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Abstract

This chapter discusses the ecological and physiological impacts of lanthanides on algae 
as primary producers in aquatic environments. Although lanthanides are nonessential 
elements for living organisms, their bioaccumulation is a common phenomenon. Here, 
we critically review the ecological effects of increasing levels of lanthanides directly 
reaching water systems through mining, application of fertilizers, and the production of 
advanced technologies. We describe interactions between lanthanides and algae, with a 
particular focus on various applications including fertilizers, tracers, bioindicators, biore-
mediation, and recycling. We examine the stimulatory effects of low levels of lanthanides 
versus their toxicity at higher levels and discuss mechanisms by which they may affect 
the algal cell. This chapter highlights the importance of a better understanding of the 
biological roles of lanthanides.

Keywords: algae, microalgae, lanthanides, bioaccumulation, environmental pollution, 
toxicity, fertilizers, metals, recycling, remediation

1. Introduction

Lanthanides play many roles in a number of different fields including chemistry, biology, 
and medicine [1]. They have also become indispensable in many modern technologies but the 

growing demand for these metals has also increased their release into the surrounding bio-

sphere. Therefore, it is important to consider and address the impacts of increased lanthanides 

on the environment. The affinity of algae for these elements can pose a serious environmental 
threat or be a unique opportunity for the treatment of contaminated areas.

Lanthanides are considered nonessential elements that can induce both positive and nega-

tive physiological responses in the living organism. They are not essential for any known 
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metabolic process, but under certain conditions, they may have a positive effect [2, 3]. Unlike 

heavy metals, whose toxicity has been extensively investigated, the effects of lanthanides have 
been neglected [4], particularly, their impacts on aquatic environments that are associated 

with the exploitation of lanthanides [5]. Water contamination by metals is a global problem, 

and metal recovery from wastewaters and industrial wastes is significant not only from an 
ecological point of view but also because of the sustainable availability of these materials [6].

This review aims to summarize our knowledge of positive and toxic effects of lanthanides on 
algae in order to better elucidate their biological roles. Various applications and methods of 
use, including the possibility of remediation and lanthanide recycling, are also summarized.

2. Lanthanides in algae

The presence of lanthanides (Pr, Nd, and Sm) was recorded for the first time in the red alga 
Phymatolithon calcareum, originally Lithotamnium calcareum, near the coast of Roscoff in France [7].

Algae contain a diverse spectrum of lanthanides, regardless of size (micro or macroalgae), 

structural arrangements (unicellular, fibrous, and crustaceous), algal type (e.g., Chlorophyta, 
Rhodophyta, and Charophyta) as well as Cyanobacteria [8–11]. These analyses show that 

seaweed lanthanide concentrations may be 10–20 times higher than those in terrestrial plants 

([8], see Table 1) and more than 100 times higher than in sea water [10, 16].

Total lanthanides can range from 1 to 1.3 μg/g of algal biomass under laboratory conditions, 

and can be achieved easily, whereas under natural conditions (freshwater and sea water), the 

total amount of lanthanides ranges between 10−3 and 10−1 μg/g of algal biomass ([4, 17–19], 

and links therein).

Treea Teab Mossc Potatod Red algae Brown algaf Green algag

Sc nd 0.085 nd nd nd nd nd

Y nd 0.360 0.127 0.011 nd nd nd

La 0.280 0.600 0.266 0.017 0.362 3.990 0.032

Ce 0.370 1.000 0.493 0.038 0.943 9.080 0.076

Pr 0.091 0.120 0.056 0.007 0.049 0.910 0.008

Nd 0.155 0.440 0.402 0.015 0.191 4.910 0.039

Sm 0.031 0.085 0.036 0.008 0.034 0.900 0.009

Eu 0.004 0.018 0.009 0.001 0.008 0.090 0.028

Gd 0.024 0.093 0.037 0.007 0.044 1.020 0.012

Tb 0.017 nd 0.005 0.001 0.006 0.090 0.001

Dy 0.021 0.074 0.024 0.002 0.030 0.710 0.012

Ho 0.004 0.019 0.004 0.000 0.006 0.090 0.002

Er 0.006 — 0.013 0.002 0.015 0.350 0.008

Tm 0.001 — 0.001 0.000 0.002 0.020 0.001
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There are only a few studies comparing lanthanides in different coexisting organisms, includ-

