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Abstract

Many studies on learning of fuzzy inference systems have been made. Specifically, it is
known that learning methods using vector quantization (VQ) and steepest descent
method (SDM) are superior to other methods. In their learning methods, VQ is used only
in determination of the initial parameters for the antecedent part of fuzzy rules. In order to
improve them, some methods determining the initial parameters for the consequent part
by VQ are proposed. For example, learning method composed of three stages as VQ,
generalized inverse matrix (GIM), and SDM was proposed in the previous paper. In this
paper, we will propose improved methods for learning process of SDM for learning
methods using VQ, GIM, and SDM and show that the methods are superior in the number
of rules to the conventional methods in numerical simulations.

Keywords: fuzzy inference systems, vector quantization, neural gas, generalized inverse
method

1. Introduction

There have been many studies on learning of fuzzy systems [1–8]. Their aim is to construct

learning methods based on SDM. Some novel methods on them have been developed which

(1) generate fuzzy rules one by one starting from any number of rules, or reduce fuzzy rules

one by one starting from a sufficiently large number of rules [2]; (2) use genetic algorithm

(GA) and particle swarm optimization (PSO) to determine fuzzy systems [3]; (3) use fuzzy

inference systems composed of a small number of input rule modules, such as single input

rule modules (SIRMs) and double input rule modules (DIRMs) methods [9, 10]; and (4) use a
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self-organization or a vector quantization technique to determine the initial assignment of

parameters [11–15, 19]. Specifically, it is known that learning methods using vector quantiza-

tion (VQ) and steepest descent method (SDM) are superior in the number of rules (parameters)

to other methods [16, 19]. So, why is it effective to combine VQ with SDM in fuzzy modeling?

First, let us explain how to combine SDM with methods other than VQ. (1) Although the

learning time is short, the generation method is known to have low test accuracy, while the

reduction method has high test accuracy but takes long learning time [2]. (2) The method using

GA and PSO shows high accuracy when the input dimension and the number of rules are

small, but it is known that there is a problem of scalability [3]. (3) SIRM and DIRMmethods are

excellent in scalability, but the accuracy of learning is not always sufficient [9]. As described

above, many methods are not necessarily effective models because of the difficulty of learning

accompanying the increase of the input dimension and the number of rules and the low

accuracy. On the other hand, the method combining VQ with SDM is possible to efficiently

conduct learning of SDM by arranging suitably the initial parameters of fuzzy rules using VQ

[1, 16]. However, since VQ is unsupervised learning, it is easy to reflect the input part of

learning data, but how to capture output information in learning is difficult. With their studies,

the first learning method is the one using VQ only in determining the initial parameters of the

antecedent part of fuzzy rules using input part of learning data [1, 11–14]. The second method

is the one determining the same parameter using input/output parts of learning data [15, 19].

Further, the third method is one iterating learning process of VQ and SDM for the second

method. Kishida and Pedrycz proposed the method based on the third one [13, 15]. These

methods are the ones determining only the antecedent parameters by VQ. Therefore, we

introduced generalized inverse matrix (GIM) to determine the initial assignment of weight

parameters for the consequent part of fuzzy rules as the fourth method and showed the

effectiveness in the previous paper [16, 17]. In this paper, improved methods for learning

process of SDM in learning methods using VQ, GIM, and SDM are introduced and show that

the method is superior in the number of rules to other methods in numerical simulations.

