the authentication and data encryption mechanisms, the 

mechanisms that protects the CRUD expressions from being accessed by intruders using Java reflection 

or by capturing network packets and a method to allow client applications to access data in the 

database knowing only some credentials that provides no permissions to access or modify the data. 



91 A secure, distributed and dynamic RBAC for relational applications. 

 

91 | P a g e  

 

4.5 Performance 

In this section we will present the performance tests done to measure the performance of S-DRACA 

when applied in practice. One aspect that is important to know, when using an architecture that 

provides extended functionalities, is how much overhead that architecture introduces when used. This 

aspect is important when human interaction is present, like in the case of S-DRACA, where its usage by 

developers should not make the resulting application too slow that frustrates users. Generally a 

response time below 2 seconds is acceptable, as shown empirically in  (Shneiderman, 1984). 

DACA lacked such an analysis, and with the introduction of a more complex authentication 

mechanism and the client-database communication relaying through the Policy Manager in S-DRACA, 

we needed to understand the impact that those functionalities, together with the rest of the 

architecture, would take on the communication with the database. 

To do this we propose to analyze three execution scenarios: 1) a single select statement 

(SELECT), 2) two select statements (TWO SELECTS) and 3) a select followed by an insert, another 

select, an update and another select statement (SISUS). Note that to simulate a real scenario as close as 

possible we read some of the data from each row returned by a select statement and some of the 

parameters in the insert and update statements have random values. Also, after each SISUS scenario 

execution, the inserted values are deleted to prevent slowness due to the table size. 

We also tested these scenarios using various iterations counts, from a single iteration up to 

10000. To be able to compare the results we also tested the direct approach, using JDBC without S-

DRACA, and using the same prepared statement (SPS) and a different prepared statement (DPS) in 

each iteration, making sure that they are implemented as similarly as possible. 

We also compared the initialization times of S-DRACA, since it has to authenticate, request the 

RBAC policies for the role of the user, generate the source code from it and compile it. 

This section is divided as follows: Section 4.5.1 defines the test environment, section 4.5.2 shows 

the results of our tests during the initialization phase, section 4.5.3 shows the results of the tests 

during our execution phase, section 4.5.4 draws conclusions on the data obtained and section 4.5.5 

summarizes the content presented. 

4.5.1 Environment 

First we will specify the test environment and the machine used to run the performance tests, shown 

in Table 13. Note that all unneeded programs and services were not running or disabled. Network 

connectivity was also disabled.  
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Table 13. Testing machine specification. 

OS Microsoft Windows 7 SP1 
Architecture x86_64 
Motherboard Pegatron Corporation G60JX (Socket 989) 
CPU Intel Core i7 720QM – 1.6GHz 
Memory 8.00Gb Dual-Channel DDR3 – 666MHz (9-9-9-24) 
Hard Drive 596Gb Toshiba MK6465GSX ATA Device (SATA) 
RDBMS Microsoft SQL Server 2012 
Other Programs Netbeans IDE 

4.5.2 Initialization tests 

In this section we will explain the initialization tests performed and show their results. To obtain the 

times we used the System.nanoTime() service, which uses the current JVM’s high-resolution time 

source and returns its value with nanosecond precision, but not necessarily with nanosecond 

resolution. It is not related to the current time and it’s only usable to calculate elapsed time. The tests 

compared the time it takes to obtain a simple JDBC connection object against the time it takes to fully 

initialize S-DRACA, to the point where we were able to begin instantiating Business Schemas. 

First, we present the initialization times in Table 14, Table 15 and Table 16. The first column 

represents the time spent to connect to the database. The next three columns are linked to the 

initialization times for S-DRACA. They are, respectively, the configuration time, the instantiation time 

of the Business Manager and the connection time to the Policy Manager. The last column represents 

the S-DRACA total time. Figure 55 shows a visual representation of the total times for JDBC and S-

DRACA in the tables.  

Table 14. Initialization times for JDBC and S-DRACA when both relaying and TFA were used. 

JDBC S-DRACA 

Connection Configuration Instantiation Connection TOTAL 

42 6881 0.0026 50 6931 

26 6991 0.0019 20 7011 

36 6453 0.0019 60 6513 

43 6558 0.0019 25 6582 

36 6696 0.0026 38 6734 

61 6792 0.0026 26 6818 

42 5772 0.0026 26 5798 

37 4374 0.0026 25 4398 

57 4372 0.0026 30 4402 

42 6099 0.0024 33 6132 
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Table 15. Initialization times for JDBC and S-DRACA when neither relaying nor TFA were used. 

JDBC S-DRACA 

Connection Configuration Instantiation Connection TOTAL 

18 3140 0.0013 11 3151 

11 3036 0.0019 12 3048 

9 3487 0.0019 8 3495 

10 2565 0.0019 9 2574 

10 2909 0.0019 7 2916 

13 2733 0.0019 9 2742 

16 2414 0.0019 8 2422 

9 2337 0.0032 11 2348 

13 3405 0.0019 47 3452 

12 2892 0.0020 14 2905 
 

 

 

Table 16. Initialization times for JDBC and S-DRACA when relaying was used but not TFA. 

JDBC S-DRACA 

Connection Configuration Instantiation Connection TOTAL 

16 2583 0.0013 13 2596 

17 3089 0.0013 17 3106 

20 2694 0.0013 16 2710 

12 2716 0.0019 13 2728 

14 2464 0.0013 12 2477 

15 2584 0.0019 10 2595 

12 2528 0.0019 13 2541 

17 2454 0.0013 11 2465 

13 2566 0.0019 15 2581 

15 2631 0.0016 13 2644 

 

 

Figure 55. Graph of the initialization times in Table 14, Table 15 and Table 16. 
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4.5.3 Execution tests 

In this section we discuss our performance tests and show the results obtained.  We created several 

performance tests in order to test the performance in several dimensions: the number of test 

iterations, several scenarios and different cases for executing the tests, as explained earlier.  The 

measurements were done with calls to the System.nanoTime() service as before. 

