
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2014

Miguel Nuno de

Sousa Rocha

Sistema de Bloqueio de Computadores

Computer Locking System

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2014

Miguel Nuno de

Sousa Rocha

Sistema de Bloqueio de Computadores

Computer Locking System

Dissertação apresentada à Universidade de Aveiro para cumprimento dos

requesitos necessários à obtenção do grau de Mestre em Engenharia de

Computadores e Telemática, realizada sob a orientação cient́ıfica de Dr.

André Ventura da Cruz Marnôto Zúquete, Professor do Departamento de

Electrónica, Telecomunicações e Informática da Universidade de Aveiro

o júri / the jury

presidente / president Prof. Dr. Tomás António Mendes Oliveira e Silva

Professor Associado da Universidade de Aveiro

vogais / examiners committee Prof. Dr. André Ventura da Cruz Marnoto Zúquete

Professor Auxiliar da Universidade de Aveiro (orientador)

Prof. Dr. Carlos Nuno da Cruz Ribeiro

Professor Auxiliar do Instituto Superior Técnico da Universidade Técnica de Lisboa

agradecimentos /

acknowledgements

Primeiro, gostaria de agradecer ao meu orientador Professor André Zúquete

pela sua orientação e motivação durante todo o peŕıodo de realização deste

trabalho.

Aos meu pais e familiares, obrigado pelo investimento na minha formação

como homem, pela exigência e por todo o apoio.

Por último, um agradecimento a todos os meus amigos em especial ao meu

colega de laboratório Lúıs Silva pelas discussões, desabafos e brincadeiras.

Resumo O uso de vários dispositivos computacionais por pessoa está a aumentar

cada vez mais. Hoje em dia é normal dispositivos móveis como o smart-

phone, tablet e computador portátil estarem presentes no quotidiano das

pessoas e em muitos casos as pessoas necessitam de realizar tarefas na

sua vida profissional nestes dispositivos. Isto apresenta também um prob-

lema, como estes dispositivos acompanham o utilizador no dia a dia e pelo

facto de muitas vezes terem um valor monetário elevado faz com que estes

dispositivos sejam suscept́ıveis a roubos.

Esta tese introduz um sistema de bloqueio de computadores que se distingue

dos sistemas similares existentes porque, (i) é desenhado para funcionar in-

dependentemente do(s) sistema(s) operativo(s) instalado(s) no computador

portátil ou no dispositivo móvel, (ii) depende de um driver do firmware que

concretiza a operação de bloqueio fazendo com que seja resistente contra

formatação do dispositivo de armazenamento ou qualquer outro ataque que

tenho por base a utilização de software. É explorado então o funcionamento

de um dispositivo que tenha um firmware que respeita a especificação Un-

fied Extensible Firmware Interface (UEFI) assim como a programação de

drivers para este tipo de firmware. Foi também desenvolvido um protocolo

de segurança e são exploradas várias técnicas criptográficas passiveis de

serem implementadas.

Abstract The use of multiple computing devices per person is increasing more and

more. Nowadays is normal that mobile devices like smartphones, tablets

and laptops are present in the everyday life of a single person and in many

cases people use these devices to perform important operations related with

their professional life. This also presents a problem, as these devices come

with the user in everyday life and the fact that often they have a high

monetary value means that these devices are susceptible to theft. This

thesis introduces a computer locking system that distinguishes itself from

existing similar systems because (i) it is designed to work independently

of the Operating System(s) installed on the laptop or mobile device, (ii)

depends on a firmware driver that implements the lock operation making it

resistant to storage device formats or any other attack that uses software

operations. It is also explored the operation of a device that has a firmware

that follows the Unified Extensible Firmware Interface (UEFI) specification

as well as the development of drivers for this type of firmware. It was also

developed a security protocol and various cryptographic techniques where

explored and implemented.

Contents

Contents i

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Objective . 2

1.2 Contribution . 2

1.3 Document Structure . 3

2 Context 5

2.1 UEFI . 5

2.1.1 UEFI Structures . 6

UEFI System Table . 6

Handle database . 7

Protocols . 8

2.1.2 UEFI Driver model . 9

Driver Binding Protocol . 11

Service Binding Protocol . 11

2.1.3 UEFI System Partition . 12

2.2 Cryptography . 13

2.2.1 Cryptographic Hash Function . 13

2.2.2 Message Authentication Code . 13

2.2.3 Digital Signatures . 14

i

3 Related Work 17

3.1 Intel Anti-Theft Technology . 17

3.2 Absolute Computrace . 19

3.3 Prey . 22

4 System Architecture 25

4.1 Overview . 25

4.2 Low level locking: UEFI Driver . 26

4.2.1 Computer States . 26

4.2.2 Cryptographic protections . 27

4.2.3 CuCo context variables . 30

4.2.4 Ticket Structure . 31

4.2.5 Boot sequence . 33

4.2.6 Blocked Screen Stage . 33

4.3 Administration . 36

4.3.1 System Architecture . 36

4.3.2 CuCo Server . 36

Database . 36

Administration Interface . 36

Tickets Web Service . 37

4.4 Desktop Application . 37

4.5 Exploitation flow . 37

5 Implementation 39

5.1 Testing environment . 39

5.1.1 QEMU . 40

5.1.2 OVMF . 40

5.2 Implementation frameworks . 42

5.2.1 GNU-EFI . 43

5.2.2 TianoCore EDKII . 45

5.2.3 Java and Apache Tomcat . 46

5.3 UEFI Drivers . 47

5.3.1 UEFI Hashing Driver . 48

5.3.2 Cuco Driver . 50

ii

UEFI Variables . 51

UEFI Time Services . 52

UEFI Memory Allocation Services . 52

UEFI Media Access Services . 52

Ticket Validation . 53

GNU-EFI Library Functions . 53

Consuming Hashing Services . 54

5.3.3 Detailed Ticket Structure . 54

5.4 Administration . 56

5.4.1 WebServices and Web Managment Interface 56

5.4.2 Desktop Application installation script 58

6 Conclusion 61

6.1 Summary . 61

6.2 Final Conclusions . 62

6.3 Future Work . 63

Bibliography 65

iii

iv

List of Figures

2.1 Handle database. Retrieved from [1] . 8

2.2 Software Service Relationships. Retrieved from UEFI Specification 10

2.3 rEFInd Boot Manager menu. Retrieved from [2]. 12

2.4 Message authentication using a MAC mechanism. 14

3.1 Intel Anti-Theft locking screen. Retrieved from [3] 18

3.2 Intel Anti-Theft Architecture. Retrieved from [3] 19

3.3 The Absolute Computrace UEFI Driver. 20

3.4 On some platforms Absolute Computrace module can be enabled or disabled.

Retrieved from [4] . 22

3.5 Different types of devices running Prey. 23

4.1 The three developed components: UEFI Driver, Desktop Application and Web

Application . 26

4.2 CuCo States. 27

4.3 Certification Chain. 29

4.4 CuCo Booting Process Flowchart. 35

4.5 System Architeture . 36

5.1 UEFI Boot Process. (retrieved from [5]) . 41

5.2 Qemu emulator running TianoCore OVMF. 42

5.3 EDKII Platform Build Process Flow. (retrieved from [6]) 46

5.4 The driver that implements the EFI HASH PROTOCOL in the left and the

CuCo Driver that implements our booting protocol on the right. 48

5.5 Simplified booting process of a UEFI platform. Our CuCo Driver runs on every

boot and before the operating system. 50

v

5.6 CuCo Server components. The Web interface at left and the Web services

interface on the right . 57

5.7 The contents of the desktop application JAR file. 59

5.8 The customized package that is distributed for every user. 60

vi

List of Tables

2.1 UEFI System Table fields and description. 7

2.2 UEFI Boot Services used to manage protocols. 9

2.3 UEFI Boot Services used to query the handle database. 9

4.1 Ticket’s fields. 32

5.1 QEMU command line options used to boot OVMF. 40

5.2 GNU Compiler options used to compile UEFI compatible code. 44

5.3 Linker options used to build a UEFI executable. 44

5.4 Two examples of a Start and a Normal Ticket. 56

5.5 Two examples of a Blocking and a Freedom Ticket. 56

vii

viii

Chapter 1

Introduction

With the increase of stolen laptops and compromised data, lock and anti-theft mechanisms

are becoming more and more important. Several anti-theft mechanisms exist, such as Intel

Anti-Theft and Absolute Lojack, but they are not widespread. Intel Anti-Theft [7] relies

on a mini-computer system installed on the motherboard and running concurrently with the

main system, which makes this mechanism very expensive and, therefore, available only in

higher-end equipment. Absolute Lojack [8] makes use of UEFI but is only effective when

the computer runs a Windows operating system. There are also software-only solutions for

laptops and mobile devices such as Prey [9] but they are easily removable by formatting or

replacing the hard drive.

UEFI (Unified Extensible Firmware Interface) is a software interface specification that

was conceived to replace the old BIOS (Basic Input/Output System). It describes how the

communication is performed between the operating system and the computer firmware. This

specification provides boot and runtime services and protocols that are available to the operat-

ing system bootloader and to the operating system itself, making the boot process a standard

process. The same operating system can boot from several UEFI supported platforms without

the need to change the code of the operating system bootloader.

UEFI specification also describes a well-defined driver model. UEFI drivers are blocks of

code that are meant to provide an abstraction layer between UEFI modules and hardware

devices or software services specific to the platform (e.g. USB bus drivers or SCSI drivers).

It is worthwhile to say that the purpose of these drivers is to be used only in a preboot

environment and not after the loading of the operating system, where more efficient drivers

are normally used.

1

1.1 Objective

The objective of this work was to create a computer locking mechanism that can run on

any UEFI-enabled device independently of the booted operative system. The UEFI locking

mechanism would be part of a larger computer protection ecosystem designed primordially

for a computer leasing business. Such ecosystem encompasses several other components, such

as (i) applications to run on the operating system of the protected computers, for interacting

with the computer owner, and (ii) protection management services for controlling locking and

unlocking actions. In this work we developed all these components, but a greater effort was

devoted to the low-level UEFI locking mechanism.

It was necessary to explore the preboot environment and functionalities of a UEFI sup-

ported device, specifically its driver model, protocols and services.

Regarding all the security issues that can happen in a system of this nature and considering

the limitations of a UEFI Driver it was necessary to create an appropriate high level security

protocol that describes all the operations that our system must follow.

In the conception of this protocol we kept in mind that our system must have the ability

to be enabled and disabled. The unblocking process was also a concern since it must be an

easy operation for a common laptop user.

So, we tackled the following major challenges:

• What functionalities does a UEFI environment provide that can be effective in the

conception of our system?

• What kind of protocol approach can we use taking in consideration the absence of

network connection in a preboot environment?

• What cryptographic, symmetric or asymmetric, protection should be used and what are

the consequences of one or another?

• How can we manage time-related lockings on laptops disconnected from the Internet

where the local clock can be manipulated?

1.2 Contribution

The main contribution is a system that allows a laptop to be locked after some time upon

a failure in the fulfilment of contractual conditions (e.g. lease payment). Furthermore, the

2

system includes several unlocking possibilities for dealing with personal difficulties to fulfil

the above mentioned conditions.

Studies about the booting process of a computer and specifically to UEFI and UEFI

Driver Model were performed in order to create two UEFI Drivers: (i) a driver that provides

cryptographic functionality to other drivers or applications; (ii) a driver that runs on every

boot and implements the designed security protocol and if necessary prevents the operating

system bootloader to load.

A security protocol was conceived based on a ticket leasing system and an online server was

created for exploring the computer locking mechanism for clients missing leasing payments.

The purpose of this server is to handle all the clients running this system and, for each one,

to manage the tickets and leasing details.

Since the access to the server from the UEFI driver is not convenient, a desktop application

was created to request tickets from the server and to write them in the ESP (EFI System

Partition) that is a non volatile memory location that both UEFI modules and the operating

system can access. In the booting process, the UEFI Driver will then read the ticket from

the ESP and execute the necessary actions which will lead to two final decisions: prevent the

operating system boot loader from loading and enter a locking state or continue the normal

boot process. The desktop application is also used to provide feedback about the leasing

contract such as alerts or notifications about the proximity of a locking deadline.