2. Preliminaries

2.1. The conventional fuzzy inference model

The conventional fuzzy inference model using SDM is described [1]. Let Zj = {1,…, j} and Zj∗ =

{0, 1,…, j}. Let R be the set of real numbers. Let x = (x1, …, xm) and y be input and output

variables, respectively, where xj ∈ R for j ∈ Zm, and y ∈ R. Then, the rule of simplified fuzzy

inference model is expressed as

Ri : if x1 is Mi1 and xj is Mij � and xm is Mim, then y is wi (1)

where j ∈ Zm is a rule number, i ∈ Zn is a variable number,Mij is a membership function of the

antecedent part, and wi is the weight of the consequent part.
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A membership value μi of the antecedent part for input x is expressed as

μi ¼
Y

m

j¼1

Mij xj
� �

(2)

Then, the output y∗ of fuzzy inference method is obtained as

y∗ ¼

Pn
i¼1 μi � wi
Pn

i¼1 μi

(3)

If Gaussian membership function is used, then Mij is expressed as

Mij xj
� �

¼ exp �
1

2

xj � cij

bij

� �2
 !

(4)

where cij and bij denote the center and the width values of Mij, respectively.

The objective function E is determined to evaluate the inference error between the desirable

output yr and the inference output y∗.

Let D = {(xp,… , xp, yr)|p∈ZP } andD∗ = {(xp,…, xp)|p∈Zp} be the set of learning data and the set

of input part of D, respectively. The objective of learning is to minimize the following mean

square error (MSE) as

E ¼
1

P

X

P

p¼1

y∗p � yrp

� �2
(5)

where yp∗ and yr mean inference and desired output for the pth input xp.

In order to minimize the objective function E, each parameter of c, b, and w is updated based

on SDM using the following relation:

∂E

∂wi
¼

μi
Pn

I¼1 μI

∙ y∗ � yrð Þ (6)

∂E

∂cij
¼

μi
Pn

I¼1 μI

∙ y∗ � yrð Þ∙ wi � y∗ð Þ∙
xj � cij

b2ij
(7)

∂E

∂cij
¼

μi
Pn

I¼1 μI

∙ y∗ � yrð Þ∙ wi � y∗ð Þ∙
xj � cij
� �2

b3ij
(8)

where t is iteration time and Kα is a learning constant [1].
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The learning algorithm for the conventional fuzzy inference model is shown as follows:

Learning Algorithm A

Step A1: The threshold θ of inference error and the maximum number of learning time Tmax

are set. Let n0 be the initial number of rules. Let t = 1.

Step A2: The parameters bij, cij, and wi are set randomly.

Step A3: Let p = 1.

Step A4: A data x
p
1;⋯; x

p
m; yrp

� �

∈D is given.

Step A5: From Eqs. (2) and (3), μi and y∗ are computed.

Step A6: Parameters wi, cij, and bij are updated by Eqs. (6), (7), and (8).

Step A7: If p = P, then go to Step A8, and if p < P then go to Step A4 with p p + 1.

Step A8: Let E(t) be inference error at step t calculated by Eq. (5). If E(t) > θ and t < Tmax, then go

to Step A3 with t t + 1; else, if E(t) ≤ θ and t ≤Tmax, then the algorithm terminates.

Step A9: If t > Tmax and E(t) > θ, then go to Step A2 with n = n + 1 and t = 1.

In particular, Algorithm SDM is defined as follows:

Algorithm SDM (c, b, w)

θ1: inference error

Tmax1: the maximum number of learning time

n: the number of rules

input: current parameters

output: parameters c, b, and w after learning

Steps A3 to A8 of Algorithm A are performed.

2.2. Neural gas method

Vector quantization techniques encode a data space V ⊆ Rm, utilizing only a finite set C = {ci|

i∈Zr} of reference vectors [18].

Let the winner vector ci(v) be defined for any vector v ∈ V as

i vð Þ ¼ argmin
i∈Zr

v� cik k: (9)

By using the finite set C, the space V is partitioned as

V i ¼ v∈V jkv� cik ≤ kv� cjk f or j∈Zr

� 	

, (10)

where V ¼ ∪i∈Zr
V i and V i ∩V j ¼ φ for i 6¼j.
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The evaluation function for the partition is defined by

E ¼
X

r

i¼1

X

v∈V i

1

ni
v� cik k2, (11)

where ni = |Vi|.