For a given iteration we have three measurement values for each case - scenario combination 

and their average (in the light-grey rows). We use the averages to draw our conclusions on the 

architecture’s performance in order to mitigate odd results that might appear. Figure 56, Figure 57 and 

Figure 58 also use these average values to build the graphs. Note that the usage of TFA does not impact 

these results, since the TFA mechanism does not introduce any overhead after it’s completed, which is 

during the initialization, so it does not appear as a test case. 

The first scenario (SELECT) is meant to verify the delays when a single select statement is used. 

The second scenario (TWO SELECTS) is meant to understand the delays involved when two different 

queries are alternated. The final scenario (SISUS) is meant to extract the delays involved with a more 

complex group of queries. The queries use random parameters where possible, to prevent possible 

optimizations by the RBDMS. 

We start by testing a single iteration of each scenario, to get the delay of an atomic execution, 

and then we increment the number of iterations by factors of ten to simulate increases in load. The 

results of the performance tests are shown in Table 17. 

 

Table 17. Performance execution times. 

ITR 
SELECT TWO SELECTS SISUS 

BS (NR) BS (R) DPS SPS BS (NR) BS (R) DPS SPS BS (NR) BS (R) DPS SPS 

1 7 34 7 7 9 13 3 3 41 36 26 30 

1 6 7 4 8 9 13 3 3 34 39 21 21 

1 6 10 5 6 10 20 3 3 36 58 42 32 

1 6 17 5 7 9 15 3 3 37 44 29 27 

10 17 28 12 20 36 52 18 22 442 428 613 491 

10 18 25 13 17 32 59 20 20 499 500 714 680 

10 14 22 18 20 39 56 18 13 473 660 785 336 

10 16 25 14 19 36 56 19 19 471 529 704 502 

100 146 178 104 74 240 335 142 144 2079 2713 3218 2060 

100 139 169 108 98 285 323 142 119 2178 2595 1952 2154 

100 108 163 110 91 247 347 165 136 2457 2460 2167 3130 

100 131 170 108 88 257 335 150 133 2238 2589 2446 2448 

1000 942 1391 1090 729 2105 2977 1674 1053 17004 23062 21176 16600 

1000 923 1561 1003 818 2007 2960 1595 1113 17686 22766 17699 18629 

1000 915 1555 1023 673 2035 2973 1624 1897 20323 21602 20603 22476 

1000 927 1502 1039 740 2049 2970 1631 1354 18338 22477 19826 19235 
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ITR 
SELECT TWO SELECTS SISUS 

BS (NR) BS (R) DPS SPS BS (NR) BS (R) DPS SPS BS (NR) BS (R) DPS SPS 

10000 9006 13455 9758 6362 18094 26366 15703 10711 181835 204776 192194 179348 

10000 8697 13118 9724 6666 18266 26669 16203 11463 180734 204352 196014 177731 

10000 8732 13374 9371 6616 18223 26688 16491 10716 192674 201777 207025 181943 

10000 8811 13315 9617 6548 18194 26574 16132 10963 185081 203635 198411 179674 

 

 

Figure 56. Graph of the execution times in Table 17 for the single select scenario.  

 

Figure 57. Graph of the execution times in Table 17 for the two selects scenario.  
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Figure 58. Graph of the execution times in Table 17 for the SISUS scenario.  

4.5.4 Results discussion 

In this section we will discuss in more depth the results of the initialization and execution tests. 

In each table with the results of the initialization tests (section 4.5.2), we can see that the 

configuration of the Business Manager is the point where S-DRACA spends most of its time initializing. 

This was expected since it is where the RBAC policies are obtained, the source code generated and 

compiled. The connection to the Policy Manager is on par with the JDBC connection time and the 

instantiation time of the Business Manager is neglectable. 

When comparing each table we can see in Figure 55 that with JDBC we take a bit more than 10 

milliseconds to connect to the database. Regarding S-DRACA, the initialization process takes more than 

2 seconds when TFA is not used (around 2.5 to 3 seconds). The overhead of setting up the 

communication relaying can be calculated as being around 100 milliseconds. The time spent in the case 

where TFA was used is about 2 times greater when compared to the cases where it is not used (a little 

over 6 seconds). This can be explained by the fact that TFA introduces more communication overhead, 

the fact that the CC has to sign a challenge and that the Policy Manager has to validate the signature 

using the processes already discussed. TFA is clearly a solution that should only be activated when 

security is imperative. If it is the case, since the time that takes for S-DRACA to initialize is greater than 

2 seconds, it is important to let the user know what is happening when it occurs, to avoid user’s 

frustration. It isn’t a big problem however, because the initialization is a process that only has to occur 

once per session.  

Regarding the execution tests data shown in Table 17, we can see that using the same prepared 

statement has better execution times than using different prepared statements. At first this difference 

is very small, but with each increasing number of iterations it becomes more and more noticeable. This 
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is an expected result because using the same prepared statement removes the need to keep sending 

the query and the RDBMS can reuse the execution plan.  

Also, using S-DRACA clearly takes more time to execute each statement than using JDBC directly. 

Looking at the SISUS scenario, the most complex of the three, and the maximum number of iterations, 

S-DRACA is about 13% slower than the SPS case while relaying the communication through the secure 

channel and about 3% when not relaying. In the other scenarios it is about 2 to 3 times slower while 

relaying and 12% to 35% while not. This is most likely because in these scenarios, due only being 

select statements being executed, the queries are being better optimized by the RDBMS and the S-

DRACA overhead becomes more prominent. It is evident that the communication relaying through the 

secure channel can degrade the performance, but on the other hand it allows the client to use S-DRACA 

without knowing the database credentials and the data transmission is encrypted. This is an area of S-

DRACA that will require further research.  

In terms of scalability with load, we can notice in the graphs that by increasing tenfold the 

number of iterations we get a similar linear increase in execution time for both S-DRACA and JDBC. 

Hence, data manipulation intensive applications that execute great amounts of queries can expect a 

similar performance variation to JDBC, and since the policy enforcement is done on the client side, S-

DRACA itself also scales with the number of users. 