The developed system is called CuCo and it was designed for Inforlandia [10], a Portuguese

company with a business area related with computer leasing. Since the main component of

our system requires to be flashed in the firmware memory, this work was also developed with

the partnership of American Megatrends [11], a motherboard manufacturer.

1.3 Document Structure

This chapter has presented an overview of this thesis, namely the objectives and the

technical contributions. The rest of this document is arranged as follows: Chapter 2 con-

textualizes the reader regarding some main concepts and technologies that were needed in

the conception of this work. In Chapter 3 we provide an analysis of three related existing

anti-theft systems. Chapter 4 presents the architecture of our system including the several

components and protocols. In Chapter 5 we present the implementation details as well as

useful information about UEFI environment. Finally in Chapter 6 we summarize our work

and provide possible directions for future work.

3

4

Chapter 2

Context

With the intention of contextualizing the reader, we provide an explanation of the several

technologies required in the conception of this work as well as a review on security techniques

that were, naturally, necessary to develop a secure system.

We begin by describing the technology that was more difficult to study, UEFI. We will give

an overview regarding the characteristics of this technology as well as detailed information

from a developer’s point of view.

Finally, we explain three well known cryptographic strategies: Message Authentication

Codes (MAC) and Digital Signatures used to authenticate our ticket files and Cryptographic

Hashing Functions used in the computation of unlocking codes.

2.1 UEFI

The software that runs when a computer is first powered on is called firmware [12]. It

is responsible for testing (POST - Power-on self-test) and initializing the various hardware

devices. From a perspective of the operating system, it also creates an abstraction layer from

hardware devices through the use of pieces of code typically called drivers.

EFI (Extensible Firmware Interface) is an interface specification first developed by Intel

until 2005. Since that time, EFI is called UEFI (Unified Extensible Firmware Interface) and it

is maintained by the Unified EFI Forum which is a group of several companies from hardware

producers to software companies [13].

UEFI describes: (i) the booting process phases of a computer (PI - Platform Initialization);

(ii) programming interfaces of the several platform devices, abstracting hardware details from

an operating system (OS).[14]

5

The extensibility of UEFI is the feature that allowed us to realize this work and it is

accomplished with the use of drivers running in a preboot environment. UEFI describes the

UEFI Driver Model (Chapter 2.5 of UEFI Specification) that defines a set of rules that must

be followed in the conception of a UEFI Driver, providing three main advantages:

• Standard driver development;

• Simple driver loading/unloading performed by an entity called Boot Manager;

• Standard communication between drivers.

UEFI defines a set of services to provide a abstraction layer of its interfaces. These services

are used by UEFI images (including UEFI drivers) and are divided in two categories:

• Boot Services - These services can be accessed only during the preboot environment;

• RunTime Services - These services can be used after the boot environment by a

UEFI-compilant operating system.

Some Boot Services provided by UEFI are Memory Services used to allocate and free

memory reserved from UEFI firmware, Protocol Handler Services used to install, uninstall

and locate protocols and Event and Timer Services used to create, wait or close events or

timers.

Runtime Services are services that are useful for both the computer firmware such as

drivers and for the operating system. Such services include Time Services used to set and get

the time of the computer clock, Variable Services to get and set UEFI variables and Virtual

Memory Services used to manage virtual memory mapping.

2.1.1 UEFI Structures

This section describes some aspects and key concepts in UEFI programming environment

that are necessary to understand how to develop a UEFI Driver or UEFI application.

UEFI System Table

This is the main data structure in UEFI. UEFI Drivers and applications use this data

structure to access UEFI boot/runtime services as well as services provided by protocols.

The difference between runtime and boot services are that runtime services can be accessed

after the operating system is loaded. Both take the form of a table that contains pointers to

the services (functions).

6

Protocol services are used to provide an extensible firmware interface that can grow over

time. UEFI specification itself, describes a set of protocols but only a few are mandatory to be

implemented in the UEFI core firmware by platform vendors. These protocols are identified

by a GUID (Global Unique ID) that is a 128-bit number. Although UEFI specification defines

a set of protocols, additional protocols can be added by UEFI drivers, thus providing more

features to UEFI firmware. Bellow there is a table that represents the UEFI System Table

[15], particularly, some of its fields and description for each one.

Field Description

Hdr Table header. Signature, revision and CRC.

FimwareVendor Pointer to string that identifies the vendor.

FirmwareRevision Value that identifies the revision of the system firmware.

ConOut A pointer to the UEFI Simple Text Output Protocol interface

... ...

RuntimeServices Pointer to the UEFI Runtime Services table.

BootServices Pointer to the UEFI Boot Services table.

Table 2.1: UEFI System Table fields and description.

A pointer to the this table is passed to UEFI Drivers and Applications as part of its entry

point. The following code prints ”Hello World” in the console. It shows how to use the UEFI

Simple Text Output Protocol that can be accessed through the UEFI System Table.

Listing 2.1: An example of how to use a UEFI Boot Service

#include <efi.h>

EFI_STATUS main(EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable)

{

SystemTable->ConOut->OutputString(SystemTable->ConOut, L"Hello World\r\n");

return EFI_SUCCESS;

}

Handle database

The handle database is a global data structure that can be accessed by any UEFI ex-

ecutable. It holds UEFI handles that are associated with one or more protocols. A UEFI

7

handle can represent UEFI drivers/applications, physical devices or software services.

In order to provide a safe start/stop of UEFI Drivers the handle database also contains a

list of the components which are consuming the protocols.

The handle database is a list of groups of protocols that are represented by a handle. The

same protocol can be present in several handles in the handle database but a handle cannot

have duplicate protocols (GUIDs).

Figure 2.1: Handle database. Retrieved from [1]

The handle database is accessed by UEFI Drivers or Applications. They access the handle

database to use protocols (consumers) or to register protocols (producers).

Protocols

Apart from Runtime Services and Boot Services, UEFI defines Protocols. Protocols are

interfaces used by UEFI Drivers and Applications to communicate with each other. Like

most of services present in UEFI, protocol interfaces are typically a table of pointers pointers.

Protocols are attached to a handle and are identified by a GUID (Global Unique Identifier).

UEFI Drivers that are producers can register or deregister protocols interfaces in the

handle database using the following UEFI Boot Services:

8

Name Description

InstallProtocolInterface Install a protocol interface on a device handle.

UninstallProtocolInterface Removes a protocol interface from a device handle.

InstallMultipleProtocolInterfaces Installs one or more protcol interfaces onto a handle.

UninstallMultipleProtocolInterfaces Unisntalls one or more protocol interfaces from a handle.

Table 2.2: UEFI Boot Services used to manage protocols.

The registration services requires that the drivers or applications provide both the protocol

interface structure as well as the GUID. In the removing process only the GUID is needed.

UEFI Boot Services table also provides services for consumer UEFI Drivers or Application

to use the protocols present in the Handle Database. Such services include:

Name Description

LocateHandle Returns an array of handles that support the specified protocol.

LocateHandleBuffer
Retrieves the list of handles in the handle database that

supports the requested protocol

OpenProtocol
Adds elements to the list of agents consuming a protocol

interface.

CloseProtocol Removes elements from the list of agents consuming a protocol.

UninstallMultipleProtocol

Interfaces
Unisntalls one or more protocol interfaces from a handle.

LocateProtocol
Finds the first handle in the handle database that supports

the requested protocol.

Table 2.3: UEFI Boot Services used to query the handle database.

There are also services to retrieve the list of agents that are currently consuming a protocol

interface or services to query the handle database to determine if a specific handle supports

a specific protocol.

2.1.2 UEFI Driver model

The UEFI Driver Writer’s Guide [6] defines four types of UEFI Drivers:

• UEFI Driver that follows the UEFI Driver Model;

9

• Initializing driver;

• Root bridge driver;

• Service driver.

A initializing driver is a driver that runs in the booting process of a UEFI firmware and

does initialization operations. It is removed from the system memory after executing.

Root bridge drivers are associated with physical devices and are responsible for creating

controller handlers for the root bridge controllers sush as PCI devices.

Service drivers do not represent physical devices, they are typically used to produce pro-

tocols in service handles.

UEFI Specification defines the UEFI Driver Model which is a set of rules that a driver must

follow. Such rules allow the UEFI firmware to have more control over the several drivers, their

loading/unloading into/from memory. Those rules take the form of protocols that a UEFI

driver must register in the handle database.

Bellow there is the list of required protocols that a driver that produce protocols that

need to be available to more than one consumer must register in the handle database:

• Driver Binding Protocol - This protocol provides functions for starting and stopping

the driver;

• Service Binding Protocol - This protocol is needed to allow a protocol to be con-

sumed by more than one entity.

Figure 2.2: Software Service Relationships. Retrieved from UEFI Specification

10

The Driver Binding Protocol is appropriate for a driver intended for hardware devices or

hardware bus controllers because UEFI Specification states that each protocol can have only

at most one consumer thereby preventing multiple drivers from managing the same hardware

device or bus (cases #1 and #2 of figure 2.2). However in order to provide a UEFI driver

the ability to be used by more than one entity, which is the typical situation of a driver that

produces software services represented by case #3 of of figure 2.2, a UEFI driver must also

implement the UEFI Service Binding Protocol.

Driver Binding Protocol

In the driver entry point, a UEFI driver that follows the UEFI Driver Model, must register

the Driver Binding Protocol in the handle database. The Driver Binding Protocol consists of

the following services:

• Supported() - It is used by the UEFI Driver loader to check if the drivers supports a

given controller. In our case, since our drivers do not represent physical devices in the

platform, this function is only useful to test if the driver was already started or not;

• Start() - This function is used to install the protocol interface;

• Stop() - This function is used to uninstall the protocol interfaces installed by this driver

the Start() was called.

Service Binding Protocol

A driver that only implements the Driver Binding Protocol can be consumed at most by

one consumer which is useful to prevent multiple entities from trying to manage the same

controller but when a driver installs protocols interfaces that are meant to be consumed by

several consumers it needs to install the Service Binding Protocol. This is a typical situation

of a driver that provides software services to other drivers.

The Service Binding Protocol interface consists of the two services bellow:

• CreateChild() - Creates a new handle with the associated protocol installed;

• DestroyChild() - Uninstalls the associated protocol and the handle is freed.

This kind of drivers must produce both Service Binding Protocol and Driver Binding

Protocol. The Service Binding Protocol is installed in the Driver Binding Protocol Start()

function and uninstalled in the Stop() function.

11

2.1.3 UEFI System Partition

As the name implies, the UEFI System partition (ESP) is a disk partition that every

platform running UEFI firmware must contain on its hard drive in order to boot a operating

system (booting from removable devices is also supported).

The ESP is formatted in the FAT (File Allocation Table) file system architecture and is

the only file system that UEFI firmware supports. Since FAT is a simple legacy file system,

many operating systems support it and therefore, it can be mounted at OS time and user-

land applications can access it. This features makes the ESP a perfect communication channel

between Operating Systems and UEFI firmware through the use of files.

UEFI Specification states that the boot loaders for all operating systems installed in the

hard drive must be stored in the ESP. It can also contain UEFI drivers or UEFI utility

programs such as a UEFI Shell, or memory checking programs. This allows the existence of

boot managers that auto-detects the operating systems installed on the platform by searching

the corresponding bootloaders at boot time. Such boot managers provides a menu that allows

the user to select the operating system that he wants to boot.

Figure 2.3: rEFInd Boot Manager menu. Retrieved from [2].

rEFInd [2] is a boot manager for UEFI platforms that auto detects the installed Operating

Systems by searching the bootloares that are present in the ESP.

12

2.2 Cryptography

In this section we provide background information related with two cryptographic tech-

niques that were used in the implementation of this work.