Let us introduce the neural gas method as follows [18]:

For any input data vector v, the neighborhood ranking cik for k∈Z∗

r�1 is

determined, being the reference vector for which there are k vectors cj with

kv� cjk < kv� cik k (12)

Let the number k associated with each vector ci denoted by ki(v,ci). Then, the adaption step for

adjusting the parameters is given by

△ci ¼ ε � hλ ki v; cið Þð Þ � v� cið Þ (13)

hλ ki v; cið Þð Þ ¼ exp �ki v; cið Þ=λð Þ (14)

where ε ∈ [0, 1] and λ > 0.

Let the probability of v selected from V be denoted by p(v).

The flowchart of the conventional neural gas algorithm is shown in Figure 1 [18], where εint,

εfin, and Tmax2 are learning constants and the maximum number of learning, respectively. The

method is called learning algorithm NG.

Using the set D∗, a decision procedure for center and width parameters is given as follows:

Algorithm Center (c)

D∗ = {(xp,…, xp)|p∈Zp}

p(x): the probability of x selected for x∈D∗.

Step 1: By using p(x) for x ∈ D∗, NG method of Figure 1 [16, 18] is performed.

As a result, the set C of reference vectors for D∗ is determined, where C = n.

Step 2: Each value for center parameters is assigned to a reference vector. Let

bij ¼
1

ni

X

xk ∈Ci

cij � xkj
� �2

(15)

where Ci and ni are the set and the number of learning data belonging to the ith cluster Ci and

C ¼ ∪
r
i¼1Ci and n ¼

Pr
i¼1 ni.

As a result, center and width parameters are determined from algorithm center (c).
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Learning Algorithm B using Algorithm Center (c) is introduced as follows [16, 17]:

Learning Algorithm B

θ: threshold of MSE

T
0
max

: maximum number of learning time for NG

Tmax: maximum number of learning time for SDM

M: the size of ranges

n: the number of rules

Step 1: Initialize()

Step 2: Center and width parameters are determined from Algorithm Center(P) and the set D∗.

Step 3: Parameters c, b, and w are updated using Algorithm SDM (c, b, w).

Step 4: If E(t)≤θ, then algorithm terminates else go to Step 3 with n n + 1 and t t + 1.

Figure 1. Neural gas method [18].
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2.3. The probability distribution of input data based on the rate of change of output

It is known that many rules are needed at or near the places where output data change quickly

in fuzzy modeling. Then, how can we find the rate of output change? The probability pM (x) is

one method to perform it. As shown in Eqs. (16) and (17), any input data where output

changes quickly is selected with the high probability, and any input data where output

changes slowly is selected with the low probability, where M is the size of range considering

output change.

Based on the literature [13], the probability (distribution) is defined as follows:

Algorithm Prob (pM (x))

Input: D = {(xp, yr)|p∈ZP } and D∗ = {(xp)|p∈ZP }

Output: pM (x)

Step 1: Give an input data x
i
∈D∗, we determine the neighborhood ranking (xi0 , xi1,…, xik ,…,

x
iP�1) of the vector xi with x

i0 = x
i, xi1 being closest to x

i and x
ik (k = 0, …, P � 1) being the

vector xi for which there are k vectors xj with x
i � x

j










 < x
i � x

ik










.

Step 2: Determine H(xi) which shows the rate of output change for input data x
i, by the

following equation:

H x
i

� �

¼
X

M

l¼1

yi � yil
�

�

�

�

x
i � x

ilk k
, (16)

where xil for l ZM means the lth neighborhood ranking of xi, i∈ZP, and yi and yil are output for

input xi and x
il , respectively. The number M means the range considering H(x).

Step 3: Determine the probability pM (xi) for xi by normalizing H(xi) as follows:

pM x
i

� �

¼
H x

i
� �

PP
j¼1 H x

jð Þ
, (17)

where
PP

i¼1 pM x
i

� �

¼ 1.