ing algae. These studies indicate the relevance of lanthanides, particularly in microorganisms, 

and clear differences between coexisting groups of organisms (Table 2). Such a wide range of 

biotic concentrations of lanthanides can be generated by: (i) relative concentrations of elements 

in water; (ii) physical and metabolic processes specific to each type of algae (cell wall compo-

nents, enzymes, proteins, etc.); and (iii) environmental factors specific to each area, e.g., tem-

perature, light, pH, and nitrogen availability that can affect the two previous factors [22–24].

The concentration of lanthanides in the environment increases with changes in climatic condi-

tions, groundwater action, and volcanic activity [25], but there are also significant anthropo-

genic sources of lanthanides in phosphoric mineral fertilizers, industrial waste waters, and 

mine extractions [4, 18, 26–29]. Algae can serve as bioindicators because they can accumulate 

these elements in their cells (Table 1).

3. Beneficial effects of lanthanides

The probable biological effect of lanthanides is related to similarities between their ionic radii 
and coordination numbers with elements such as Ca, Mn, Mg, Fe, or Zn. Another aspect is 

Treea Teab Mossc Potatod Red algae Brown algaf Green algag

Yb 0.008 0.044 0.011 0.001 0.008 0.290 0.007

Lu 0.019 0.007 0.001 0.000 0.001 0.020 0.001

Total 1.034 2.945 1.489 0.117 1.704 22.460 0.239

The data correspond to mean values established in μg/g dry weight. In bold, the highest values of the series are 

highlighted.
aSamples of Pinus silvestris (pine needles), Germany [12].
bCertified reference material GBW07605 tea leaves, China [13].
cHylocomium splendens, Sweden [14].
dSolanum sp. from a food market, China [15].
eRed alga Grateloupia filicina, Japan [10].
fBrown alga Padina sp., Malaysia [11].
gGreen alga Codium fragile, Japan [9].

Table 1. Examples of lanthanides and their concentrations in different plants and locations (according to Goecke et al. [3]).

Organism Yao et al. [20] Shi et al. [21]

Crustacea 0.15 0.15–0.81

Fish 0.07-0.23 nd

Macroalgae 1.30–1.40 0.78–49.10

Mollusks 3.32 0.37–21.60

Zooplankton 0.17 nd

Macroalgae in bold and values in μg/g dry weight [20, 21].

Table 2. Lanthanide content in coexisting environmental samples from two studies in China.
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their ability to form stable complexes with organic molecules [30]. Substitution of essen-

tial metal ions involves, for example, changes in enzyme activity, protein conformation, or 

polymerization. Also, changes in the use or allocation of ion channels affects specific mem-

brane permeability and the cellular ion ratio.

Although lanthanides have been used for decades, particularly in China, as fertilizer in agri-
culture, their specific effects on plants and less so on algae, are not understood. Beneficial 
effects of lanthanides on growth and quality have been studied, mostly on crops [14, 31, 32] 

and domestic animals [14, 33–35]. Absorption, transmission, and metabolic conversion of 

nutrients were stimulated; metal deficiencies were overcome; and increases in metabolism 
via enzymatic activities were observed. Likewise, effects of lanthanides on photosynthesis or 
resistance to stress caused by drought, acid rain, and/or toxic metals (reviewed by [14, 32, 36, 

37]) have been described. However, a specific cellular or molecular model for these observa-

tions has not been proposed and therefore mechanisms of action of lanthanide in plants or 

algae remain unclear [38].

