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Resumo 
 
 

As concentrações de CO2 atmosférico têm atingido níveis alarmantes nas últimas décadas 
resultando no aquecimento global em conjunto com alterações climatéricas generalizadas. 
O stress hídrico é uma das maiores consequências destas alterações, constituindo um 
disruptor direto dos fluxos hídricos e de carbono com efeitos na produção primária e 
equilíbrio de ecossistemas terrestres. Afeta as plantas a diferentes níveis dependendo da 
intensidade, duração e níveis de progressão, conduzindo a respostas a níveis fisiológicos, 
bioquímicos e moleculares. Estudos recentes, suportam a aplicação de biochar nos solos 
como estratégia de mitigação, visando promover a retenção de água e nutrientes. 
Assumindo a importância económica da espécie Eucalyptus globulus em Portugal e o 
crescente aumento de períodos de seca na região mediterrânica, o objetivo deste estudo 
foi avaliar o efeito de mitigação do biochar em Eucalyptus globulus sujeitos a limitação 
hídrica. Comparamos também o seu efeito com a utilização de fertilizantes sintéticos e da 
conjugação da utilização de ambos. Deste modo, 136 plantas de E.globulus foram sujeitas 
a um período experimental de 6 semanas, divididas por 2 grupos (sem limitação de água – 
80% de capacidade de campo e com limitação de água – 30% de capacidade de campo), 
cada um constituído por 4 tratamentos: sem biochar, com biochar (6%), sem biochar+ 
fertilizante e com biochar+fertilizante. No final do ensaio, as plantas foram avaliadas ao 
nível morfológico, fisiológico e bioquímico. Os resultados deste estudo indicam um 
decréscimo na maioria dos parâmetros analisados em condições de limitação de água, 
nomeadamente ao nível das trocas gasosas, potencial hídrico, altura, níveis de 
transpiração, fotossíntese, número de folhas, área das folhas, peso de biomassa aérea e 
peso das raízes, o que sugere que a limitação de água afeta severamente a performance 
da planta. A aplicação do biochar promove o aumento de área das folhas e níveis 
fotossintéticos, juntamente com uma diminuição no conteúdo de açucares totais (TSS) e 
um ligeiro aumento dos valores de potencial hídrico, sugerindo que em condições 
limitantes de água, a aplicação de biochar a 6% promove a habilidade de retenção de 
água pelos solos, reduzindo os efeitos gerais de stress nas plantas. Em condições de 
controlo, sem limitação de água, as plantas sujeitas a aplicação de biochar apresentaram 
sinais atípicos de murchidão apical, bem como baixos níveis de fotossíntese e 
morfológicos gerais, quando comparados com a utilização de fertilizantes, nas mesmas 
condições, sugerindo que em condições de rega abundante a aplicação de fertilizante é 
preferível ao biochar. Os resultados da conjugação do biochar+ fertilizantes mostraram 
baixa performance da planta, comparativamente à aplicação em separado, 
nomeadamente ao nível da área folear, número de folhas, peso das raízes, fotossíntese, 
trocas gasosas e carotenoides, em condições de limitação de água. Em conclusão, os 
nossos resultados indicam que o biochar tem um efeito mitigante em condições de 
limitação de água para E.globulus, no entanto a sua aplicação não representa uma mais 
valia em condições de rega abundante ou quando aplicado em conjugação com 
fertilizantes.  
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Abstract 

keywords 
 

Atmospheric CO2 concentrations are higher than any time in the last decades, resulting 
in global warming along with general climactic changes. Drought stress is one of the 
most important effect of climactic alterations and directly disrupts water and carbon 
fluxes, with effects on primary production and terrestrial ecosystems equilibrium. It 
affects plants at different levels depending on intensity, duration and progression of 
drought, leading to responses at physiological, biochemical and molecular levels. The 
biochar application to the soils as a mitigation agent, by enhancing water and nutrient 
availability, has been well documented. Assuming the economic importance of 
Eucalyptus globulus in Portugal and the rising demand of dry periods in mediterranic 
region, the main goal of this study was to evaluate the ability of biochar to reduce the 
stress effects in Eucalyptus globulus plants, under water limiting conditions. We also 
evaluate the application of fertilizers in plant performance and the conjugation of both. 
For this propose, 136 plants of Eucalyptus globulus were subjected to a 6 weeks 
period assay, divided by 2 groups (well watered – 80% of field capacity and water 
stress - 30% of field capacity), which one with 4 treatments: without biochar, with 
biochar (6%), without biochar+fertilizer and with biochar+fertilizer. At the end of the 
experimental period, the plants were evaluated at morphological, physiological and 
biochemical levels. Our results showed a significant decrease in most of analysed 
parameters with water limitation, as gas exchanges, hydric potential, height, 
transpiration, lateral branches, leaf area and number of leaves, photosynthesis (except 
WSb), above ground biomass (fresh and dry) and weight of roots, suggesting that the 
water limitations severely affect plants performance. Biochar application improve  leaf 
area and photosynthesis rates along with decreases the total soluble sugars content 
and slight higher values of water potential, suggesting that in water stress conditions it 
is beneficial to applied biochar into soils to enhance their ability to store and use water, 
reducing overall stress levels in the plants. In well watered conditions, the biochar 
showed wilting signals In well watered conditions the use of biochar promoted lower 
photosynthetic rates and lower values of all morphological parameters as above 
ground biomass, number of lateral branches and leaf area when compared with 
nutrients application, along with apical wilting signals suggesting that in in well water 
conditions, the use of biochar is not a better option. The results of conjugation of both 
biochar and fertilizers were contradictory. In well water conditions we found a higher 
values of Fv/Fm along with chlorophylls and lower values of number of leaves, leaf 
area, photosynthesis and TSS. Otherwise, in water stress conditions and besides the 
lower performance in all gas exchanges parameters, we noticed higher above ground 
biomass, when compared with biochar and fertilizer applied alone. In conclusion, our 
results shows that biochar amend water limitation conditions in E.globulus, but is not a 
main value for plant performance in well water conditions or when applied together with 
fertilizer. In either case, further studies are needed.  
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Figure 1- Representation of forest area, other wooded land, other land and water in the world (Source: FAO, 2010) 

 

 

Chapter I  

General Introduction, Research Aims and Relevance 

 

Economic importance of Eucalyptus globulus  

 

 

The world’s total forest area (Figure 1) was estimated to be over 4 billion hectares in 2010 

(about one-third of the total land area in the world), providing a complex array of vital 

ecological, social and economic goods and services (FAO, 2010). Forests constitute the main 

terrestrial biodiversity repository and currently, about one billion people around the world 

depending on their resources for survival supplies (FAO, 2010). Also, forests can store more 

than a 650 billion tons of carbon mostly in biomass and soil (FAO, 2010), and their destruction 

or degradation contribute to 10-30% of all CO2 emissions to the atmosphere (Abril et al., 

2011). Both wood and manufactured forest products contributed with more than $450 billion 

to the world economy each year (Abril et al., 2011).  
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While sustainable management, planting and rehabilitation can conserve or increase the 

forests productivity, deforestation, degradation and poor forest management can reduce 

them (FAO, 2010). Industrial and agricultural revolutions, urbanization and other natural 

occurrences (such as fires and pests) have caused higher levels of deforestation, which 

caused in the last 20 years a loss of 95 million hectares of forests (Abril et al., 2011). Planted 

forests constitutes nearly 7% of world forests and they provide essential related forest 

products and services to follow the increasing growth demand population, allowing 

environmental benefits as a climate change mitigation (FAO, 2010).  

The Eucalypt genus includes 900 species native to Australia.  and is characterized by it fast 

growth and a high tolerance to arid environments, leading it to support many adverse 

conditions as drought, fire, insects and soil acidity, allowing to a high success as an exotic 

plant (Rockwood et al., 2008). Eucalyptus globulus is the main hardwood specie that grows in 

temperate Mediterranean regions and it is one of the most popular members of the genus in 

the forestry industry due its relatively high fibre yield and rapid growth (Warren et al., 2011). 

It was discovered in Tasmania in 1792 and it was the first eucalypt species to be formally 

described (Potts et al., 2004).  

Eucalypt wood has been applied as a source of energy, once its biomass can be converted to 

produce petrochemical products such as a lubricants, textiles, biodegradable plastics, 

celluloses (Sims et al., 2010), plywood, veneer (Gorrini et al., 2004), essential oils and 

providing natural shade and windbreaker (Foley et al., 2004). Once eucalypt has a fast 

growth, its productivity is maximized by short rotations. Some species also have wood 

properties (high density) that allow its application for charcoal production, paper 

manufacturing and lumber (Rockwood et al., 2008).  Eucalyptus spp. plantations have been 

estimated to cover a total area of about 20 million ha around the world in South America, 

South Africa, Asia, Australia and Southwestern Europe (Flynn et al. 2010). In Portugal, 700,000 

ha of E. globulus has been established as a key species (Chaves et al., 2003), and due its 

higher growth rates, superior pulp properties and environmental adaptability, it has been 

extensible used for pulpwood production (David et al., 1996), representing 6% of the total 

value of national exports, constituting a major value in the country’s economy (Silva et al., 

2004). Due to increased anthropogenic activities and the consequent effect on global 

climacteric patterns, water limitation has become a main disruptor of terrestrial ecosystem 



 
 

27 
 

dynamics once it will affect the textural properties and compositions of the soils influencing 

the water retention ability (Pereira et al. 2007). 

 

Water deficit and its impacts on forests 

The increasing need to supply the growing population in the last decades has dramatically 

increased the general world pollution, leading to global warming which largely contributes to 

alterations in the composition and equilibrium of the atmosphere and land around the globe. 

Extreme events such as rainstorms and drought periods are predicted, increasing the risks of 

wildfires which may severely impact on plant productivity, causing the mortality of trees and 

contributes to soil degradation (Santos et al., 2001). 

The 21st century is characterized by increasing drought events (Barriospedro, et al., 2010) and 

the consequences for the plant water relations and general yield has been studied and is well 

documented (Leuzinger et al., 2005, Bréda et al., 2006, Granier, et al., 2007). According with 

the economic, agronomic and ecological importance of agriculture and forestry, drought 

periods and its effects on plants has evoked interest beyond scientific proposes, namely at 

governments and environmental organizations (Trigo et al., 2000).  Along with the influences 

in agricultural aspects, the incidence of pests and diseases affected by climacteric alterations 

may influence the geographical distribution of crops (Santos et al., 2001) and recurrent 

severe droughts over the time may change the composition of species in ecosystem (Granier 

et al., 2007).  