2.2.1 Cryptographic Hash Function

Cryptographic Hash Functions are functions that take an arbitrary size of bytes as the

input and transforms that set in a fixed size set of bytes (typically called hash value). This

functions are considered one-way functions because, due to its internal operation, it is ”very

hard” to invert the result of a given input. In the context of cryptography these functions

are used along with other security techniques to provide the integrity and originality of a

message. A ideal cryptographic hash function has the three main properties [16]

• Preimage Resistance: Given hash value H it is very hard to find any message M such

that H = hash(M);

• Second Preimage Resistance: Given a message M it is very hard to find a second

message M’ such that hash(M) = hash(M’);

• Collision Resistance: It is very hard to find two messages M and M’ such that

hash(M) = hash(M’).

2.2.2 Message Authentication Code

Message Authentication Code algorithms are symmetric key based techniques that are

used to guarantee the integrity and originality of a message. A MAC is a value that is

transferred along with the message that authenticates. It is calculated using a symmetric key

that is known to both the sender and receiver of the message.

Unlike digital signatures, MAC does not prove that a message was sent by one entity but

that a message was sent by one of the entities that possess the key.

A MAC can be generated using several techniques, namely, (i) block ciphers, (ii) stream

ciphers, (iii) cryptographic hash functions. The last one was used in the conception of this

work, specifically, HMAC algorithm.

The operation of generating and verifying a authenticated message is as follows:

1. The sender generates the MAC M for the text T and with the key K;

13

2. The sender sends T along with M;

3. The receiver uses T to calculate a MAC M’ with the key K;

4. The receiver compares M’ with M. If they match, then the message was generated by a

trusted entity (a entity that knows K).

Figure 2.4: Message authentication using a MAC mechanism.

2.2.3 Digital Signatures

Like MACs, digital signatures are blocks of data that are, typically, sent along with the

original message to guarantee its integrity and originality. Digital signatures are closely linked

to asymmetric cryptography in that the sender of the message holds a private and a public key

and the operations of signing and verifying the signature are based in asymmetric algorithms.

The operation of generating and verifying a digital signature is as follows:

1. The sender generates an hash of the original message using a cryptographic hashing

function;

2. The sender encrypts the resulting hash with his private key;

3. The sender sends the encryption result (digital signature) along with the original mes-

sage;

4. The receiver generates an hash of the original message, H, using the same cryptographic

hashing function;

14

5. The receiver decrypts the received digital signature, H’, and compares H’ with H. If

they match, then the message was generated by the entity that holds the private key.

Since an entity that issues digital signatures is associated with a asymmetric key pair,

digital signatures, unlike MACs, offers the non-repudiation property that guarantees that a

digital signature is generated by the entity that holds the private key associated with the

public key used to verify the signature.

15

16

Chapter 3

Related Work

In this chapter we enumerate three commercial solutions that provide identical function-

alities to our system. For each one, we give an overview of its features as well the operating

mode.

3.1 Intel Anti-Theft Technology

Intel Anti-Thef is part of Intel vPro [17] family products and is a hardware-based tech-

nology that is intent to fight the robbery of laptops. The system is a partnership between

Intel and third party software companies.

Intel Anti-Theft Service provides:

• The tracking of a laptop running this service;

• Protection of data stored in the laptop’s hard drive;

• Remotely lock the laptop.

Regarding the laptop location tracking, when the machine connects to the internet it will

send the public IP address to the main server, the server will use IP address geolocation

services in order to find an approximate location of the client laptop. Relying on IP address

for geolocation is not accurate and several clients complaint about the certainty of this feature.

Intel AT also provides protection of data stored in the hard drive by providing a directory

(called secure vault) on the hard drive that will be encrypted by the software running in the

operating system. The encryption key (they call it Blob) used to encrypt the files is stored

in a secure hardware location and if the laptop is in the locked mode the key is inaccessible.

17

The laptop periodically connects to the Anti-Theft Server to ask for commands. If the

laptop is lost of stolen the IT administrator sends a lock command (poison pill) that will

prevent the operating system from booting and will show a locking display with a custom

message to indicate that the laptop is locked. The laptop is also locked if it does not access

the central server for a certain configurable period of time.

Figure 3.1: Intel Anti-Theft locking screen. Retrieved from [3]

Since Intel is mainly a hardware company, its contribution in this system is to provide

the hardware capabilities needed to lock the computer and to store secret information but

the system administration part is performed by Independent Sofware Vendors (ISV) that are

software companies that work in the security are. ISV are responsible for implementing the

Central Anti-Theft Server and the Agent that runs in the operating system. Some ISV are:

[3]

• McAfee [18];

• Norton Antivirus [19];

• Absolute Computrace [8].

ISVs are responsible for managing the several laptops running Intel AT as well as certain

details of the locking system. All of them run only in the Windows Operating System making

this technology useful only for devices running this OS.

As we can see in the architecture, the Intel Anti-Theft enabled laptop is periodically

sending command requests to the ISV central server through the ISV anti-theft agent that

18

Figure 3.2: Intel Anti-Theft Architecture. Retrieved from [3]

runs in the operating system. The server will send commands to the laptop as an answer

for that requests and the laptop hardware/firmware will take the actions triggered by those

commands.

Intel announced that Anti-Theft Service will be terminated in January 2015 and it stopped

accepting new subscriptions in January 2014.

3.2 Absolute Computrace

Absolute Computrace [8] is a laptop anti-theft solution developed by Absolute Software

and it can lock, track and protect the data of stolen mobile devices running Windows operating

system.

This solution relies in 3 main software/firmware components:

• UEFI Driver / BIOS Option ROM;

• Client Agent running in the operating system;

• Central Server.

In order to support different computer firmware environments, Absolute Computrace de-

veloped both a BIOS Option ROM and a UEFI Driver. They are integrated in the computer

19

firmware stored in the main board ROM memory by the OEM. The BIOS Option Rom is

intended for old computers running the legacy BIOS system, while the UEFI Driver is in-

tended for UEFI enabled platforms. Although they are different components in terms of

implementation, they have the same two main functions:

• Lock the platform if necessary;

• Install the Client Agent.

This component has a somewhat unusual behaviour considering the operations performed

by a typical firmware driver in a preeboot environment. It contains a Windows executable

(Agent) that will be installed, secretly, in the Windows Operating System. In more detail,

this driver does the following operations: [20]

1. Find, on the hard drive, the partition where Windows OS is installed.

2. Replace authochk.exe Windows executable with a modified one.

When Windows OS is booting it will run the modified authochk.exe executable. This

modified version of authochk.exe will do the following:

1. Exctract a windows binary (rpcnetp.exe) that is embedded in the modified authochk.exe

2. Create a new entry in the local system registry that will run rpcnetp.exe.

Figure 3.3: The Absolute Computrace UEFI Driver.

rpcnetp.exe will now run as a Windows service and it will connect to the Absolute Server

and wait for commands, such commands can be the installation of more software, encryption

of data or locking the device.

20

Although these techniques do remember malicious software, they allow the OS software

agent to be easily installed and without human intervention but on the other side they are

also operating system dependent and if Absolute decides to support other operating systems

they have to create a UEFI Driver for each operating system they want to support or they

have to greatly modify the current driver.

Regarding the architecture, this system is very similar to Intel Anti-Theft architecture in

terms of components and cooperation between them. As already stated, there are three main

components:

• UEFI/BIOS Component - This is the component that performs the locking proce-

dure. It has the shape of a Option ROM when the lapton is running BIOS or a UEFI

Driver when the laptop is running UEFI;

• Agent - This is the component that runs in the Operating System (Windows) and

performs the communications with the UEFI/BIOS component and the Central Server.

It is installed in a secret manner without the user’s intervention or permission;

• Central Server - This is the Absolute Central Server where all the clients are period-

ically connecting and waiting for commands.

The agent is periodically connecting to the Absolute Central Server waiting for commands,

such commands can be lock the device, encrypt files or delete data. It will also provide tracking

information such as the public IP address where the device is connecting from.

On the server side an IT administrator can have access to several computers running this

server and for each one it can manage several details.

21

Figure 3.4: On some platforms Absolute Computrace module can be enabled or disabled.

Retrieved from [4]

3.3 Prey

Prey [9] is a anti theft open source solution developed by Fork, Ltd [21]. It is a multi-

platform software that is intended for the major mobile devices operating systems, namely,

Windows, Mac OS, Linux, Android and iOS. Its features include remotely locating and locking

the lost or stolen device as well as recovering or deleting data.

Prey is a solution that relies in two components. An agent that runs on top of the mobile

device Operating System and a central server. The agent software is open source and is

written in Node.js [22] with the exception of the Android and iOS agents that are written

in their native languages. The official central server (host) is proprietary but an small open

source server application written in Ruby [23] is available.

In terms of operation, the agent regularly sends HTTP [24] requests to the central server

web service, in response to this requests the server may send several types of commands such

as locking commands or request information.

When prey is running in a laptop it provides the location using the wifi network and

triangulation techniques. On mobile devices it uses the built-in GPS (Global Positioning

Sensor) sensor. The data transfers between the agent and the server is encrypted using SSL

tunnelling.

The central server provides a web interface where the user can remotely manage each

device. Some features that are provided by the web interface include:

22

Figure 3.5: Different types of devices running Prey.

• Get the device location - The laptop or mobile device tracking information shown

in a map;

• Webcam and Desktop screenshot - The screen shot of the desktop can be useful

to discover the thief identity as well as the screenshot of the web cam can be also

advantageous to discover the thief face and therefore provide such information to the

police;

• Hardware scanning - Changes in the hardware can be detected;

• Screen locking - The user can remotely lock a device and the unlocking procedure

requires a password that must be previously set.

Prey requires a monthly payment in order to fully benefit from all the features provided

by this service. There are several payment plans and what distinguishes them is the number

of devices where prey can be installed. For an ordinary user a plan that allows 3 devices may

be sufficient considering that this user only needs Prey to manage a small number of devices

23

(i.e Laptop, Smartphone and tablet) while a company that has many devices can benefit from

a plan that allows the use of many devices.

The fact that Prey agents are open-source and their code is publicly available is a great

advantage because it allows third parties to analyse the code and ensure that this software

does not contain privacy issues that can sometimes be a problem in this type o software.

Unlike the Intel Anti-Theft and Absolute Computrace, Prey does not require a hardware of

firmware component in order to perform the locking operation, while this is an advantage

as it allows the installation of Prey on any common device without having to have special

hardware or firmware capabilities, it is also a big disadvantage because it allows an attacker

to completely remove this software whether the device is locked or not by simply replacing or

formatting the hard-drive.

24

Chapter 4

System Architecture

In this chapter we present the architecture of our system in terms of components and the

protocols followed by such components.

4.1 Overview

Since we want that our locking mechanism works independently of Operating System

and given the increased spread of UEFI platforms and its extensibility, the main locking

component has the shape of a UEFI driver that runs, unconditionally, on every boot before

the Operating System and implements the designed protocol.

Due to the limitations of a UEFI environment, namely the lack of a network access,

and the need of a central management unit, our system relies in two more components: a

Desktop Application and a Web Application. The desktop application runs on top of

the Operating System on every laptop and the Web Application runs on a central server. All

the laptops interact with the central server through the desktop application.

Our system implements a protocol based in a leasing system supported by the use of ticket

files that are periodically imported by client machines. Those ticket files are issued by an

authorized authority (CuCo Server) and are used by the UEFI Driver to follow the protocol.

Ticket files contains time fields that states when a ticket/lease is expired as well as elements

that guarantee its integrity and authenticity. Depending on the time constraints for each

leasing contract, a desktop application has to periodically fetch new tickets with a certain

period of time in order to update the system before the current ticket expires.

25

Operating System
UEFI Firmware

UEFI Driver

Desktop
App.

CuCo Laptop

Web
Application

CuCo Server

Internet

Figure 4.1: The three developed components: UEFI Driver, Desktop Application and Web

Application

4.2 Low level locking: UEFI Driver

As previously stated, the low level locking is preformed by a UEFI Driver that must be

embedded in the UEFI firmware by an OEM (Original Equipment Manufacturer) in order to

prevent the laptop user from removing the UEFI Driver. This driver must run on every boot

and also maintain an internal state across reboots supported by a set of context variables.