See Ref. [19] for the detailed explanation using the example of pM (x). Using pM (x), Kishida has

proposed the following learning algorithm [13]:

Learning Algorithm C

θ: threshold of MSE

T0
max: maximum number of learning time for NG

Tmax: maximum number of learning time for SDM

M: the size of ranges

n: the number of rules
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Step 1: Initialize ( )

Step 2: The probability pM (x) is obtained from algorithm prob (pM (x)).

Step 3: Center and width parameters are determined using pM (x) from Algorithm Center (P)

and the data set D.

Step 4: Parameters c, b, and w are updated using Algorithm SDM (c, b, w).

Step 5: If E(t)≤θ, then algorithm terminates else go to Step 3 with n n + 1 and t = 1.

2.4. Determination of weight parameters using the generalized inverse method

The optimum values of parameters c and b are determined by using pK(x). Then, how can we

decide weight parameters w? We can determine them as the interpolation problem for param-

eters c, b, and w. That is, it is the method that membership values for antecedent part of rules

are computed from c and b and weight parameters w are determined by solving the interpo-

lation problem. So far, the method was used as a determination problem of weight parameters

for RBF networks [1].

Let us explain fuzzy inference systems and interpolation problem using the generalized

inverse method [1]. This problem can be stated mathematically as follows:

Given P points {xp|p∈ZP } and P real numbers {yrp|p∈ZP }, find a function f: Rm!R such that the

following conditions are satisfied:

f xpð Þ ¼ yrp (18)

In fuzzy modeling, this problem is solved as follows:

yp ¼ f xpð Þ ¼
X

n

i¼1

wiφpi xp � cik kð Þ (19)

φpi xp � cik kð Þ ¼
μi

Pn
I¼1 μI

,μi ¼
Y

m

j¼1

Mij xj
� �

, (20)

where μi and Mij are defined as Eqs. (2) and (4).

That is,

φ w ¼ y, (21)

where φ = (φij) (i ∈ ZP and j ∈ Zn), w = (w1,…, wn)
T, and y = (yr1,…, yrp)

T.

Let P = n and xi = ci. The width parameters are determined by Eq. (15). Then, if φij( ) is suitably

selected as Gaussian function, then the solution of weights w is obtained as

w ¼ φ�1y (22)
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Let us consider the case n < P. This is the realistic case. The optimum solution w∗ that

minimizes E = ||yr � φw||2 can be obtained as follows:

wþ ¼ φT y and Emin ¼ I � Ψð Þyk k2, (23)

where Φ+
≜[ΦT Φ]�1ΦT, Ψ ≜ΦΦT, and I is identify matrix of P�P .

The matrix Φ+ is called the generalized inverse of φ. The method using Φ+ to determine the

weights is called the generalized inverse method (GIM).

Using GIM, a decision procedure for parameters is defined as follows:

Algorithm Weight(c, b)

Input: D = {(xp, yr)|p∈ZP }

Output: The weight parameters w

Step 1: Calculate μi based on Eq. (2)

Step 2: Calculate the matrix Φ and Φ+ using Eq. (20):

φpi ¼ xp � cik kð Þ ¼
μ
p
i

Pn
j¼1 μ

p
j

,μ
p
i ¼

Y

m

j¼1

exp �
1

2

x
p
j � cij

bij

 !2
0

@

1

A

Step 3: Determine the weight vectors w as follows:

w ¼ Φþ yr (24)

2.5. The relation between the proposed algorithm and related works

Let us explain the relation between the proposed method and related works using Figure 2.

1. The fundamental flow of algorithm A is shown in Figure 2(a). Initial parameters of c, b,

and w are set randomly, and all parameters are updated using SDM until the inference

error become sufficiently small (see Figure 2(a)) [1].