Mainland Portugal is characterized by a mild temperate climate, with average annual 

temperatures varying from 7°C to 18°C and average annual precipitation ranging from 500 

mm to over 3000 mm (Santos et al., 2001). In the last years, the climacteric patterns exhibited 

temporally and spatially irregular behaviours (Daveau et al. 1977; Trigo et al., 2000), with 

severe winters and lower precipitation rates in spring, summer and autumn months, leading 

to more and severe drought periods (Guidi et al., 2013).  

Plants often deal with biotic and abiotic stressors that may compromise their health and 

performance (Leuzinger et al., 2005). Among all variation factors of temperature, salinity and 

nutrients, hydric stress is probably the most limiting factor. It is determined by the increasing 

temperatures and/or heat waves associated with low levels of precipitation, leading to a long 

dry periods and high demands of plant transpiration rates (Ryer et al., 2013). Drought stress is 

a direct disruptor of water and carbon fluxes with effects on primary production and 
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terrestrial ecosystems dynamics once it could affect the soil functions namely at organisms 

activity level (Bréda et al., 2006).  

The lack of water supplies affect plants at different levels depending on intensity, duration 

and progression of drought, and it can lead to responses at physiological, biochemical and 

molecular levels (Seyed, S. et al., 2012), as can be seen in Figure 2. As a primary response, 

plants tend to close the stomata and reduce foliar areas, leading to lower levels of 

transpiration by avoiding water losses (Pita et al., 2001). Also, when the stomata close, the 

gas exchanges in plants are seriously compromised leading to a lower CO2 uptake (Anjum et 

al., 2011) affecting photosynthetic rates and, consequently, tissue growth and differentiation 

(Shao et al., 2008). 

The water balance of any plant is driven by their ability to absorb water from the soil and the 

efficiency of transport along the vessels, both ensured by transpiration rates. The water flow 

continuum between soil-plant is a result from a water potential gradient between roots-soil 

and leaves-transpiration, leading to a decrease in leaf water potential as evaporation 

increases and also as soil dries (Martinková et al., 2014).  

The efficiency of soil water absorption largely depends both by extension and density of root 

systems and their distribution and growth also depends on physical soil properties such as 

bulk density or moisture content, directly linked with climate dynamics (Bréda et al., 2006). 

Thus, in drought conditions, plants develop a deep and dense root system, providing access 

to larger soil water reserves (Leuschner et al., 2004). Enhancing root system could also be 

described by a recovery strategy to re-establish the water potential equilibrium over night, 

when the deeper roots reach the water displayed as a gradual downward shift as the soil 

dries and supports transpiration supplies during stomatal closure periods (Bréda et al., 1995). 

Maintenance of turgor values provides a chance to preserve metabolic processes and growth. 

Turgor is a result from osmotic adjustments or decreases in cell wall elasticity, which allows 

plants to take up water at low soil water potentials (Pita et al., 2000). The enhancement of 

root systems is reported by some studies, which emphasise an increasing of root/shoot ratio 

under drought conditions (Xu et al., 2010; Chaves et al., 2003).  

Plants react to hydric stress by avoiding losses of water also by growth inhibition as a way to 

maintain water levels and plant carbon assimilation at healthy rates. To minimize water 

losses, plants also reduce the light absorbance through rolled leaves, by a dense trichome 

layer which increase reflectance rates, steeping leaf angles, decreasing canopy leaf area or 
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shedding older leaves (Chaves et al., 2003). They also respond by accumulating somatically 

active compounds also known as compatible solutes, which ensure a physical replacement of 

water (hydrophilic nature) near cellular compounds, preventing desiccation (Bohnert et al., 

1999), stabilizing the photosystem II complex, protecting enzymes and proteins, maintaining 

membrane integrity and lower levels of ROS (Chen et al., 2007).  

Elevated soluble sugar content (TSS), known as the most important compatible cellular solute 

in plants, are reported by many authors as a main physiological response of hydric deficit, 

once it will lower the hydric potential of cells which may facilitate the absorption of water 

from de soils. Increasing the TSS content may also maintain cell turgor, gas exchanges levels 

and growth rates at stress conditions (Chaves et al., 2003; Guarnaschelli et al., 2006), support 

biological stabilization of membranes, proteins and enzymes and it is related with a 

repression of the photosynthetic-associated genes expression (Chaves et al., 2003). 

Cellular growth is the main direct physiological process constrained by drought conditions. 

With reduction of turgor pressure and assimilation of carbon, cells cannot ensure their 

development, limiting plant performance and productivity.  Thus, during the acclimation 

phase, water stress typically leads to low growth rates. Some studies show that aboveground 

biomass can decrease in order to carbon partitioning favour root system development (Silva 

et al., 2004, Charp and Davis, 1979). Some studies in Eucalyptus spp. also reported significant 

decreases in shoot, basal diameter, total leaf area, foliage and number of branches 

(Demming-Adams et al., 1996, Chaves et al, 2003). Chlorophyll are thylakoids pigments 

responsible for the absorption and delivery of the light energy to the photosynthetic 

apparatus, along with carotenoids and anthocyanins that protect photosynthetic machinery 

from excess of light or UV light, respectively. Carotenoids are also an essential compounds of 

thylakoid membranes, supplying a variety of functions as a reactors with quench triplet 

chlorophyll, singlet oxygen and superoxide anions, harvest light to photosynthesis process 

and play an important role as a  precursor for abscisic acid biosynthesis (growth regulator) 

(Cunningham and Gantt, 1998). When subjected to stress conditions, namely water 

limitations, plants tended to loose chlorophyll being forced to divert the absorb light by other 

ways like thermal dissipation to protect the photosynthetic apparatus, by carotenoids (Reddy 

et al. 2004). Due to their importance for the leaf and photosynthetic success, variation on 

pigment content may provide important information about the physiological state of the 

leaves. Usually, the values of both pigments decrease with hydric stress (Alberte et al., 1977). 
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The decrease of chlorophyll content under hydric stress is well documented as a result of 

photo-oxidation and degradation (Anjum et al., 2011), nevertheless Michelozzi et al. (1995) 

and Correia et al. (2014) found an increasing of chlorophylls and carotenoids content under 

drought conditions along with the maintenance of their volume, which seems to be a defence 

mechanism response in E.globulus, to prevent chloroplasts injury from toxic concentrations of 

ions. 

The lack of water under stress conditions will increase the solute concentrations once the 

protoplast volume shrinks, which can cause serious structural and metabolic consequences. 

As a direct effect from desiccation are the membranes integrity and proteins damages, which 

leads to metabolic dysfunctions in lipid bilayer causing displacement of membrane proteins 

which, with solute leakage, contributes to a loss of selectivity and activity of membrane-

based enzymes (Anjum et al. 2011).The Malondialdehyde acid (MDA), is a secondary product 

of lipid peroxidation, produced by oxidation and enzymatic degradation of cellular 

membranes in the presence of Reactive Oxygen Species (ROS) and it has been an extensively 

studied indicator of the prevalence of free radicals reactions and  tissue damages in plants. 

ROS are commonly produced and accumulated in response to stress, which may cause 

oxidative damages to lipids, proteins and nucleic acids, seriously compromising cellular 

health. It is used as a direct indicator of oxidative stress (Arcoverde et al., 2011). Some studies 

have reported increasing MDA contents in response to ROS production as a consequence of 

moderate and sever hydric stress in plants (Arcoverde et al., 2011, Cechin et al., 2010, Lima et 

al., 2010) and Correia et al. (2014) reported a direct relation between increasing hydric stress 

levels and the MDA content, in Eucalyptus globulus.  

Studies have been made in Eucalyptus spp. to access the water limitation stress levels:  

 Significant decreases in most of morphological parameters such as growth rates, total 

biomass, leaf area, number of lateral branches and root length (Silva et al. 2004, Li et 

al. 2003);  

 Decline in stomatal conductance (gs), photosynthesis (A) and transpiration reates (E) 

were also reported under drought stress (Guarnaschelli et al. 2006, Lima et al. 2003);  

 Decreasing water potential in response to water limitations has been also reported for 

Eucalyptus globulus plants (Guarnaschelli et al. 2006, Correia, et al. 2014);  

 Increasing total chlorophylls and carotenoids concentration with increasing water 

deficit (Michelozzi et al.1995, Correia et al.2014). Regarding to MDA content, Correia 
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Figure 2- General plant responses to drought stress (short and long term). Source: Chaves et al.2003 

 

et al. (2014) also reported an increase of MDA content in E.globulus exposed to 

different levels of water deficit.  

 

 

 

Biochar as a strategy to mitigate hydric stress 

Biochar is considered as a new and promising approach to improve soil quality and crop 

productivity. After application, biochar can influence soil aggregation, porosity and density, 

which in turn affect the soil aeration, water holding capacity, microbial and nutritional rates. 

Some studies reported biochar benefits in climate mitigation, reducing the effects of global 

warming and drought conditions (Lehman et al., 2007, Ogawa et al., 2006, Laird et al., 2008, 

Woolf et al., 2010).   

Biochar is usually defined as a charred organic matter material, produced with the intent to 

be deliberately applied to soils to sequester carbon and improve their properties (Lehmann et 

al., 2009). It has a heterogeneous composition and its surfaces can exhibit both hydrophilic or 

hydrophobic, acidic or basic properties, allowing biochar to react with soil components 

(Amonette et al., 2009). Biochar is degraded on a timescale of centuries depending on original 
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feedstock, production strategy, environmental and management conditions (Cheng et al., 

2008, Lehmann et al., 2011). 

Biochar consists of a carbonaceous material with polycyclic aromatic hydrocarbons, with an 

array with other functional groups (Kookana et al., 2011). Heteroatoms can be found within 

the aromatic rings, such as hydrogen, oxygen, nitrogen, phosphorus and sulphur which largely 

contribute for the heterogeneous and reactive nature of biochar’s surface. Carbonaceous 

material, volatile matter, mineral matter and moisture are the main compounds of any 

biochar, wherein carbonaceous and ash materials constitute the solid part of biochar and a 

mix of air and volatiles constitute the gaseous fraction (Verheijen et al., 2010). 

In the distant past, Amazonian communities promoted in-field fires producing extremely 

productive soils with dark colour named ‘Terra Preta do indio’. It is defined as an 

anthropogenic dark soil, characterized for enhancing the soil fertility and yield performance 

(Lehmann et al., 2007). Recently, the potential relevance of Terra Preta has been studied with 

the intent of developing strategies or soils whose properties would enhance those ancient 

findings. Darker soils may absorb more solar energy (Verheijen et al., 2013) increasing the 

overall soil temperature, directly affecting the physicochemical and biological processes. Sohi 

et al. (2009) reported that those characters may extend the growing season with optimal 

growing conditions.  