This section explains the internal operation of our driver.

4.2.1 Computer States

In order to provide the system with the capability to be easily enabled or disabled by

an authorized entity, our UEFI Driver follows a state machine behaviour where there are

essentially two states:

• FREE: This is the state of CuCo upon the flashing of the UEFI and the cleaning of all

CuCo state variables. This is also the state of CuCo upon the end of a leasing contract

(with a Freedom Ticket). Once in this state, the machine boots an ordinary operating

system without any further CuCo activity. From this state a computer seller can enter

the LEASED state prior to sell the machine under a leasing contract. Furthermore, a

computer owner can also voluntarily do the same for benefiting from some lease-based

protection. In both cases, the transition decision must be authorized in boot time by

interacting with the UEFI and can only happen after detecting the presence of a Start

Ticket;

• LEASED: This is the state of CuCo upon being leased to a costumer with a Start

26

Ticket. Once in this state, it can only change to the FREE one upon reception of a

Freedom Ticket.

Figure 4.2: CuCo States.

Firmware updates can only be performed by authorized entities and should keep the state

variables unchanged.

When in a LEASED state, CuCo can either boot normally or enter a temporary blocked

sub-state. This sub-state requires a direct (oral, Internet, etc.) contact with the ticket

provider in order to solve the problem that originated the blocking condition. Upon a suc-

cessful contact, a suitable unblocking code should be provided to CuCo for proceeding with a

normal boot operation. Each unblocking code can be used in only one boot sequence; different

boot sequences require different unblocking codes.

4.2.2 Cryptographic protections

In the LEASED state the CuCo module only accepts state changes from inputs prop-

erly authenticated (generated by a remote lease manager). We foresee two ways to do this

authentication:

1. With a per-machine, secret symmetric key shared with the lease manager. In this case,

a unique machine key must be provided (in a ticket) when the state changes from FREE

to LEASED.

2. With a per-lease manager, asymmetric key pair. In this case, the public key of a top

certification entity must be provided (in a ticket) when the state changes from FREE

to LEASED. We are foreseeing that leasing companies would have a top certification

entity, in a very well protected place (e.g. a vault) and an intermediate certification

entity for the daily ticket issuing.

27

In both cases, we call this key the Ticket Authentication Key (AK). This key is installed

in the firmware memory upon the installation of the start ticket and the transition to the

LEASED state.

If AK is symmetric each ticket is associated with a symmetric key that both the CuCo and

the ticket issuer knows. If AK is asymmetric the public part of the key of the top certification

authority is installed in the firmware and more complex certification strategies can happen

(similar to CA certificates [25]). We can have a chain of certification entities and in this case

the tickets must contain the information needed to certificate each entity belonging to the

entities hierarchy.

More specifically, considering that we have two certification entities, a top certification

entity that holds a master key and a intermediate entity that actually issues the tickets with

its own key, a ticket must contain:

• Ticket Signature - The ticket signature performed with the intermediate entity key;

• Intermediate entity key - The public part of the intermediate entity. This key is

needed to validate the ticket signature;

• Intermediate entity key signature - The signature of the intermediate entity public

key performed with the master private key.

In order for CuCo to validate this ticket integrity and authenticity it has to perform the

following operations:

1. Validate the Intermediate entity key signature using the master public key stored in

memory upon the installation of the start ticket. If the signature is correct it means

that it can trust the intermediate entity key.

2. Validate the ticket signature. If the signature is correct it means that the ticket was

issued by a (intermediate) trusted entity.

Instead of two we can have several certification entities forming a chain of trust where the

trustworthiness of a certain entity is given by the entity that signed it (the entity that is one

level higher in the entity hierarchy). In this case a ticket must contain (i) the signature of the

ticket performed with the key of the entity further down in the hierarchy, (ii) the public part

of the key of this entity, (iii) a signature of this key performed by a entity that is higher up

in the hierarchy and so on until we reach a key signed with the master key (top certification

entity key).

28

Figure 4.3: Certification Chain.

This scheme maps well onto the business logic that is behind an information system of

a company or companies that provide this locking system. For example a company X can

be the top level certification entity that stores the master key and sells this service to other

companies, thereafter, those companies sell or manage the leasing system to the end user.

This is advantageous since we want that our system serves two purposes:

• Computer Leasing - This was our main focus when we started this work and this

purpose is for laptop selling companies that sell laptops under a leasing plan. Our

system comes in as a method for disabling the laptops when the end user does not pay

a periodical fee thus forcing the end user to regularize the situation in order to use the

laptop again;

• Anti-Theft Service - In this case the entity benefiting from your system is the end-

user. When the laptop is not under a leasing contract, the user may want to benefit

from the same technology for anti-theft purposes.

Hereupon, the implementation with asymmetric cryptography is a flexible approach since

it allows several companies to provide the two services mentioned above to the same user

(laptop) without having to install new keys in the laptop firmware (UEFI) provided that

these companies are entrusted by one entity, the entity that holds the master key installed in

the laptop.

This scheme also allows that a large international company delegates the process of issuing

the tickets to several entities inside the same company in order to facilitate the process

29

of managing multiple contracts and users with different characteristics (i.e each entity is

responsible for issuing the tickets in each country or geographical area where the company

operates).

4.2.3 CuCo context variables

CuCo has a set of context variables that can only be accessed by our driver and are

fundamental for taking operational decisions. The variables are the following:

• State (FREE or LEASED);

• T - The ticket being used;

• UC - Ticket Usage Counter;

• AK - Ticket Authentication key;

• UBC - Unblocking counter;

• UK - Unblocking key (symmetric secret).

State is the variable that tells CuCo its current state. Its value can only be one of these:

FREE or LEASED. The meaning of each of those values was already explained.

T is the ticket actually in use, copied from the ESP (EFI System Partition) to an internal

variable. Several fields of this variable are relevant for CuCo’s decisions, namely:

• T.SN is the computer’s serial number for a ticket provider. It is also intended to be the

index of a leasing contract upon which tickets are provided. This value is set upon the

installation of a valid start ticket;

• T.CT is the issuing date of a the last valid ticket observed by CuCo. This variable is

used to prevent the reuse of old tickets, together with a coordinated manipulation of the

computer clock. When a freshest, valid ticket is detected it overwrites T and, naturally,

T.CT is updated accordingly.

UC keeps the number of times a valid ticket (or unlocking code) was used to authorize

a computer boot. UC is incremented on each boot. If a valid ticket exists, it states the

maximum number of times it can be used. Upon passing such threshold, CuCo enter the

blocking sub-state, requiring an unblocking code for continuing the boot. Upon the boot, the

30

user should use operating system tools to fetch and install a new ticket. Rebooting without

installing a new ticket will cause the repeating of this entire procedure.

AK is the key used by CuCo to validate the correctness (integrity) of a ticket. AK can be

a symmetric or an asymmetric key. If symmetric, it must be stored in protected memory area,

accessible only by CuCo driver. If asymmetric, it must be stored in a memory area where

only CuCo can write. CuCo should be able to work with both types of keys. CuCo should

learn its AK when entering the LEASED state, which happens when it detects a valid Start

Ticket when in the FREE state; the AK value should be extracted from the Start Ticket, as

well as its type (symmetric or asymmetric).

UBC is the counter of consecutive, failed attempts to enter an unblocking code when

in the blocking sub-state. Upon passing a threshold value defined internally in CuCo’s code

(e.g. 20), UC is incremented, UBC is reset and a new unblocking code should be requested.

This is a protection against attempts to find, by trial and error, an unblocking code (which

is computed using the UC value).

UK is a symmetric, secret key used to compute unblocking codes. It should be used

by CuCo to validate unblocking codes generated by the ticket provider (which also knows

UK). Since this key never changes, each time a new unblocking code is requested it should

be different. Consequently, this code is computed from a set of context variables, namely SN,

CT, UC and UK, that never repeat the same ordered set of values (when UC is repeated a

new CT was installed in the meanwhile) and are unique for each machine (SN). UK can be

the same for all machines leased by one company, but it is advised to use different keys for

different computers. Otherwise, the compromise of a unique UK would endanger the control

over the leasing of many computers, instead of a single one.

4.2.4 Ticket Structure

Tickets are authenticated data items produced by a leasing manager. They are transferred

to CuCo T variable through EFI System Partition. CuCo always looks for a valid ticket on

this area on each boot. The exact results of what it finds depends (i) on its state (FREE or

LEASED), (ii) on the type of ticket found and (iii) on the exact details of the ticket. In any

case, if a ticket is found in the ESP it will be deleted after being analysed by CuCo.

A ticket contains elements that enable CuCo to validate it and elements that guide CuCo

in the booting decisions. First, the ticket SN must match CuCo’s SN (to prevent the use of

stolen tickets). Second, the ticket Authenticator must be correctly computed with CuCo’s

31

AK (to prevent the acceptance of forged tickets). Third, the ticket CT must not be inferior

to CuCo’s CT (to prevent the usage of old tickets).

A ticket contains a Type field that changes dramatically its interpretation. We can have

4 types of tickets: Start, Normal, Blocking and Freedom.

A ticket contains two elements that control its validity: LD (the last date it can be used

without any warning), TW (a tolerance window after LD where the ticket is still valid but a

validity warning is displayed) and MaxUC (the maximum number of boots where this ticket

can be used). This last one prevents an endless exploitation of the same ticket through a

careful manipulation of the computer clock.

A ticket also contains a message that will be shown to the user in the Blocking Screen

Stage if the computers enters this state.

TT (Ticket Type) Normal Start Blocking Freedom

SN (Serial Number) Same as CuCo’s

CT (Certified Time) Issuing time

T (Locking Message) Valid

LD (Last Date) Valid —

TW (Timeout Window) Valid —

MaxUC (Max. Boots) Valid —

AK (Authentication Key) — Present —

UK (Unlocking Key) — Present —

Authenticator Valid Authenticator (validate with AK)

Legend: — Not present

Table 4.1: Ticket’s fields.

Besides regular tickets, which are used in the normal control of a leased computer using

CuCo, there are some special tickets:

• Start Ticket: this is a ticket that contains extra keys: Authentication Keys and

an Unblocking Key. Their value should be copied to CuCo’s variables AK and UK,

respectively, when a (valid) ticket like this is detected in the FREE state;

• Blocking Ticket: this is a ticket containing a boot blocking condition when in the

LEASED state. When a ticket like this is found, CuCo will always ask for an unblocking

code. In practice, this mechanism is equivalent to the absence of a suitable ticket in

32

the same state. It can be used to test the unblocking mechanism upon entering the

LEASED state (i.e. after rebooting with a Start Ticket).

• Freedom Ticket: this is a ticket that makes CuCo change from the LEASED state to

the FREE state. It should be the last ticket used by a leased computer upon the last

payment of the leasing program.

4.2.5 Boot sequence

Once in the FREE state, computers can boot normally without any restriction. This

allows computer suppliers to use them without restrictions for operating systems installation

and other setup procedures. This is also the state when a computer is not under a leasing or

other otherwise restricting contract.

The FREE state terminates when a valid ticket is found in the ESP. This ticket must be

a Start Ticket, which is a special ticket that enables CuCo to be properly configured prior to

change to the LEASED state. Namely, this ticket must contain two fundamental keys: AK

and UK.

Once in the LEASED state, the boot sequence would be controlled by the state of CuCo

internal variables and the current ticket values. The details are presented in the flowchart of

Figure 4.4, that display the complete CuCos booting process.

4.2.6 Blocked Screen Stage

When in the blocked screen stage, CuCo computes an unblocking code using a crypto-

graphic one-way hash function (e.g. the SHA-1 digest function) with T.SN, T.CT, UC and

UK as input values. This set of values ensures that the unblocking code:

• Is unique for each machine (T.SN is unique);

• Cannot be computed by a malicious user (UK is a secret);

• Can only be used once (the pair T.CT and UC is never repeated for each machine).

