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Abstract

Cancer is a leading cause of death in human beings. Surgery, chemotherapy, radiother-
apy, immunotherapy, and biologically targeted therapy are common modalities for can-
cer treatment. However, cancer resistance is common in chemotherapy and often leads 
to therapeutic failure. This chapter addresses the role of apoptosis in tumor’s resistance 
to chemotherapy and the underlying mechanisms. Cancer cells are always resistant to 
apoptotic signals via a series of biochemical changes. Cancer cells are resistant to che-
motherapeutic agents that are potent apoptosis inducers via multiple mechanisms, such 
as upregulated anti-apoptotic signals and downregulated pro-apoptotic signals, faulty 
apoptotic signaling, faulty apoptosis initiation and implementation, etc. We also discuss 
the possible approaches to overcoming cancer resistance to chemotherapy due to altered 
apoptosis.

Keywords: apoptosis, cancer resistance, chemotherapy

1. Chemotherapy and cancer resistance: fact, evidence, and outcome

Cancer is a major public health problem. According to the International Agency for Research 

on Cancer (IARC), about 14.1 million new cancer cases were reported in 2012 worldwide, 

and 8 million occurred in developing countries [1]. Cancer ranks second among the leading 

causes of death in the United States. US Final Mortality Data (2015) showed that lung cancer 

is the first leading cause of death in all ages with 5-year survival rate around 18% [2]. The 

main reason for high mortality is that most cancers are difficult to be diagnosed by routine 
examinations in the early stage, due to the slight change in the tumor biomarker level and the 
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unapparent symptoms. Fortunately, benefiting from the advances in cancer treatment and the 
alteration in personal habits (e.g. reduction of smoking), cancer mortality has been declining 

over the past two decades [2].

Among cancer treatments, chemotherapy is one of the most effective modalities. The patients 
are given first-line treatments after the clinical diagnosis. With the promising and wide 
spectrum of anticancer effects, the first-line drugs are very likely to kill the cancer cells and 
increase survival rate among patients. However, some patients may suffer relapse or cancer 
metastasis, and second-line treatments come to stage. Chemotherapy usually uses alkylate 

and anthracyclines as antimetabolic agents in clinical treatments. These chemotherapeutic 

drugs mainly take effect through activation of caspases and calcium-dependent nucleases to 
induce cancer cell apoptosis. For example, taxol, a microtubule inhibitor, promotes cancer cell 

apoptosis by inhibiting phosphorylation of apoptotic protein Bcl-2 [3], while glucocorticoid, 

the chemotherapeutic drug for acute lymphoblastic leukemia, induces apoptosis by regulat-

ing a sequence of apoptosis-related genes in malignant cells [4]. The chemotherapeutic drugs 

can also transfer the pro-apoptotic signals to cancer cells, ending the cell cycle and program-

ing cell death.

However, cancer resistance is common in chemotherapy and leads to therapeutic failure. 

Cancer resistance can be sorted into primary resistance and acquired resistance. The primary 

resistance originates from the natural immunity, while the acquired resistance is gained and 

developed during treatment. Drug resistance can be caused by changing drug targets. For 

example, DNA-targeting drugs take effect in the nucleus; however, the drugs would disperse 
into the cytoplasm in the presence of a non-ABC transporter [5]. As a result, the chemothera-

peutic drugs fail to target DNA in the nucleus, but accumulate in the extracellular environ-

ment. In addition, patients would develop drug resistance after long exposure to the same 

agent, and may even develop cross-resistance to non-related drugs and multidrug resistance 

(MDR). The mechanism of drug resistance is intricate, involving the alteration of transporter 

pump, the aversion of apoptosis and autophagy, the mutation and amplification of oncogenes 
and tumor suppressor genes, the variation of drug metabolism, etc. To remedy cancer resis-

tance, researchers have tried many solutions. For instance, Wang et al. have used gambogic 

acid (GA) as an auxiliary to remedy doxorubicin (DOX) resistance in breast cancer [6, 7]. GA 

could reduce the expression of P-glycoprotein (P-gp), a key protein in DOX resistance, and 

promote the accumulation of DOX in cancer cells [6]. Furthermore, GA has been reported to 

induce apoptosis via p38 MAPK pathway. GA increases the apoptotic rate by downregulating 

the expression of survivin mRNA [6]. Even though the mechanism of the combined treatment 

is still unclear, it seems to be a promising approach for DOX resistance in breast cancer. To 

further improve the efficacy of chemotherapy, the mechanism of cancer resistance should be 
fathomed.

