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Abstract

AlGaN deep ultraviolet light-emitting diodes (DUV LEDs) have a wide variety of poten-
tial applications, including uses for sterilization, water purification, and UV curing and in
the medical and biochemistry fields. However, the wall-plug efficiency (WPE) of AlGaN
DUV LEDs remains below values. We have developed crystal growth techniques for
wide-bandgap AlN and AlGaN and, using these techniques, fabricated DUV LEDs in the
220–350 nm-band. Considerable increases in the internal quantum efficiency (IQE) of
AlGaN quantum wells (QW) were achieved by developing low-threading dislocation
density (TDD) AlN grown on sapphire substrates. The electron injection efficiency (EIE)
was substantially increased by introducing a multi-quantum barrier (MQB) as an electron-
blocking layer (EBL). The light-extraction efficiency (LEE) was also improved by using a
transparent p-AlGaN contact layer, a highly reflective (HR) p-type electrode, and an AlN
template fabricated on a patterned sapphire substrate (PSS). Further improvements were
made by implementing a reflective photonic crystal (PhC) p-contact layer. We demon-
strated a record external quantum efficiency (EQE) of 20.3% for an AlGaN UVC-LED.

Keywords: deep-UV LEDs, AlN, AlGaN, MOCVD, threading-dislocation density, internal
quantum efficiency, light-extraction efficiency

1. Introduction

Growth techniques for AlN/AlGaN semiconductors and recent advances in AlGaN-based

deep-ultraviolet (DUV) light-emitting diodes (LEDs) are demonstrated. DUV LEDs operating

in the 220–350-nm band were realized by developing new crystal growth techniques for the

wide-bandgap semiconductors, AlN and AlGaN. The efficiency of an AlGaN DUV LED was

significantly increased through past 10 years developments, by increasing in internal quantum

efficiency (IQE), which was achieved by developing low threading dislocation density (TDD)

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



AlN crystals on sapphire substrates, as well as, by improving electron injection efficiency (EIE)

and light extraction efficiency (LEE).

In Section 2, the background to this research, including device applications, history and the

current status of DUV LEDs, is described. In Section 3, we describe the development of the

crystal growth techniques undertaken in order to obtain high-quality AlN and AlGaN crystals.

The realization of devices with high IQE and fabrication of the LEDs are dealt with in Sections

4 and 5, respectively. We discuss ways in which EIE and LEE can be improved, and the future

prospects for DUV LEDs, in Sections 6, 7 and 8, respectively.

2. Research background of UV LEDs

The development of semiconductor light sources operating in the DUV region, such as DUV

LEDs and laser diodes (LDs), is an important subject because these devices are required for a

wide variety of applications. Figure 1 gives an overview of these applications, divided into

three wavebands. Potential applications for UVC and UVB lights are in sterilization, water

purification, medicine and biochemistry, agriculture, and as light sources for high-density

optical memory. UVA together with UVB and UVC lights also have potential for curing,

adhesives, printing and coating [1, 2].

Figure 2 shows the wavelength range of UV light from UVA to UVC, and possible wavelength

range of DUV LEDs developed by AlGaN. As well known, UVA light causes sunburn and

UVB light is dangerous light, which causes skin cancer or cataracts. Indicated curve in Figure 2

with peak wavelength at 265 nm in UVC waveband is known as sterilization effects curve,

which well matches to the absorption spectrum of DNA (deoxyribonucleic acid). The wave-

length between 260 and 280 nm is effective for sterilization, water purification and surface

Figure 1. Potential applications of DUV LEDs and LDs.
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disinfection. As shown in Figure 2, the wavelength range covered by AlGaN LEDs is from

UVA to UVC.

The direct transition energy range of AlGaN covers the region from 6.2 eV (AlN) to 3.4 eV [2].

Figure 3 shows the bandgap of the wurtzite (WZ) AlInGaN material system, as well as, the

lasing wavelengths of several kinds of gas lasers. AlGaN is a direct transition semiconductor

having an emission wavelength range from 200 to 360 nm. Both p- and n-type conductivities are

obtained in DUV wavelength range. AlGaN is physically hard and suitable for long lifetime

devices. Also, the material is free from harmful elements, i.e., As, Hg and Pb. Therefore, AlGaN

is considered to be the most appropriate semiconductor to develop a DUV LED [2].

Several research groups have started the research on AlGaN-based UV LEDs with wavelength

below 360 nm, between 1996 and 1999 [3–5]. In the US, the effort, directed at DUV light

sources, was driven by DARPA’s Semiconductor Ultraviolet Optical Sources (SUVOS) pro-

gram. The sub-300 nm DUV LEDs were achieved by a group at the University of South

Carolina between 2002 and 2006 [6–8]. The shortest wavelength (210 nm) LED using an AlN

emitting layer was reported by a group at NTT in 2006 [9]. We started research into AlGaN-

based DUV LEDs in 1997, and reported the first efficient DUV (230 nm) photoluminescence

(PL) from AlGaN/AlN QWs [10], and a 330 nm-band AlGaN-QW UV LED on SiC in 1999 [4].

We have also developed highly efficient UV LEDs by incorporating In into AlGaN [1, 11, 12].