The user must contact a helpdesk service to obtain the unlocking code. In that contact,

the user must provide some data, namely T.SN, T.CT and UC, for requesting a suitable

unlocking code. Therefore, these values must be presented to the user, together with a

message informing that the machine is blocked and information about how to unblock it

(helpdesk phone number, email, etc.). Part of this message can be part of ticket to enable

33

CuCo to have updated information. For the unlocking procedure, the user should receive

the correct hash value from the helpdesk. However, a complete hash is usually very long

(e.g. 20 bytes for SHA-1), and is even longer when translated into ASCII (4/3 longer with

base64, twice as longer with ASCII hexadecimal symbols). Therefore, a shorter character

string should be used instead of the full hash value string. A possibility is the following: a set

formed by an offset (small number) and a string (part of the hash at that offset). The offset

would be given by a hexadecimal digit (0-F) and the string would contain 10 hexadecimal

digits (5 bytes). The probability of guessing the right value would be lower than 2−40, while

for the user it is very convenient to introduce only 11 digits (instead of, for example, 40 for a

SHA-1 digest). At the helpdesk, the unblocking code is calculated using the values provided

by the user and UK is obtained through a database that contains all the secret keys (indexed

by SN). After computing the complete unblocking code, only part of it is provided to the

user, together with the corresponding offset.

34

Figure 4.4: CuCo Booting Process Flowchart.

35

4.3 Administration

This sections shows the components needed to create the information system that is

responsible for managing the users, contract details and issuing the tickets.

4.3.1 System Architecture

Figure 4.5: System Architeture

The system architecture of the information system contains a Web Server (we call it CuCo

Server) and a desktop application that will be installed in every mobile device.

4.3.2 CuCo Server

The CuCo server, which is responsible for managing clients and tickets, consists of 2 com-

ponents: (i) the web administration interface and (ii) the tickets web service; both components

share the same database.

Database

The server database contains information about users and Start tickets. A Start ticket

may or may not be associated with one user. In the latter case we call it free for use Start

ticket.

A set of free for use Start tickets should be inserted in the database before registering a

user.

Administration Interface

The server provides a Web interface that allows the person who sells computers with

leasing plans to register a client and to set certain parameters related with the client contract

36

such as payment timeout window and information about the services to be used when sending

payment alerts (SMS [26], email, etc.).

Tickets Web Service

The server also provides a Web service that the desktop client application, installed in the

leased computers, calls periodically to retrieve a fresh ticket from the server. The first time

the client uses this service it retrieves a Start ticket; in the following requests it receives a

Normal, Blocking, or Freedom ticket, depending on the client status stored in the database.

When the client contract is over a Freedom ticket is sent.

The first contact between a leased computer and this Web service is performed by the

computer seller, because it is critical for CuCo’s security (otherwise, a client could retrieve

secret information from a downloaded Start ticket). Upon this first contact, the computer to

lease should be rebooted by the seller to initiate the control of the leasing by the CuCo UEFI

Driver.

The database has a deadline date attribute for each user that it is consulted each time

the server receives a ticket request. If the current date is greater than the deadline date it

means that the client didn’t pay and a Blocking ticket should be sent.

4.4 Desktop Application

This is a Java [27] application that runs in a leased computer. It calls periodically the

ticket Web service for requesting a new, fresh Normal ticket. The ticket retrieved is saved in

the ESP for later processing by the CuCo UEFI Driver (during a computer reboot stage).

4.5 Exploitation flow

1. A client buys a computer with the CuCo service installed. The store seller uses the

Web administration interface to associate the client with a free to use Start ticket. The

server will insert the client information in the database.

2. The server returns an URL that the client/seller uses, on a browser running in the

computer to lease, to download the desktop application. This URL is unique for each

user (it contains the serial number of the corresponding Start ticket)

3. Upon receiving a request for downloading the desktop application, the server:

37

(a) Checks if the provided SN provided in the URL exists in the database (i.e., if it

refers a Start ticket associated with a user). Upon success, the database memorizes

that that Start ticket was already downloaded.

(b) Creates a JAR with a built-in resource file that contains the SN.

(c) Sends the JAR back to the client.

4. The first time the desktop application runs, it installs itself as a periodical service (e.g.

will add a crontab entry on a Linux host).

5. When the server receives a request for a fresh ticket, it will check if a Start ticket was

already sent for the given SN. If not, it will send a Start ticket and store this information

in the database; otherwise, it will generate a new Normal/Blocking/Freedom ticket,

depending on the information in the database.

38

Chapter 5

Implementation

This chapter presents the implementation of the several components of our system. We

begin by explaining how and why we created the testing environment that was needed in

order to test our UEFI drivers as well as the tools and frameworks used to implement the

different parts of the system. Finally we give specific details of the implementation of the

three developed components:

• UEFI Drivers;

• Desktop Application;

• Central Server.

5.1 Testing environment

The computer firmware is stored in a non-volatile memory usually an EEPROM (Ele-

ctrically-Erasable Programmable Read-Only Memory) or Flash Memory on the motherboard

hindering their physical access.

UEFI specification states that new UEFI Drivers can be loaded from other locations

without being the motherboard firmware memory but our driver must be stored along with

the firmware in the system EEPROM/Flash to avoid an attacker to easily circumvent our

system by preventing our driver from loading (i.e, deleting it), therefore, disabling our driver

means modifying the computer firmware boot process which can only be done by authorized

entities.

On real physical boards the firmware is flashed by the OEM (Original Equipment Manu-

facturer) with special tools that are not publicly available. Hereupon it is not convenient nor

39

safe to study an UEFI environment and to develop and test our UEFI executables on a real

computer to avoid damaging or bricking the device.

Hence we used two technologies that, when used together, provide a simulated testing

environment that offers several advantages over using a real platform:

• Safeness - Our executables do not run on physical hardware but in simulated hardware,

thus damaging hardware is not a issue;

• Development and deployment - With a simulated environment we can develop and

deploy our drivers using any ordinary laptop fairly fast without requiring to physically

reboot hardware;

• Testing - Our simulated environment offers test and debug options that are not avail-

able to common users in real computer firmware.

5.1.1 QEMU

As it was previously stated, our locking UEFI driver runs on a ordinary UEFI enabled

laptop, therefore, we used a computer emulator capable of running custom firmware in order

to provide the simulated hardware devices that are present on a real physical x86 computer.

Qemu [28] is a free and open source hardware emulator developed by Fabrice Bellard.

Like a real computer, Qemu starts by running the firmware that is stored in the simulated

flash. By default it uses the traditional BIOS, that is distributed along with Qemu, as the

firmware but another firmware file can be specified through a command line option. We used

this feature to force Qemu to run UEFI firmware (OVMF, see Section 5.1.2).

We used QEMU emulator version 2.0.0. Below there is the command line options that we

used.

Option Description

-pflash Specify the firmware file

-hda Specify the virtual hard drive

Table 5.1: QEMU command line options used to boot OVMF.

5.1.2 OVMF

Open Virtual Machine Firmware is a project within TianoCore [29] and is an open source

implementation of a UEFI firmware that can be used along with Qemu in order to create a

40

virtual machine that provides a UEFI environment.

Figure 5.1: UEFI Boot Process. (retrieved from [5])

OVMF implements a boot process that consists essentially consists of 6 phases:

• SEC - Security Phase: Initializes some CPU parameters; Finds the PEI core image;

Extracts and transfers the control to PEI;

• PEI - Pre-EFI Initialization phase: Loads PEI drivers; RAM, Motherboard and built-in

devices are initialized. It jumps to the DXE Phase;

• DXE - Driver Execution Environment phase: Loads DXE drivers;

• BDS - Boot Device Selection: Load and execute boot selections;

• TSL - Transient System Load Phase: The phase where the OS loader is executing;

• RT - Run Time Phase: When the control is taken by the OS.

Since OVMF is an open source project it makes possible to embed our driver in the UEFI

firmware (in the DXE phase) and running in Qemu emulating a computer running our CuCo

driver.

41

Figure 5.2: Qemu emulator running TianoCore OVMF.

5.2 Implementation frameworks

In the development of this project a Linux environment was used, below we will see that

developing UEFI programs in this environment can be confusing due to Microsoft’s binary

format similarities with UEFI binaries as well as function calling conventions. Although

the process of building UEFI programs being non-standard in Linux environments it was

profitable because it forced us to know in detail the compilation, linkage and creation of a

UEFI binary.

UEFI uses the PE32+ image format for its executables. This format, with some differ-

ences, is also used by Windows Operating System, unlike Linux, which uses ELF.

UEFI specification defines its own calling convention for several CPU architectures. In

this project we used x64 architecture and by the default GCC [30] does not support UEFI

function calling convention for this architecture wich is fastcall.

In the process of building an UEFI binary program we had to keep in mind the following

details:

• Programming for UEFI is programming firmware, certain mechanisms present in a oper-

42

ative system environment like stack protection mechanisms or standard utility libraries

are not available;

• UEFI firmware will allocate memory space for UEFI drivers and it will put them any-

where among the memory space, hence, UEFI drivers code should be position indepen-

dent;

• UEFI can modify the red zone area which is the area followed by the stack pointer and

it is normally used to store temporary data;

• Regarding the linker, a special linker file must be used in order to produce a UEFI

compatible executable.

Regarding this details, a framework should be used to facilitate the creation of UEFI

drivers. There are essentially two frameworks and they are both open-source. GNU-EFI,

which can be easily installed in a Linux distribution through the package manager for that

distribution, and TianoCore EFI Development Kit 2, which can be installed in Linux, OS X

and Windows Operating Systems.

5.2.1 GNU-EFI

GNU-EFI is a package that contains libraries, header files and a linker script that sup-

ports the development of UEFI Applications in Linux. This package is in the major Linux

distribution repositories and it is developed by Nigel Croxon.

Because UEFI uses fastcall function calling convention, GNU-EFI provides mechanisms

to handle this issue with the use of a wrapping function.

GNU-EFI uses GCC [30] compiler with the required flags to generate a compatible UEFI

code, and a linker script for creating ELF objects. The final process is to convert the generated

ELF object to a EFI program and for that GNU-EFI uses a tool called objdump that is used

to copy the eight COFF sections required to build an UEFI executable.

In short, the building process implemented with the help of a Makefile is:

1. Compile - It uses GCC with certain flags in order to create an ELF binary executable

(Linux dynamic library format)

2. Linkage - It uses ld along with GNU-EFI linker script to link the binaries and to apply

dynamic relocations.

43

3. Generate UEFI Binary - It uses objcopy [31] to generate a PE32+ UEFI Binary.

By default, GCC is prepared to generate code that will run in a OS environment. We

enumerate, bellow, some of the crucial GCC options that are needed to ”remove” some OS-

specific features.

Option Description

fno-stack-protector Tells GCC to not include extra code to check for buffer overflows.

fno-strict-aliasing
Causes the compiler to avoid assumptions regarding non-aliasing

of objects of different types.

fpic Generate position-independent code.

fshort-wchar
Override the underlying type for ‘wchar t’ to be ‘short

unsigned int’.

mno-red-zone Tells GCC to not touch the red zone.

mno-mmx Tells GCC to not use MMX instructions.

mno-sse Tells GCC to not use SSE instructions.

fno-builtin Tells GCC to not include builtin functions.

Table 5.2: GNU Compiler options used to compile UEFI compatible code.

In the linkage with ld, some command line options must be specified:

Option Description

nostdlib Tells ld to not include standard library functions.

nocombreloc Disables multiple reloc sections.

shared Tells ld to create a shared library.

-T Speficies the linker script file.

Table 5.3: Linker options used to build a UEFI executable.

The objcopy [31] utility will generate a PE32+ binary with the following COFF sections:

• .text - Contains executable code;

• .data, .sdata - Holds read-only and read-write data;

• .dynamic, .dynsym, .rela, .rel, .reloc - Contains dynamic information to apply

self-relocation to the executable.

44

5.2.2 TianoCore EDKII

TianoCore EDKII is an open source project created by Intel and it is the reference imple-

mentation of several components of UEFI.