4.5.5 Summary 

In this section we evaluated the performance of our solution in terms of the time required to perform 

some operation on the data. To achieve this we analyzed three different dimensions: the number of 

iterations, different test scenarios and different methods (i.e. using JDBC directly) to compare with our 

solution. We showed the results of the tests and then discussed them, concluding that our solution is 

slower than using JDBC directly, as expected, but followed the same behavior as using only JDBC when 

the number of iterations increased. Moreover, the relaying of the communication between the client 

and the database in the Policy Manager can introduce considerable performance degradation. 
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4.6 Proof of Concept 

In this section we will present our proof of concept demonstrating the correct functioning of the 

implemented components and architecture layers. 

The proof of concept, which architecture is shown in Figure 59, uses two applications (a client 

application that can be used by many users and a controller application that manipulates the policies 

defined) to demonstrate a sample execution flow. We also implemented a new Policy Extractor to 

generate the access mechanisms awareness, i.e. the Business Schemas’ interfaces. 

Server

Configuration 
ApplicationUser A

User B

User C

Policy 
Extractor

Access 
Mechanisms 
Awareness

Data

Policy 
Manager

Access 
Mechanisms Policy 

Server

Business 
Manager

 

Figure 59. Proof of concept architectural solution. 

This section is divided as follows: Section 4.6.1 presents the Policy Extractor tool, section 4.6.2 

presents the S-DRACA architecture functioning through the developed applications and section 4.6.3 

summarizes the presented content. 

4.6.1 Policy Extractor 

In this section we present a policy extractor implementation using Java Annotations. The policy 

extractor is a component that is integral for S-DRACA, as shown in Figure 25. It requests the policies 

from the policy server through the Policy Manager and generates the interfaces needed by the client 

application to access the protected data. 

There was a Policy Extractor developed in DACA. It was another application that created a Jar 

file that could be included in the client’s application classpath, in order to use the generated interfaces. 

However, if the policies changed then the Policy Extractor had to be executed again and the new Jar file 

included. In S-DRACA, we wanted to ease the usage of the Policy Extractor by the client application.  

We chose to use a custom annotation, not only because it is integrated directly into the application, 

removing the need for external applications, but also because it is executed every time the client 

application is compiled, allowing the interfaces to be automatically updated with a simple project 

recompilation. Figure 60 shows this annotation, named DACAManagedApplication (legacy name), 

which takes the credentials of the user for the Policy Manager (lines 25 and 26), the name of the 

application (line 29), the Policy Manager network address (line 27 and 28), the authentication method 
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(line 30), whether the policies are to be updated during compilation (line 31) and if they are to be 

included in the project (line 32). There are other properties that can be used, such as keyStorePath and 

keyStorePassword which allows to use keystores with certificates for SSL/TLS. 

 

Figure 60. Policy Extractor annotation. 

With this information the Annotation Processor that was developed can authenticate with the 

Policy Manager, request the policies from the policy server, implement the interfaces and add them to 

the project. The updatePolicies parameter on line 31 allows the developers to prevent the policies from 

being updated during compilation, saving time in exchange. The includePolicies parameter on line 32 

can disable the annotation if for some reason another tool is used. These parameters have the default 

value set to true. 

Figure 61 shows the declaration of the developed Annotation Processor, called “DMAAP”. We 

can notice on line 33 that it supports our annotation “DACAManagedApplication” and that the 

supported Java version is the release 8 (line 34). For the class to be successfully used as an Annotation 

Processor it extends the abstract class AbstractProcessor (line 35). 

 

Figure 61. Annotation processor declaration. 

Figure 62 shows the signature of the process() method declared in the AbstractProcessor class. 

This method is called during the compilation process and provides two parameters: the annotations 

variable, which is a list of the annotations that correspond to the supported types and a 

RoundEnvironment variable which contains information about the round of annotation processing, 

such as errors or the annotations being processed. The returned boolean value indicates whether this 

annotation processor takes ownership over the set of annotations passed. By claiming ownership we 

indicate that the annotations are ours and that we processed them. There is also a protected variable, 

called processingEnv that allows to create source code, print messages and provides some other 

functionalities. 

 

Figure 62. Annotation processor's process method signature. 
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Figure 63 shows the main generation process of the security data structures and the Business 

Schemas’ interfaces. First, the list of Business Schemas is obtained from the Policy Server using the 

protocol detailed in section 4.1.4 (line 68). Then we create a source file using the processingEnv 

variable with the name of the Business Schema (line 71 and 72). If the includePolicies attribute in the 

annotation was set to true (line 74), then we request the generation of the Business Schema’s interface 

to the InterfaceGenerator class and write the output into the source file (line 77 and 78).  

 

Figure 63. The Business Schemas interfaces generation process. 

Figure 64 shows the genInterfaceSourceCode() method in the InterfaceGenerator class. It 

generates the source code for the interfaces and follows the basic structure of a Java class, starting with 

the package declaration (line 29) and finishing with the methods used for the sequence lifecycle (line 

35). The generation process itself uses Java Reflection to determine the declared methods of the target 

class. The parameter c is a class reference for which an interface must be generated. The otherClasses 

parameter is a list of the other classes that are also being processed and it’s useful when the class being 

processed imports other generated classes, such as the security data structure. The seqInfo parameter 

has the defined sequences of Business Schemas, used to generate the “next” methods, and the seqActive 

parameter indicates if the sequence control mechanism is active or not. 

 

Figure 64. InterfaceGenerator main method. 
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The output of the Annotation Processor can be seen in the IDE with the appearance of the 

“Generated Sources (ap-source-output)” folder (see Figure 65). The “BusinessInterfaces” folder 

contains the common interfaces to all Business Schemas, the “Classes” folder contains the data 

structures associated with the roles (see Figure 39) and the rest of the folders have the Business 

Schemas usable by the application. 

 

Figure 65. Generated sources folder. 

4.6.2 Sample applications 

This section will present the sample applications developed to demonstrate the correct functioning of 

S-DRACA. Two sample applications were developed for this purpose: a client application that uses the 

Policy Extractor presented, which allows a user to perform some high level operations and an 

application to easily change the defined policies. The focus of this proof of concept will be around the 

sequence controller since it was the new functional component developed, but we will show the client 

application also becoming aware of changes made to the user’s roles automatically.  