We demonstrated cw operation with powers of several mWs for 340–350 nm InAlGaN-QW

UV LEDs on both GaN single-crystal substrates [13] and sapphire substrates [14].

The development of 260–280 nm AlGaN DUV LEDs performed in 2005–2010 was an important

step in the progress toward sterilization applications. High IQEs in AlGaN and quaternary

InAlGaN QWs were achieved in 2007 [15–17], by developing a low-threading dislocation

density (TDD) AlN buffer layers on sapphire substrates utilizing a pulse-flow growth method.

EIE was significantly increased by introducing a multi-quantum barrier (MQB) [18]. Wide

Figure 2. Classification of UV light and the wavelength range achieved by AlGaN DUV LEDs.
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range emissions from 222 to 351 nmwere demonstrated in AlGaN and InAlGaN LEDs [17–21].

We began to improve LEE of UVC LEDs by introducing a transparent p-AlGaN contact layer

and a reflective p-type electrode [22–24]. We also developed commercially available DUV LED

modules to be used for sterilization in 2014 [25, 26].

Sensor Electronic Technology (SET) developed the first commercially available LEDs with

wavelengths ranging between 240 and 360 nm [27–28]. They reported a maximum EQE of

11% for a 278 nm LED in 2012 [28]. They also did detailed investigations into the properties of

AlGaN epilayers and UVC LED devices [29–31].

Since 2010, many companies have started developing UVC LEDs aiming at sterilization appli-

cations. Nikkiso has developed highly efficient UVC LEDs [32–34] and reported EQEs of over

10% [32]. They improved the LED properties by introducing an encapsulating resin that does

not deteriorate under UVC radiation [34]. Crystal IS developed efficient 265 nm LEDs on bulk

AlN substrates fabricated by a sublimation method [35, 36], and Tokuyama developed UVC

LEDs on a thick transparent AlN layer grown, also on bulk AlN substrates, by hydride vapor

phase epitaxy (HVPE) [37–40]. Nichia has developed high wall-plug efficiency (WPE) UVC

LEDs [41, 42] using a lens bonding technique [42]. Also, M. Kneissl’s group in the Technical

Figure 3. Relationship between the direct transition bandgap energy and the lattice constant of the wurtzite (WZ)

InAlGaN material system and the lasing wavelengths of various gas lasers.
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University of Berlin recently carried out a series of studies on the properties of AlGaN

epilayers and AlGaN and InAlGaN UV LEDs [2, 43–45]. The reported EQEs for AlGaN and

InAlGaN UVA-UVC LEDs up to 2015 are summarized in Figure 1.1 of Ref. [2].

In spite of continuous efforts to develop an AlGaN DUV LED, its wall plug efficiency (WPE) is

still as low as 3%, which is much lower than that of InGaN blue LEDs. The limited efficiency of

DUV LED is mainly due to the following three factors:

1. The IQE of AlGaN is sensitive to TDD and still much lower than that of InGaN.

2. Hole concentration of p-AlGaN is low and the carrier injection efficiency (IE) is low.

3. By the light absorption by p-GaN contact layer, the LEE is quite low.

For InGaN QWs, high IQE more than 80%was already demonstrated. On the other hand, IQE at

around 50% is standard value after developing the low-TDD (5 � 108 cm�2) AlN templates on

sapphire. We need to develop further reduction of TDD of AlN, i.e. TDD of below 1�108 cm�2,

in order to achieve more than 80% IQE. AlN single crystal wafers have advantages for high

IQE, although they are expensive for commercially available DUV LEDs. The hole concentra-

tion of p-AlGaN used in UVC LEDs is as low as 1�1014 cm�3 owing to its deep acceptor levels,

i.e., 240 (GaN)–590 meV (AlN). Electron overflow to the p-side layers results in the reduction of

EIE for UVC LEDs. Since the hole density of p-type AlGaN is not very high, we use p-GaN for

the contact layer. This results in a significant reduction in LEE, typically to below 8%, owing to

the strong absorption of DUV light.

The usual value of EQE for 270 nm UVC LEDs obtained by our group is approximately 7%,

which is determined by the IQE, EIE, and LEE of approximately 60, 80, and 15%, respectively.

The technical issues to increase IQE, EIE and LEE are described in the following sections.

3. Growth of high-quality AlN on sapphire substrates

In order to obtain low-TDD, crack-free AlN buffer layer with atomically flat surface on sap-

phire, we introduced an ‘ammonia (NH3) pulsed-flow multilayer (ML) growth method [15].

Figure 4 shows a schematic view of the growth control method and a typical gas flow

sequence using pulsed and continuous gas flows.

The samples were grown on sapphire (0001) substrates at 76 Torr by metal-organic chemical

vapor deposition (MOCVD). First, an AlN nucleation layer and a ‘buried’ AlN layer were

deposited, both by NH3 pulsed-flow growth. The pulsed-flow mode is effective for initial

high-quality AlN growth on sapphire because of the increased migration of the precursor.

After the growth of the first layers, we introduced a continuous-flow mode AlN growth to

reduce the surface roughness. By repeating the pulsed- and continuous-flow modes, we can

obtain crack-free, thick AlN layers with atomically flat surfaces. By maintaining Al-rich

growth conditions, we can obtain stable Al (+c) polarity, which is necessary for suppressing

polarity inversion from Al to N. The detailed growth conditions are described in Ref. [15, 19].