TianoCore EDKII was designed to create a cross-platform UEFI development environ-

ment. It has its own building system supported by several scripts and description files, hiding

the complexity of building a UEFI executable in a Linux enviroment. Because of this, EDKII

is a much bigger and complex development toolkit than GNU-EFI, in fact, GNU-EFI libraries

and include files are based on EDKII code.

TianoCore EDKII can be used to develop libraries, drivers and applications. Along with

scripts and utilities necessary to form the building system, TianoCore is distributed with

several utility libraries and applications/drivers that facilitate the development.

Regarding the actual creation of UEFI executables, when drivers and applications are

compiled they produce unlinked binary object files and then they are liked with the static

libraries. With the help of the dynamic linker they are then transformed in a relocatable

binary image (DLL). The final stage is to convert those DLL images in UEFI executables,

TianoCore addresses this stage with the help of utility programs.

Some of the building description files are explained bellow:

• INF - Information file - It describes properties of a module such as the source files,

libraries and definitions that are relevant upon building the module;

• DEC - Declaration file - It is used to define specific information that will be shared

between different modules. Tells the building system where to find libraries;

• DSC - Description file - It is used by the parsing utility to create makefiles that process

source files to generate UEFI executables;

• FDF - Flash Description File - It is used in conjunction with DSC file to generate

bootable images.

The building process is divided in three stages:

1. Pre-build - In this stage the description meta-data files are parsed and verified to

generate the makefiles necessary in the Build stage.

2. Build - The source files are compiled with the help of Makefiles and the UEFI binaries

are generated.

45

3. Post-build - It takes the generated UEFI binaries and applies the final touches. (This

stage does not happen when building single UEFI Applications)

In Figure 5.3 we show the relatioship of the description files and the three stages.

Figure 5.3: EDKII Platform Build Process Flow. (retrieved from [6])

EDKII was design to be cross-platform, therefore several building and assembling tools

can be used to build UEFI programs, such tools include GCC (Linux and OS/X) or even

Microsoft Visual Studio to develop in a Microsoft Windows Environment. Some meta-data

files must be changed accordingly to specify the building tools that will be used by the EDKII

building scripts to build the UEFI executables.

5.2.3 Java and Apache Tomcat

For the other two components, the desktop application and the central server, we used a

Java environment.

The desktop application is a Java application which takes the form of a JAR file and

is generated and distributed by the central server. We chose to develop this application in

Java language because we wanted our system to run in any operating system and Java is a

cross-platform language (write once, run anywhere) making it a perfect environment to run

our prototype application.

The server was built using Apache Tomcat [32]. Apache Tomcat is developed by Apache

Software Foundation and it is a open-source Web server and servlet container. In our server

46

we have two different interfaces: (i) a web interface and (ii) web service interface. Apache

Tomcat implements the JavaServer Pages specification which was the technology that we used

to develop our web interface, and it also implements the Java Servlet Specification that was

used to implement our web services.

The installation of Apache Tomcat is easy since that it is present in the major Linux

distributions repositories.

Our server application has the shape of a WAR file [33] (Web ARchive) which is the stan-

dard format that is used to distribute web applications. A WAR file is typically a zip archive

that respects a particular structure, it contains meta-data files and the actual Java .class files.

These files are consumed by Apache Tomcat in order to deploy the web applications. The

WAR file can be created using the tar archiving utility.

JavaServer Pages was the technology used to create the web interface. This technology is

used to create dynamic web pages using the Java programming language and it is normally

run in the Java virtual machine.

JavaServlet was used to create the web services. We used the HttpServlet class in order

to implement our RESTfull web service [34].

5.3 UEFI Drivers

Our CuCo UEFI Driver component needs to perform cryptographic operations, namely,

use a cryptographic hashing function for the calculation of the unlocking code, use of message

authentication code algorithms and public key cryptography to validate the tickets authentic-

ity. The Section 33.2 of the of UEFI Specification (EFI Hash Protocols) defines cryptographic

hashing functions but these functions are not required to be implemented by the firmware ven-

dors, therefore, we created a single UEFI Driver that implements this protocol when installed

in any UEFI Firmware. UEFI Specification does not define any protocols for message authen-

tication codes or public key cryptography, therefore, the implementation of these algorithms

was embedded in the main CuCo Driver.

Therefore, we developed two UEFI Drivers (i) the CuCo Driver that is a initializing driver

and implements the designed CuCo booting protocol (ii) a driver that implements the EFI

Hash Protocol and follows the UEFI Driver model. The first driver uses the second one to

apply a cryptographic hashing function (SHA-1) to calculate the unlocking code once in the

screen locking stage.

Our drivers are only required at a preeboot stage, therefore, they are Boot Service Drivers

47

UEFI Driver (Producer) UEFI Driver

EFI HASH PROTOCOL
CuCo Initializing

Driver
 GetHashSize()
 Hash()

Figure 5.4: The driver that implements the EFI HASH PROTOCOL in the left and the CuCo

Driver that implements our booting protocol on the right.

meaning that they are removed from system memory once the Operating System takes control

off the platform.

5.3.1 UEFI Hashing Driver

Our hashing driver implements the EFI Hash Protocol described in the Section 33.2 of

the UEFI Specification. As defined in this specification, a UEFI Driver that is meant to

provide such functionalities to a UEFI firmware, must implement two protocols: the UEFI

Hash Service Binding Protocol and the UEFI Hash Protocol. This way, our driver and

consequently the hashing services can be consumed by more than one entity.

This UEFI driver was implemented using the TianoCore EDKII framework and the ap-

proach taken to develop this driver was to, as recommended by the UEFI Driver development

guide, to find a similar driver and to make the necessary changes.

Our driver starts by installing the HashingDriverBinding protocol in its entry point. For

this it uses an utility function from TianoCore EDK2 library called EfiLibInstallDriverBind-

ing that registers on the handle database our HashingDriverBinding protocol structure that

contains the following pointer to function fields:

• HashingDriverBindingSupported() - It tests if the driver was already started;

• HashingDriverBindingStart() - It installs the hash service binding protocol;

• HashingDriverBindingStop() - It uninstalls the hash service binding protocol.

After installing the HashingDriverBinding protocol when the driver is loaded, the core

firmware will call the HashingDriverBindingStart function that will use the InstallMulti-

48

pleProtocolInterfaces UEFI Boot Service to register in the handle database the HashService-

Binding protocol structure that contains the following pointer to function fields:

• HashServiceBindingCreateChild() - It installs the EFI Hash Protocol using the

InstallMutipleProtcolInterfaces UEFI Boot Service;

• HashServiceBindingDestroyChild() - It uninstall the EFI Hash Protocol using the

UninstallMultipleProtocolInterfaces UEFI Boot Service.

The EFI Hash Protocol structure contains the function pointers to the implementation of

the cryptographic hashing functions. Such functions are:

• GetHashSize() - It returns the size of the hash of the specified algorithm;

• Hash() - It generates the actual hash for the provided message.

At this point the UEFI Driver is in the system memory and is ready to be consumed by

other drivers or applications. In section 5.3.2 when show how other entities can consume this

services.

UEFI Specification defines eight different cryptographic hash algorithms, yet, we only

implemented the hashing algorithm required by our protocol (SHA-1).

For the implementation of SHA-1 algorithm we used a well known open source crypto-

graphic library called OpenSSL. In order to use OpenSSL library in a UEFI Application,

TianoCore EDKII provides a patch that must be applied to OpenSSL source code in order

to make this library compatible with UEFI programming environment. After the application

of the instructions provided by the TianoCore EDK2, OpenSSL library can be used as if it

had been developed under EDK2 environment.

The OpenSSL functions used to implement the SHA-1 algorithm were the following:

1. Sha1GetContextSize - Used to get the size (in bytes) of the context structure need

to use the following functions required by OpenSSL library internal operations.

2. Sha1Init - Initializes the context structure.

3. Sha1Update - Adds the data to be processed to the context structure.

4. Sha1Final - Performs the digest operation on the data added by Sha1Update in the

context structure.

49

5.3.2 Cuco Driver

The CuCo Driver is the driver that implements our boot protocol. This driver does not

follow the UEFI Driver Model because it does not add any entry in the handle database,

instead this driver is part of the UEFI firmware booting process and only consumes protocols

and services in order to implement the CuCo protocol, therefore, this driver is a initializing

driver. Since this driver is only useful in the preboot environment, when it finishes execution

it is unloaded from system memory.

This driver/application was developed using the GNU-EFI library.

PC Power On

Operating
System

UEFI Core
Firmware

CuCo UEFI
Driver

OS Loader

UEFI Environment

Figure 5.5: Simplified booting process of a UEFI platform. Our CuCo Driver runs on every

boot and before the operating system.

Bellow we will enumerate some of the UEFI services and procedures needed by the Cuco

Driver in order to implement the booting protocol.

50

UEFI Variables

UEFI variables are used to store information about the platform as well as certain pa-

rameters of the booting process. They are used by the UEFI firmware to know what is the

boot order or to hold the keys and signatures related with the secure boot technology. They

are defined as a key/value pair.

Each variable has a set of atributes:

• NV - Nonvolatile - This atributes means that the value of the variable is presistent

even when the machine is powered off;

• BS - BootService - This kind of variables can only be managed in the preboot enviro-

ment, they are not visible by the operating system;

• RT - Runtime - A variable with this attribute can be managed in the preboot enviroment

and from the operating system;

• AT - Authenticated - To be written, this kind of variables require an authentication

process.

Since CuCo context variables need to be persistent across platform restarts and because

they are only suitable to be accessed by our driver, they have the NV and BS attributes.

Our CuCo variables are required to be only visible to the CuCo module. Altough BS

attribute states that they are only visible in the preboot enviroment, an attacker could write

an UEFI Application that runs after our module an modifies our CuCo context variables in

order to circumvent our protocol. The UEFI Specification does not describe any mechanism

that restricts the access to some set of variables to a specific module, still, our platform vendors

partners (AMI) implemented a mechanism to tackle this issue but they did not provide any

details on how to do so.

Our CuCo driver uses the following UEFI Runtime Services in order to manage the CuCo

context variables:

• GetVariable() - Used to get the value of a variable;

• SetVariable() - Used to create a variable or to modify the value of an existing one.

51

UEFI Time Services

The UEFI Specification describes a set of functions to manage the time. This provide an

abstraction layer for other UEFI drivers/applications and to the operating system since they

don’t need to access the hardware time devices directly.

CuCo driver consumes the following UEFI Runtime Services:

• GetTime() - This function returns the current time and date;

• SetTime() - This function sets the local time and date.

CuCo uses this services in order to retrieve the local machine time and compare the

returned value with the local context variable CT (Certified Time). If the current local time

is newer than CT, then, CuCo uses SetTime() to set the local time equal to CT.

UEFI Memory Allocation Services

UEFI provides functions that handle memory allocation in the preboot environment.

CuCo uses the following functions to allocate and free memory needed for some internal

operations:

• AllocatePool() - It allocates the provided number of bytes in the memory region;

• FreePool() - It frees the memory allocated with AllocatePool().

UEFI Media Access Services

The UEFI Simple File System Protocol and UEFI File Protocol are used to access the

contents of a file stored in the UEFI System Partition.

The Uefi Simple File System Protocol describes two functions:

• Revision() - It returns the version of the EFI File Protocol;

• OpenVolume() - It opens the root directory on a volume.

OpenVolume() function is used to open a volume and get a file handle that contains the

EFI File protocol, which is then used to access a specific file. Then, CuCo uses the following

Uefi File protocol functions to open, close, get the size, read and delete the ticket file stored

in the UEFI System Partition:

• Open() - It opens the file;

52

• GetInfo() - It returns information about the file such as the size;

• Read() - It reads the contents of a file;

• Delete() - It closes and deletes the file open by Open();

• Close() - It closes the file open by Open().

CuCo uses these services to manage the ticket files that are installed in the ESP by the

desktop application.