Figure 66 shows the initial window of the configurator that allows to change the defined policies 

in the policy server. 

 

Figure 66. Initial window of the configurator. 

The functionalities are represented on the window with the numbers in red. 1) The status of the 

sequence controller, which can be either enabled or disabled. 2) A table with the current sequences in 

effect, which shows each sequence identifier and the authorized business schema for each position. 3) 

The insert and update/delete buttons allow to insert, update and delete sequences. 4) The Revocations 

button allows to see the current revocations for each sequence as well as insert and delete them. 5) 

The CRUDs button allows to check the allowed CRUDs for each Business Schema in  a sequence 

position. 6) The Roles button allows to check and update the roles associated with each sequence. 7) 
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The User Roles button allows to see and update the current roles associated with each user. Finally, 8) 

allows to see and update the aliases defined for each Business Schema that are used in the sequences. 

The client application starts by showing a generic login window which requests the username 

and password. It then proceeds by using one of the developed authentication mechanisms and 

enabling data encryption (using the PSK-SSL solution). After the user logins the client application 

shows a window with the customers present in the Northwind sample database (see Figure 67). 

 

Figure 67. Client application showing the list of customers. 

Figure 68 shows how the client application fills the table in Figure 67 with the information using 

S-DRACA. First, a Business Schema that handles the select expressions on the Customers table is 

instantiated with the select all CRUD expression (line 260). Then, the CRUD expression is executed 

(line 261) and for each row in the Business Schema’s LDS (line 262) a line in the graphical user’s 

interface table is added through the default table model (lines 263 to 265). 

 

Figure 68. Code that adds information into the Customers' table. 

The client application implements the two sequences shown in Figure 66 via the “New Order” 

button (number 1 in the figure), which allows to create a new order (sequence 2) and the “Change 

Order” button (number 2 in the figure), which allows to modify an existing order (sequence 1). The 

“Unrestricted” button (number 3 in the figure) shows a test window to try to instantiate and execute 

any Business Schema in any order, which allows to evaluate the complete correctness of S-DRACA. We 

will update an existing order, where each Business Schema in the sequence is needed by the one 

following it. We start with the correct revocations applied, i.e. with the first Business Schema revoked 

only in the third position, and then we try it again with the first Business Schema revoked in the 

second position, which should prevent the client application from viewing the list of orders of a 
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customer. We will finally revoke the current role of the user and see the Business Schemas disappear 

from the “Unrestricted” window. 

Figure 69 shows the client application after having selected a customer and pressed the “Change 

Order” button, which shows a list of orders obtained from the “S_Orders” Business Schema, for the 

selected customer. After selecting an order to update and pressing the “Update Order” button in the 

window, a new window appears (see Figure 70) that allows to change some fields of the order. After 

pressing the “Update” button and if the Business Schema “U_Orders” can be executed, the confirmation 

dialog appears indicating the success of the update. 

We then revoked the first Business Schema in the second position of the sequence in the 

Configurator. This will prevent the client application from being able to retrieve the orders placed by a 

customer using the sequence 1 (see Figure 71), creating an error dialog if the user tries to perform the 

second step in the update order sequence.  

 

 

Figure 69. Second step in updating an order. 

 

Figure 70. The final update step and confirmation dialog. 

Then we tried to execute the same operation of updating an order of a customer. As expected, 

when we now tried to retrieve the orders of a customer to update, an error message appeared, 

indicating that the operation is not authorized (see Figure 72). To see exactly what is happening we 

can see Figure 73, which shows the unrestricted window. On (1) it shows the current roles of the user, 

(2) shows the Business Schemas associated with the roles and (3) will attempt to instantiate them. If 

they can be instantiated an “Authorized” result shows and the Business Schema goes to area (5). Area 

(4) shows the state of the sequence controller and the last time the policies were updated. The “Try 

Execute” button on area (6) allows to try to execute a selected Business Schema from area (5), the 

result of which appears under it. The “New Sequence” button on area (7) clears the instantiation 
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history for a new sequence. Note that after the instantiation of the “S_Orders” Business Schema, the 

“S_Customers” can no longer be executed as shown by the “Not Authorized” message.  

To demonstrate that the client applications are aware of the changes made to the policies using 

S-DRACA we used the Configurator to revoke the role of the user (see Figure 74). After that we can see 

in Figure 75 that the role disappeared from area (1) and no Business Schemas are available.  

 

 

Figure 71. Configurator revocation list window, after revoking the first Business Schema in the second position. 

 

Figure 72. Client application's error message for trying to execute a revoked Business Schema. 

 

Figure 73. The client's unrestricted window. 
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Figure 74. The Configurator's user roles windows. 

 

Figure 75. Client's unrestricted window after the user had its roles revoked. 

The client application is able to update its graphical user interface because the Business 

Manager can register a listener (with the legacy name “DACAChangeListener”, shown in Figure 76). 

This listener can be used by the client application to be notified when changes to the sequences (lines 

11 and 12) or the policies (line 13) are made and adjust the interface accordingly, e.g. update a 

combobox as shown in Figure 77.  

 

Figure 76. The change listener interface. 

 

Figure 77. Operation performed when policies change. 

The client application is not required to use the listener. However, it can be used to prevent 

runtime errors when some policy is changed by disabling a previously authorized operation that is no 

longer authorized. 
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4.6.3 Summary 

In this section we presented a policy extractor that uses metadata added to the client application using 

a custom Java Annotation. From the metadata the Java Annotation Processor was capable of generating 

the required interfaces for the client application to access the data stored in the database with. Then 

we presented two applications: a configurator that allowed to easily manipulate the defined policies in 

the Policy Server and a client application that showed that it is possible to enforce the sequence of 

Business Schemas on the client side, changing its behavior automatically when the policies in the 

Policy Server are modified during runtime. 
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5 Conclusion 

In this section we will discuss the work done, some identified problems and how S-DRACA can evolve. 

We will also study the applicability of S-DRACA for other data stores including in the big data scenario. 

This section is divided as follows: Section 5.1 will discuss the results of the sequence controller and the 

next steps, section 5.2 will discuss the effectiveness and the problems of the security layer as well as 

what to do to enhance it and section 5.3 will study the possible applicability of S-DRACA with other 

access control policies and in big data scenarios and present the future work. 