The advantages in comparison with former approaches [46, 47] are that the method is in-situ
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process, and low TDD AlN can be obtained without the need for AlGaN layers, yielding a

device structure with minimal DUV absorption.

Figure 5 shows the full-width at half maximum (FWHM) of X-ray diffraction (10–12) ω-scan

rocking curves (XRC) for various stages in the ML-AlN growth. This was reduced from 2160 to

550 arcsec by executing the pulsed-flow mode twice. Figure 6 shows atomic-force microscope

Figure 4. Gas flow sequence and schematic view of the growth control method used for the NH3 pulsed-flow multilayer

(ML)-AlN growth technique.

Figure 5. FWHM of the X-ray diffraction (10–12) ω-scan rocking curve (XRC) at various stages in the growth of the ML-

AlN layer.
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(AFM) images of the surface of ML-AlN on sapphire at various stages of growth. We can see

that the surface improves as more layers are grown, ending with an atomically flat surface. The

typical root-mean-square (RMS) of the surface roughness was 0.16 nm, as seen in Figure 6.

Figure 7 shows (a) a schematic illustration of the structure and (b) a cross-sectional transmis-

sion electron microscope (TEM) image of an AlGaN/AlN template including ML-AlN buffer

layer grown on a sapphire substrate. The typical FWHMs of the (10–12) and (0002) XRCs of the

ML-AlN were approximately 330 and 180 arcsec, respectively. This was grown in a 3 � 2 inch

MOCVD reactor [25]. The minimum corresponding FWHMs obtained using a 1 � 2 inch

MOCVD reactor were approximately 290 and 180 arcsec, respectively. The minimum edge-

and screw-type dislocation densities were below 5 � 108 and 4 � 107 cm�2, respectively, as

observed in the TEM image. To further reduction of TDD, we introduced an AlN epitaxial

lateral overgrowth (ELO) technique on a patterned sapphire substrate (PSS) and obtained

TDDs of the order of 107 cm�2.

4. Increasing the internal quantum efficiency (IQE)

Figure 8 shows a cross-sectional TEM image of an AlGaN multi-quantum well (MQW) of a

227 nm DUV LED fabricated on a ML-AlN buffer. In order to suppress the spontaneous

Figure 6. AFM images of the surface of the ML-AlN layer with an area of 5 � 5 μm2 at various stages in the growth.

Figure 7. (a) Schematic diagram and (b) cross-sectional TEM image of an AlGaN/AlN template including a 5-step ML-

AlN buffer layer grown on a sapphire substrate.
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polarization effects induced in the wells, very thin quantum well was used. It is important to

obtain atomically smooth hetero-interfaces to achieve high IQE from such thin QWs. As shown

in the cross-sectional TEM image in Figure 8, the three 1.3 nm-thick QWs have atomically-flat

hetero-interfaces.

Figure 8. Cross-sectional TEM image of the quantum well region of an AlGaN MQW DUV-LED.

Figure 9. Photoluminescence (PL) spectra of AlGaN QWs onML-AlN templates with various FWHMs of the XRC (10–12)

measured at room temperature.
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We observed a considerable increase in the DUV emission from AlGaN-QWs by fabricating

them on low TDD AlN templates [16, 17]. Figure 9 shows the photoluminescence (PL) spectra

of AlGaN QWs with emission peaks at around 255 nm fabricated on ML-AlN measured at

room temperature (RT). We used a 244 nm Ar-ion second-harmonics generation (SHG) laser

for the excitation of the sample. The excitation power density was approximately 200 W/cm2.

The PL intensity significantly increases with narrower FWHM. We can see from Figure 9 that

the efficiency depends strongly on the edge-type TDDs.

Figure 10 shows the intensity of the PL peak at 255-nm measured at RT as a function of the

FWHM of the XRC (10–12). Reducing the FWHM from 1400 to 500 arcsec increases the PL

intensity by a factor of about 80. Between 500 and 800 arcsec the PL intensity increases rapidly.

This rapid increase can be explained by a reduction in the non-radiative recombination rate as

the distance between the TDs becomes greater compared with the carrier diffusion length in

the QW. We obtained similar degrees of improvement for QWs operating at other wave-

lengths. The relationship between IQE and TDD in DUV AlGaN-QWs was also investigated

in Ref. [27, 48].

The quaternary alloy InAlGaN is also a strong candidate as a material for realizing DUV LEDs,

since the inclusion of In leads to efficient UV emission as well as higher hole concentration. Just

a few percent of In in AlGaN is needed to obtain high IQE, where the increases in efficiency are

due to the In segregation effect, an effect previously investigated for the ternary alloy, InGaN.

We have described the advantages of the use of InAlGaN in Ref. [1, 11, 12, 14, 17].