2. Mechanisms of cancer cells evading apoptosis

Apoptosis is an autonomous process that involves the activation, expression, and regulation 

of a wide range of genes, leading to programed cell death to remove unwanted or abnormal 

cells in organisms and maintaining a stable internal environment. Apoptosis mediates the 
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programed cell death either in a caspase-dependent or in a caspase-independent pathway. 

The caspase-dependent pathway can be classified into the extrinsic pathway and the intrin-

sic pathway, as illustrated in Figure 1. Caspases, a cysteine protease family, can be divided 

into the apoptotic subfamily and the inflammatory subfamily according to the pathway they 
involve. Among the known 18 mammalian caspases, caspases 2, 3, 6, 7, 8, 9, and 10 can be cat-

egorized as apoptotic caspases: caspase 2 is involved in various cell death pathways; caspases 
3, 6, and 7 work as apoptotic executors, while caspases 8 and 10 are essential in the extrinsic 

pathway and caspase 9 is essential in intrinsic pathway. As shown in Figure 1, the extrinsic 

pathway facilitates apoptosis by activating caspases through the death receptor ligands on the 

cell surface. The death receptor ligands are closely related to the tumor necrosis factor (TNF) 

receptor superfamily, including the TNF-related apoptosis-inducing ligand (TRAIL), TNFR1 

(CD120a), Fas (APO-1/CD95), Weasl (APO-2/DR3), TRAIL-R1 (DR4), TRAIL-R2 (DR5), and 

DR6. Take Fas as an example. Fas/FasL is one of the well-known death receptors associated 

with signaling pathways in immune and pro-apoptotic effect [8]. The Fas exists in two forms: 

membrane Fas (mFas) and soluble Fas (sFas). mFas and sFas bind to FasL in a competitive 

way. The binding of mFas and FasL induces pro-apoptosis, while the binding of sFas and 

FasL has no similar effect. With the binding of mFas and FasL, mFas-associated death domain 

Figure 1. The intrinsic and extrinsic apoptotic pathways. The extrinsic pathway facilitates apoptosis by activating 

caspases through the death receptor ligands (e.g. mFas) on the cell surface. With the binding of mFas and FasL, mFas-

associated death domain (FADD) combines with procaspases 8 and 10, leading to the formation of death-inducing 

signaling complex (DISC) which activates the downstream signal cascade. MAC forms on the mitochondrial outer 

membrane and releases cytochrome C into the cytosol. The intrinsic pathway of apoptosis is initiated by cytochrome 

C released from mitochondria to the cytosol. In the presence of ATP/dATP, cytochrome C interacts with the apoptotic 

protease-activating factor (Apaf-1) to promote the formation of apoptosome with procaspase 9.
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(FADD) combines with procaspases 8 and 10, leading to the formation of death-inducing 

signaling complex (DISC), which activates the downstream signal cascade [9]. The activated 

caspase 8 modifies Bid into tBid. tBid binds with Bak and Bax, which are pro-apoptosis pro-

teins that control the permeability of mitochondrial outer membrane, to form mitochondrial 

apoptosis-induced channel (MAC). The intrinsic pathway of apoptosis, also known as the 

mitochondrial pathway, is initiated by cytochrome C. Cytochrome C is a key protein for elec-

tron transfer in mitochondria. Mitochondria releases cytochrome C into the cytosol through 

MAC in response to stresses of apoptosis-inducing factors [9]. In the presence of ATP/dATP, 

cytochrome C interacts with the apoptotic protease-activating factor (Apaf-1) in the cytosol 

to form a complex and promotes the formation of apoptosome that activates procaspase 9 [9]. 