5.1 Sequence controller 

The developed sequence controller was an attempt to provide greater control to security experts in 

terms of how and when the client applications can use the authorized CRUD expressions.  

The first iteration developed in S-DRACA enables the security experts to do that, but it is too 

limited. The sequences can only follow a single path of the general digraph (see Figure 28 and Figure 

29). Furthermore, the current extension to the RBAC model only allows to define, in a sequence’s 

lifecycle, which Business Schemas are revoked at each step. The ideal solution would allow a more 

expressive digraph to be used directly (like the one shown in Figure 28). Since a sequence could take 

several different paths, the digraph’s lifecycle would also support the definition of which next Business 

Schema are available at a given position, depending on the path taken so far. 

The reason for this possible evolution of the sequence controller is due to the fact that one 

operation might not always require the exact same steps. Consider a web form that allows users to 

login to some area in a website. If the credentials used are correct in the first three attempts, the user 

logins successfully, but if the user fails to provide the correct credentials three times in a row the login 

sequence now requires the user to answer a security question to unlock the account. In this case the 

same login sequence might take two paths depending on how many times the user fails to provide the 

correct credentials. 

5.2 Security layer 

In this section we will discuss the goals achieved by the security layer developed, its problems and how 

it can be enhanced. 

First, there were several authentication mechanisms for users implemented, each with a 

different security/communication overhead. The two simplest, using a hash-based password and the 

challenge-response mechanisms, since they are implemented using standard algorithms, we feel that 

they achieved what they were designed for. On the other authentication mechanisms using a shared 

secret together with SSL/TLS, we were only able to implement one of them and it uses reflection so the 

abstraction of the Java SSL sockets is lost. The best way to implement this would require the 
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implementation of the SSL/TLS protocol to support natively the EKE mechanisms. In this case all three 

solutions presented could be implemented. 

The goal of using the SSL/TLS channel, created during authentication, is to encrypt the data 

communication and to prevent the client applications from requiring the database credentials was a 

partially successful. We did achieve our goal, but we also use Java Reflection, which makes us 

dependent on the current implementation of the SQL Server connection objects for JDBC. Furthermore, 

there can be some performance degradation in the process of relaying the communication through the 

secure channel. 

The attempt to hide the queries being executed from the client applications so that users cannot 

gain access to the database schema has been successful. Using the RemoteCall stored procedure and 

session identifiers we were able to execute any CRUD expression defined in the policy server and the 

client applications only have access to the identifiers. 

Finally, there is still a security vulnerability that was not addressed entirely with this security 

layer. An intruder that is able to get access to a client application, using Java Reflection, is able to obtain 

the Connection object that allows our solution to communicate with the database. It is not possible to 

prevent an intruder with this object from executing any CRUD expression that he wants in the client 

side.  

This problem is partially solvable using the relaying of the communication between the client 

application and the database in the Policy Manager, to hide the actual credentials used to access the 

database. Additionally, the real credentials can be used to access an account that is able to execute just 

stored procedures, this way restricting an intruder to execute only the defined stored procedures. This 

solution, however, still allows the intruder to bypass the sequence controller and even the RBAC 

policies if the stored procedures can be executed by anyone.  

A better solution would involve the generation of the Business Schemas’ implementation on a 

proxy server, not accessible by the users and the implementation of the Business Schemas in the client 

side that would communicate with this proxy server to execute the required methods. This way the 

client application would no longer possess a connection object for intruders to use and the relaying of 

the communication between the proxy server and the database would only be required if the proxy 

server is not on the same machine as the database, or else an intruder could capture the credentials by 

capturing the network packets. 

5.3 Discussion 

In this section we will discuss how to integrate S-DRACA with other data sources and the future work 

we intend to do. 

This section is divided as follows: Section 5.3.1 will discuss how S-DRACA can be applied to 

other access control policies, section 5.3.2 will discuss how S-DRACA can be applied to other data 

sources, including some work done in this direction, and section 5.3.3 will discuss the future work. 
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5.3.1 Application to other access control policies 

In this section we will discuss the applicability of other access control policies in S-DRACA, such as 

MAC, DAC and ABAC. We have shown, in section 4.2, how an extension to RBAC can be used to define 

the actions a user can perform. We associate sequences of Business Schemas to roles and a user that 

plays a given role can execute the associated sequences. 

Using MAC as the underlying access control policy, we could associate sequences of Business 

Schemas with security levels and a set of categories. This way, only a user with clearance to execute a 

sequence would be allowed to do so. We could also apply the security based MAC or the integrity based 

MAC, presented in section 2.1.2, considering the execution of a sequence of Business Schemas can be 

considered as reading them and their modification by security experts as writing on them. 

Regarding DAC, we don’t find it to be very adequate when integrated with S-DRACA, mainly 

because its strongest points reside in its ability to provide the subjects, with certain permissions on an 

object, to pass those permissions to other subjects. In our case the objects are the sequences of 

Business Schemas, which we don’t want to allow the subjects to create and pass their permission to 

execute it to others. 

Considering ABAC, we could associate with each sequence of Business Schemas a set of 

attributes that the subjects must possess in order to be able to execute them. For example, a particular 

sequence may have attributes that allows subjects to execute them only on certain periods of time. 

Furthermore, when a subject attribute changes, no other changes are required on the objects’ 

attributes to automatically update the authorizations. 

Although S-DRACA was based primarily on RBAC, inheriting the model used in DACA, nothing 

prevents other access control policies from being used, except for the method of obtaining the list of 

authorized operations when a Business Manager is initializing, which must take them into account.  

5.3.2 Integration with other data sources 

In this section we will discuss the applicability of S-DRACA to other data sources, namely Hadoop. We 

will also briefly introduce Hive (Apache, n.d.-a) and HBase (“HBase,” n.d.) that runs on top of Hadoop 

(Apache, n.d.-b) and the Hadoop Distributed File System (HDFS)(Apache, n.d.-c). HDFS, as the name 

implies, is a distributed file system and Hadoop is a framework that allows performing distributed 

processing on the data stored in the HDFS. These tools do not understand SQL and it isn’t possible to 

connect to Hadoop using JDBC directly, which means that S-DRACA cannot be used, since the Business 

Schemas depend on JDBC to perform the authorized operations. 