One of the positive effects of lanthanides is connected with their ability to alleviate calcium 
deficiency because of Ln2+ and Ca2+ ions with high chemical similarities. These similarities, as 

well as the fact that lanthanides have higher valence values compared to calcium, resulted in Ln 

Algae Lanthanide Positive effect Negative effect Reference

Arthrospira platensis (B) La3+ 38.53–53 >53.94 [43]

*Arthrospira platensis (B) LaCl
3

30–40 >40 [44]

Chlamydomonas reinhardtii (C) Ce3 5–20 — [45]

La3+ 5–20 — [45]

Chlorella vulgaris (C) Ce3+ 1.8 2.1 [46]

*Ch. vulgaris v. autotrophica (C) 12 different Ln — 29.14 [47]

*Desmodesmus quadricauda (C) La3+ <7.2 >72 [48]

Euglena gracilis (E) Dy3+ 50–100 180–1000 [49]

Isochrysis galbana (H) La 7.28–87.4 — [50, 51]

Gd 6.36–57.23 — [50, 51]

Yb 5.78–17.34 — [50, 51]

Microcystis aeruginosa (B) La3+ <7.2 >72 [48]

Skeletonema costatum (O) 13 different Ln — 28–30 [52]

Sc — 21.88 [52]

Y — 43.21 [52]

Algal divisions are characterized as Chlorophyta (C), Haptophyta (H), and Ochrophyta (O); Cyanobacteria (B) and 
Euglenophyta (E). If the algal species has a new name, it is referred to using the actual name and an asterisk (*); for names 

according to Algaebase, see Guiry et al. [53].

Table 3. Examples of studies testing the effect of lanthanides on growth, physiology, and survival of microalgae, 
specifying the concentrations at which positive, neutral, and negative effects were observed (values in μmol/L).
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ions easily replacing Ca2+ and being able to bind with a higher affinity to multiple receptors, thus 
having various effects on metabolism depending on the effect of the replaced metal [31, 39–42].

In the majority of experiments carried out with algae and lanthanides, attention was focused 
on algal (eventually cyanobacterial) growth properties without any effort to understand 
mechanism(s) of beneficial effects (Table 3). Thus, it is not clear whether the beneficial effects 
of lanthanides are due to the mitigation of nutrient deficiencies (such as Ca2+, Mg2+, or Mn2+), 

as previously found in plants [2, 48, 54–56], or to the fact that lanthanides are involved in 

some physiological reactions such as scavenging of oxygen-free radicals [30, 57, 58] or due to 

their ability to neutralize inhibitory effects of heavy metals [37].

In a study on the effect of lanthanides in alleviating metal deficiency in algae, Li et al. [59] 

showed that La3+ at low concentrations were able to partly substitute for a Ca2+ deficiency in 
the green macroalga Chara corallina, thereby enabling cytoplasmic streaming. Lanthanides 

can also induce a stimulating effect on the green microalga Desmodesmus quadricauda [2]. Five 
additions of different lanthanides, added at low concentrations, partially compensated the 
adverse effect of a Ca2+ deficiency (probably by substitution), but were not able to alleviate a 
Mn2+ deficiency. To specifically measure physiological stress caused by nutrient limitation, a 
decline in cellular growth and cell division was followed and a pulse amplitude modulation 

(PAM) fluorimeter was used to detect changes in photosynthetic parameters (Figure 1).

Figure 1. Photosynthetic parameters expressed as maximum relative electron transport rates (rETRmax), and the 

maximal quantum yield (Fv/Fm), in cultures of the alga Desmodesmus quadricauda, grown either in complete mineral 

medium (Ctrl, red symbols, dashed curve) or in calcium-deficient mineral medium (Def, blue symbols, dashed curves). To 

calcium-deficient cultures, either complete mineral medium (Rec, black symbols, solid line) or different lanthanides (Ce, 
Eu, Gd, La, Nd) were added, as marked in individual panels. Complete photosynthetic parameters are displayed in the 
original publication (modified from Goecke et al. [2]).
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The effects of single lanthanides and monazite on growth rate, lipid profile, and pigments in 
two biotechnologically interesting algae (Parachlorella kessleri and Trachydiscus minutus) were 

evaluated. The impact of lanthanides depended on the combination of species, element, and 

light intensity. For example, the presence of Ce, La, and Sc caused the growth rate of T. minutus 

to rapidly rise at low light intensity. The saturated fatty acid content increased at the expense 
of polyunsaturated fatty acids in both species. The effect on pigments was variable [60].