The activated caspase 9 further activates the downstream caspases.

Notably, a class of proteins exerts anti-apoptosis and pro-apoptosis effects in the apoptosis 
pathway. These proteins include the Bcl-2 family and inhibitors of apoptosis proteins (IAPs). 

The Bcl-2 protein family can be classified into two functional groups—one of which has an 
inhibitory effect on apoptosis through inhibition of MAC formation, such as Bcl-2, Bcl-XL, 
Bcl-w, Mcl-1, Ced-9, while the other has a promoting effect on apoptosis by promotion of 
MAC formation, such as Bax, Bak, Bik, Bid, and Harakiri [10]. IAPs are the family of caspase 

inhibitors, including survivin, livin, Bruce (Apollon), cIAP1, cIAP2, IAP-like protein 2 (ILP-2), 

the X-linked inhibitor of apoptosis protein (XIAP), and neuronal apoptosis inhibitory protein 

(NAIP) [11]. Obviously, the homeostasis between anti-apoptosis proteins and pro-apoptosis 

proteins is essential for cell survival.

In addition to the extrinsic pathway and the intrinsic pathway, there also exists caspase-

independent pathway. This pathway relies on apoptosis-inducing factors (AIFs). AIFs are fla-

voproteins present in the inner mitochondrial membrane [12], and exhibit the pro-apoptosis 

effect. AIFs are released into cytoplasm along with the increased permeability or the cleavage 
of mitochondria. Then, AIFs enter the nucleus and lead to chromatin condensation and break 

into fragments. Polster has studied the relationship of AIFs and mitochondrial ROS produc-

tion [13]. Insufficient AIF would reduce the electron transport chain complex I, which relates 
to chronic neurodegeneration [14].

The cancer cells evade apoptosis via various mechanisms. Theoretically, in order to resist 

apoptosis, cancer cells would upregulate anti-apoptotic signals (e.g. Bcl-2, Akt, Mcl-1, etc.) 

and downregulate pro-apoptotic signals (e.g. Bax, Bak, Bad, etc.), initiate and implicate faulty 

apoptosis, etc. The detail is discussed below.

2.1. Cancer cells resisting pro-apoptotic signals

In human cancer cells, the downregulation of pro-apoptotic proteins (e.g. Bax, Bak, Bad, 

Bim, etc.) and the upregulation of anti-apoptotic proteins (e.g. Bcl-2, Akt, Mcl-1, etc.) hinder 

the formation of MAC, inhibiting the release of cytochrome C from mitochondria and lead-

ing to the immortal character of the cancer cells. For example, the increased ubiquitination 

level of Bax has been found to be positively correlated to tumor malignant degree [15]. The 

decreased expression of Bad has been observed in small-cell lung cancers (SCLC), breast car-

cinoma, and gastric cancer. Furthermore, cancer cells regulate Bim in the pro-transcriptional, 
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transcriptional, and post-translational levels to disturb the interaction between Bim and 

Bak/Bax, and thus change the mitochondria’s outer membrane permeabilization (MOMP). 

Overexpression of Bcl-2 inhibits cell death induced by a variety of cytotoxins, and enhances 

cell resistance to DNA damage factors and most chemotherapeutic drugs [16]. Bcl-2 has been 

shown to inhibit p53-mediated apoptosis but cannot inhibit p53 translocation toward nucleo-

lus or p53-mediated growth arrest. The possible role of Bcl-2 is to block the activation of the 

apoptotic signals to their target molecules.

In addition, the abnormal expression of IAPs in cancer cells also increases cancer malignan-

cies. The overexpression of IAPs abolishes the downstream caspase cascade. IAPs form a 

complex with the baculovirus-IAP repeat (BIR) domain of caspases, inhibiting the catalytic 

activity of caspases 3, 7, and 9 and blocking the process of apoptosis. cIAP1 inhibits apoptosis 

by binding to the BIR2 domain, which is used for activating caspases 3 and 7, resulting in 

ubiquitin-mediated proteasomal degradation. Werner et al. [17] have reported that upregu-

lation of cIAP1/2 inhibits TRAIL-mediated apoptosis in follicular thyroid cancer. The IAPs 

have also been reported in interaction with NF-κB [18]. They are key molecules that regulate 

tumor cell apoptosis and chemo-sensitivity, developing new targets for reversing tumor cell 

resistance and improving treatment efficacy.