2. The first method using VQ is the one that both the initial assignment of parameters and the

assignment of parameters in iterating step (see outer loop of Figure 2(b)) are also deter-

mined by NG using D∗. That is, it is learning method composed of two stages. The center

parameters c are determined using D∗ by VQ, b is computed by Eq. (15) using the result of

center parameters, and weight parameter w is set to the results of SDM, where the initial

values of w are set randomly. Further, all parameters are updated using SDM for the

definite number of learning time. In iterating processes, parameters of the result obtained

by SDM are set as initial ones of the next process. Outer iterating process is repeated until

the inference error become sufficiently small (see Figure 2(b)).

3. The second method using VQ is the one that is the same method as the first one except for

selecting any learning data based on pM (x) (see Figure 2(c)). That is, center parameters c

are determined by pM (x) using input and output learning data.
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4. The third learning method using VQ is the one that parametersw are determined using GIM

after parameters c and b are determined by VQ using pM (x) and all parameters are updated

based on SDM. That is, it is learning method composed of three phases. In the first phase, the

center parameters c are determined using the probability pM (x), and b is computed from the

result of center parameters. In the second phase, weight parameters w are determined by

solving the interpolation problem using GIM. In the third phase, all parameters are updated

using SDM for the definite number of learning time. In iterating process, the result of SDM is

set to initial ones of the next process based on hill climing. Outer process is repeated until the

inference error becomes sufficiently small (see Figure 2(d)).

5. The fourth method is the same to the one as the third method except for using pM (x) in

learning process of SDM (see Figure 2(d’)). This is a proposed method in this paper.

Figure 2. Concept of conventional and proposed algorithms: mark 1 means that initial values of w are selected randomly

and parameters w are set to the result of SDM after the second step.
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3. The proposed learning method using VQ

Let us explain the detailed algorithm of Figure 2(d’). The method is called Learning Algorithm

D’. It is composed of four techniques as follows:

1. Determine the initial assignment of c using the probability pK(x).

2. Determine the assignment of weight parameters w by solving the interpolation problem

using GIM.

3. The processes (1) and (2) and learning steps of SDM using pM (x) are iterated.

4. The optimum value of M is determined by hill climing method [16].

The general scheme of the proposed method is shown as Figure 3, where cmin, bmin, and wmin

are the optimal parameters for c, b, and w.

Tmax1 and Tmax2: The maximum numbers of learning time for NG and SDM.

θ and θ1: Thresholds for MSE and SDM

M0, Mmax: The size of initial and final of ranges

△M: The rate of change of the range

D and D∗: Learning data D = {(xi, yr)|i∈ZP } and D∗ = {xi|i∈ZP }

n: The number of rules

E(t): MSE of inference error at step t

Emin: The minimum MSE of E for the rule number

The proposed method of Figure 3 consists of five phases: In the first phase, all values for

algorithm are initialized. In the second phase, the probability pM (x) is determined for the size of

rangeM. In the third phase, parameters c are determined by NG using pM (x), and parameters b

are computed from parameters c. In the forth phase, parameters w are determined from

algorithm weight(c, b). In the fifth phase, all parameters are updated using pM (x) by SDM. The

optimum number n∗ of rules and the optimum sizeM ∗ of range are determined in Figure 4. That

is, the number M for the fixed number n is adjusted, and the optimum values of n∗ andM∗ with

the minimum number for MSE are determined. Especially, Learning Algorithm D is same

method as Learning AlgorithmD’ except for the step with the symbol “*” in Figure 3. In learning

steps of SDM for Learning Algorithm D, learning data is selected randomly (see Figure 2(d)).

Likewise, we also propose improved methods for Figure 2(a)–(c). In learning process of SDM

for algorithm (a), (b), and (c), any learning data is selected randomly. In the proposed methods,

any learning data is selected based on pM (x). These algorithms are defined as (a’), (b’), and (c’).

Learning Algorithms for Fuzzy Inference Systems Using Vector Quantization
http://dx.doi.org/10.5772/intechopen.79925

139



Figure 3. Flowchart of Learning Algorithm D’ corresponding to Figure 2(d’).