The use of lanthanides in agriculture and in aquatic cultures is gradually increasing although 

their impact on the environment has not been sufficiently verified. Lanthanides are not yet 
commercially available to increase the production of algal biomass despite the fact that their 

effects on economically interesting pigments and lipids are known. In the alga Haematococcus 

pluvialis, cellular growth and production of astaxanthin increased after the addition of Ce3+ 

at a concentration of 1 mg/L. However, this effect was dose-dependent and growth at higher 
concentrations of Ce3+ was inhibited [61].

4. Toxicity of lanthanides

The toxicity of lanthanides has been reported as low, but is dependent on their chemical form 

and processing, as reported by Hodge-Sterner’s classification system [62]. In soil and water, 

however, a surplus of lanthanides has a negative to toxic effect on human beings and animals 
[63]. Human exposure to lanthanides and effects on health are discussed by Pagano et al. [64]. 

The best studied effects on health are for Ce, La, and Gd, and the rest remain unclear [64]. The 

toxicity of lanthanides to various organisms is described in several reports [31, 42, 65], but 

maximum admissible concentrations, thresholds, and toxicity levels are poorly defined [66]. 

For each organism or species, the toxicity of different lanthanides differs, but the exact effects 
remain unknown [67, 68] (Table 3).

The ability of lanthanides to be involved in the metabolism of several basic elements has been 

considered as a possible cause of their toxicity [36]. Due to this phenomenon, differences in 
normal functions of several enzymes have been found, as demonstrated by work describing 

ATPase and pectate lyase [69, 70], ion channel blocking [71], or mineral transport [42, 72].

Although toxic effects of lanthanides have been reported for various microorganisms (Table 3), 

there is little evidence to generalize their effect on algae. Only a few orders of Charophyta 
[73], Chlorophyta [46, 48, 74], Dinophyta [75], Euglenophyta [49], Bacillariophyceae [76, 77] 

and Haptophyta [50], and Cyanobacteria [78, 79] have been studied. Most other algal studies, 
however, contained little or no data on the bioavailability of lanthanides. The relationship 
between lanthanide concentrations and stimulatory or inhibitory effects on the same algal 
species are therefore inconsistent. Moreover, many algal groups or species have not yet been 
tested for toxicity and no tests for macroalgae have been developed. The database on bioas-

says for algal toxicity is summarized in Guida et al. [80].

The transfer of lanthanides is expected through the food chain, as algae are primary producers 

[66, 81]. The toxicity of lanthanide on algae therefore needs to be addressed because any harmful 

effects may result in the transfer of negative effects to organisms at higher trophic levels [67, 82, 83].
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Recent studies on the toxicity of lanthanides to algae describe the depletion of nutrients 

rather than toxicity itself [83, 84], see Section 7. In these works, it was suggested that lan-

thanides could capture some essential nutrients such as phosphates, resulting in an effect on 
growth (death by hunger). The relationship between lanthanides and phosphate was ana-

lyzed in detail in [85]. This important property should be examined in more detail because it 

could affect the bioavailability of these metals (EC
50

), changing the evaluation of their impact 

on the environment.

5. Bioaccumulation of metals in algae

In recent decades, metal uptake by algal biomass has been studied with great interest. Uptake 

can be by passive binding, so-called “biosorption,” or an active process of “bioaccumulation,” 

Algae Lanthanide Reference

*Amphidinium carterae (D)m Ce [90]

Aphanothece sacrum (C)m 14 different Ln, Y [91]

Carteria sp. (C)m Ce [90]

Chaetoceros muelleri (O)m Ce, La [19]

Chlorella vulgaris (C)m La [92]

*Cylindrotheca closterium (O)m Ce [90]

*Diacronema lutheri (C)m Ce, La [19]

Euglena gracilis (E)m Nd [93]

Euglena gracilis (E)m Ce, Nd [94]

Microcystis aeruginosa (B)m Ce, La [90]

Nannochloropsis gaditana (C)m Ce, La [90]