2.2. Cancer cells reducing anti-apoptosis signals

A variety of signal pathways are involved in the anti-apoptosis process. The TNF family is 

associated with apoptosis and malignant tumorigenesis. It has been reported that the trans-

lational level of Fas is downregulated in prostate cancer and liver cancer. TRAIL, another 

membrane of TNF family, intrigues wide anticancer effect by exerting pattern-like function of 
mFas. It has been found that some cancers show primary resistance and even develop multi-

ple-mechanism resistance to TRAIL-induced apoptosis [19]. For example, overexpression of 

TRAIL receptor 3 (TRAIL-R3/DcR1) and TRAIL receptor 4 (TRAIL-R4/DcR2) is considered to 

contribute to the TRAIL-mediated apoptosis evasion of cancer cells. TRAIL-R3 and TRAIL-R4 

are decoy receptors without intercellular death domain. The incapability of TRAIL-3 and 

TRAIL-4 to associate with procaspases 8 and 10 to form DISC attenuates the activation of 
downstream signaling pathway [20]. Furthermore, gene mutation of diverse proteins gener-

ates the anti-apoptotic effect. Shlyakhtina Y. and his colleagues [21] have studied TRAIL-R2 

(DR5) within isogenic cancer cell populations. The models were pretreated with distinctive 

inhibitors, and the results showed that apoptosis evasion involves kinase cascades of func-

tional Erk1/2, p38, and Akt.

Alteration of the p53 pathway also contributes to apoptosis evasion. The p53 gene is a human 

tumor suppressor gene. The p53 protein endows anticancer effect by activating defected gene 
repair and causing apoptosis of cancer cells if the damage is irreparable. p53 regulates apop-

tosis through Bax/Bcl-2, Fas/Apol, IGF-BP3, and other proteins. Inactivation, elimination, and 

abnormal expression of the p53 gene play important roles in tumorigenesis. About 80% of 
human tumors are caused by dysfunctional p53 signaling and 50% by p53 gene mutation [22]. 

Abnormal expression of p53 downregulates Bax/Noxa/Puma expression and upregulates Bcl-2. 

The upregulation of Bcl-2 prevents cytochrome C release from the mitochondria, inhibiting 

p53-mediated apoptosis. The downregulation of Bax prevents the formation of MAC on the 
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outer membrane of mitochondria, reducing the pro-apoptotic effect [23]. Furthermore, mouse 

double minute 2 homolog (MDM2) has also been found to play a pivotal role in the inhibition 

of p53-mediated apoptosis by negative regulation. In cancer cells, the increase of MDM2 tran-

scription and p53 ubiquitination attenuates p53-mediated apoptosis [24].

NF-κB pathway, one of the highly conserved signal pathways of activating gene transcription, 
takes complicated apoptotic effects in different cells. Activated NF-κB improves the transcrip-

tion level of survivin, Bcl-2, Bcl-X
L,

 and XIAP, resulting in resistance to the chemotherapeutic 

pro-apoptotic signals [5]. However, NF-κB renders pro-apoptotic effect through upregulating 
caspase 4 in Fas-induced neuroblastoma cell apoptosis [25]. In addition, NF-κB upregulates 
pro-survival genes via Akt activation.