To integrate our solution we need to use tools like Hive that enables users to query data on the 

Hadoop/HDFS through a SQL-like language, by translating the queries into the jobs that can be 

understood by Hadoop. If Hive can receive SQL-like statements then, if we were able to use JDBC to 

connect to a Hive endpoint, we would only be required to change how the Business Schemas are 
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implemented so that they use the new SQL-like language instead of the standard SQL language used by 

relational databases. 

We will also study the applicability of S-DRACA to control the access to data stored in HBase. 

HBase is a distributed, column-oriented database that runs on top of Hadoop/HDFS that adds 

functionalities that Hive lacks. Since S-DRACA requires a JDBC connection to function, one could use a 

tool like Phoenix (“Developing with Phoenix,” n.d.) to connect to an HBase node using JDBC. 

Integrating S-DRACA into the big data scenario required some changes from the previous 

implementation of the Business Schema’s generator, responsible for the step 4 in Figure 25. It was a 

monolithic class that generated the Business Schemas for SQL Server (which supported any other 

database as long as the JDBC operations remained the same). We changed its design so that 

implementation dependent information was delegated to the specific implementations of the 

generator, hence the general generator (BSGenerator) became an abstract class that implemented the 

generate() and compile() procedures that are common to all implementations and delegated the 

generation of the imports, class declaration, variables, and other required methods to the 

implementing classes. We noticed that some implementing classes might require additional libraries, 

so we also delegate the definition of the classpath to each one of them. With this approach we only 

have to change the generator we want and the Business Schemas will be implemented for a different 

database technology. 

To ease the development of a new implementation, an object is provided by the abstract 

generator that contains context information about the Business Schema being implemented, such as its 

type (a select, update, insert or delete), its name, and other relevant information. 

+generate()
+compile()
#getImports()
#getClassDeclaration()
#getVariablesDecl()
#getAditionalConstructorOperations()
#getMethodsExecute()
#getMethodsDelete()
#getMethodsResult()
#getMethodsForwardOnly()
#getMethodsInsert()
#getMethodsRead()
#getMethodsScroll()
#getMethodsSet()
#getMethodsUpdate()
#getRsConcur()
#getScrollType()
#getClasspath()

#BE : BusinessEntity_Context

BSGenerator

SQLServerBSGenerator HiveBSGenerator PhoenixBSGenerator

...

 

Figure 78. New Business Schema generator model. 
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Implementing a generator for Hive is not as straightforward as implementing the SQL Server 

generator (it only forwards the calls to the result set and the direct access modes are all directly 

supported), mainly because the insert, update and delete statements are not supported by the JDBC 

driver on either direct and indirect access modes, due to the append-only nature of HDFS, meaning 

that Hive allows only to append (i.e. insert into) and overwrite (i.e. insert overwrite) the data from one 

table into another. Using Phoenix and HBase eases the problem, by supporting insertion/update and 

deletion which Phoenix maps into the upsert (updates or inserts) and delete commands. However, the 

indirect access mode is still not supported. We will first analyze how to implement the generator for 

Hive, because it requires additional work since it isn’t possible to insert values into a table from the 

query directly, only from another table. The Phoenix generator was not implemented, but we discuss 

the major differences that it has from the Hive generator. Note that it is assumed that the queries 

configured in the Policy Server are written for the target database technology and that the Policy 

Server remains in a SQL Server instance.  

5.3.2.1 Integration with Hive 

In this section we will present the implementation details of a generator for Hadoop using Hive. The 

Hive generator requires some work in both direct and indirect modes, but they can be merged together 

if we consider that: in the direct access mode all fields to update/insert are provided all at once and 

that in the indirect mode they are provided one at the time, between a beginInsert() and a endInsert() 

method call. The delete operation deletes the current row in the indirect access mode and a single row 

in the direct access mode. The select statement does not require any additional work. 

To support the insert and update statements, the generator creates a data structure, dependent 

from the schema of the table being updated or inserted. In the direct access mode, an insert statement 

has to provide a value for every column in the table in order, which allows the structure to be filled and 

then used to insert a new row into the table. In the indirect access mode, each insert method must be 

called in order to fill the structure. The insert operation then requires the values of the columns to be 

sent to an application in the server running Hive that stores the values in file inside the HDFS, load the 

file into a new table and then append the temporary table into the target table. The loading of the file 

into a temporary table and the appending operation are supported by Hive. 

The delete operation requires, in the direct access mode, to determine the row to be deleted. 

Hence, the delete statement, which must index the row by its key, has to be parsed. Then an insert 

overwrite command is used that inserts all the data except that row back into the table. Because the 

insert overwrite replaces the entire table with the data inserted, only the row we wanted to delete is 

removed. In the indirect access mode, because the current row is known, including its row key, the 

delete operation requires the same insert overwrite operation. 

The update operation requires, in the direct access mode, to determine the row being updated. 

This requires the query to be parsed to determine the table and the row. When using the direct access 

mode all columns must be updated, in order. In the indirect access mode, since we know the values of 
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the current row’s columns, we support updates on a subset of the columns. To update the table we are 

again required to delete the current row in the table and to insert the new row with the same key, so 

the delete and insert operations are reused, meaning this is the most expensive operation to perform. 

We also extrapolated a generator for HBase and Phoenix.  Since it supports inserts and updates 

through the upsert statement and deletes through the delete statement in the direct access mode, it 

only requires modifications in the indirect access mode. 

To support the indirect access mode we could use the same internal data structure as the one 

used for the Hive generator. For the insert operation, every column must be assigned a new value, and 

for the update operation the values of the current row are used, meaning that just some columns may 

be updated. The Business Schema then executes an upsert statement to update/insert the data 

depending whether the row key exists or not. The delete operation is easily supported by executing a 

delete statement which is supported by Phoenix. 