Biochar is produced by thermal alteration of biomass under oxygen-limited conditions. This 

process is named pyrolysis and is characterized by using low levels of oxygen, with variable 

rates of heating and temperature peaks (Sohi et al., 2009). This process produces a solid 

structured material with a higher surface area, reduced oxygen and hydrogen contents and a 

higher nutrient concentration, compared to the original feedstock (Gaskin et al., 2008). The 

wide variability of biochar’s chemical and physical properties depends on the feedstock used, 

as well as the pyrolysis dynamic between available oxygen and temperature achieved during 

the process. There is a large variety of different feedstock’s used in biochar production, 

varying from crops residue (e.g. corn, cereals, wood, pellets, palm oil, oilseed rape, wheat 

straw, hazelnut shells) to manure or organic household wastes (Sohi et al., 2009).  

The interaction of biochar with soil components is directly linked with the distribution and 

connectivity of pores in the soil and with the charged surface character dynamics over time 

(Joseph et al., 2010). Fresh biochar can show hydrophobic behaviour, but when natural 

oxidation occurs (in biochar contacts with air and water), it surface assumes a reactive 
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hydrophilic nature (Basso et al., 2013). When in contact with soil, biochar surface oxidizes 

leading to a formation of hydrophilic carbonyl, carboxyl and phenolic surface groups, 

promoting further active interactions with soil biotic and abiotic constituents (Cheng et al., 

2006). When oxidation occurs, the cation exchange capacity (CEC) increases by improving the 

reactivity at the surface of biochar particles (Cheng et al., 2006).   

Biochar porosity determines its specific surface area. The size of biochar pores can vary from 

nano to macro pores (<0.2nm to >50nm) (Downie et al., 2009) and this feature characterizes 

its functionality in soils: aeration, hydrology and a niche for microorganisms such as 

mycorrhizae and bacteria (Pietikainen et al., 2000). Otherwise, the pores also allow molecular 

adsorption and transport (Thompson et al., 2005), improving the surface area and promoting 

nutrient retention (Liang et al., 2006). The porosity degree is determined by pyrolysis 

temperature and nature of feedstock. It will decline in the presence of lipids, fluvic and humic 

acids from original feedstock (Atkinson et al., 2010).   

Soil aggregation can be increased by biochar application to soils due the interactions between 

biochar’s internal and external surfaces with soil organic matter and surrounding biota (Abel 

et al., 2013). This promotes the decreasing of bulk density leading to a better aeration, 

drainage and water holding capacity (Lei et al., 2013, Mulkahya et al., 2013). Bulk density is 

one of the most important factors affecting the water infiltration in the soils and the ability of 

biochar to change this character will improve root systems and microbial respiration (Basso et 

al., 2013). 

One of the most important agronomic benefits of biochar in soil application is the 

extraordinary sorption ability associated with the improvement of water retention (Atkinson 

et al., 2010), which may increase crop production in non-irrigated drought periods (Jeffery et 

al., 2011). The negative surface charge of oxidized biochar allows electrostatic bonding with 

the positively charged side of dipolar water molecules (Thomas et al., 2008). Some studies 

reported that irrigation requirements decline in biochar amended soils, when compared to 

controls (Novak et al., 2013; Chan et al., 2007), with more water retained, increasing the 

available  moisture favouring crop development during critical drought stress in growing 

seasons (Laird et al., 2010).  

Biochar addition increases overall accumulation of osmotic active substances in plant tissues 

(like K+), leading to an improvement of water uptake by plants (Gaskin et al., 2010). 

Furthermore, biochar may not only modify the availability of water in soils, but also the 



 
 

34 
 

physical advantageous location of water within the soil matrix, near the plant roots (Sohi et 

al., 2009). When applied to soils, some studies reported that biochar can improve water 

availability in sandy soils (Basso et al., 2013; Busscher et al., 2010; Novak et al., 2009; Pereira 

et al., 2012), while for loamy soils a moderate improvement has been observed (Laird et al., 

2010; Karhu et al., 2011). Bornemann et al. (2007) also recognized the ability of biochars to 

sorb pollutants in soil/sediments and reducing pesticide toxicity (Cui et al., 2009; Wang et al., 

2010). 

Biochar is also considered as a nutrient source when it provides macro and micronutrients to 

plants, conferring it a fertilizer character in short-term application (Thomas et al., 2013). 

Regarding the surrounding biota, this nutrients may not be available as an energy source but, 

they can be leached and mineralized and, therefore, stimulate microbial activity (Lehmann et 

al., 2011). Biochar has also been directly linked with increasing uptake rates of Phosphorus 

(P), Potassium (K), Calcium (Ca), Zinc (Zn) and Cupper (Cu) by plants (Lehman et al., 2006).  

Recent meta-analyses have shown that in most instances plant biomass increased after 

application of biochar into the soils (Jeffery et al., 2011; Liu et al., 2013). Oram et al. (2014) 

suggested that, in legumes after char application under N-limiting conditions, biological 

nitrogen fixation enhanced the plant performance and, thus increased the overall biomass.  

The mechanical impedance is the most determining factors for root elongation and 

proliferation in soil. In conditions of water limitation, this may play an important role in 

reaching deeper moisture and maintain vital levels of water into the plant. Lehmann et al. 

(2011) also reported an overall reduced tensile strength of the soil when amended with 

biochar, leading to an easier way for plant roots to reach water.  

 

Relevance and application of the results 

Due the economic and environmental importance of Eucalyptus globulus around the world 

and assuming the increasing of drought periods arising from climate changes which 

constitutes a main disruptors to Eucalyptus globulus performance, it is extremely important 

to study and develop adaptation strategies to maintain or improve plant productivity, 

ensuring that environmental and human needs will be supplied along the time. The soil used 

in this study was a typical sandy soil from eucalypt plantations in Portugal and the drought 

stress imposed (30% of field capacity) represent a medium stress, equivalent to a dry periods 

in natural conditions in a temperate climate as Portugal.   
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Aim and objective of this study 

The main objective of this study is to evidence that biochar can be used as an adaptation 

agent, diminishing drought effects of climate change in Eucalyptus globulus. Thus, plants with 

biochar exposed to hydric stress will show lower stress levels (at physiological, morphological 

and biochemical levels) compared to plants without biochar.  

 

Hypothesis 

Eucalypts plants will experience less hydric stress and show better physiological performance 

under water limitation conditions, when planted in biochar-amended soil and there is no 

need for additional fertilizer addition to improve this performance. 

 

Organization of the thesis 

This thesis comprises three parts. Chapter I introduces a brief literature review as a 

background and framework. Chapter II consists of a paper, where the experimental results of 

this work are presented and discussed, titled “Biochar amendment as a strategy to reduce 

hydric stress in eucalypt seedlings”. Chapter III comprises the general conclusions and future 

perspectives on this work.  
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Abstract  

Drought events are the most important disruptor in plant performance, due the climacteric 

alterations, with a straight effect on primary production and terrestrial ecosystem dynamics. 

It affects plants at different levels depending on intensity, duration and progression of 

drought, leading to responses at physiological, biochemical and molecular levels. It is well 

documented that the application of biochar as a strategy to amend soils in drought 

conditions, once it enhance water and nutrient retention. Thus, the main objective of this 

study was to evidence that biochar can be used as a mitigation agent, diminishing the drought 

effects in Eucalyptus globulus and there is no need further fertilizer addiction to improve that. 

The experimental design comprises 136 plants of Eucalyptus globulus exposed to a water 

limitation period (Water Stress - WS) of 6 weeks at 30% of field capacity and a control group 

at 80% of field capacity (Well Watered - WW), each one with four treatments: no biochar, 

biochar (4%), fertilizer and biochar+fertilizer. In the end of the experiments, 6 plants of each 

treatment were evaluated in morphological, physiological and biochemical parameters. Our 

results showed a significant decrease in levels of all measured parameters between well 

watered and water stress, leading us to conclude that the hydric stress severely affect plants 

performance. In water stress, biochar improve leaf area and photosynthesis rates along with 

lower values of total soluble sugars and slight higher values of water potential, suggesting 

mailto:gpinto@ua.pt


 
 

38 
 

that in water stress conditions it is beneficial to applied biochar into soils to enhance their 

ability to store and use water, reducing overall stress levels in the plants. In well watered 

conditions the use of biochar promoted lower photosynthetic rates and lower values of all 

morphological parameters as above ground biomass, number of lateral branches and leaf 

area when compared with nutrients application, suggesting that under well-watered 

conditions, the use of biochar is not a better option. The results of conjugation of both 

biochar and fertilizers were contradictory. In well water conditions we found a higher values 

of Fv/Fm along with chlorophylls and lower values of number of leaves, leaf area, 

photosynthesis and TSS. Otherwise, in water stress conditions, besides the lower 

performance in all gas exchanges parameters, we noticed higher above ground biomass, 

when compared with biochar and fertilizer applied by their own. In either case, further 

studies are needed.  
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Introduction 

 

Drought stress is a directly disruptor of water and carbon fluxes, with straight effects on 

primary production and network terrestrial ecosystems (Bréda et al., 2006). It results from 

climacteric alterations and directly affects the primary production and network terrestrial 

ecosystems (Granier et al., 2007).  It affect plants at different levels depending on intensity, 

duration and progression of drought, and it can lead responses at physiological, biochemical 

and molecular levels. To avoid dehydration, plants have to deal with two main issues: 

minimizing water loss and maximizing water uptake (Chaves et al., 2003). To minimize water 

loss, plants tend to close the stoma and reduce foliar area, leading to a lower levels of 

transpiration and therefore preserve internal hydric levels, avoiding xylem cavitation and 

death (Chaves et al. 2003)). Plants also reduced the light absorbance by producing a dense 

trichome layer increasing reflectance, steeping leaf angles, decreasing canopy leaf area or 

shedding older leaves (Chaves et al., 2003; Bohnert et al., 1999). The hydric potential also 

decrease along with loss of turgor in cells in response to cell wall changes to osmotic 

adjustments (Shao et al., 2008). The stomatal closure limits the gas exchanges levels, resulting 

in a reduced transpiration and photosynthesis, which will constrict the assimilation of carbon 

and compromise overall growing and differentiation of plant tissues (Anjum et al. 2011).Silva 

et al. (2004) also reported an increasing in below ground biomass, with a development of 

deep and dense roots that may reach inaccessible moisture in the soil. Due to increased 

anthropogenic activities and the consequent effect on global climacteric patterns, the water 

limitations has become the main disruptor of terrestrial carbon sequestration variations and 

terrestrial ecosystem dynamics (Pereira et al. 2007). 