Figure 4. The optimum values M ∗ and n
∗ for M and n.
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4. Numerical simulations

In order to compare the ability of Learning Algorithms (a’), (b’), (c’), and (d’) with Learning

Algorithms (a), (b), (c), and (d), numerical simulations for function approximation and pattern

classification are performed.

4.1. Function approximation

The systems are identified by fuzzy inference systems. This simulation uses four systems

specified by the following functions with two-dimensional input space [0, 1]2 (Eqs. (25)–(28))

and one output with the range [0, 1];

y ¼ sin πx31
� �

x2 (25)

y ¼
sin 2πx31

� �

cos πx2ð Þ þ 1

2
(26)

y ¼
1:9 1:35þ exp x1ð Þ

� �

sin 13 x1 � 0:6ð Þ2
� �

exp �x2ð Þ sin 7x2ð Þ
� �

2
(27)

y ¼
sin 10 x1 � 0:5ð Þ2 þ 10 x2 � 0:5ð Þ2

� �

þ 1

2
(28)

In this simulation, Tmax1 = 100000 and Tmax2 = 50000 for (a) and Tmax1 = 10000 and Tmax2 = 5000

for (b), (c), and (d) and θ = 1.0 � 10�4, K0 = 100, Kmax = 190, K = 10, Kc = 0.01, Kb = 0.01, Kc = 0.1,

the number of learning data is 200 and the number of test data is 2500.

Table 1 shows the results for the simulation. In Table 1, the number of rules, MSEs for learning

and test, and learning time (second) are shown, where the number of rules means the one

when the threshold θ of inference error is achieved in learning. The result of simulation is the

average value from 20 trials. As a result, the results of (a’), (b’), (c’), and (d’) are almost same as

the cases of (a), (b), (c), and (d) as shown in Table 1. It seems that there is no difference of the

ability for the regression problem.

4.2. Classification problems for UCI database

Iris, Wine, Sonar, and BCW data from UCI database shown in Table 2 are used as the second

numerical simulation [20]. In this simulation, fivefold cross validation is used. As the initial

conditions for classification problem, Kc = 0.001, Kb = 0.001, Kw = 0.05, εinit = 0.1, εfin = 0.01, and

λ = 0.7 are used. Further, Tmax = 50000, M = 100, and θ = 1.0 � 10�2 for iris and wine. Tmax = 50000,

M = 200, and θ = 2.0� 10�2 for BCW; and Tmax = 5000,M = 100, and θ = 5.0� 10�2 for sonar are used.

Table 3 shows the result of classification problem. In Table 3, the number of rules, RMs for

learning, and test data are shown, where RMmeans the rate of misclassification. As a result, the
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results of (a’), (b’), (c’), and (d’) are superior in the number of rules to the cases of (a), (b), (c), and

(d) as shown in Table 3. It seems that there is the difference of ability for pattern classification.

Let us consider the reason why we can get the good result by using the probability pM (x). In

the conventional learning method, parameters are updated by any data selected randomly

Eq. (25) Eq. (26) Eq. (27) Eq. (28)