We took up the challenge of developing the crystal growth technology needed to obtain high

quality InAlGaN alloys operating at the ‘sterilization’ wavelength (280 nm) [17]. Growing

crystals of InAlGaN with a high Al content is relatively difficult, because incorporating In

becomes more challenging as the growth temperature is increased, which is necessary in order

Figure 10. PL intensity of AlGaN-QWs as a function of the FWHM of the XRC (10–12) of AlGaN buffers measured at

room temperature.
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to maintain the crystal quality. We obtained high-quality InAlGaN with a high amount of Al

(>45%) by using epitaxy at a relatively low growth rate, i.e., 0.03 μm/h. The intensity of the

light at 280 nm emitted by an InAlGaN QW at RT was increased by a factor of 5 by reducing

the growth rate from 0.05 to 0.03 μm/h.

5. AlGaN- and InAlGaN-based UVA-UVC LEDs

We fabricated AlGaN and InAlGaN MQW DUV LEDs on low-TDD AlN templates [15–26].

Figure 11 shows a schematic diagram of the structure of an AlGaN-based DUV LED fabricated

on a sapphire substrate. Table 1 shows typical design values for the fraction of Al (x) in the

AlxGa1�xN wells, in the buffer and barrier layers, and in the electron-blocking layers (EBLs)

used for 222–273 nm AlGaN-MQW LEDs. Large compositions of Al in AlGaN were used to

obtain DUV LEDs operating at short wavelengths, as shown in Table 1. The detail layer

structures and device geometries of the LEDs are described in Ref. [15, 17]. The output power

was measured using a Si photodetector located behind the LED sample. The photodetector

was calibrated by measuring the luminous flux from a flip-chip LED. The forward voltages

Figure 11. Schematic structure of a typical AlGaN-based DUV LED fabricated on a sapphire substrate.
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(Vf) of the bare wafer and the flip-chip samples were approximately 15 and 8 V, respectively,

with an injection current of 20 mA.

Figure 12 shows the electroluminescence (EL) spectra of the AlGaN and InAlGaNMQW LEDs

measured at RT. We obtained single-peak operations for LED samples with emission wave-

length from 222 to 351 nm. Figure 13 shows the EL spectra of a 227 nm AlGaN LED on a log

scale [19]. The deep-level emissions with wavelengths at around 255 and 330–450 nm are more

Table 1. Typical design values of the fraction of Al (x) in the AlxGa1�xN wells, the buffer and barrier layers, and the

electron-blocking layers (EBLs) used for 222–273 nm AlGaN-MQW LEDs.

Figure 12. Electroluminescence (EL) spectra of fabricated AlGaN and InAlGaN MQW LEDs with emission wavelengths

between 222 and 351 nm, all measured at room temperature (RT) with injection currents of around 50 mA.
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than two orders of magnitude smaller than the main peaks. The output power of the 227 nm

LED was 0.15 mW at an injection current of 30 mA, and the maximum EQE was 0.2% under

pulsed operation at RT. Figure 14 shows (a) the EL spectra for various injection currents and

(b) the current-output power (I-L) and current-EQE (ηext) (I-EQE) characteristics for a 222 nm

AlGaN-MQW LED measured under pulsed operation at RT [20]. Single-peak operation at

Figure 13. EL spectra on a log scale of a 227 nm AlGaN DUV LED for various injection currents.

Figure 14. (a) EL spectra for various injection currents and (b) the output power and EQE (ηext) vs current characteristics

for a 222 nm AlGaN-MQW LED measured under pulsed operation at RT.
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222 nm, which is the shortest wavelength ever reported for a QW LED, was achieved. The

output power was 0.14 μW at an injection current of 80 mA, and the maximum EQE was

0.003%.

It has been reported that ‘normal’ c-axis (vertical) emission is difficult to obtain from an AlN

(0001). This is because the optical transition between the conduction band and the top of

the valence band is mainly only allowed for light that has its electric field parallel to the c-axis

(E//c) [9]. The lateral propagation of the transvers-magnetic (TM) mode emission results in a

significant reduction of LEE. Therefore, short wavelength AlGaN UVC LED shows a very low

LEE. Several groups have reported on this [49, 50]. Banal et al. reported that the critical Al

composition for ‘polarization switching’ could be expanded to approximately 0.82 by using

very thin (<1.5 nm) AlGaN quantum wells on an AlN/sapphire template [49]. We investigated

the variation in the spectrum of a 222 nm AlGaN QW LED with the angle of emission, and

demonstrated that normal vertical emission can be obtained, even at short-wavelengths, for

LEDs with as much as 83% Al [20].

6. Increasing the electron injection efficiency (EIE) by introducing an MQB

EIE into the QW is reduced due to the electron leakage caused by the low hole concentrations

in the p-type AlGaN layers. The EIE reduction is particularly severe for LEDs with wavelength

shorter than 260 nm, because an electron barrier height of an EBL becomes smaller [17]. We

introduced a MQB [51, 52] to serve as an EBL, and consequently achieved a marked increase in

EIE [18].

Figure 15 shows schematic illustrations of the electron flow for an AlGaN DUV LED with (a) a

MQB EBL and (b) a conventional single barrier EBL. In usual case, we are using single barrier

EBL for 250–280 nm UVC LEDs. However, the electron barrier height of the single barrier EBL

is determined by the bandgap of the barrier material, and it is not sufficiently high for UVC

LED with wavelength shorter than 260 nm. On the other hand, we can increase the ‘effective’

barrier height of the EBL by introducing MQB. Even electrons having higher energy above the

MQB band-edge can be reflected by the multi-reflection effects of the MQB, and injected into

the QWs, resulting in higher EIE.