Eucalypt species are native from Australia although is currently worldwide spread (Stackpole 

et al., 2011), established over than 18 million ha in 90 countries (FAO, 2005), covering the 

land area of 700 000 ha in Portugal (Chaves et al. 2003) 

It shows a fast growth and a high tolerance to arid environments, leading it to support many 

adverse conditions (Rockwood 2008).  Eucalyptus globulus is the main hardwood species that 

grows in temperate Mediterranean climate, around the world (Potts et al., 2004 ) and its 

success as a plantation tree species has been attributed to its high productivity and pulp 
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quality (Guarnaschelli et al., 2006). Studies in Eucalyptus spp. reported the effects of hydric 

limitations, suggesting a decrease of growth rates, leaf area and total plant biomass (Pita et 

al. 2000; Metcalfe et al. 1990), low rates of photosynthesis, stomatal conductance, internal 

concentration of CO2 (Warren et al. 2011; Silva et al. 2004), decrease in water potential 

(Correia et al. 2014), changes in chlorophylls and carotenoids content (Shvaleva et al. 2006) 

and increasing in MDA content (Correia et al. 2014) with huge consequences at crop 

productivity and cultures success. Biochar is charred biomass, produced by controlled 

conditions (pyrolysis) with the intent to be deliberately applied to soils to improve their 

properties and functions (Lehmann et al., 2009). Depending on feedstock and pyrolysis 

conditions, the resulting biochars can greatly differ in their properties and the effects on soils 

(Sohi et al., 2009). Biochar has been used as an amendment in soils with the purpose to 

enhance water and nutrients retention and availability to plants in drought periods (Chen et 

al., 2008). It appears to be the exchange of positively-charged ions on the negatively-charged 

biochar surface area, which is responsible for the most cases of mitigation of plant stress 

either by reducing the exposure of plants to contaminants or by ameliorating stress 

responses (Thomas et al., 2013). Along with this, some studies emphasised their ability to 

supply nutrients (Silber et al., 2010) and increase their retention by soils (Chen et al., 2007), 

to improve soil pH associated with dissolution of alkaline minerals from biochar’s surface 

(Yamato et al., 2006) leading to an increase cation exchange capacity (Cheng et al., 2006), 

neutralization of phytotoxic compounds (Wardle et al., 2001), increased colonisation of 

mycorrhizal fungi (Yamato et al., 2006) and alteration in soil microbial equilibrium and 

functions (Graber et al., 2010). 

Due the economic importance of Eucalyptus globulus around the world and considering 

estimate increases in drought periods arising from anthropogenic activities, it is extremely 

important to study and develop adaptation strategies to maintain or improve productivity, 

while ensuring that environmental and economic needs will be maintained. Thus, biochar 

application to soils could be an answer to allow eucalypt plants an adaptation to a drier 

climates. 

Thus, the main objective of this study is to investigate if biochar can be used as an adaptation 

strategy, diminishing drought effects of climate change in Eucalyptus globulus. The 

methodology to explore this objective was a greenhouse randomized pot experiment of 

eucalypt plants (clones) in pots filled with a typical local sandy soil and pots where this soil 
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had been amended with biochar. It was hypothesized that plants with biochar exposed to 

water limitations would show lower stress levels (at physiological, morphological and 

biochemical levels), compared to plants without biochar. We also evaluated the fertilizer 

character of biochar by including a fertilized treatment in the methodological design.  

 

Materials and methods 

 

Location and soil type 

The soil was collected at a Eucalyptus globulus plantation in Vagos, placed in the inner-dune 

complex of the coastal zone of central Portugal, at 6km distance from the Atlantic Ocean and 

approximately 10km south of the city of Aveiro (440 42’ N and 80 42’ W). This soil is a Haplic 

Arenosol Dystric (IUSS, 2006), a sandy and structurless soil. This area has a subhumid meso-

Mediterranead climate, with a 15oC of mean annual temperature and 950mm of rainfall 

(Drarn-centro, 1997). 

 

Soil and Biochar Pre-treatment  

About 130kg of soil were collected into plastic bins from the field site at approximate depth 

pf 20cm, using a pickax and shovel, during a 2 months period. Both biochar and soil were air-

dried to ensure uniform moisture contents at ambient temperature in a maximum of 5cm 

thick layer in cardboard boxes e a closed room. Soil was also sieved (porous lower than 2mm) 

to take off plant debris, stones, and other particles. 

 

 

Soil and Biochar Pre-treatment and Characterization 

Biochar was purchased from Swiss Biochar gmbh and was produced from mixed wood sieving 

feedstock in a Pyreg 500 III pyrolysis unit, 620°C maximum temperature, 20 minute duration, 

80% C content, H/C 0.18. Loss on ignition was used to measure soil organic matter content. 

Approximately 10 g of soil sample was placed in a crucible, weighed on a decimal balance and 

placed in an oven at 105°C for 24 hours. Then, it was placed in a desiccator for 1 hour, 

weighed and placed in a muffle at 550oC for 4 hours and finally placed in a desiccator for 1 

hour and weighed again on the same four decimal balance. The soil organic matter content 
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was expressed as the percentage weight loss at 550°C relative to the oven-dry weight (at 

105°C). 

For bulk density the soil was placed in a metal cylinder of 251cm3 (soil) and 87cm3 (biochar) 

and weighed. The cylinders were then placed in the oven for 24 hours at 105oC. The bulk 

density values were calculated by dividing the oven-dry weight by the volume of the cylinder. 

To measure the particle size distribution, the dry soil samples of known weight were sieved 

over a range of sieves with apertures between 5mm and 50μm.  

To achieve the field capacity of the substrates, the pots were filled with oven-dry soil (1097g) 

and oven-dry soil + biochar (797g + 32g), weighed and saturated with water (from the bottom 

up) and allowed to freely drain overnight and weighed again. Subsequently, pots dried in an 

oven for one week at 60oC.  The moisture content at field capacity was calculated by dividing 

the weight of the water after overnight draining by the oven-dry weight of the soil or soil-

biochar mixture. . These values supported the determination of 80% and 30% of well-watered 

and stress treatments that were used in this experiment.  

 

Experimental Design 

The randomized, factorial (3 factors) pot experiment was conducted at the research 

greenhouse of Siro (Grupo Leal & Soares, S.A.) located in Mira, Portugal. The light, 

temperature and humidity conditions were controlled and monitored, 48.4 W/m2 mean total 

solar irradiance, 17.2oC mean temperature ranged by 5.2oC to 37.8oC, and 78.6% mean 

relative humidity (ranging from 61.5% to 95.7%). On the sampling days the mean of total 

solar irradiance was 67 W/m2 (308 W/m2 maximum), the mean temperature was 20.2oC and 

mean relative humidity was 69.4%. A total of 136 one litre pots with eucalypt plants were 

monitored.  Pots were filled with soil and soil+biochar. Half (68) were filled with soil (1097g) 

and the other half with biochar-amended-soil at a concentration of 4% of oven-dry biochar 

(797g soil and 32g of biochar). A 4% biochar concentration in the top 15 cm of soil is roughly 

equivalent to a biochar application rate of 90 t ha-1 (assuming a bulk density of 1.5 kg dm-3 

from literature), which is within the range reported by Jeffery et al. (2011). The pots were 

saturated with water and fertilizer (5ml/L Complesal – Bayer, according to the young eucalypt 

needs recommendations) from the bottom by immersion in a larger container, to ensure 

homogeneous wetting and planted with five months old rooted cuttings of Eucalyptus 

globulus plants (AL-18) from Viveiros do Furadouro in Óbidos, Portugal). These plants were 
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watered daily, to 80% of field capacity, during a 3 month acclimation period. The pots were 

fertilized once a week and randomly moved around every two days, to ensure that every 

plant had similar growth conditions.  

Two water conditions were tested: Well-Watered (80% of field capacity) and Water Stressed 

(30% of field capacity). Each water condition comprised of 4 treatments with 17 replicates 

each:  

i) WW (Well Watered – no biochar); 

ii) WWb (Well Watered – with biochar); 

iii) WWf (Well Watered – with fertilizer); 

iv) WWbf (Well Watered – with biochar and fertilizer); 

v) WS (Water Stress – no biochar); 

vi) WSb (Water Stress- with biochar); 

vii) WSf (Water Stress – with fertilizer); 

viii) WSbf (Water Stress – with biochar and fertilizer).  

 The pots were weighed and monitored every day during the six week treatment period, and 

the values of soil water content were maintained by adding the amount of water lost by 

evapotranspiration every day. Wilting symptoms and plant survival rates were recorded 

throughout the experiment.  

Plants were harvested six weeks after the beginning of the experiment. At this point, six 

random plants were evaluated for in vivo measurements (gas exchanges and chlorophyll 

fluorescence parameters) and hydric potential. Additionally six randomly-selected, 

homogenous leaves were immediately frozen in liquid nitrogen and kept at -80oC for further 

physiological and biochemical analysis (pigments, total soluble sugar and lipidic peroxidation).  

Additionally, measurements were made of plant height, number of leafs and lateral branches 

by direct counting. The dry weight of aerial portion and roots were measured after drying for 

48hours in a 80oC oven. Leaf area was determined by taking photographic images of picked 

leaves followed by image analysis using the software Image J.   

 

 

Water potential 
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Midday shoot water potential (Ψmd) was measured using a Scholander-type pressure 

chamber (PMS Instrument Co., Corvallis, OR). Measurements were performed in 6 individuals 

per treatment at 12h30 (solar time) after 6 weeks of experiment 

 

 

Gas exchange 

Leaf gas exchange measurements were performed on fully expanded leaves using an LCpro-

SD infrared gas analyzer (ADC BioScientific Ltd., UK). Measurements at saturation light 

intensity were performed at 350 µmol m-2s-1 and photosynthetic rates – A (µmolCO2m-2s-1), 

transpiration –E (mmolH2Om-2s-1), internal concentration of CO2 – Ci (ppm) and stomatal 

conductance – gs (molH2Om-2s-1) were determined. Data were recorded when the CO2 

remain at constant values.  

 

Chlorophyll fluorescence 

The Chlorophyll fluorescence was measured on the same leaves as gas-exchange 

measurements with the support of a portable pulse amplitude modulation fluorometer (Mini-

PAM, Walz, Effeltrich, Germany). Steady-state fluorescence (F) and maximal fluorescence 

(Fm) were measured in light adapted leaves, by which фPSII (Effective Quantum Yield) was 

determined (equivalent to Fm-F0/Fm). Minimal fluorescence (F0) was measured in 30 minute 

dark-adapted leaves by applying weak modulated light and maximal fluorescence (Fm) was 

measured after applying a 0.7 s saturating pulse of white light (> 1500 μmolm-2s-1). Leaves 

were then dark-adapted for at least 30 minutes to obtain F0 (Minimum Fluorescence), Fm 

(Maxium Fluorescence), Fv (Variable Fluorescence, equivalent to Fm-F0) and Fv/Fm 

(Maximum Quantum Yield of PSII photochemistry).  

 

Photosynthetic pigments content 

Chlorophyll a, b and carotenoids were quantified according to Sims and Gamon et al., (2002). 