5.3.2.2 The insertion conflict 

It is important to note that neither Phoenix nor Hive have support for full transactions (just at the row 

level for updates in HBase), and that auto-incrementing row keys are not supported either by Hadoop 

or HBase. This means that to insert a new row we must have a row key that isn’t being used. We could 

select the max row key from the table where we want to insert a new row and increment it manually, 

but nothing prevents another application from doing the same since there is no full transaction 

support, i.e. two applications can read the same maximum row key value K and then one of them 

inserts the new row with the row key K+1. Then the other application also increments K and since K+1 

already exists the upsert statement will update the column values, overwriting the first insertion.  

One possible solution can make use of a centralized server that performs the insert operations. 

This way it knows the next row key to use for each table. 

5.3.3 Future work 

In this section we will discuss the possible future work for the work done with this dissertation. The 

future work can take many directions in every layer that was developed or extended. 

In the sequence controller component, it can be too restrictive for the security expert to define 

only paths with a single direction (i.e. go forward to the next Business Schema). We intend to continue 

expanding this component so that it becomes possible to define paths with other branching paths, so 

that a security expert can define sequences that under some condition can change. 

In the security layer, we still have some authentication mechanisms that we wanted to 

implement but we were unable to do so, because the used programming language (Java) does not allow 

to extend the implementation of the communication sockets, namely the SPEKE and SRP mechanisms. 

Also, we want to address the problem regarding the usage of Java Reflection to obtain the Connection 

object that allows an intruder to access the database. Some solutions have been presented in section 

5.2. 
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Regarding the configurability of the extended RBAC model in the Policy Server, we have a simple 

application that allows to configure it from Java interfaces that define the authorized operations on 

each Business Schema, but it only configures statically the sequences and associated metadata. Some 

work will be performed so that we create a more powerful configurator to ease the configuration 

process and even automate what can be automated. 
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Appendix A – SSL/TLS and authentication implementation details 

In this section we will present the implementation details regarding the standard authentication 

protocols and the integration of the SSL/TLS protocol into the authentication process. 

This section is divided as follows: Section A.1 presents the implementation details of the 

authentication method using the hash-based password authentication protocol, section A.2 presents 

the implementation details of the challenge-response authentication mechanism, section A.3 presents 

our implementation of a TFA method using the CC and section A.4 presents the integration of the 

SSL/TLS protocol into the authentication phase. 

A.1 Hash-based password authentication protocol 

This section will present the implementation details regarding the hash-based password 

authentication protocol. 

The implemented protocol, shown in Table 18, starts by sending a GetSalt message (1), 

indicating its username. The server, having the salt of the user available, returns the salt to the client 

(2). Then the client indicates that it wants to authenticate using the Plain method by sending an 

AuthPlain message (3), with the application name, the user’s username and hashed password, the IP 

address and the listening port to receive notifications about policy changes. The server then sends the 

message Authenticating if the authentication method is allowed or Not_Allowed if it is not (4), thus 

terminating the handshake. If the authentication method is supported, then the server compares the 

received hashed password (s’) with the hashed password that it knows (S), sending an OK message if 

they match and an NOK message otherwise (5). 

Table 18. Hash-based Password Authentication Protocol messages. 

# Client Network Server 
1 username, s → GetSalt username  
2 username, s, salt ← salt username, S = Hash(s + 

salt), salt 
3 username, s, salt, s’ = 

Hash(s + salt) 
→ AuthPlain appName username s’ 
IP port 

username, s’, S, salt 

4 username, s, s’, salt ← Authenticating / Not_Allowed username, s’, S, salt 
5 username, s, s’, salt ← OK/NOK username, s’, S, salt 

A.2 Challenge-response authentication mechanism 

This section will present the implementation details regarding the challenge-response authentication 

mechanism protocol. 

The protocol implemented to use this mechanism is shown in Table 19 and starts by sending a 

GetSalt message indicating the user’s username (1). The server then replies with the salt value used to 

hash the password (2). The client then sends an AuthChallenge message with its username and 

challenge to the server (3). If the server allows this authentication mechanism to be used then it 
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replies with an Authenticating message or a Not_Allowed message otherwise (4). If it is allowed then 

the server sends (5) its challenge (s_chal) and the response for the client’s challenge (s_resp). The 

client then calculates the expected response, if it matches the received response then the client sends a 

AuthChallengeResponse message with its response for the server’s challenge (c_resp), if not, a NOK is 

sent to terminate the handshake (6). Finally, the server calculates the expected response from the 

client and sends an OK if it matches or a NOK if it does not match (7). Since the responses only match if 

each endpoint knows the shared secret (the hash of the password) then this mechanism authenticates 

both the client and the server. 

A requirement is imposed on the generated challenges: the client challenge must be even (i.e. 

the last bit has to be 0) and the server challenge odd (i.e. the last bit has to be 1). This requirement 

prevents the execution of reflection attacks using this authentication mechanism. 

Table 19. CRAM based authentication messages. 

# Client Network Server 
1 username, s → GetSalt username  
2 username, s, salt ← salt username, S = Hash(s + 

salt), salt 
3 username, s, salt, s’ = 

Hash(s + salt), c_chal = 
random() 

→ AuthChallenge username c_chal username, S, salt, c_chal 

4 username, s, s’, salt, 
challenge 

← Authenticating / Not_Allowed username, S, salt, c_chal 

5 username, s, s’, salt, c_chal, 
s_chal, s_resp, c_resp = hash 
(c_chal + s_chal + s’) 

← s_chal 
← s_resp 

username, S, salt, c_chal, 
s_chal = random(), s_resp = 
hash(s_chal + c_chal + S) 

6 username, s, s’, salt, c_chal, 
s_chal, s_resp, c_resp 

→ AuthChallengeResponse c_resp / 
NOK 

username, S, salt, c_chal, 
c_resp, s_resp, s_chal 

7 username, s, s’, salt ← OK/NOK username, s’, S, salt 

A.3 Two factor authentication 

This section will present the implementation details regarding the TFA authentication protocol and 

mechanism. 

There are five different messages used in this context: a “TFA” message sent by the server to 

indicate that a TFA is required, a “TFACert <certificate>” message sent by the client to provide the 

server with its public key certificate, a “<challenge>” sent by the server for the client to sign in order to 

be authenticated, a “AUTH_DENIED” message sent by the server if the public key certificate BI 

information does not match the stored BI for that user and a “TFASign <signature>” message sent by 

the client to send the signature to the challenge. 