(a) The number of rules 8.3 22.5 52.4 6.1

MSE for learning(�10�4) 0.47 0.35 0.65 0.41

MSE of test (�10�4) 2.29 21.12 2.83 7.37

(b) The number of rules 4.7 6.8 9.6 4.0

MSE of learning (�10�4) 0.44 0.38 0.84 0.35

MSE of test (�10�4) 0.70 2.96 2.34 0.48

(c) The number of rules 5.4 7.4 11.1 3.5

MSE of learning (�10�4) 0.24 0.54 0.65 0.33

MSE of test (�10�4) 0.65 1.36 4.48 0.44

(d) The number of rules 4.3 6.1 9.7 3.5

MSE of learning (�10�4) 0.28 0.39 0.69 0.29

MSE of test (�10�4) 0.57 1.93 1.78 0.36

(a’) The number of rules 5.0 8.9 11.8 4.7

MSE for learning (�10�4) 0.37 0.41 0.52 0.45

MSE of test (�10�4) 1.55 9.56 2.8 1.06

(b’) The number of rules 5.0 8.9 13.0 4.3

MSE for learning (�10�4) 0.42 0.38 0.65 0.39

MSE of test (�10�4) 1.41 9.66 4.12 2.38

(c’) The number of rules 5.7 8.0 13.1 4.1

MSE for learning (�10�4) 0.40 0.23 0.57 0.35

MSE of test (�10�4) 1.70 1.28 3.90 1.10

(d’) The number of rules 4.6 6.9 10.0 3.6

MSE for learning (�10�4) 0.39 0.49 0.62 0.35

MSE of test (�10�4) 1.43 2.58 1.89 0.42

Table 1. The results of simulations for function approximation.

Iris Wine BCW Sonar

The number of data 150 178 683 208

The number of input 4 13 9 60

The number of class 3 3 2 2

Table 2. The dataset for pattern classification.
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from the set of learning data. In the proposed method, parameters are updated by any data

selected based on the probability pM (x). The probability pM (x) is determined based on output

change for learning data, so many fuzzy rules are likely to generate at or near the places where

output change is large for the set of learning data.

For example, if the number of learning time is 100 and pM (x0) = 0.5, then learning data x
0 is

selected 50 times from the set of learning data in learning. As a result, membership functions

are likely to generate at or near the places where output change is large for the set of learning

data. The probability pM (x) is used in a method to improve the local search of SDM.

Iris Wine BCW Sonar

(a) The number of rules 3.4 7.8 14.4 11.0

RM for learning (%) 3.0 1.4 1.6 5.3

RM of test (%) 3.3 10.3 4.3 20.6

(b) The number of rules 2.0 20.8 26.0 3.7

RM of learning (%) 3.3 13.6 2.2 5.1

RM of test (%) 3.3 16.6 3.5 18.2

(c) The number of rules 2.0 3.2 4.8 4.0

RM of learning (%) 3.3 1.5 1.6 5.1

RM of test (%) 4.0 6.7 3.8 19.0

(d) The number of rules 3.7 2.5 2.5 4.0

RM of learning (%) 3.3 1.1 1.3 5.1

RM of test (%) 3.8 6.5 2.1 18.3

(a’) The number of rules 2.3 2.2 3.5 4.6

RM for learning (%) 2.9 1.4 1.6 5.0

RM of test (%) 3.5 8.5 3.9 20.0

(b’) The number of rules 2.0 2.0 2.1 3.7

RM for learning (%) 3.9 3.0 2.1 5.0

RM of test (%) 4.9 9.2 3.9 19.0

(c’) The number of rules 2.3 3.0 3.6 4.0

RM for learning (%) 3.3 2.6 2.2 5.3

RM of test (%) 4.0 7.2 3.5 19.4

(d’) The number of rules 2.3 2.0 2.4 3.3

RM for learning (%) 3.0 1.8 2.2 5.0

RM of test (%) 3.5 7.6 3.7 19.1

Table 3. The result for pattern classification.
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5. Conclusion

In this paper, we proposed the improved methods using VQ, GIM, and SDM. The features of

the proposed methods are as follows:

1. In determining the initial assignment of parameters, both input and output parts of

learning data are used.

2. The initial assignment of weight parameters is determined by GIM.

3. In order to determine the range of the rate of output change, hill climing is used.

4. Any learning data in SDM is selected based on the probability distribution

pM (x) considering both input and output of learning data.

As a result, it was shown that the proposed methods using the probability distribution consid-

ering both input and output parts of learning data were superior to other methods in numer-

ical simulation of pattern classification.

In the future works, we will consider the new idea using VQ and apply the proposed method

to control problem.