PI3/AKT pathway mediates the survival signals in cancer cells. Akt is correlated to phosphoryla-

tion of diverse signal molecules and has a profound effect on cell survival, cell cycle progression, 
cell growth, and metabolism. The overexpression and overactivation of Akt have been observed 

in malignant tumors. For example, Zheng [5] has revealed that the paclitaxel-resistance devel-

oped in NSCLC can be ascribed to Akt-1 overexpression and Akt-2 gene amplification. In addi-
tion, Akt promotes the phosphorylation of Bad on Ser136/Ser112, leading to the suppression of 

apoptosis [26]. Akt phosphorylates Forkhead-box Class O (FoxO), a protein family governing a 

line of apoptotic gene transcription in PI3K/Akt pathway. The phosphorylated FoxO binds with 

14-3-3, stays in the cytoplasm, and fails to execute transcription in nucleus [27].

2.3. Abnormal cross talk of autophagy and apoptosis

Autophagy is the process of self-digestion and degradation of proteins, organelles, and cell 

to obtain essential elements and energy for cell survival. Under normal physiological con-

ditions, autophagy allows the cells to maintain homeostasis by transporting damaged or 

senescent substances into the lysosome, preventing the intercellular accumulation of toxic or 

carcinogenic substances and inhibiting cell carcinogenesis. However, in the tumor microenvi-

ronment, autophagy supplies nutrients to cancer cells and promotes tumor growth. The cross 

talk between autophagy and apoptosis contributes to cell viability (Figure 2). Apoptosis regu-

lates autophagy either through specific apoptotic protein regulation or by caspase activation, 
while autophagy regulates apoptosis through: (1) specific autophagy protein regulation; (2) 
caspase activation (autophagosome required); (3) autophagic degradation (both autophago-

some and lysosome required) and mutual signal pathways [28].

The abnormal apoptosis-autophagy cross talk helps cell death evasion. First, the unusual 

autophagy proteins would result in apoptosis evasion. In normal apoptotic cells, autopha-

gosome with the regulation of autophagy protein 9 (ATG9), ATG16L1, ATG5, and ATG12 

shows a pro-apoptotic effect. However, in abnormal apoptotic cells, less ATG5 translocation 
and interaction with Bcl-X

L
 in mitochondria reduces cytochrome C release; meanwhile, the 

dwindling binding of ATG12 to Bcl-2 and Mcl-1 decreases caspase activation [28]. In addition, 

the Beclin-1 interacting UV radiation resistance-associated gene (UVRAG) shows an inhibi-

tory effect on apoptosis by binding to Bax [29]. Second, aberrant activations of caspases lead 

to the longevity of cancer cells. For example, caspase 8 is recruited by autophagosome, and 

caspase 8/RIPK1 is important for apoptosis-autophagy cross talk [28]. The inefficient activated 

Current Understanding of Apoptosis - Programmed Cell Death130



caspase 8 may fail to trigger the downstream cascade of apoptosis. Furthermore, Beclin-1 

is mediated by caspases; mutant D133A+D146A Beclin-1 has been reported to be resistant 
to chemotherapy [29]. Third, autophagic degradation downregulates apoptosis. In normal 

condition, starving cells accelerate apoptosis. However, the apoptosis is attenuated in tumors 
because the neighboring cancer cells degraded by autophagy provide nutrient and ATP for 

tumorigenesis. Fourth, malfunctioned signal pathways hinder the cell death process. The p53 

protein can be regulated by AMPK pathway and degraded by chaperone-mediated autoph-

agy. In p53-induced apoptosis, the downregulation of damage-regulated autophagy modula-

tor (DRAM) mRNA has been observed in tumor with wild-type; the deficiency of DRAM 
promotes cell survival [30]. Han et al. [31] have reported that suberoylanilide hydroxamic 

acid (SAHA) may promote autophagy by stimulating TRAIL-R2-CTSB via AKT pathway.