Chlorophyll a, b and carotenoids were extracted with cold acetone: 50 mM Tris buffer pH 7.8 

(80:20) (v/v) and centrifuged for 5 min at 10000g. Supernatant’s absorbance was read at 470, 

537, 647 and 663 nm (Thermo Fisher Scientific Spectophotometer, Genesys 10-uv S, 

Waltham, MA). Pigments contents were calculated according as it described by Alves et al. 

(2011).  
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Lipid peroxidation 

The level of lipid peroxidation was estimated by assessing the amount of malondialdheyde 

(MDA), following the procedure described by Hodges et al. (1999). About 50 mg of leaves 

were ground in 2.5 ml cold 0.1% trichloroacetic acid (w/v) and centrifuged. The supernatant 

was divided in two 250 µl aliquots. To 1 ml of 20% TCA (w/v) in 0.5% TBA (w/v) was added 

(positive control) whereas to the other 1 ml of 20% TCA (w/v) was added (negative control). 

Both aliquots were heated at 95ºC for 30 min and the reaction was stopped immediately, and 

the tubs were placed on ice. After centrifugation, absorbance was read at 440, 532 and 600 

nm and MDA equivalents (nmol mL-1) were calculated as (A – B/157 000) × 106, where A = 

[(Abs 532+TBA) – (Abs 600+TBA) – (Abs 532-TBA – Abs 600- TBA)], and B = [(Abs 440+TBA – 

Abs 600+TBA) × 0.0571]. 

 

Total soluble content of sugars 

Total soluble content of sugars (TSS) was determined by using the anthrone method, as 

described by Irigoyen et al. (1992): TSS extraction from frozen leaves was performed using 

80% (v/v) ethanol at 80ºC for 1h. After centrifugation, the supernatant was mixed with 1.5 ml 

of anthrone and incubated at 100ºC during 10 min period. Absorbance was read at 625 nm 

and TSS content was calculated against a D-glucose standard curve.  

 

Statistical Analysis 

One way ANOVAS (Analysis of Variance) were made separately for Well watered conditions 

and Water stress (four treatments per group) followed by post hoc multiple comparison test 

(using Tukey when appropriate) was performed to estimate the significance of the results. 

The statistical procedures were performed using SIGMAPLOT (Systat Software, Inc. SigmaPlot 

for Windows 11.0), showed in plots where the different lowercase letters indicates 

differences in water conditions and the asterisks indicate significant differences between 

water conditions (p ≤0.05).  

The PCA – Principal component analysis was performed with R programming language 

running with an open-source software RStudio: Integrated development environment for R 

(RStudio Boston, MA, available from http://rstudio.org/. The PCA was carried out from a 

matrix data to a bidimentional plot that explains the highest proportion of data variation.  
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Results 

 

1. Soil and Biochar characterization  

 

The chemical and physical characteristics of soil and biochar used in the experiments are 

reported in Table 1 and Figures 3. In table 1 we can see that the total moisture content of the 

biochar was 35% and 88,9% of organic matter. The soil had a moisture content of 0.3%, and a 

soil organic matter content of 0.8%. Regarding to bulk density, soil showed higher values than 

biochar, from 1,65 to 0,17 respectively. Also, both pH and EC (Electric Conductivity) showed 

higher values in biochar when compared to soil, as 4,71 to 8,13 for pH, and 38 to 1496 from 

Electric conductivity, respectively. We didn’t found any difference between Soil and 

Soil+Biochar (4%) in Field capacity volumetric values, which shows 23% for both. 

As we can see in Figure 3, both soil and biochar showed very different patterns in particle size 

distribution. Thus, biochar showed a very heterogeneous nature regarding to particle size 

characteristics, with particles varying from 5000 to 50 µm. The particle size distribution of the 

soil was more homogeneous, varying from 1000 to 250µm. 

 

 

Table 1- Soil, biochar and biochar amended soil characteristics. Values with "*" were measured by Oliveira et al. (2014); 
na= not available 

 

  

 

 

 

  

    

 

 Soil Biochar Soil + Biochar (4%) 

Moisture content (%) 0,3 35 na 

Bulk density 1,65 (±0.04) 0,17 (±0.01) na 

pH 4,71 (±0,03)* 8,13 (±0,04)* 7.63 (mean) 

EC (µS cm-1) 38 (±11)* 1496 (±43)* na 

Organic matter (%) 0,8 (±0.06) 88,9 (±2.79) na 

Field capacity 
volumetric (%) 

23% na 23% 
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Figure 3 - Particle size distribution of soil and biochar (%) 

 

Figure 2 - Particle size distribution in percent of soil and biochar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Plant performance 

There was made a first sampling point at 4 weeks of experiment where we measured 

fluorescence of chlorophylls and gas exchanges after four weeks of experiment, without any 

significant differences. Then, the experiment were kept till six weeks, when all the 

morphological, physiological and biochemical measurements were taken and evaluated.  

 

2.1 Wilting and Survival Rates 

Tree days later from the beginning of stress assay, the plants showed wilting signals with 80% 

of incidence in WS treatment and only 45% in WSb treatment. This values decrease in 

treatments with fertilizer, to 18% for WSf and WSbf. In well watered condition, WWb 

treatment showed higher values of wilting (45%), against 9% for WW. In this condition, 

neither WWf nor WWbf showed wilting signals (Figure 4a). There were also observed 67.71 % 

of WS plants of survival rates against 100 % survival rates in other treatments (Figure 4b). 
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Figure 5- Detailed view of WWb treatment and the apical wilting 

Figure 4- Wilting (4a) and Survival Rates (4b), expressed in percent of Well Watered (80%FC) and Water Stress (30%FC) 
treatments. Different treatments are symbolized by WW – well watered without biochar, WWb – well watered with 
biochar, WWf – well watered with fertilizer, WWbf – well watered with biochar and fertilizer; WS – water stress without 
biochar, WSb – water stress with biochar, WSf – water stress with fertilizer, WSbf – water stress with biochar and 
fertilizer  
 
 

 

Figure 3- Wilting and Survival Rates, expressed in percent of Well Watered (80%FC) and Water Stress (30%FC) 
treatments. Different treatments are symbolized by WW – well watered without biochar, WWB – well watered with 
biochar, WWF – well watered with fertilizer, WWBF – well watered with biochar and fertilizer; WS – water stress without 
biochar, WSB – water stress with biochar, WSF – water stress with fertilizer, WSBF – water stress with biochar and 
fertilizer  
 
 

Also, the plants WWb showed a wilting signals on the top of the plant, characteristic for this 

treatment. Along with wilting signals, we recorded an atypical wilting symptoms at WWb  

treatment (Figure 5), where all the plants of this treatments showed only wilting signals at 

apical leaves. Also, this symptom is not the same wilting that can be seen in water limiting 

conditions, suggesting that these plants were not suffering from water limitation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Morphological Parameters 

In Figure 6 are represented the general visual differences between all treatments. 

In Figure 7 are represented the results for morphological parameters in this study. As we can 

see in Figure 7a, the number of lateral branches was also significantly lower in all treatments 

of water stress when compared to well-watered conditions, except in Biochar+Fertilizer 

4a 
4b 
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Figure 6 – General visual aspect between Soil and Biochar treatments. Different treatments are symbolized by WW – 
well watered without biochar, WWb – well watered with biochar, WWf – well watered with fertilizer, WWbf – well 
watered with biochar and fertilizer; WS – water stress without biochar, WSb – water stress with biochar, WSf – water 
stress with fertilizer, WSbf – water stress with biochar and fertilizer 

 

Figure 4 – General visual aspect between Soil and Biochar treatments Different treatments are symbolized by Different 
treatments are symbolized by WW – well watered without biochar, WWB – well watered with biochar, WWF – well 
watered with fertilizer, WWBF – well watered with biochar and fertilizer; WS – water stress without biochar, WSB – 

treatment. There were no differences between treatments in water stress treatment but, 

under well-watered conditions, WWf treatment showed significant differences compared to 

the lower values of WWb and WWbf. Underground biomass, represented in Figure 7b by dry 

roots weight, was lower under water stress than well-water conditions, except for the ‘no 

biochar’ treatment where no significant differences were found. Between well-watered 

treatments, WWf showed significant higher values than WW and WWbf. There were no 

significant differences found between treatments under water stress conditions. The values 

for leaf area (Figure 7c) were lower in water stress compared to well water condition, with 

statistical differences in all treatments. In well watered condition the WWf treatment showed 

significantly higher leaf areas than the other treatments and in water stress condition there 

was found a statically higher leaf area values in WSb when compared to WS. The above 

ground biomass fresh (Figure 7d) showed a decrease from well watered to water stress, with 

a significant differences between all treatments. In WWf treatment show significant higher 

value than WWb and in WSbf show, as well, significant higher values than WS. The number of 

leaves was significantly lower in water stress when compared to well watered, in all 

treatments (Figure 7e). There were no differences between water stress treatments, but 

under well-water conditions, the WWf treatment showed significantly higher number of 

leaves than the other treatments.  

As can be seen in Figure 7f, the height of above ground biomass suffers a significant decrease 

from well watered to water stress conditions, with a statistical relevance in all treatments 

(p<0.05). There were no observed differences between treatments among water status.  
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Figure 7 - Morphological Parameters in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field Capacity 
conditions in Eucalyptus globulus clones (MB 43) after 6 weeks of water limiting stress period: Lateral brances (7a), 
Weight of dry roots (7b), Leaf area (7c), Above ground biomass fresh (7d), number of leaves (7e) and above ground 
height (7f). Different letters indicate significant differences within water treatments and asterisks indicate significant 
differences between water treatments of different water status. Different treatments are symbolized by WW – well 
watered without biochar, WWb – well watered with biochar, WWf – well watered with fertilizer, WWbf – well watered 
with biochar and fertilizer; WS – water stress without biochar, WSb – water stress with biochar, WSf – water stress with 
fertilizer, WSbf – water stress with biochar and fertilizer 
 

Figure 5 - Morphological Parameters in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field 
Capacity) in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field Capacity) conditions of Eucalyptus 
globulus clones (MB 43) after 6 weeks of water stress period. Different letters indicate significant differences within 
water treatments and asterisks indicate significant differences between water treatments of different water status. 
Different treatments are symbolized by WW – well watered without biochar, WWB – well watered with biochar, WWF – 
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Figure 8 -Hydric Potential in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field Capacity) 
conditions, of Eucalyptus globulus after 6 weeks of water limiting stress period. Different letters indicate significant 
differences within water treatments and asterisks indicate significant differences between treatments of different water 
status. Different treatments are symbolized by WW – well watered without biochar, WWb – well watered with biochar, 
WWf – well watered with fertilizer, WWbf – well watered with biochar and fertilizer; WS – water stress without biochar, 
WSb – water stress with biochar, WSf – water stress with fertilizer, WSbf – water stress with biochar and fertilizer 

 

Figure 6 -Hydric Potential in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field Capacity) 
conditions, of Eucalyptus globulus after 2 months of water stress period. Different letters indicate significant differences 
within water treatments and asterisks indicate significant differences between treatments of different water status. 
Different treatments are symbolized by WW – well watered without biochar, WWB – well watered with biochar, WWF – 
well watered with fertilizer, WWBF – well watered with biochar and fertilizer; WS – water stress without biochar, WSB – 
water stress with biochar, WSF – water stress with fertilizer, WSBF – water stress with biochar and fertilizer 

3. Hydric Potential  

There were no observed differences for plant water potential within water treatments (Figure 

8). However, there was a trend of lower plant water potential values for the water stressed 

plants, with significant differences between biochar and fertilizer treatments.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

4. Gas Exchanges  

As we can see in Figure 9a, the internal concentrations of CO2 (Ci), significant differences were 

observed between biochar and fertilizer treatments, which showed lower values under water 

stress compared to well-watered conditions. Moreover, no biochar treatment showed 

significant higher values than the other treatments under both water conditions. Regarding 

the standard deviations, WSbf had a higher standard deviation compared to the other 

treatments, i.e 6 times higher than WSf and 13 times higher than WWb.  