Figure 16 shows the electron transmittance through an AlGaNMQB and a conventional single

barrier EBL for a 250 nm AlGaN LED calculated by a transfer-matrix method. It was shown,

using barriers with thickness modulation, that the ‘effective’ barrier height of an AlGaN/

AlGaN MQB is up to twice that of a conventional single-barrier EBL.

Figure 17 shows a schematic diagram of the structure of a 250 nm AlGaN QW DUV LED with

an MQB EBL and a cross-sectional TEM image of a fabricated device. We carried out experi-

ments to find an appropriate MQB structure, and found that the insertion of an initial thick-

barrier is important for reflecting low energy electrons. We also found that thin barriers

contribute to the reflection of higher-energy electrons. The optimum MQB comprised five

layers of Al0.95Ga0.05N/Al0.77Ga0.23N with thicknesses of 7/4/5.5/4/4/2.5/4/2.5/4 nm, in which
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Figure 15. Schematic images of the electron flow in AlGaN DUV LEDs with (a) a MQB EBL and (b) a conventional single

barrier EBL.

Figure 16. Electron transmittance through AlGaN/AlGaN MQB (red-line) and conventional single barrier EBL (black-

line) calculated for a 250 nm-band AlGaN-QW LED.
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the barriers are in bold type and the valleys are normal type. The coherence length for

obtaining the multi-reflection effect of the MQB means the total thickness of the MQB should

be less than 40 nm.

Figure 18 shows (a) the I-L and (b) I-EQE characteristics for 250 nm AlGaN MQW LEDs with

an MQB and with a single-barrier EBL, both measured under cw operation at RT. These show

significant increases in output power and EQE when the single-EBL is replaced by the MQB.

The maximum output powers of LEDs with the MQB and with the single-barrier EBL are

15 mWand 2.2 mW, respectively, and the introduction of the MQB has increased the EQE by a

Figure 17. Schematic structure and cross-sectional TEM image of a 250 nm AlGaN QW DUV LED with an MQB.

Figure 18. (a) Current-output power (I-L) and (b) current-EQE (ηext) characteristics for 250 nm AlGaN-MQW LEDs with

an MQB and with a single-EBL.
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factor of approximately 4. From Figure 18, we estimate that the EIE would have been

improved from approximately 25% to more than 80% by introducing the MQB.

Figure 19 shows the I-L characteristics for a 237 nm AlGaN MQW LED with an MQB and a

234 nm LED with a single-barrier EBL, both measured under cw operation at RT. The increase

in EIE when using the MQW was found to be extremely high. The output power has been

increased by a factor of 12 by replacing the single-barrier EBL with a MQB.

Figure 20 shows the wavelength dependence of the EQE for AlGaN DUV LEDs with MQBs

and single-barrier EBLs. Introducing the MQB has increased the EQE by 10, 4 and 3 times for

235, 250 and 270 nm AlGaN LEDs, respectively. We obtained a cw output power of 33 mW

from a 270 nm AlGaN-MQW LEDwith an MQB on a bare chip, but expect to get higher output

power by using flip-chip geometry and heat dissipation. The value of EQE was 3.8% in the

absence of any means to increase LEE [21].

RIKEN and Panasonic have developed commercially available UVC LED modules for use in

sterilization in 2014 [25, 26]. To develop commercially available devices with constant high

EQEs and long device lifetimes, the reproducibility and uniformity of the AlN template and

the AlGaN LED layer structure need to be maintained. Reproducibility is particularly difficult

because the growth conditions are very sensitive to the vapor-reaction between NH3 and

TMAl induced by high growth temperatures (1250–1400�C). We achieved highly uniform

ML-AlN templates on sapphire in a 3 � 2 inch MOCVD reactor using pulsed NH3 flow. The

Figure 19. Current-output power (I-L) characteristics for a 237 nm AlGaN-MQW LED with an MQB and a 234 nm

AlGaN-MQW LED with a single-EBL.
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fluctuation in FWHM for these was within 4%. We consistently obtained FWHMs of the XRC

(10–12) of 340 arcsec for these templates. These highly uniform and low TDD templates are

suitable for producing commercial DUV LEDs. Figure 21 shows (a) a photograph of a 270 nm

10 mW DUV LED module containing 6 chips and (b) the operating properties of this module

for applications to sterilization. Lifetimes longer than 10,000 h have already been achieved for

devices with EQEs of 2–3% [25, 26].

Figure 20. Wavelength dependence of the EQE of AlGaN DUV-LEDs with MQBs and single-EBLs.

Figure 21. (a) Photograph of a commercially available 270 nm 10 mW DUV LED module developed by RIKEN and

Panasonic for applications to sterilization and (b) the operating properties of this module.

Recent Progress in AlGaN Deep-UV LEDs
http://dx.doi.org/10.5772/intechopen.79936

143



7. Increasing the light-extraction efficiency (LEE)

Improving the LEE is particularly important for the development of AlGaN DUV LEDs,

because LEE is currently quite low in comparison with that of InGaN-based blue LEDs.