Author details

Hirofumi Miyajima1, Noritaka Shigei2 and Hiromi Miyajima3*

*Address all correspondence to: k2356323@kadai.jp

1 Faculty of Informatics, Okayama University of Science, Okayama, Japan

2 Kagoshima University, Kagoshima, Japan

3 Former Kagoshima University, Kagoshima, Japan

References

[1] Gupta MM et al. Static and Dynamic Neural Networks. John Wiley & Sons: IEEE Press;

2004

[2] Fukumoto S, Miyajima H, Kishida K, Nagasawa Y. A Destructive Learning Method of

Fuzzy Inference Rules. Proc. of IEEE on Fuzzy Systems;1995. pp. 687-694

[3] Cordon O. A historical review of evolutionary learning methods for Mamdani-type fuzzy

rule-based systems, designing interpretable genetic fuzzy systems. Journal of Approxi-

mate Reasoning. 2011;52:894-913

[4] Kosko B. Neural Networks and Fuzzy Systems, A Dynamical Systems Approach toMachine

Intelligence. Englewood Cliffs, NJ: Prentice Hall; 1992

From Natural to Artificial Intelligence - Algorithms and Applications144



[5] Lin C, Lee C. Neural Fuzzy Systems. PTR: Prentice Hall; 1996

[6] Casillas J, Cordon O, Herrera F, Magdalena L. Accuracy Improvements in Linguistic

Fuzzy Modeling, Studies in Fuzziness and Soft Computing. Vol. 129. Berlin Heidelberg:

Springer-Verlag; 2003

[7] Liu B. Theory and Practice of Uncertain Programming, Studies in Fuzziness and Soft

Computing. Vol. 239. Physica-Verlag Heidelberg: Springer; 2009

[8] Zhoua SM, Ganb JQ. Low-level interpretability and high-level interpretability: a unified

view of data-driven interpretable fuzzy system modeling. Fuzzy Sets and Systems. 2008;

159:3091-3131

[9] MiyajimaH et al. SIRMs fuzzy inferencemodel with linear transformation of input variables

and universal approximation, advances in computational intelligence. Proc. 13th Interna-

tional Work Conference on Artificial Neural Networks, Part I. pp. 561-575, Spain; 2015

[10] Yubazaki N, Yi J, Hirota K. SIRMS (single input rule modules) connected fuzzy inference

model. Journal Advanced Computational Intelligence. 1997;1(1):23-30

[11] Kishida K et al. A self-tuning method of fuzzy modeling using vector quantization. Proc.

FUZZ-IEEE’97. pp. 397-402;1997

[12] Kishida K et al. Destructive fuzzy modeling using neural gas network. IEICE Trans. on

Fundamentals. 1997;E80-A(9):1578-1584

[13] Kishida K et al. A learning method of fuzzy inference rules using vector quantization.

Proceedings of the 21st International Conference on Artificial Neural Networks. 1998;2:

827-832

[14] Fukumoto S et al. A decision procedure of the initial values of fuzzy inference system

using counterpropagation networks. Journal of Signal Processing. 2005;9(4):335-342

[15] Pedrycz W et al. Cluster-centric fuzzy modeling. IEEE Transactions on Fuzzy Systems.

2014;22(6):1585-1597

[16] Miyajima H et al. Fast learning algorithm for fuzzy inference systems using vector quanti-

zation. International MultiConference of Engineers and Computer Scientists. 2016;I:1-6

[17] Miyajima H et al. The ability of learning algorithms for fuzzy inference systems using

vector quantization. ICONIP 2016, part IV, LNCS9950; 2016. pp. 479-488

[18] Martinetz TM et al. Neural gas network for vector quantization and its application to

time-series prediction. IEEE Transaction on Neural Network. 1993;4:558-569

[19] Miyajima H et al. An improved learning algorithm of fuzzy inference systems using vector

quantization. Advanced in Fuzzy Sets and Systems. 2016;21(1):59-77

[20] UCI Repository of Machine Learning Databases and Domain Theories. ftp://ftp.ics.uci.

edu/pub/machinelearning-Databases

Learning Algorithms for Fuzzy Inference Systems Using Vector Quantization
http://dx.doi.org/10.5772/intechopen.79925

145