Table 20 shows how these messages are used to perform a TFA (data related to the first 

authentication process is omitted for simplification). When a client is authenticating, there are several 

messages that are exchanged between the client and the server (1). Every authentication method 

mentioned ends with the server sending an OK or a NOK message to the client (6). Right before this 

message the server, if configured to do so, it can send a TFA message requesting a TFA (2). The client 
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must read the authentication certificate from the user’s CC and send it in a TFACert message to the 

server, whom then proceeds to validate the certificate (3). 

Each certificate in every CC is signed by a chain of government certificates, whose public key 

certificates are publicly available. The server, when it receives the user’s authentication certificate, 

checks its signature using the public key stored in the government’s public key certificate that has 

supposedly signed it. For this purpose the certificate path validator (CertPathValidator) is used. Using 

the CertPathValidator we can set our trust anchor, to which we set the government’s certificate that 

the server possesses, and build the chain of certificates to validate the user’s certificate that we 

received. Finally, since the government has an OCSP endpoint publicly available which we can use, we 

also activate the OCSP protocol to check the revocation status. After validating the user’s certificate we 

then extract the BI from it can compare it with the BI stored in the database. If they match then the 

server sends a challenge to the client (4), who signs it and sends the signature back (5), otherwise the 

server sends an AUTH_DENIED message and the authentication fails. Because the server has the public 

key certificate validated, it can verify the received signature. If the signature matches, the TFA succeeds 

and the server then sends the OK message. Otherwise a NOK message is sent instead (6). 

Table 20. Two factor authentication protocol. 

# Client Network Server 
1  ←→ Authentication mechanism  
2 cert ← TFA  
3 cert → TFACert <certificate> BI, cert, certCA, challenge 
4 cert ← <challenge> / AUTH_DENIED BI, cert, certCA, challenge 
5 cert, challenge, signature → TFASign <signature> BI, cert, certCA, challenge 

6 cert, challenge, signature ← OK / NOK 
BI, cert, certCA, challenge, 
signature 

A.4 SSL/TLS with certificates 

This section will present the implementation details regarding the protocol to activate the SSL/TLS 

protocol during the authentication phase. 

This method, shown in Table 21, starts like the others, by using an unsecure and a non-

encrypted channel. First the client sends a request to upgrade the channel using SSL/TLS by sending a 

UP_SSL message (1). The server then replies with Authenticating if it allows the upgrade or 

Not_Allowed if not (2). Then the server sends the port where it will be listening for the new connection 

and terminates (3). The client then connects to the new port and starts the SSL/TLS handshake 

process, which is provided by the Java language. If the loaded public key certificate contains the public 

key that matches the private key used by the server, then the server is authenticated and a session key 

agreed that will encrypt further communications. After that we still require to authenticate the client 

and to make sure that the server is not an impostor that was able to replace the public key certificate 

on the client side, so we start the challenge-response mechanism proposed in section 4.4.1.2. 
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Table 21. SSL/TLS with certificates upgrading protocol. 

# Client Network Server 
1 username, s → UP_SSL  
2 username, s ← Authenticating / Not_Allowed  
3 username, s ← port  
4 username, s ←→ Challenge-Response 

mechanism 
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Appendix B – CoherentPaaS project and its applicability 

In this appendix we will introduce CoherentPaaS(“CoherentPaaS,” n.d.), a European project about a 

platform that aims to provide a coherent view of a cloud environment by providing an abstraction 

layer for several different data stores, in which we are involved in. 

This appendix is divided as follows: Section B.1 will provide an overview of the CoherentPaaS 

protect and section B.2 will discuss the potential applicability of it as a data store abstraction layer for 

S-DRACA and the work done on top of it.  

B.1 Overview 

In this section we will present an overview of the CoherentPaaS project and the goals it aims to 

achieve. 

CoherentPaaS is a European project with several different development branches. It has a 

common query engine, which will allow applications to access data from different data stores and 

cloud services in a unified and integrated manner through a common query engine. It also has a 

holistic transactional API to provide coherence between different data stores and orchestrates 

transactions transparently to the applications. This holistic transactional component will provide these 

transactional functionalities in an ultra-scalable manner while retaining the ACID (i.e. atomicity, 

consistency, isolation and durability) properties. Because this project will provide a rich PaaS with 

different data stores, which are optimized for particular tasks, data and workloads, the need to copy 

and translate big quantities of data from one data store to another is removed. 

Another objective of this project is to abstract not only relational data stores, but non-relational 

data stores as well. It will also provide a complex event processing (CEP) engine which will be 

integrated into the common query engine, to consume data from the data stores as events and store 

the results back into a data store. The main challenges for this project is to enable the data stores to be 

supported (both relational, the non-relational and even the CEP engine) to provide some sort of 

transactional functionality and the design of the common query language, which will have to abstract 

very different data stores in terms of syntax and provided functionalities. 

To test the correctness and performance of the components developed in the project, we will 

have several use cases which will use the CoherentPaaS for different purposes and with different 

needs. 

B.2 Applicability 

In this section we will discuss the applicability of the CoherentPaaS solution in the context of the work 

presented in this dissertation. 

As we have discussed before in section 5.3.2, our work provides a way to design different 

Business Schema generators. Normally, we would require a different generator for different data 
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stores, unless the syntax of the querying language, the provided functionalities and the supported 

operations by the driver (e.g. JDBC) are the same. Furthermore, creating a generator for a non-

relational data store is not always easy and requires some functionalities that are not initially 

supported to be implemented in the Business Schemas. 

CoherentPaaS has the potential to make it trivial to apply our work to different data stores, by 

developing a Business Schema generator for the CoherentPaaS’ own common query engine instead of 

each particular data store. However, the result of a select statement on the common query engine 

might include results from several data stores, including the results of non-relational data stores that 

were transformed into a table format, which we are not able to trace back (i.e. which data store 

provided which column data), so the insertion, modification and deletion of data through the indirect 

access mode might be a problem. 

 

  