Ticket Validation

Since the UEFI Specification does not describe any protocol implementing Message Au-

thentication Codes, we used the OpenSSL library ported to the UEFI enviroment in order to

validate our tickets with the HMAC algorithm.

The OpenSSL library functions required to validate the tickets using the HMAC algorithm

were the following:

1. HmacSha1GetContextSize - Used to get the size (in bytes) of the context structure

needed to use the following functions required by OpenSSL internal operations.

2. HmacSha1Init - Initializes the context structure.

3. HmacSha1Update - Adds the data to be processed to the context structure.

4. HmacSha1Final - Calculates the message authentication code on the data added by

HmacSha1Update in the context structure.

GNU-EFI Library Functions

GNU-EFI library provides high-level functions that hide the complexity of handling some

low level UEFI protocols. CuCo driver makes use of the following:

• InitializeLib() - Initializes some library structures such as pointers to Boot and Run-

time Service tables;

• Print() - Prints text to the console. Uses the UEFI Simple Text Output Protocol;

• AllocateZeroPool() - Allocates memory space and initializes it with zeros;

• ZeroMem() - Initializes the provided memory buffer with zeros.

53

Consuming Hashing Services

In order to use the cryptographic hashing function provided by the hashing driver, the

CuCo driver must follow a set of rules defined by the UEFI Driver Model. Bellow we enu-

merate and explain how a driver or application can consume the services provided by other

driver that follows the UEFI Driver Model.

First, it uses the LocateHandleBuffer UEFI Boot Service to locate the handle that im-

plements the UEFI Hash Service Binding Protocol. LocateHandleBuffer will search in the

handle database all the handles that implement the provided protocol GUID.

After having a pointer to the handle that implements the EFI Hash Service Binding

Protocol, CuCo driver will call the CreateChild function from EFI Hash Service Binding

Protocol structure and get a new handle. Next CuCo will use the OpenProtocol UEFI Boot

Service in the received handle in order to get a pointer to the EFI Hash Protocol. Finally,

when CuCo have a pointer to the EFI Hash Protocol structure it can use the functions

associated with this strucure, namely, Hash and GetHashSize.

5.3.3 Detailed Ticket Structure

The ticket is a textual (readable) block of UTF-8 symbols (or characters). The ticket is

formed by a sequence of lines, separated with the ASCII character NEWLINE (LF, ASCII

decimal 10).

Each ticket line has the format NAME=VALUE. NAME will be the name of the field;

VALUE will be the value of the field. All values are expressed in hexadecimal, using the

symbols 0-9 and A-F. All dates use the same epoch: 1/Jan/2010 (UTC).

The valid field names and their values (if known) are the following:

• V (version). Its value is a positive, integer. It can contain a variable number of hex-

adecimal digits; in local memory it should not occupy more than 32 bits;

• TT (Ticket Type).Valid values are S (for Start ticket), N (for a Normal Ticket), B (for

Blocking ticket) and F (for Freedom ticket);

• T (Text). This field can contain a multi-line message to be presented by CuCo to the

user when dealing with the installation of a Start ticket or when a blocking state is

reached upon the installation of a Blocking ticket or when a blocking state is entered

when a regular ticket reaches its maximum usage. The separation of the lines in the

message must use the character sequence \n (used in many programming languages);

54

• SN (Serial Number). Its value should be a 128-bit value (32 hexadecimal digits);

• CT (Certified Time). Its value is a positive, integer delay, in seconds, from the epoch.

It is represented by a variable number of hexadecimal digits; in local memory it should

not occupy more than 32 bits (unsigned);

• LD (Last Date). Its value is a positive, integer delay, in seconds, from the epoch. It

cannot ever be smaller than CT. It is represented by a variable number of hexadecimal

digits; in local memory it should not occupy more than 32 bits (unsigned);

• TW (Tolerance Window). Its value is a positive, integer delay, in seconds, from LD.

It is represented by a variable number of hexadecimal digits; in local memory it should

not occupy more than 32 bits (unsigned);

• MaxUC (Maximum boots with ticket). Its value is a positive integer. It is represented

by a variable number of hexadecimal digits; in local memory it should not occupy more

than 32 bits (unsigned);

• Authenticator This is a value that verifies the correctness of the ticket for the AK

known by CuCo;

• AKT (Authentication Key Type). Its value should be either S (for symmetric) or A

(for asymmetric);

• AK (Authentication Key). For a symmetric key, it can be a sequence of any length of

hexadecimal digits. For an asymmetric key, it should be formed by the two fields of an

RSA key, modulus and exponent, in this order, written in hexadecimal and separated

by a space;

• UK (Unblocking Key). This is symmetric key; it can be a sequence of any length of

hexadecimal digits.

The value of the Authenticator should contain first the name of the keyed hashing algo-

rithm followed by a space and the numerical value of the Authenticator, in hexadecimal and

with the length of the result produced by the hash function.

All the fields must appear in the given order; otherwise, the ticket is invalid. Not all fields

appear in all types of tickets.

Bellow there is an example of the different types of tickets:

55

Start Ticket Normal Ticket

V=1

TT=S

T=This is the message tbe multiline

SN=32D48DFFBE0752BE5980947AB756B018

CT=0876EF76

LD=0876FD86

TW=0258

MaxUC=03

Authenticator=HMAC-SHA1 176819BB0F75BE445BA489

5EF23026B966E90CA2

AKT=S

AK=E60A2401CB9BAEC7843299A805FCD0F9

UK=1DA3A6474531B58A31C6CD4E62220813

V=1

TT=N

T=This is the message

SN=32D48DFFBE0752BE5980947AB756B018

CT=0876EF77

LD=08777C17

TW=0258

MaxUC=03

Authenticator=HMAC-SHA1 C2141E947EFBC42868

0C61926A9B5D440ADBCA86

Table 5.4: Two examples of a Start and a Normal Ticket.

Blocking Ticket Freedom Ticket

V=1

TT=B

T=This is a message

SN=32D48DFFBE0752BE5980947AB756B018

CT=0876EF77

Authenticator=HMAC-SHA1 3E84D5D90351D542E72F7E

4AAB4CD90A6A804065

V=1

TT=F

T=This is a goodbye message

SN=32D48DFFBE0752BE5980947AB756B018

CT=0876EF77

Authenticator=HMAC-SHA1 3258C54E05930521376

87E8EA0E5B0DA2FCC93BD

Table 5.5: Two examples of a Blocking and a Freedom Ticket.

5.4 Administration

Our system requires a desktop application and a administration server. Both were im-

plemented using Java environment. In this section describe the implementation of those two

components.

5.4.1 WebServices and Web Managment Interface

Our management server provides two interfaces, a web interface and a web service inter-

face. The web interface, that is used by the leasing company to manage contracts and users,

has the following features:

• Generate a customized desktop application installation script;

• List all free for use Start tickets and users;

• Add a new user and associate him with a Start ticket (denoting the beginning of a

56

Apache Tomcat

Presentation-Oriented
Web Application

(JSP)

Service-Oriented Web
Application
(Servlets)

Figure 5.6: CuCo Server components. The Web interface at left and the Web services interface

on the right

leasing contract);

• Calculate unlocking codes.

All of these features were implemented using the JavaServer Pages [35] technology.

The web service interface is used by the desktop application to retrieve a fresh ticket.

This is performed by a simple RESTfull call the CuCo server.

Both the web interface and web service take the shape of two different Java web ap-

plications distributed as WAR (Web application ARchive) files. The web interface is a

presentation-oriented web application because it is intended to generate dynamic and static

content to be presented in a browser. The tickets web service is a Service-oriented web

application because provides web services.

Because these two components are Java web applications they must be deployed in a web

server that implements the Java Servlet [36] and JavaServer Pages [35] technologies. We used

Apache Tomcat as the Web server to deploy our web applications, however, due to the nature

of this technology, any web server that implements the Java Servlet and JSP specifications

could be used.

Upon receiving a request (with a valid SN) for a fresh new ticket, our ticket web service

will send one of the four tickets:

• Start Ticket - if a start ticket was not yet sent for the provided SN;

• Blocking Ticket - if the current date exceeds the deadline date;

• Freedom Ticket - if the leasing contract is over;

57

• Normal Ticket - if current date does not exceed the deadline date and the provided

SN relates to a active leasing contract.

The DBMS (Data Base Management System) used to store the information to support

this system was SQLite [37] which is a cross-platform relational database management system.

This database stores information about the users and their relationship with Start tickets.

It also holds payment information that helps the server to determine the ticket type (Start.

Normal, Blocking or Freedom) that should be sent upon a request from a client.

5.4.2 Desktop Application installation script

The desktop application was developed using Java and it is distributed as a JAR [38] file

(Java ARchive), which is the file format that is used to distribute Java software. As already

stated, this application is used to periodically retrieve a fresh ticket from the server in order

to feed the UEFI driver. In such request, the desktop application, must provide the Serial

Number (SN) of the laptop running our service, making this process a unique request for each

user.

The desktop application must know the SN in order to perform the request. We considered

three different ways of doing this:

1. Upon installation in the client laptop the SN is manually inserted in the application.

2. The desktop application will ask the UEFI firmware the value of SN context variable.

3. The server will generate a custom application for each user and when the application is

downloaded it already knows the SN.

The first way is the easier one. When the application is being installed in the laptop it asks

for an SN. The person installing the application will insert the SN and the application will

save that number (e.g. in a configuration file) for the subsequent ticket requests. Although

being simple, this is not a good approach because first it requires human intervention for

typing a value with 32 hexadecimal digits (which is not always convenient) and second this

procedure must be performed in every operating system installed in the laptop.

The second way requires that, in UEFI, the SN value must be stored in a special variable

that can be read but writes are only authorized to trusted entities. UEFI supports this kind of

variables (and it’s called UEFI Authenticated Variables) but this service requires asymmetric

keys that are not present in our protocol.

58

We implemented the third approach since its is the most flexible in the installation process

in several operating systems and it also transfers the complexity of the application to learn

the SN to the central server.

Figure 5.7: The contents of the desktop application JAR file.

JAR files can contain resource files (text files, images, etc). We used this feature to store

the SN. Upon downloading, the server will build the JAR file with a resource file stored inside

the JAR that holds the SN associated with the client that requested the download. When

the application is running it will search for the resource file inside the JAR, retrieve the SN

and use it to call the ticket web service.

The desktop application was developed using Java and it is distributed in a JAR file.

Inside the JAR file there is a resource file that contains the SN (Serial Number), when the

application is run it uses that SN to build the query string and sends the GET request to the

tickets web service and receives a fresh ticket, then writes that ticket file in the EFI System

Partition and exits. In order to provide an easy installation of the desktop application and

since the application should run periodically in order to get fresh new tickets to update

the system, the application is distributed embedded in an installation script that does the

following:

1. It extracts the RAR archive that is embedded in the script - The contents of the ex-

tracted archive are the CuCo application JAR file and a shell script;

2. It runs the extracted shell script.

The extracted shell script will do the following:

1. Copy the JAR file to /usr/bin;

2. Add a new entry in the crontab that will run the JAR file every day.

59

Shell Script

Compressed Archive

Instalation Script

JAR File

Java Class files

Resource File
(containing SN)

Figure 5.8: The customized package that is distributed for every user.

60

Chapter 6

Conclusion

In this chapter we begin by summarizing what has been presented in this thesis, followed

by the final conclusions. At the end we provide possible directions for future work.

6.1 Summary

We presented CuCo, a computer locking system that performs the locking operation at

a firmware level and works independently of the installed Operating System. CuCo is a

perfect solution for companies that sell computers or mobile devices under a leasing contract.

CuCo has also a second purpose that is to provide an anti-theft service to the owner of a

CuCo-enabled device.

In section 2.1 we provide relevant and important information on UEFI structures and

services and how to programatically interact with such UEFI components in order to build

UEFI Drivers and Applications. The research for such information was difficult due to the

nature of this technology. First, it is a very recent technology that only in the past two years

is emerging on the market, and second, because it is used mainly by companies not many

information is publicly available.