Platymonas sp. (C)m Ce [90]

*Porphyridium purpureum (R)m Ce [90]

Sargassum polycystum (O) Eu, La, Yb [95]

Sargassum polycystum (O) Eu, La [96]

Sargassum sp. (O) Eu, Gd, La, Nd, Pr, Sm [1, 97]

Tetraselmis chui (C)m Ce, La [19]

Thalassiosira sp. (O)m Ce [90]

Turbinaria conoides (O) Ce, Eu, La, Yb [98]

Ulva lactuca (C) 14 different Ln, Y [99]

Algal divisions Chlorophyta (C), Ochrophyta (O), and Rhodophyta (R), and Cyanobacteria (B), and the protist classes 
Dinophyceae (D) and Euglenophyceae (E) are specified. If microalgae were utilized, they are annotated with an (m). If an 
algal species has a new name, it is referred to with the actual name and an asterisk (*); names are according to Algaebase, 

see Guiry et al. [53].

Table 4. Studies on algal accumulation, biosorption and/or desorption of lanthanides.
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where uptake or removal of elements is metabolically controlled [86, 87]. Some metals belong 

to the group of essential micronutrients, being important for growth and development of 

plant cells, and are involved in active metabolism [88]. Bioaccumulation of chemical com-

pounds depends on rates of uptake and metabolism, and on the ability of the organism to 

degrade or store compounds. In essence, the process of accumulation of elements in algal cells 

is very complicated and depends on the properties of the species (type, size, form, and state of 

development), the element (charge, chemical form, and concentration), and the medium (pH, 

type, and concentration of metal salts or presence of complexing agents) [89]. As can be seen 

in Table 4, accumulation, biosorption, and desorption of lanthanides occurs in micro- and 

macroalgae, including brown, green, and red algae, algal flagellates, and also cyanobacteria. 
The potential for biosorption of cerium ions by cyanobacteria Arthrospira (Spirulina) was also 

tested [100]. Live and dead algae were shown to efficiently accumulate these metals because 

Figure 2. Intracellular localization of different lanthanides in Desmodesmus quadricauda. The absorbed lanthanides 

(horizontal rows) were visualized in cells stained with the fluorescent dye Fluo-4 (left column). Chloroplasts are 
visualized by autofluorescence of chlorophyll (middle column). In merged photos (right column), the localization of 
lanthanides seen either inside chloroplasts (Nd, Ce) or in the cytoplasm (La, Gd) (according to Řezanka et al. [109]).
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of their ability to create chelated metabolites, e.g., with proteins, sugars, nucleic acids, amino 

acids, nucleotides, etc. [32]. Moreover, lanthanides in algae also have the ability to bind to 
pigments, and polysaccharides such as cellulose, alginic acid, carrageenan, fucoidan, etc., 

which are present in algal cells in great quantities and varieties [91, 95, 101–104]. The bioac-

cumulation of lanthanum by different organisms, including algae, and its ecotoxicity in the 
aquatic environment is reviewed in [105]. A recent database of studies evaluating lanthanide 

bioaccumulation in algae is reviewed by Guida et al. [80].

Precise data about mechanisms of entry for lanthanides into algae and their accumula-

tion are sparse. Even in higher plants, which are much more researched, cell processes 

responsible for lanthanide intake have only recently been described [38]. Several studies 

have shown that lanthanides concentrate in chloroplasts [93, 94, 106–108]. It was dem-

onstrated that selective deposition of individual lanthanides in chloroplasts or the cyto-

plasm occurs in the green alga Desmodesmus quadricauda [109]. Nd and Ce were located 
in the chloroplast while La and Gd were found in the cytoplasm (Figure 2). Lanthanides 

increased the total amount of chlorophyll by up to 21% and changed the chlorophyll a/b 

ratio. They also changed the relative incorporation of heavy Mg isotopes into chlorophyll 
molecules [109].

However, many questions regarding the transfer and accumulation of lanthanides remain 

unanswered. For example, mechanisms of transport through the complex cell wall of algae or 
cyanobacteria, and whether they are stored in some specific structures or just loosely in the 
cytoplasm are unclear. Research into resistant strains or natural hyper-accumulators might 

bring some answers.