However, increasing LEE is not so easy because of the scarcity of suitable transparent,

conducting p-type contact layers and transparent p-type electrodes, and also the lack of highly

reflective p-type electrodes applicable to UVB-UVC range.

Figure 22 shows schematic diagrams of several structures designed to improve LEE, and the

approximate values of LEE calculated for them [24]. In a conventional DUV LED, the light

going upward from the QWs is completely absorbed by the p-GaN contact layer. The light

going downward is reflected at the sapphire/air interface by total internal reflection. As a

result, the LEE is less than 8%. Although we have used photonic nanostructures on the surface

of the sapphire substrate or an encapsulating technique, the improvement in LEE is not

sufficiently high (a maximum of approximately 15% is expected). To improve LEE, we must

introduce a transparent contact layer and a highly reflective p-type electrode. If we use a

transparent p-AlGaN contact layer and an electrode with a reflectivity of 80%, LEEs more than

20% can be obtained. Further improvements can be made from light scattering effects obtained

by having an AlN buffer layer grown on a patterned sapphire substrate (PSS). LEEs of

approximately 35% are expected by combining a transparent contact layer with a reflective

electrode and a PSS. Yet more improvements can be made by having a vertical LED with a

back-surface photonic structure, which can be realized by removing the sapphire substrate.

LEEs of >70% are expected for such LEDs, as analyzed in Ref. [53]. We also proposed using a

highly reflective (HR) PhC for the p-contact layer, as we discuss later, which has almost perfect

reflectivity for UV light. Using a structure with a transparent p-AlGaN contact layer, a HR-

PhC on p-AlGaN, and vertical geometry with a backside photonic patterned structure for light

extraction, EQEs of more than 40% are expected for UVC LEDs.

We demonstrated a DUV LED with a transparent p-AlGaN contact layer and a reflective p-

type electrode [24]. We replaced the conventional Ni (20 nm)/Au (100 nm) p-type electrode

with a highly reflective Ni (1 nm)/Al (200 nm) electrode [54]. Figure 23 shows the relative

reflectivities of Ni/Al (200 nm) electrodes for various thicknesses of Ni (0.5–4 nm), and also that

Figure 22. Schematic illustrations of structures designed to improve the LEE of a DUV LED and rough estimates of the

values of LEE for each structure.
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for Ni (20 nm)/Au (100 nm), normalized to the reflectivity of Al (92%). Although the reflectivity

of Al metal is high (92%) in the DUV range, ohmic contact to p-AlGaN cannot be obtained. The

insertion of a thin layer of Ni to improve this causes a significant reduction in reflectivity.

Therefore, we did a thorough examination of the reflectivities of Ni/Al electrodes with very

thin Ni layers. We confirmed normal operation of a UVC LED with a Ni (1 nm)/Al (200 nm) p-

type electrode. The reflectivities of Ni (1 nm)/Al (200 nm) and Ni (20 nm)/Au (100 nm) elec-

trodes are approximately 76 and 31%, respectively, as shown in Figure 23.

Figure 24 compares the effect of the different p-type electrodes on (a) the I-L and (b) the I-EQE

characteristics of 279 nm AlGaN DUV LEDs with transparent p-AlGaN contact layers [54]. Using

the highly reflective Ni(1 nm)/Al(200 nm) in place of the conventional Ni(20 nm)/Au(100 nm)

electrode increases the EQE from 5 to 9% owing to the increase in LEE [54].We also confirmed that

Ni(1 nm)/Mg and rhodium (Rh) p-electrodes are effective to increase the LEE of UVC LED [55].

Increases in LEE were demonstrated for a 275 nm UVC flip-chip (FC) LED by using a trans-

parent p-type AlGaN contact layer, an Rh mirror electrode, an AlN buffer layer grown on PSS,

and an encapsulating resin. The effects of each of these were systematically investigated [56].

Conventional and LEE enhanced type LED structures were fabricated to investigate the effects

of the aforementioned features on LEE. Schematics of these are shown in Figure 25(a) and (b),

respectively. The structures were grown by MOCVD for a conventional LED on a 4 μm thick

AlN/sapphire template, and for a LEE enhanced type on an AlN/PSS. The detail layer and

devise structures were described in Ref. [56].

Figure 26 shows a photograph of the FC LED sample. An Al-coated Si submount was used for

the FC LED. The chip was encapsulated in hemispherical lens-like by silicon resin. We

Figure 23. Wavelength dependence of the reflectivity for various types of p-type electrode for AlGaN DUV LEDs.
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evaluated the transmittance of p-Al0.65Ga0.35N prior to introducing it as a p-type contact layer.

We confirmed almost perfect transparency for the p-AlGaN contact layer, and even the Mg

doping concentration was as high as 8 � 1019 cm�3 as measured by secondary ion mass

spectrometry (SIMS).