Chapter 3 showed that many similar systems exists but a big part of them are software

only solutions, and all those solutions suffer from the same problem: the locking decision

is performed at the Operating System level, therefore, the lock can be disabled by booting

from another storage device. We also presented two solutions that rely in specific hardware

and firmware capabilities but they are Operating System dependent or are not available to

common users. CuCo fills the gap that exists in the are of locking mechanisms because it

introduces two features that are not present in any other system , (i) it works independently

61

of the operating system, (ii)it relies on firmware (UEFI) capabilities.

6.2 Final Conclusions

In the beginning of this document, at the introduction, we presented four challenges:

• What functionalities does a UEFI environment provide that can be effective

in the conception of our system? The extensibility of UEFI proved to be an

important factor, since, without the ability to create drivers that can be easily loaded by

the core firmware, we could’nt develop the main locking component. Also the existence

of open-source technologies and frameworks for testing and developing such driver was

also a determining factor (Sections 5.1 and 5.2);

• What kind of protocol approach can we use taking in consideration the

absence of network connection in a preboot environment? UEFI provides

protocols for accessing the network through ethernet connection, but sometimes the

laptops use Wifi connection instead of ethernet (specially mobile devices), therefore,

it was decided that the access to the Internet is performed by a desktop application

running in the operating system and the low level access to the network (wifi, ethernet,

etc) is abstracted from our implementation. Also because UEFI is not running during

the whole life cycle of a computer (it runs only at preeboot stage before the Operating

System tacking control of the platform) we implemented the system based on ticket (or

lease) files that are transferred by the central server to the driver through the use of the

desktop application;

• What cryptographic, symmetric or asymmetric, protection should be used

and what are the consequences of one or another? In section 4.2.2 we have

shown that this system can be implemented using both symmetric and asymmetric

protections. Although the first requires that UEFI provides a mechanism that associates

a variable storage with a single UEFI driver, its implementation is simpler. The second

one provides more complex and flexible combinations of several issuing entities.

• How can we manage time-related lockings on laptops disconnected from the

Internet where the local clock can be manipulated? The ticket files indicate

how long the computer is unlocked, even if the computer does not have internet access

it will lock after passing a timeout value. The usage of an (authenticated) issuing time

62

(CT) field in the ticket files makes possible for CuCo to compare this trusted timestamp

with the computers clock and prevent any manipulation of the computer clock. Finally,

tickets can only be used a limited number of times before being refreshed, therefore

the clock manipulation to use endlessly a leasing ticket only pays back if one does not

reboot the system, which is unlikely to happen for laptop computers.

6.3 Future Work

Because in the area of research there are always something more that can be done or

improved and because the time to perform this work was limited, we enumerate some possible

directions for future work:

• Use of other communication mechanisms - Instead of the Internet, other commu-

nications technologies can be used. If the device provides a GSM Modem, the transfer

of tickets could be performed using GSM. That is advantageous if the device never

connects to the Internet;

• Improve the anti-theft features - The anti-theft service only provides the locking

feature. It could provide the device tracking information (i.e if the device has a GPS

module) or encryption at the firmware level;

• Improve the desktop application - The desktop application only serves as a inter-

mediate between the driver and the server. It could be improved in order to provide

information to the user related with the leasing contract. (e.g. notifications or payment

alerts);

• Implement asymmetric protections - Only the symmetric protection was imple-

mented. Asymmetric protection could be implemented and the information system

could be changed in order to have a chain of trustworthy issuing entities;

63

64

Bibliography

[1] Intel Corporation. Uefi architecture and technical overview. https://software.intel.

com/en-us/articles/uefi-architecture-and-technical-overview. [Online; June-

2014].

[2] Roderick W. Smith. The refind boot manager. http://www.rodsbooks.com/refind.

[Online; June-2014].

[3] Intel Corporation. Intel anti-theft, securing the mobile enterprise. http:

//www.intel.com/content/dam/www/public/us/en/documents/white-papers/

anti-theft-securing-the-mobile-enterprise-white-paper.pdf. [Online; June-

2014].

[4] Vitaly Kamluk. Absolute computrace revisited. http://securelist.com/analysis/

publications/58278/absolute-computrace-revisited/. [Online; June-2014].

[5] Trusted platforms: Uefi, pi and tcg-based firmware. http://www.cs.berkeley.edu/

~kubitron/courses/cs194-24-S14/hand-outs/SF09_EFIS001_UEFI_PI_TCG_White_

Paper.pdf. [Online; June-2014].

[6] TianoCore EDKII. Driver Writer’s Guide for UEFI 2.3.1, 08 2012. Rev. 1.0.

[7] Intel Corporation. Intel anti-theft technology. http://www.intel.

com/content/www/us/en/architecture-and-technology/anti-theft/

anti-theft-general-technology.html. [Online; June-2014].

[8] Absolute Software. Absolute lojack. http://lojack.absolute.com/en. [Online; June-

2014].

[9] Fork Ltd. Prey anti theft. https://preyproject.com. [Online; June-2014].

[10] Inforlandia. http://www.inforlandia.pt. [Online; June-2014].

65

https://software.intel.com/en-us/articles/uefi-architecture-and-technical-overview
https://software.intel.com/en-us/articles/uefi-architecture-and-technical-overview
http://www.rodsbooks.com/refind
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/anti-theft-securing-the-mobile-enterprise-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/anti-theft-securing-the-mobile-enterprise-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/anti-theft-securing-the-mobile-enterprise-white-paper.pdf
 http://securelist.com/analysis/publications/58278/absolute-computrace-revisited/
 http://securelist.com/analysis/publications/58278/absolute-computrace-revisited/
 http://www.cs.berkeley.edu/~kubitron/courses/cs194-24-S14/hand-outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf
 http://www.cs.berkeley.edu/~kubitron/courses/cs194-24-S14/hand-outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf
 http://www.cs.berkeley.edu/~kubitron/courses/cs194-24-S14/hand-outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/anti-theft/anti-theft-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/anti-theft/anti-theft-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/anti-theft/anti-theft-general-technology.html
http://lojack.absolute.com/en
https://preyproject.com
 http://www.inforlandia.pt

[11] American megatrends. http://www.ami.com/. [Online; June-2014].

[12] Incepator. What is firmware? http://incepator.pinzaru.ro/software/

what-is-firmware. [Online; June-2014].

[13] UEFI Forum. http://www.uefi.org/about. [Online; June-2014].

[14] UEFI Forum. Uefi specifications. http://www.uefi.org/specifications. [Online;

June-2014].

[15] Phoenix Technologies. Uefi system table. http://wiki.phoenix.com/wiki/index.php/

EFI_SYSTEM_TABLE. [Online; June-2014].

[16] B. Preneel. Hash functions and mac algorithms based on block ciphers. In Michael

Darnell, editor, Crytography and Coding, volume 1355 of Lecture Notes in Computer

Science, pages 270–282. Springer Berlin Heidelberg, 1997.

[17] Intel Corporation. Intel vpro technology. http://www.uefi.org/about. [Online; June-

2014].

[18] Inc McAfee. http://www.mcafee.com. [Online; June-2014].

[19] Symantec. http://us.norton.com/antivirus. [Online; June-2014].

[20] P. Gardner. Persistent servicing agent, November 30 2006. US Patent App. 11/386,040.

[21] Fork ltd. http://forkhq.com. [Online; June-2014].

[22] Node.js platform. http://nodejs.org. [Online; June-2014].

[23] Ruby - a programmer’s best friend. https://www.ruby-lang.org/en. [Online; June-

2014].

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June 1999.

Updated by RFCs 2817, 5785, 6266, 6585.

[25] Microsoft. What are ca certificates? http://technet.microsoft.com/en-us/library/

cc778623%28v=ws.10%29.aspx. [Online; June-2014].

[26] E. Wilde and A. Vaha-Sipila. URI Scheme for Global System for Mobile Communications

(GSM) Short Message Service (SMS). RFC 5724 (Proposed Standard), January 2010.

66

 http://www.ami.com/
http://incepator.pinzaru.ro/software/what-is-firmware
http://incepator.pinzaru.ro/software/what-is-firmware
http://www.uefi.org/about
http://www.uefi.org/specifications
http://wiki.phoenix.com/wiki/index.php/EFI_SYSTEM_TABLE
http://wiki.phoenix.com/wiki/index.php/EFI_SYSTEM_TABLE
http://www.uefi.org/about
http://www.mcafee.com
http://us.norton.com/antivirus
http://forkhq.com
http://nodejs.org
https://www.ruby-lang.org/en
http://technet.microsoft.com/en-us/library/cc778623%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc778623%28v=ws.10%29.aspx

[27] Oracle. Java. https://www.java.com/en. [Online; June-2014].

[28] Qemu. http://wiki.qemu.org. [Online; June-2014].

[29] Tianocore. http://tianocore.sourceforge.net/wiki. [Online; June-2014].

[30] GNU Compiler. https://gcc.gnu.org. [Online; June-2014].

[31] objcopy. https://sourceware.org/binutils/docs/binutils/objcopy.html. [Online;

June-2014].

[32] Apache tomcat. http://tomcat.apache.org. [Online; June-2014].

[33] Oracle. War file. http://docs.oracle.com/cd/A91202_01/901_doc/java.901/

a90213/war.htm. [Online; June-2014].

[34] Roy Thomas Fielding. Representational state transfer (rest). http://www.ics.uci.

edu/~fielding/pubs/dissertation/rest_arch_style.htm. [Online; June-2014].

[35] Oracle. Javaserver pages technology. http://www.oracle.com/technetwork/java/

javaee/jsp/index.html. [Online; June-2014].

[36] Oracle. Java servlet technology. http://www.oracle.com/technetwork/java/

index-jsp-135475.html. [Online; June-2014].

[37] Sqlite. http://www.sqlite.org. [Online; June-2014].

[38] Oracle. Jar file overview. http://docs.oracle.com/javase/6/docs/technotes/

guides/jar/jarGuide.html. [Online; June-2014].

67

https://www.java.com/en
http://wiki.qemu.org
 http://tianocore.sourceforge.net/wiki
https://gcc.gnu.org
https://sourceware.org/binutils/docs/binutils/objcopy.html
 http://tomcat.apache.org
 http://docs.oracle.com/cd/A91202_01/901_doc/java.901/a90213/war.htm
 http://docs.oracle.com/cd/A91202_01/901_doc/java.901/a90213/war.htm
 http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
 http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
 http://www.oracle.com/technetwork/java/javaee/jsp/index.html
 http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
 http://www.sqlite.org
 http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jarGuide.html
 http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jarGuide.html

68

	Contents
	List of Figures
	List of Tables
	Introduction
	Objective
	Contribution
	Document Structure

	Context
	UEFI
	UEFI Structures
	UEFI System Table
	Handle database
	Protocols

	UEFI Driver model
	Driver Binding Protocol
	Service Binding Protocol

	UEFI System Partition

	Cryptography
	Cryptographic Hash Function
	Message Authentication Code
	Digital Signatures

	Related Work
	Intel Anti-Theft Technology
	Absolute Computrace
	Prey

	System Architecture
	Overview
	Low level locking: UEFI Driver
	Computer States
	Cryptographic protections
	CuCo context variables
	Ticket Structure
	Boot sequence
	Blocked Screen Stage

	Administration
	System Architecture
	CuCo Server
	Database
	Administration Interface
	Tickets Web Service

	Desktop Application
	Exploitation flow

	Implementation
	Testing environment
	QEMU
	OVMF

	Implementation frameworks
	GNU-EFI
	TianoCore EDKII
	Java and Apache Tomcat

	UEFI Drivers
	UEFI Hashing Driver
	Cuco Driver
	UEFI Variables
	UEFI Time Services
	UEFI Memory Allocation Services
	UEFI Media Access Services
	Ticket Validation
	GNU-EFI Library Functions
	Consuming Hashing Services

	Detailed Ticket Structure

	Administration
	WebServices and Web Managment Interface
	Desktop Application installation script

	Conclusion
	Summary
	Final Conclusions
	Future Work

	Bibliography