6. Biological applications of lanthanides

In biological systems, lanthanides are applied for different purposes such as growth promot-
ers, fertilizers, water bloom killers, or as detection tools (bioindicators, tracers, and mark-

ers). Lanthanides have been proposed as growth stimulators for various animals such as pigs 

and other livestock [110]. Algae were also used as a feed additive to improve the condition 

of domestic animals [111]. Lanthanide-rich algae are a potential alternative to food supple-

ments or functional foods. However, only one study on young abalones was performed to 

demonstrate that lanthanide-enriched algal biomass was an effective growth promoter [82]. 

Therefore, it would be important to increase the number of studies, to obtain relevant data on 

the effects of lanthanide transmission and to assess the risk of human exposure through food 
derived from animals [35].

Many microorganisms, including blue-green algae (e.g., Microcystis or Alexandrium spp.), 

cause water blooms with negative impacts on health, ecology, and economics. Water blooms 

produce harmful toxins (e.g., microcystins and saxitoxins) with detrimental effects on humans 
and animals [84]. Lanthanides affect algal physiology and their impact on the level of micro-

cystins was demonstrated in Microcystis aeruginosa [112, 113]. There was a close relationship 

between lanthanides, phosphorus content and the growth characteristics of cyanobacteria [113].  
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New techniques of dephosphatisation of the environment include the use of Ln-modified clays 
[83, 84]. The advantage of these methods is the low level of side effects on living organisms.

The unique chemical features of lanthanides make them ideal tracers for geochemical processes 

in nature [9]. They represent alternative, nonradioactive, highly detectable labels. They were 

used, for example, to confirm the impact of cyanobacterial mats on deep waters outside French 
Polynesia, providing evidence for an end-ascending flow [114]. They enable scientists to follow 

oceanic cycles, petrogenesis, the chemical evolution of the Earth [16, 29], or palaeo-environmental 

conditions [115–118]. Lanthanides can also serve as anthropogenic activity indicators [27]. Because 
of their particular affinity to algae, the lanthanide profile may be a useful indicator for exploring 
the ecology of marine environments [10] and can also be used to monitor sources of pollution 

from natural events such as volcanic activity [25]. In combination with macroalgal sampling, the 

lanthanide profile may help to characterize coastal water quality and pollution [22, 23, 27].

Lanthanides have been used for their inert nature as detection agents in various experiments, 

for example, in studies of the rate of passage and digestibility of nutrients in humans and ani-

mals [119–121]. Lanthanide oxides have been used as markers in sea cucumber (Apostichopus 

japonicus) grown on a variety of macroalgal diets [121].

In the development of new, sensitive detection methods, active chelates of lanthanides have 

been obtained and tested. They are used in sensitive immunoassays to suppress the back-

ground [122] or as very sensitive fluorescence probes [123]. An example of their use is the 

labeling of the cyanotoxin microcystin [124, 125].

7. Remediation of lanthanide waste and their recovery

In countries with sufficient sources of lanthanides (mainly China), these elements are used as 
fertilizers to increase agricultural production. With increasing consumption, waste with varying 

contents of different lanthanides has increased significantly and rapidly. The most important 
of these are magnets (neodymium), metal alloys (europium and yttrium), batteries, glass, and 
catalysts (cerium and lanthanum) [126]. Other important sources of lanthanide waste are phos-

phate mineral fertilizers, industrial wastewater, sewage sludge, mining processes, or wastes 

from industrial aluminum production [4, 18, 26–29]. Lanthanides present in ecosystems from 

agricultural production can thus penetrate into the groundwater and migrate to rivers and lakes 

[58] or to the sea [127]. Some studies on ecological effects and potential threats due to the bioac-

cumulation of lanthanides have been described, but they are not long-term enough to draw any 

general conclusions [128, 129]. Relevant regulations or standards concerning doses and thresh-

old values for the presence of lanthanides in the environment have also not been established 

[38]. In China, lanthanides are cited as the main source of environmental contamination [130].  