Figure 24. (a) Current-output power (I-L) and (b) current-EQE (ηext) characteristics for 279 nm AlGaN-MQW DUV LEDs

measured under cw operation at RT. comparison is made between LEDs with different p-type electrodes (conventional

Ni/Au and highly reflective Ni/Al p-electrodes).
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Figure 27(a) and (b) show the I-L and I-EQE characteristics for the conventional and LEE

enhanced type UVC LEDs under RT cw operation. The inset in Figure 27(a) shows the EL

spectra at 20 mA. Each spectrum has the same peak at 275 nm. The output power for both

Figure 25. Schematics of (a) conventional and (b) LEE enhanced UV-LED structures. In the LEE enhanced UV-LED

structure, we introduced a transparent p-type AlGaN:Mg contact layer, a Rh mirror electrode, a PSS, and an encapsulat-

ing resin.

Figure 26. Photograph of the flip-chip (FC) LED mounted on a Si submount with an Al coating. The chip size is

0.5 � 0.5 mm2 and it is encapsulated in resin with a hemispherical shape. The Si submount is in contact with the Al

baseplate. The inset shows a side view of the encapsulating resin.
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samples has good linearity, and the EQEs are almost constant up to 50 mA. The output power

was increased from 3.9 to 18.3 mW at 20 mA and from 9.3 to 44.2 mW at 50 mA, both by a

factor of five, by introducing LEE enhanced structure. These values correspond to EQEs of 4.3

and 20.3%, respectively. Thus, the EQE was substantially improved by including a transparent

p-AlGaN contact layer, an Rh mirror electrode, a PSS, and the lens-like encapsulating.

To clarify the individual effects on the EQE, each structure for LEE enhancement was intro-

duced step-by-step. Table 2 summarizes the device structures and the LED characteristics.

From Table 2, we found that the enhancement factors for introducing a transparent p-AlGaN

contact layer and Rh electrode, PSS, and lens-like encapsulation were approximately 3, 1.5, and

1.5, respectively.

The driving voltage of the LEDwas increased from 9 to 16 Vat 20 mA by introducing p-AlGaN

contact layer. The main reason for the increase in driving voltage is the increase of contact

resistant by introducing p-AlGaN contact layer. The WPE of the LEE enhanced type LEE

Figure 27. (a) Current-output power (I-L) and (b) current-EQE (ηext) characteristics for the conventional and LEE

enhanced UVC-LED. The inset in (a) shows the EL spectra of the LEDs at a direct current of 20 mA.

Table 2. Summary of the device structures and their LED characteristics. Samples no. 1 and 4 correspond to the

conventional and novel UV-LED structures, respectively. Samples no. 2 and 3 demonstrate the effects of including the

AlGaN:Mg/Rh layers and the PSS, respectively.
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remained 5.7%. Improving the conductivity of the p-AlGaN contact layer is important issue in

future for obtaining high WPE.

In summary of this section, LEE of the 275 nm AlGaN UVC LED was increased by approxi-

mately five times by introducing a transparent p-AlGaN contact layer, an Rh reflective elec-

trode, a PSS, and a lens-like encapsulating. A maximum EQE of 20.3% at 275 nm was obtained

by combining all of the aforementioned light extraction features.

8. Highly reflective (HR) PhC for increasing LEE

To improve the LEE of UVB and UVC LEDs, the introduction of a transparent contact layer

and a highly reflective electrode is important as indicated in the previous section. A p-AlGaN

layer with high Al composition (50–70%) is used for the transparent p-contact layer for UVC

LEDs, however, the low hole concentration of this layer leads an increase in the contact

resistance, resulting in a higher operating voltage.

In order to realize both high LEE and low voltage operation in DUV LEDs, we proposed using

a highly-reflective photonic crystal (HR-PhC) [57–60]. It is possible to reflect UV light effi-

ciently by using a 2-dimensional (2D) PhC on the surface of the p-GaN top contact layer. We

can obtain low contact resistance because the top p-GaN layer has a high hole concentration.

Therefore, a HR-PhC fabricated on p-GaN contact layer makes it possible to achieve not only

high LEE but also high WPE in DUV LEDs.

It is possible to increase LEE by lens bonding or lens-shaped encapsulation [34, 56], or by fabrica-

tion of a PhC on the backside of the device for suppressing the total reflection [40]. However, LEE

still remains low if we are unable to eradicate the strong absorption in the p-GaN layer.

We fabricated DUV LEDs with a HR-PhC on the p-AlGaN contact layer. The fabrication of a

uniform PhC with low damage made it possible to obtain high EQE [57]. Figure 28 shows a

schematic structure of DUV LED with and without a HR-PhC region fabricated on the p-

AlGaN contact layer. We used two-types of p-type electrodes, i.e., low-reflective (30%) Ni

electrode and highly-reflective Ni(1 nm)/Mg (80%) [55] electrode.