3. Possible approaches to overcoming cancer resistance

In clinical treatments, the principle to treat drug-resistant cancer is targeting the specific target 
with the coordinated agent. However, the strategy is idealized since drug-resistant cancer usually 

involves multiple signaling pathways as well as multiple targets, and the contributions of each 

target is hard to be calculated. Therefore, treating drug-resistant cancer with the drugs against 

Figure 2. Abnormal apoptosis-autophagy cross talk. (1) The unusual autophagy proteins would result in apoptosis 

evasion. In abnormal apoptotic cells, fewer ATG5 translocate and interact with Bcl-X
L
 in mitochondria, reducing the 

release of cytochrome C; meanwhile, the dwindling ATG12 binds to Bcl-2 and Mcl-1 results in the decrease of caspase 
activation. (2) Aberrant activation of caspases leads to cell immortality. For example, caspase 8 activated by DISC-like 

complex is recruited by autophagosome. (3) Autophagic degradation downregulates apoptosis.
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the wide-array targets would be more realistic. Similarly, drugs that would induce multiple cell 

death pathways are likely to circumvent cancer resistance to chemotherapy. Targeting drug trans-

porter protein would be an effective approach to overcome cancer resistance to chemotherapy.

Combined therapies are also considered to be a possible way to overcome cancer resistance to che-

motherapy. An ongoing clinical study, led by Okonogi and his colleagues [32], applied maximum 

dose of carbon ion radiotherapy (C-ion RT) with concurrent chemotherapeutic drugs in uterine 

cervical carcinoma. The overall survival rate of 31 patients with recommended dose (RD) treat-

ment is 88%; only 2 patients suffered from gastrointestinal toxicities. The studies still require devel-
oping a better drug delivery method for longer treatment duration and larger crowd of patients.

Taking advantages of the advance in material science and nanotechnology, nanomedicine 

delivery systems show a promising potential to guarantee the efficacy of chemotherapy. For 
example, cerium oxide nanoparticles (CNPs) have been used as carriers to deliver curcum-

ins [33]. The nanoscale delivery systems maintain the stability of curcumins in alkalescency 

environment and exert anticancer effects. The treatment with nanomedicines increases ROS 
accumulation and decreases the ratio of Bcl-2/Bax in human neuroblastoma cells, improving 

the therapeutic efficacy. Zhang et al. [34] used Dox-loaded DNA tetrahedron to target folate 

receptors in HT-29 colon cancer cells. The treatment efficacy was also enhanced.

4. Conclusions

Apoptosis is an essential process for the growth and development of organisms, while cancer 

cells obtain immortality by escaping programed cell death. Understanding the underlying 

mechanism of cancer resistance to chemotherapy is fundamental for efficient cancer treat-
ment agents. In this chapter, we have discussed the mechanisms of cancer cells evading 

apoptosis, including downregulation of pro-apoptotic signals, upregulation of anti-apoptotic 

signals and abnormal cross talk of autophagy and apoptosis. Chemotherapeutic drugs induce 

pro-apoptosis in cancer cells; however, the upregulation of anti-apoptotic proteins, e.g. Bcl-2 
and IAPs, would cause cancer resistance. Death receptors including NF-κB-, PI3/AKT-, and 
p53-related signaling pathways are also involved in the chemoresistance. Additionally, the 

aberrant autophagy may cause apoptosis evasion as well through autophagic protein regula-

tion, caspase activation, and autophagic degradation. A further, in-depth understanding of 

apoptosis evasion would be helpful for developing strategies to circumvent cancer resistant 

to chemotherapy. Combined chemotherapeutic treatment, drugs targeting multiple targets, 

and using nanoscale drug delivery (nanomedicine) show promising potentials to overcome 

chemoresistance and achieve precision therapy.

Acronyms and abbreviations

AIF Apoptosis-inducing factor

Apaf-1 Apoptotic protease-activating factor
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ATG9 Autophagy protein 9

DISC Death-inducing signaling complex

DOX Doxorubicin

FoxO Forkhead-box class O

GA Gambogic acid

IAP Inhibitors of apoptosis protein

MDM2 Mouse double minute 2 homolog

MDR Multidrug resistance

NSCLC Non-small cell lung cancer

P-gp P-glycoprotein

TOP-1 Topoisomerase-1

TNF Tumor necrosis factor

BH3-only protein Bcl-2 homology domain only protein

DRAM Downregulated damage-regulated autophagy modulator

MAC Mitochondrial apoptosis-induced channel

UVRAG UV radiation resistance-associated gene

MOMP Mitochondria outer membrane permeabilization
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