Lower values were found for transpiration rate (E) – Figure 9b, under water stress compared 

to well-watered conditions in, with statistical differences in all treatments. There were 

significant differences between WSb and WSf, under water stress conditions and no 

differences between treatments under well-watered condition. 

For stomatal conductance (gs), represented in Figure 9c, there can be seen a clear decrease 

from well-watered to water stress, with significant differences between all treatments. The 

WW and WWbf were significantly different, under well-watered conditions, where WWbf 
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Figure 9 - Gas Exchanges Rates: Internal Concentration of CO2 (Ci) – 9a, Transpiration (E) – 9b, Stomatal Conductance 
(gs) – 9c and  Photosynthesis (A) – 9d  in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field 
Capacity) conditions of Eucalyptus globulus clones (MB 43) after 6 weeks of water limiting stress period. Different letters 
indicate significant differences within water treatments and asterisks indicate significant differences between water 
treatments of different water status. Different treatments are symbolized by WW – well watered without biochar, WWb 
– well watered with biochar, WWf – well watered with fertilizer, WWbf – well watered with biochar and fertilizer; WS – 
water stress without biochar, WSb – water stress with biochar, WSf – water stress with fertilizer, WSbf – water stress 
with biochar and fertilizer 
 

 

 

Figure 7- Gas Exchanges Rates: Photosynthesis (A), Stomatal Conductance (gs), Transpiration (E) and Internal 
Concentration of CO2 (Ci),  in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field Capacity) 
conditions of Eucalyptus globulus clones (MB 43) after 2 months of water stress period. Different letters indicate 
significant differences within water treatments and asterisks indicate significant differences between water treatments 
of different water status. Different treatments are symbolized by WW – well watered without biochar, WWb – well 
watered with biochar, WWf – well watered with fertilizer, WWBFbf – well watered with biochar and fertilizer; WS – water 

showed lower values than the WW treatment. Also, in this treatment, large standard 

deviations were observed in some treatments, namely in WW, WWf and WWbf, where for 

example WWf is 5.8 times larger than WWb. 

Higher level of photosynthesis (A) were found in WSb treatment, with a clear significant 

difference (p<0.05), compared to other treatments under water stress. In all other cases the 

values of photosynthetic rates decrease from well watered to water stress, where significant 

differences were found between no biochar, fertilizer and biochar+fertilizer (Figure 9d).  

 

 

 9a 9b 

9c 9d 
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Figura 10-  Chlorophyll fluorescence: Effective quantum yield фPSII (10a) and Maximum quantum yield Fv/Fm (10b), in 
Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field Capacity) conditions of Eucalyptus globulus after 
6 weeks of water limiting stress period. Different letters indicate significant differences within water treatments and 
asterisks indicate significant differences between water treatments of different water status. Different treatments are 
symbolized by WW – well watered without biochar, WWb – well watered with biochar, WWf – well watered with 
fertilizer, WWbf – well watered with biochar and fertilizer; WS – water stress without biochar, WSb – water stress with 
biochar, WSf – water stress with fertilizer, WSbf – water stress with biochar and fertilizer 
 

 

Figura 8-  Chlorophyll fluorescence in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field Capacity) 
conditions of Eucalyptus globulus after 2 months of water stress period. Different letters indicate significant differences 
within water treatments and asterisks indicate significant differences between water treatments of different water 
status. Different treatments are symbolized by WW – well watered without biochar, WWB – well watered with biochar, 
WWF – well watered with fertilizer, WWBF – well watered with biochar and fertilizer; WS – water stress without biochar, 
WSB – water stress with biochar, WSF – water stress with fertilizer, WSBF – water stress with biochar and fertilizer 
 

 

5. Chlorophyll fluorescence 

There was no differences between water conditions or between treatments in Effective 

Quantum Yield parameter (Figure 10a). 

As we can see in Figure 10b, under well-watered conditions, Fv/Fm was significantly lower for 

WW than for WWbf. Under water stress conditions, Fv/Fm was significantly higher for WS 

than for WSf. Between water conditions (WW vs WS), only biochar showed significant 

differences (p<0.05), and displayed higher values in stress WS condition. There were no 

significant differences observed in water treatments (80% and 30% FC) or between 

treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Photosynthetic Pigments Content  

There was a general increase of ‘chlorophyll a’ content from well watered to water stress 

condition, with a significant difference in no biochar treatments (WW and WS) (p<0.05). 

Among well watered conditions, there was a significant difference between WW and WWbf, 

which show higher content of chlorophyll a than other treatments (Figure 11a). Under water 

stress condition, there were no significant differences between treatments.   

10a 10b 
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The Chlorophyll b (Figure 11b) content did not show any significant differences among water 

stress treatments, but significant differences were found between WW and the fertilised 

well-watered treatments (WWf and WWbf).  Despite no significant differences were found 

under water stress conditions, the WSb treatment did show lower values than the other 

treatments, although its standard deviation was also larger than, for the other treatments. No 

biochar treatment showed significant differences between the two water conditions, where 

the chlorophyll b content showed higher values under water stress conditions.  

For carotenoids (Figure 11c) content no significant differences were found between 

treatments under well-watered conditions. Under water stress conditions, WSb and WSbf 

showed significantly higher (p<0.05) carotenoid content. There was a clear trend of increasing 

carotenoid content from well-watered to water stressed, with a significant difference 

between no biochar and fertilizer treatments. Carotenoid contents also showed varying 

standard deviations, with a 2.8 times difference between WWf and WWbf, and 3.8 times 

between WSf and WSb. For carotenoids content analysis, no significant differences were 

found between treatments under well-watered conditions. Under water stress conditions, 

there were significant differences (p<0.05) between WSb and WSbf, which showed higher 

carotenoid content. There was a clear trend of increasing carotenoid content from well-

watered to water stressed, with a significant difference between no biochar and fertilizer 

treatments. 
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Figure 12– MDA content in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field Capacity) conditions of 
Eucalyptus globulus clones (MB 43) after 6 weeks of water limiting stress period. Different letters indicate significant 
differences within water treatments and asterisks indicate significant differences between water treatments of different 
water status. Different treatments are symbolized by WW – well watered without biochar, WWb – well watered with 
biochar, WWf – well watered with fertilizer, WWbf – well watered with biochar and fertilizer; WS – water stress without 
biochar, WSb – water stress with biochar, WSf – water stress with fertilizer, WSbf – water stress with biochar and fertilizer 
 

 

Figure 10– MDA content in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field Capacity) conditions of 
Eucalyptus globulus clones (MB 43) after 2 months of water stress period. Different letters indicate significant differences 
within water treatments and asterisks indicate significant differences between water treatments of different water status. 
Different treatments are symbolized by WW – well watered without biochar, WWB – well watered with biochar, WWF – well 
watered with fertilizer, WWBF – well watered with biochar and fertilizer; WS – water stress without biochar, WSB – water 

Figure 11- Total Content of Pigments – Chlorophyll a (11a), Chlorophyll b (11b) and Carotenoids (11c),  in Well-Watered 
(80% of Field Capacity) and  Water Stressed (30% of Field Capacity) conditions, of Eucalyptus globulus clones (MB 43) 
after 6 weeks of water limiting stress period. Different letters indicate significant differences within water treatments 
and asterisks indicate significant differences between water treatments of different water status. Different treatments 
are symbolized by WW – well watered without biochar, WWb – well watered with biochar, WWf – well watered with 
fertilizer, WWbf – well watered with biochar and fertilizer; WS – water stress without biochar, WSb – water stress with 
biochar, WSf – water stress with fertilizer, WSbf – water stress with biochar and fertilizer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

7. Lipid Peroxidation 

MDA content was similar for all treatments, except an overall trend of greater MDA contents 

for the water stressed treatments (Figure 12).  
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Figure 13- Total Soluble Sugars content in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field 
Capacity) conditions of Eucalyptus globulus clones (MB 43) after 6 weeks of water limiting stress period. Different letters 
indicate significant differences within water treatments and asterisks indicate significant differences between water 
treatments of different water status. Different treatments are symbolized by WW – well watered without biochar, WWb 
– well watered with biochar, WWf – well watered with fertilizer, WWbf – well watered with biochar and fertilizer; WS – 
water stress without biochar, WSb – water stress with biochar, WSf – water stress with fertilizer, WSbf – water stress 
with biochar and fertilizer 

 

Figura 11- Total Soluble Sugars content in Well-Watered (80% of Field Capacity) and Water Stressed (30% of Field 
Capacity) conditions of Eucalyptus globulus clones (MB 43) after 2 months of water stress period. Different letters 
indicate significant differences within water treatments and asterisks indicate significant differences between water 
treatments of different water status. Different treatments are symbolized by WW – well watered without biochar, WWB 
– well watered with biochar, WWF – well watered with fertilizer, WWBF – well watered with biochar and fertilizer; WS – 
water stress without biochar, WSB – water stress with biochar, WSF – water stress with fertilizer, WSBF – water stress 
with biochar and fertilizer 

Figure 14- Coefficient of variation between treatments. Different treatments are symbolized by WW – well watered without 
biochar, WWb – well watered with biochar, WWf – well watered with fertilizer, WWbf – well watered with biochar and fertilizer; 
WS – water stress without biochar, WSb – water stress with biochar, WSf – water stress with fertilizer, WSbf – water stress with 
biochar and fertilizer 

 
 

Figura 12- Coeffitient of variation between treatments. Different treatments are symbolized by WW – well watered without 
biochar, WWB – well watered with biochar, WWF – well watered with fertilizer, WWBF – well watered with biochar and fertilizer; 
WS – water stress without biochar, WSB – water stress with biochar, WSF – water stress with fertilizer, WSBF – water stress with 
biochar and fertilizer 

 

8. Total Soluble Sugars (TSS) content 

Under well watered conditions WWb had significantly higher TSS contents than the remaining 

treatments. Under water stress conditions the opposite pattern merged, with WSb showing 

significantly lower TSS contents than the remaining treatments (Figure 13).  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

9. Overall Coefficient of Variation  
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Figure 14 shows similar coefficients of variation (COV) between treatments (0.1 mean), 

except for the without biochar treatment (WW and WS) which showed greater variation, with 

0.15 and 0.23 respectively. This appears to be mainly caused by variation in WS for the 

photosynthetic variables, i.e. gas exchanges rates CO2 assimilation rate (A), Stomatal 

Conductance (gs), Transpiration (E) and Internal Concentration of CO2 (Ci). For most of the 

other measured variables, the COV for WS was not greatly different than for the other 

treatments, and for plant water potential the COV for WS was even the smallest between 

treatments.  