They are also considered to be emerging pollutants outside of China, requiring the specification 
of threshold values for concentrations and emissions of lanthanides in the environment [64, 131].  

Removing these lanthanide contaminants is therefore a very important requirement in order to 

reduce the ever-increasing environmental burden on the aquatic environment.

In addition to this very important requirement for remediation, the need for recycling of lan-

thanides from any (not only liquid) industrial production waste becomes even more acute. 
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One reason is the risk of reduced availability of resources (China owns more than 95% of 
natural sources) or their relatively rapid depletion from other sources. Replacement of lan-

thanides with alternate substances in industrial applications is currently not possible [132, 133].  

Due to their unique chemical and physical properties and their extensive applications in 

industrial products, the importance and demand for these elements is constantly increasing 

[131, 134]. The economic impact of an emerging lanthanide shortage increases the urgency for 

efficiently using renewable energy sources from the ever increasing number of different types 
of waste products worldwide. At present, research is focused on the progressive and cost-

efficient recycling of lanthanides for industrial processes [4, 95, 102, 135, 136], which would 

reduce risks associated with inaccessibility or depletion of natural resources while minimiz-

ing environmental problems associated with their extraction and processing [137].

One of the most widespread lanthanide-containing wastes is electrical and electronic equip-

ment, including lighting equipment, computers, or photovoltaic panels. This waste is a 

growing threat to the world’s environment, and lanthanide recovery is therefore becoming 

economically attractive. The main sources for recycling are luminophores, powder mix-

tures obtained from electronic waste and containing high concentrations of lanthanides. 

Luminophores are obtained from television screens or monitors, as well as energy-saving 

bulbs and lamps, where they are used to convert cathodic tube radiation or ultraviolet elec-

tric discharge into mercury vapor and visible light. These luminophores occur as a powder 

attached to the inner surfaces of mesh or tubes. The glass parts of these waste networks, 
monitors, screens, and light bulbs can be easily recycled, but luminophore layers must be 

removed because the luminescent compounds would reduce the quality of recycled glass. The 

luminophores as waste represent a toxicity problem but, on the other hand, are a concentrated 

source of various lanthanides, either in the form of dry powder or wet mud [138].

7.1. Chemical recycling

Lanthanides from waste sources can be recycled by chemical separation from solutions 

(e.g., chemical precipitation, electrochemically, membrane division, reverse osmosis, etc.). 

These methods are comparatively costly and, moreover, are often a source of other nonor-

ganic wastes [139]. Methods such as pyrometry and hydrometallurgy for the extraction of 
lanthanides from ores have significant negative impacts on the environment and involve 
high costs [126]. The other serious disadvantage is the dependence on a single and limited 

source and possibly the depletion of other natural resources [126, 140, 141]. These traditional 

physicochemical processes are expensive or even inefficient for the treatment of sewage con-

taining low concentrations of metal ions [142]. A by-product of conventional methods is the 

associated large volume of contaminated water, high temperatures and a high consumption 

of chemical compounds [143, 144]. Researchers are therefore looking for low-cost approaches 

and at the same time environmentally friendly technologies.

7.2. Biosorption

As a biotechnological approach, biosorption is considered to be a more efficient and cheaper 
alternative to conventional chemical methods of recycling lanthanides [133, 145, 146]. Various 
different organic residues of animal or plant origin, including resin, activated charcoal, or 
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biomass of various organisms (algae, fungi, and bacteria), have been shown to adsorb different 
lanthanides and have been tested as biosorbents [95, 98, 132, 147]. The development of effective 
biological methods for lanthanide regeneration from these materials was proven in the aerobic, 

genetically modified bacterium, Caulobacter crescentus [148]. The use of various other biosorbents, 

including algae, bacteria, fungi, and yeasts, has also been evaluated [149]. Seaweeds, especially 

brown seaweeds, have been identified as strong biosorbents due to the presence of binding sites 
for chemical moieties such as carboxyl, amine, and hydroxyl groups [86]. Marine macroalgae are 
particularly important [150, 151]. For example, Oliveira et al. and Oliveira and Garcia [97, 152] 

evaluated the potential of Sargassum sp. biomass for biosorption of Eu, Gd, La, Nd, Pr, and Sm. 