We performed a finite-difference time-domain (FDTD) analysis for obtaining an appropriate

HR-PhC design using the following Bragg equation [57]:

mλ=neff ¼ 2a (1)

where m is an integer, λ is the wavelength of the light, neff is the effective refractive index of the

PhC, and a is the lattice period of the PhC. Electromagnetic field analysis by the FDTD method

is suitable for analyzing structures with sub-wavelength size geometry, and is usually used for

the analysis of optical PhC devices. An air hole-type 2D PhC with hexagonal configuration was

assumed. We observe that a larger photonic bandgap is obtained with larger R/a, i.e., with R/

a = 0.4, where R is the radius of the holes in the PhC. The values used in this work were

λ = 280 nm, neff = 2.3, m = 4 and a = 250 nm [57–60].
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Figure 29 shows the schematic cross-sectional structures and electronic-field (E-field) map-

pings calculated by using FDTD method for 280 nm UVC LEDs (a) with and (b) without

reflective HR-PhC, which is fabricated in the p-AlGaN/p-GaN contact layer. To obtain high

reflectivity of UV radiation from the QW emitting region, we set the distance between the

bottom of PhC air-rod and the QW to be 60 nm [57]. As can be seen in Figure 29(b), the UV

light from the QWs propagates equally in all directions for a usual Led case. On the other

hand, if we introduce the HR-PhC, radiation from the QWs does not penetrate into the PhC, as

shown in Figure 29(a), resulting in realizing a highly-reflection of radiated light. From the

FDTD analysis, we found that the LEE is increased by factors of approximately 2.8 and 1.8 at

maximum by introducing the HR-PhC into the p-GaN and p-AlGaN contact layers, respec-

tively. We also found that the LEE enhancement factor significantly depends on the value of R/

a and that the appropriate R/a value is around 0.4 [57].

Based on these design, we fabricated DUV LEDs with HR-PhCs on the p-AlGaN contact layer.

We used nano-imprinting and inductively-coupled plasma (ICP) dry-etching to fabricate a

low-damage PhC. Figure 30 shows (a) a cross-sectional scanning electron microscopy (SEM)

image and (b) a high-resolution (HR) TEM image of the hexagonally configured PhC, as well

as (c) surface and (d) cross-sectional SEM images of the Ni-electrode.

The period, diameter and depth of the air-holes were 252, 100 and 64 nm, respectively,

confirmed by HR-TEM. Also, three-layer MQW and the 2-layer MQB-EBL located just below

the air-holes of the PhC were observed in the HR-TEM. Finally, Ni and Ni/Mg electrodes were

deposited via a tilted-evaporation method. We confirmed that the air-holes remained clear,

with partial evaporation of Ni at the edges.

Figure 31 shows (a) the I-L and (b) the I-EQE characteristics of 283 nm AlGaN DUV LEDs with

high-reflectivity Ni/Mg electrodes (reflectivity of >80%) with and without a PhC on the

Figure 28. Schematic diagram of the structure of DUV LEDs with and without a reflective PhC on the p-AlGaN contact

layer.
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transparent p-AlGaN contact layer. The LEDs were measured under continuous wave opera-

tion on the bare wafers at room temperature. The maximum EQEs of the LEDs with and

without the HR-PhC were 10 and 7.9%, respectively. The introduction of the PhC increased

the EQE by a factor of 1.23, which is almost the same as obtained by FDTD simulation [57]. We

also performed the same experiments using low-reflective Ni p-electrode, and obtained the

maximum EQEs with and without the HR-PhC of 6 and 4.8%, respectively. The relatively low

EQE of 4.8% is attributed to the low reflectivity of Ni. According to a simple estimate of the

relationships between the EQEs of 4.8% (Ni; 30%), and 7.9% (Ni/Mg; 80%) for the LEDs

without the PhC, the reflectance for the HR-PhC p-AlGaN with the Ni/Mg electrode is

Figure 29. Cross-sectional structures and electronic-field mappings calculated by using FDTD method for 280 nm DUV

LEDs (a) with and (b) without reflective PhC.
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estimated to exceed 90%. These results indicate that the surface damage caused to the PhC

during fabrication was negligible.

The value of R/a used in the experiments (R/a = 0.2) were not optimized value. If we had used a

larger value of R/a, i.e., R/a = 0.4, we would have expected to obtain a significantly higher LEE.

The LEE can be further increased by adopting FC technology and encapsulation. By introduc-

ing a PhC into the contact layer and reducing the operating voltage, it is expected that LEDs

with higher WPE can be obtained.

9. Summary

We have demonstrated on the technologies to develop high-efficiency AlGaN-based DUV

LEDs from the view point of increasing IQE, EIE and LEE. Significant increases in IQE of

Figure 30. (a) Cross-sectional SEM and (b) HR-TEM images of the PhC fabricated on the p-AlGaN contact layer, along

with (c) surface and (d) cross-sectional SEM images of a Ni electrode deposited on the PhC p-AlGaN layer by the tilted-

evaporation method.
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DUV emission have been achieved for AlGaN-QWs by developing a low-TDD AlN layer

grown on sapphire substrate. 222–351 nm DUV LEDs were made using this technology. The

EIE of the LEDs was increased significantly by controlling the electron flow using an MQB. We

also demonstrated improvements in LEE by using a transparent p-AlGaN contact layer, a

highly reflective p-electrode, an AlN buffer layer on a PSS, and an encapsulating resin. The

maximum EQE obtained was 20.3% for a 275 nm UVC LED, which is the highest EQE reported

so far. We also demonstrated that an HR-PhC fabricated on the p-contact layer significantly

increases the efficiency.

Figure 31. Comparison between the (a) I-L and (b) I-EQE characteristics of 283 nm AlGaN DUV LEDs with high-

reflectivity Ni/Mg electrodes (reflectance of >80%) with and without a PhC on the transparent p-AlGaN contact layer.
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