 

10. Principal Component Analysis (PCA) 

Figure 15 shows the results of a Principal Component Analysis of all variables presented 

above, from 6 replicates randomly chosen for each treatment. Dimension 1 appears to be 

related to water condition since all water stress treatments appear in the negative part (left 

side) and the well-watered in positive (right side). Dimension 2 clearly divides the WSbf 

(green) and WW (dark blue) treatments.  
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Figure 15- Principal Component Analysis. Different treatments are symbolized by WW – well watered without biochar, 
WWb – well watered with biochar, WWf – well watered with fertilizer, WWbf – well watered with biochar and fertilizer; 
WS – water stress without biochar, WSb – water stress with biochar, WSf – water stress with fertilizer, WSbf – water 
stress with biochar and fertilizer 
 

 

Figura 13 - Principal Component Analysis. Different treatments are symbolized by WW – well watered without biochar, 
WWB – well watered with biochar, WWF – well watered with fertilizer, WWBF – well watered with biochar and fertilizer; 
WS – water stress without biochar, WSB – water stress with biochar, WSF – water stress with fertilizer, WSBF – water 
stress with biochar and fertilizer 
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Discussion 

 

This work investigated the effect of biochar amendment on hydric stress conditions of 

Eucalyptus globulus clones in sandy soil. This discussion considers the three factors of the 

factorial experiment, i.e. water stress, biochar amendment and fertiliser addition.  

 

WATER STRESS 

As expected, this study confirmed that water limitation disrupts plant performance. In this 

study, water limitation resulted in a reduction in morphological parameters by decreasing 

plant height, number and size of leaves, number of lateral branches and above ground fresh 

weights. Other parameters as transpiration, hydric potential, stomatal conductance and 

photosynthesis also showed lower performance, indicating a disorder in levels of stress for 

plants under water limiting conditions. Similarly, Silva et al. (2004) also reported a general 

decrease in growth rates in two Eucalyptus globulus clones and Correia, et al. (2012) reported 

lower growth rates reflected in height, number of branches and total biomass reductions. 

Coopman et al. (2008) found that although drought acclimation treatments significantly 

reduced growth rates, some variables, such as stem diameter, height and root biomass, are 

less sensitive to drought. Additionally, the differences between water treatments are well 

defined in the PCA analysis, where well-watered and water stress were associated with 

dimension 1, explaining most (26%) of the variation.   

 

BIOCHAR AMENDMENT 

Some studies reported the increase yield productivity by improving general soil properties, in 

biochar amended soils (Masulili et al., 2010; Major et al., 2010). According to this, our results 

showed statistically significant higher levels of photosynthetic rates in WSb plants, compared 

to WS. The photosynthetic values from WSb were not different from WWb, which suggests 

that plants were not suffering from any stress at CO2 assimilation rates, assuming that 

decreasing in photosynthesis is an indirect effect of hydric limitations on plants. Furthermore, 

our results were accomplished with the same internal concentration of CO2 content for all 

treatments, suggesting that WSb plants have a beneficial biochar effect for CO2 assimilation 

rates. This results is supported by Haider et al. (2014), who found higher levels of 
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photosynthesis associated with an improvement in effective quantum yield (фPSII), which 

indicated a reduction in heat dissipation for biochar treatments compared to controls, in a 

maize yield study. In line with the results of higher photosynthetic rates, the WSb treatment 

also showed lower levels of carotenoids and total soluble sugars (TSS) compared to the other 

water-stress treatments, while both showed no statistical differences when compared with 

WWb correspondent treatment. Carotenoids function to protect the plant’s photosynthetic 

machinery against excess of light, when the light has been absorbed but not used in 

photosynthetic proposes (Reddy et al. 2004). Total soluble sugars (TSS) are produced as a 

defensive plant response to hydric stress, to improve water absorption in water stress 

conditions (Bohnert et al. 1999). The lower values of TSS and carotenoids in WSb also support 

our hypothesis, which state that plants growing in biochar-amended soil will show lower 

stress levels under water limiting conditions. Conversely, Danish et al. (2014), found an 

improvement in carotenoids content, along with all photosynthetic pigments in a sandy soil 

amended with 1 and 2% of biochar, in Triticum aestivum. They suggests that biochar do not 

only improve the availability of nutrients but also improves the photosynthetic pigments 

production with direct effects on vegetative development and growth. In despite of that, our 

results don’t show any significant increase in Chlorophyll contents but we can see an 

increasing in CO2 assimilation rates, which were reflected in higher leaf area. Additionally, 

even without a significant difference, our results also shows a slight higher above ground 

biomass of WSb when compared to WS, which go through Danish et al. (2014) findings.  

The results of this study also show a slightly higher hydric potential values in the WSb 

treatment, i.e. less stress, although not statistically significant. These observations confirm 

that under water limitation conditions, plants in biochar-amended soil have more available 

water, leading to a better overall performance of the plant, also supporting the hypothesis 

that biochar addition may be a useful strategy to condition soils as an adaptation to maintain 

or improve plant performance under potentially drier future climatic conditions. Biochar is 

known to have a high proportion of transmission pores, i.e., pores with >50µm (Greenland, 

1977), which are responsible for air and water movement through the substrate, improving 

soil-water-plant relationships and promoting good soil structure conditions (Sohi et al. 2010). 

Possibly, the biochar used in the present study promoted the retention of available water in 

the soil near the roots, which were reflected by the ability of the plants to maintain its 

physiological performance under water-limited conditions. Improvement in plant hydric 
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potential levels following biochar application were also reported by Baronti et al. (2014) in a 

study with two rates of biochar (22 and 44 ton ha-1) on water plant relations in a Vitis vinifera 

field experiment, which substantially increased the leaf water potential during dry periods. 

Also, Basso et al. (2013) reported an increase in soil water availability and water holding 

capacity in a sandy soil with biochar (6%) and Kamman et al. (2011) found an improvement of 

water use efficiency by Chenopodium quinoa subjected to a 20% field capacity stress in sandy 

soils.  

Water repellence of soils may induce problems in water infiltration rates, enhance surface 

runoff and erosion and by forming preferential patterns of water flow in the soils (Keizer et 

al., 2005; Kawamoto et al., 2007), which may lead to increased nutrient leaching  and reduced 

water availability to plants. Some studies reported that biochar reduced soil water repellence 

leading to a better hydric retention by soils (Dugan et al., 2010). Contrarily, Baronti et al. 

(2014) reported no hydrophobicity changes in biochar-treated soils along with Abel et al. 

(2013), who also found no direct impact on the wettability in a sandy soil study related with 

biochar application. Otherwise, Basso et al. (2012) found that the biochar may be 

hydrophobic in fresh, becoming more hydrophilic along the time after soil, air and water 

interactions, suggesting that biochar may not promote any adsorption of water immediately 

after its application. Our experiment was conducted by daily addition of a defined amount of 

water to the pots to maintain a constant water stress level (30% of field capacity) and some 

bypass flow were observed in all treatments, although water repellence was not measured 

but it could be a reason why plants with biochar showed better performance, due to an 

increased water holding capacity.  

The results of this study also showed an atypical wilting signal in WWb, where only the apical 

leaves were affected (Figure 5), i.e., this symptoms were not visible in any other treatment. 

The WWb treatment also showed lower values of plant morphological and physiological 

parameters, e.g. above ground biomass, number of lateral branches, and hydric potential. 

Additionally, the higher values of TSS indicated that this plants were in higher stress when 

compared to other treatments. As described in literature, biochar addition to the soil 

increased the pH values and, our results showed a rise from 6.5 mean in soil without biochar 

leachates to 7.7 mean in biochar treatments leachates. Specifically, the WWb treatment 

showed 8.6 pH and it could explain why these plants showed those wilting signals. At this 

higher pH values, the availability of some macronutrients (namely phosphorus (P)) is affected 
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by diminishing and, moreover, the availability of micronutrients such as Boron (B), Iron (Fe) 

and Manganese (Mn) are extremely reduced (Sarkar et al. 1982). The reduced availability of P 

could be attributed to a decrease in mycorrhizal fungi directly conditioned by the pH 

increasing (McElloigott, 2011). This symbiotic relation is important to plant performance once 

it can access to unavailable P through an extended deep network of hyphae, enlarging the 

total volume of soil explored. Nelly et al. (1996) reported an inhibition in ectomycorrhyzal 

activities as an effect of pH rising in Eucalyptus uropylla, and also suggests that this natural 

symbiotic association promotes the growth and development in soils with low nutritional 

status. Higher values of pH also limit Boron (micronutrient) availability to the plants and it 

could explain our wilting signals in WWb treatment. Although the main role of boron in plant 

physiology remains unclear, it is known for its importance to cellular wall synthesis, mainly in 

their compounds supply as pectine, cellulose and lingnine, leading to a serious physiological 

and biochemical alterations when absent (Ramos et al. 2009). Boron deficits were reported 

by Sakya et al. (2002) as a main micronutrient limiting problem to Eucalyptus spp. plantations, 

largely limiting their productivity. Mattielo et al. (2009), reported death of apical leaves as the 

main symptom of boron limitation, which support our results. Although, according to Baronti 

et al. (2014), the additional volume of water and nutrients stored in biochar (absorbed) only 

became available to the plants as the soil dries, inversely with an increasing metric potential, 

in sandy soils. So, the water limitation condition imposed to WSb treatment could be an 

advantage in terms of nutrients supply to Eucalyptus globulus, in a poor macro and micro 

nutrients media, as a result of pH increasing, which should be an explanation that why this 

wilting signals were not observed in WSb. Contrarily, Ramos et al. (2009) found that the 

availability of boron increased with moisture content of the soil in a Eucalyptus citriodora 

study with variations in water supply. Also, Ruiz et al. (1998), found that boron has a major 

role in N metabolism, namely in N fixation rates and has reported a significant reduce in foliar 

N content with boron addiction in a Nicotiana tabacum L., as a consequence of nitract 

reductase activity reductions, which contradict our results. However, in this study plant and 

soil nutrients were not measured and remains a topic of further exploration. 