They observed the rapid and efficient recovery of these metals, even though they were unable 
to separate them. The authors suggested that carboxyl groups present in alginates (the main 

component of the cellular brown algal wall) are the major reactive functional groups. Similar 

results were obtained with other brown seaweed such as Sargassum spp. [16, 96, 102, 135] and 

Turbinaria conoides [98]. Some unicellular algae such as Chlorella spp. and Nannochloropsis spp. 

and cyanobacteria Microcystis spp. were also shown to be active biosorbents of lanthanides (La3+ 

and Ce3+) [19, 153]. The disadvantage of adsorption methods, including biosorption, is the gen-

eration of secondary wastes similar to chemical approaches although at a considerably lower 

rate, the subsequent processing of which is often financially demanding [154].

7.3. Accumulation in living cells

Methods for the recycling of lanthanides via living cells offer an alternative, which does not 
have the disadvantages of chemical and adsorption approaches. Accumulation of lanthanides 

from the environment is cost-effective and does not produce any substantial secondary waste. 
In addition, it is a great advantage that it can also be effective in water containing very low 
lanthanide concentrations, which is problematic in other approaches.

Waste solutions containing lanthanides often have high acidity. Thus, the discovery that the 

sulfothermophilic red alga Galdieria sulphuraria can effectively accumulate lanthanides from 
various waste solutions, in which no other organisms can grow, was of great importance [155]. 

The unicellular red alga G. sulphuraria can grow autotrophically or heterotrophically in a wide 

range of different sugars or polyols at a pH of about 1.5 and a temperature of 56°C [156–158]. 

The ability to accumulate lanthanides was demonstrated in aqueous solutions containing a 

mixture of Nd3+, Dy3+, and La3+ at pH 2.5, with an efficiency greater than 90% and at a lanthanide 
concentration of 0.5 ppm [155]. The efficiency remained unchanged at pH values in the 1.5–2.5 
range. The authors also showed that lanthanides accumulated inside the cells not only by 

adsorption to the cell walls, but also by other mechanisms. Although the alga G. sulphuraria is 

indispensable for the treatment of waste solutions that prohibit the growth of most other living 

organisms, the species is virtually unusable for remediation of most natural water resources, 

particularly marine water due to its requirement for growth at a low pH. The marine green 

alga Ulva lactuca has been found to remove toxic metals (Cd, Pb, and Hg), and this approach is 
cost-effective and more efficient than passive adsorption using nonliving biomass [159–161].

Up to now, only one paper has been published demonstrating the high potential of sea-

weed (in this case, brown algae Gracilaria gracilis) to remediate sea water contaminated with 
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lanthanides [162]. G. gracilis was able to effectively remove low concentrations (0.5 mg/L) of 
lanthanides with 70% yield. The ability of G. gracilis to remove lanthanides (Y, Ce, Nd, Eu, and 
La) from such low concentrations in waste water therefore has the potential to overcome one 

of the greatest difficulties in recycling these elements so far [162]. It seems therefore promis-

ing to use live algae for lanthanide accumulation as an alternate technology for simple and 

efficient recycling from wastewater.

8. Conclusions

Algae are very important organisms in terms of ecology, being at the very beginning of the 

food chain. Their relationships with metals therefore affects other living organisms. Their 
ability to accumulate lanthanides may have an impact on the surrounding environment, rep-

resenting both a threat and an opportunity, with the potential for further study and use. As 

bioaccumulation abilities and beneficial or toxic effects of lanthanides differ in individual 
algal strains, it is difficult to predict specific ecological hazards. Algae in combination with 
lanthanides offer a wide variety of applications. They can be used as bioindicators, fertilizers, 
toxin detectors, or for phytoremediation and recycling. Therefore, understanding the relation-

ships between algae and lanthanides is very important. Once we understand the molecular 

mechanisms of their effects, we will have greater opportunities for their use.
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