 

FERTILIZER ADDITIONS 

As expected, fertilizer addition improved plants performance in a nutrient-poor substrate as a 

sandy soil used in our study, namely at morphological levels and chlorophyll contents under 
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well-watered conditions. Under water stress conditions, the fertilizer addition resulted in no 

significant improvement in studied parameters, except a lower performance in Fv/Fm rates. 

The Maximum Quantum Yield – Fv/Fm is a parameter of chlorophyll fluorescence which 

indicates the extension of stress effects in the photosynthetic apparatus (Maxwell el at. 2000) 

and some studies associated lower values of Fv/Fm to stress performance under water 

limitation conditions (Souza et al. 2004, Wright et al. 2009). Although, attending to similar 

levels of photosynthesis and chlorophyll contents, and according with our results that there is 

no difference in Fv/Fm between WWf and WSf, our results suggests no stress effects 

associated to fertilizer application under water limitation conditions. The NPK fertiliser 

(Nitrogen-Phosphorous-Potassium) used in this study (Complesal 5.8.10), and according to a 

water stress study in Eucalyptus grandis (Graciano et al., 2006), P fertilizers tend to allocate 

dry biomass from the roots to the leaves, leading to lower growth rates. Regarding our results 

in water limitation treatments, even without statistical significance, we found a lower dry 

weight roots and higher above ground biomass (fresh), suggesting that, as expected, P 

fertilizer is changing biomass allocation. Although, with the exception of WS, every water 

limiting treatment showed that allocation in biomass, even WSb which had no fertilizer 

added. Also, Lori et al. (2013) reported, in a meta-analysis study that the biochar addition 

itself could increase the above-ground productivity, with an increasing of macronutrients, as 

P, K, N and Ca, availability.    

Moreover, even without statistical significance, we can see that WSf treatment shows higher 

water potential values when compared with WS, suggesting that these treatment shows 

lower hydric stress levels. Supporting these findings, Stoneman, G. et al. (1996) found an 

increase of growth rates but also an increase in tree water stress, which limited the leaf area 

extension in Eucalyptus marginata. 

However, WSbf showed stress signals with higher carotenoids and TSS content when 

compared with other water limitation treatments. TSS content from WSbf was slightly higher 

than WSb but with no statistical significance, along with lower photosynthetic rates that WWf 

and WSb in controls and water limiting treatment respectively, suggesting that the additional 

effect of fertilizer produced a side stress response in the plants. This could be explained by 

the biochar adsorption characteristics. In this way, biochar significantly affects nutrient 

retention and availability and may play a key role in a wide range of biogeochemical 

processes in soils, especially in nutrient cycling (Liang et al., 2006). Along with raising pH in 
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the soils, which increasing in nutrients availability to the plants, biochar can increase the CEC 

of soil. After biotic and abiotic reactions into the soils, the biochar surface becomes more 

negatively charged, improving its ability to sorb nutrients which will easily became available 

to the plants (Danish et al. 2014). In our study, the conjugation of biochar and fertilizer only 

obtained better performance than WW in the well watered conditions and only at chlorophyll 

(a and b) and Fv/Fm contents. According with our results, WWbf shows lower rates of 

number of leaves, dry roots and CO2 assimilation rates than WWf, suggesting that in well-

water conditions the plants perform worse with biochar and fertilizer instead when fertilizer 

is applied by itself. Additionally, under water stress conditions, WSbf shows lower CO2 

assimilation, transpiration and stomatal conductance than WSb. The carotenoids performed 

higher values than WSb, and this altogether suggest that WSbf treatment could not be an 

advantage from WSb or WSf. Macro and micro nutrients are the main compounds of most 

biochars and, when release to the soils these provide an extra source of nutrients to the 

plants. With biochar and fertilizer additions as a source of nutrients, there is an increased 

amount of reactive N, K and P in the media. However, nitrogen uptake is extremely sensitive 

to phosphorous availability and when it is present, the availability of N decreases (Oram et al., 

2014). Also, the increase of pH by the biochar application will stimulate microbial activity, 

which will promote the mineralization and decomposition of organic matter. However, in our 

study the organic matter available is very low (0.8% for soil), and this seems to be unlikely to 

be the reason for more available nutrients. Zhang et al. (2010) found higher nutrient 

availability after biochar application in maize yield, along with Ghoneim et al. (2013) who 

found a significant increase in total soil N in rice amended cultures with biochar. Joseph et al. 

(2009) found that potassium is highly available to the plants with biochar, conversely to 

nitrogen (Amonette 2009), that largely depends on pyrolysis feedstock character and 

conditions. Rondon et al. (2007) also concluded that applications of biochar with fertilizers 

result in less available N content which support our results. Nitrogen constitutes a 

macronutrient, with main importance to the plants healthy maintenance and it is required in 

large and frequent amounts, constituting a limiting factor as it is an essential element of 

amino acids and proteins, a component of chlorophyll and may affect largely the 

photosynthesis occurrence when it was under appropriate levels (Evans et al. 1989). The 

lower availability of N promoted by biochar and fertilizer interactions, could explain our 

results in water stress treatment, which showed lower value of photosynthetic, transpiration 
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and stomatal conductance. Additionally, the carotenoids display higher values suggesting that 

the plants are subjected to an oxidative stress. Supporting our results, Lehmann et al. (2003) 

study showed lower N availability in the presence of biochar application.  

Regarding to the wilting signs on plants, they were reduced for WSb compared to WS. 

Although the treatments with fertiliser (WSf and WSBf) showed less wilting still, which 

indicated an additional effect of nutrient limitation on wilting. Villar-Salvador et al. (2013) 

reported that, in a Pinus pinea L. seedlings study, the addition of nitrogen nutrition reduces 

the seedling frost and tissue dehydration tolerance and, however, Graciano et al. (2005) 

suggested that fertilization only enhanced plant performance under good water supplies, in 

E.grandis study in sandy soils. Although, Harvey et al. (1997) showed that fertilization 

additions may affect hydric xylem conductivity, and specifically P fertilizers can reduce those 

effects, leading to a lower wilting signals in the plants, and Kleiner et al. (1992), also found 

that red oak seedlings subjected to fertilizer and water limitations exhibit higher osmotic 

adjustments than plants with lower nutrients availability, which also supports our results. 

Possibly, the increase in available nutrients on the biochar surface may have caused, in part, 

the reduction in wilting for WSB.  

In any case, not much information is currently available on the effects of fertilization on 

susceptibility of plants amended with biochar in water limiting conditions, and this could be 

an interest area to further research in the future. 

Concerning about the standard deviations values founded in our results, the overall increase 

in COV for WS may possible be caused by plants in the WS treatment being more stressed at 

the time of measurement of the photosynthetic variables, which took place on relatively hot 

and sunny days with some leaves already wilting, which is supported by the wilting data in 

Figure 4. Although, the smallest standard deviation values in hydric potential parameter could 

be due that this analysis was performed at stem level, and the wilting signals and higher 

variation were recorded at leaf levels, showing primary stress signals for some plants.   

 

FACTOR SYNTHESIS 

Our results show beneficial effects of biochar addition to general plant performance under 

water limitation conditions. This result could be explained by the improving of soil-plant 

relations with more available water to the plant, reducing the stress effects.  
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The apical wilting noticed in WWb treatment might be explained by the increasing of pH 

conferred by biochar addition. This would promote a decreasing in micronutrients availability 

namely of Boron, which is documented to promote this symptom in eucalyptus.  

The plants subjected to a biochar and fertilizer treatment showed contradictory results, 

where even with lower gas exchange values, they present higher above ground biomass. This 

could be explained by the interactions of NPK fertilizer with soil nutrients, which along with 

lower N availability conferred by the increasing pH, will promote an N deficit media. 

Although, further analysis is needed to validate these findings.  
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Conclusions 

 

 

This study sought to test the hypothesis that eucalypt plants will experience less hydric stress 

and show better physiological performance under water limitations, when planted in biochar-

amended soil and that there is no need for additional fertilizer addition to improve this higher 

performance. In view of findings of the present study, it can be concluded that Eucalyptus 

globulus is strongly affected by water limitations. Biochar could be successfully applied 

into soils to enhance the plant physiological performance under water limiting conditions 

by improving CO2 assimilation rates, leaf area and, even with no significant difference, 

with a slight increasing in water potential. Additionally, the addiction of biochar seems to 

reduce plant stress at carotenoids and TSS content levels. The conjugation of biochar and 

fertilizer seems not to be a surplus value to amended water limiting conditions. Further 

studies are needed to better understand the effects of biochar in well watered and in 

water limiting conditions and its effect on nutrient limitations to safety apply biochar into 

soils, without compromising plants.  
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Chapter III  

Concluding Remarks, On-going Research and 

Recommendations for Future Studies 

 

 

Expected climate change outcomes have emphasized the need to investigate strategies to 

mitigate drought stress in Eucalyptus globulus, which has special economic relevance for 

Portugal. Biochar has been considered as a promising approach to amend stressed soils 

and, therefore, the aim of this study was to investigate the effects of biochar on hydric 

limitations in Eucalyptus globulus seedlings.  

After analysing morphological conditions, water status, gas exchanges, lipid peroxidation, 

osmotic compounds accumulation and fluorescence chlorophylls profiles dynamics, it can 

be concluded that biochar had a positive effect under drought conditions on 

photosynthetic rates and leaf area, leading to lower cellular membrane damages. In well 

water conditions, the application of biochar presented lower performance than fertilizer 

application in the same conditions, namely at Above ground biomass, lateral branches, 

leaf area, number of leaves, photosynthesis, weight of dry roots and an increasing in TSS 

values, indicated stress.  

Thus, the application of biochar to soils to improve plant performance under water 

limitations is promising, but further studies are needed. It is important to account that 

short-term effects of biochar studies may be not observed in the field, emphasis long 

term realistically occurrences to improve agronomic management decisions. More 

research is needed in drought stress, involving acute (cyclic) hydric stress, as this is more 

environmentally relevant. The determination of effects of different kinds of biochar 

contents and soil combinations, especially in field conditions are also required. Otherwise, 

little has been done in Eucalyptus spp.  
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In future, more studies must be taken in account to produce feasible data about the 

effects of biochar amending drought stress in Eucalyptus, regarding the content, period of 

exposition and the way of application. Also there must be accessed the intrinsic 

mechanisms on which biochar reacts in water limiting conditions and its interaction in 

plant biochemical and genomics/proteomic pathways, with and without fertilizer 

addictions.  
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