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Abstract

HVDC cable accessories made of ethylene-vinyl acetate copolymer (EVA) by incorpora-
tion of specific fillers have to face the problem of space charge accumulation. The effects of
doping contents on the space charge behaviors of EVA/ZnO composite are not completely
clear. EVA composites are prepared with the fraction of 0, 1, 5 and 10 wt%, respectively,
with which 5 wt% nano-sized plus 5 wt% micro-sized ZnO-doped samples are chosen
for comparison. Obtained results show that the particles in EVA composite are in
homodisperse. The permittivity is increased by ZnO doping and the dissipation factor of
EVA composites with 1 and 5 wt% nanoparticles is lower at the lower frequencies. The
homocharge injection occurs in cathode instead of anode when ZnO nanoparticles are
introduced and 5 wt% nanoparticle doping performs well in suppressing space charge
injection. The electric field in the 5 wt% nanoparticle-doped EVA distributes more uni-
formly under the high electric stress than that of others. During the depolarization proce-
dure, the total remnant charges of 10 wt% doped samples are the least in the final. The
above results are well explained by the DC conduction, apparent mobility and trap
distribution characteristics.

Keywords: HVDC, cable accessory, space charge, ZnO nanoparticle, trap distribution,
carrier mobility

1. Introduction

The features of the transmission capability and the material are combined by the polymer

insulated HVDC cables for high-power, long-distance underwater or underground transmission,

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



so they have many advantages [1–4]. Space charge can be accumulated under DC electric

stress within the insulation matrix through charge injection from impurities’ electro-

dissociation and electrodes [5]. The electrical field in cable insulation may be changed seriously

because of the accumulation of space charge, particularly after polarity reversal which causes

probably premature failure and material degradation [6, 7].

Especially being a vital part of the HVDC networks, the performance of cable accessories is

critical to the system’s reliability considering the mechanical, thermal and electrical characteris-

tics of the models which are combined with great dangers with install faults and environmental

pollution [8–10]. Given the complicated geometry, particular fillers’ doping and the inferfaces’

existence between the accessories insulation and the cable insulation, the accumulation of the

space charge as well as its influence has become much harder to make predictions [11].

People use EVA composites very often within the cable accessories because of the manufacture

of cable accessory insulation, semi-conductive insulation jackets as well as heat shrinkable

insulation and it is able to sustain higher filling contents with no yielding to the mechanical

strength loss nor embrittlement and can be cross-linked in an easy way [12, 13]. The use of

nonlinear resistive fillers as well as particular conductive additives and so on can create cable

accessories which are from EVA composites, for the uniform electric field [14]. At the same

time, the cable accessories which are created by EVA also needed to deal with the issue of the

accumulation of space charge.

It has been proved that nano-sized particles are a useful strategy of suppressing the accumu-

lation of space charges in dielectrics. A lot of reports have shown that the space charges are

suppressed by the interfaces between the polymer matrix and the additives. Fabiani et al.

argued that the use of larger TiO2 nanoparticles to detect conductive processes in EVA

nanocomposites has less accumulation of space charges, lower activation energy and lower

conductivity [15]. Delpino et al. put forward the outcomes of conduction current measure-

ments and space charges of 5 wt% EVA/montmorillonite nanoplayer composite and discov-

ered big conduction current magnitude and space charge [16]. Montanari et al. did some

researches on the electrical properties of layered micron and nano-sized silicate-filled EVA

copolymers, and improved the space charge accumulation behavior by changing the

nanofillers [17]. However, few studies have helped to know EVA’s space charge dynamic

actions full of ZnO under the DC electrical stress.

The paper aims at revealing ZnO doping’s influence on the actions of space charges, electric

field distribution as well as dielectric properties within EVA composites. According to the

outcomes, an important influence on the dielectric properties and DC conduction exists in

ZnO introduction. Homocharges accumulate near the negative electrode after introducing

ZnO nanoparticles and 5 wt% concentration shows better suppression of space charge injec-

tion. The distribution of the electric field is more uniform in the 5 wt% doped EVA. The chains

can be damaged by the extra micro-sized particles and brand-new disadvantages may be

created as well, which may act as carriers.
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2. Experiments

2.1. Specimens

There is a density of 0.93 g/cm3 and 14% vinyl acetate content in the EVA 1045. ZnO particles’

grain sizes are �2 μm and �40 nm. The ZnO had been dried for over 24 h within a desiccator

prior to dispersion in the EVA. The mixing was performed at 90�C for 15 min by a two-roll mill

set at 30 rpm rotor speed and 2 mm nip gap. All the compounds had been cured for about 5

min at 120�C in a press that was heated electrically under the pressure of 10 MPa and chilled

down in a natural way to the room temperature. Specimens that had �500 μm thickness had

been prepared through the incorporation of ZnO nanoparticles to EVAmatrix with 10, 5, 1 and

0 wt% fraction respectively, where 5 wt% micro-sized and 5 wt% nano-sized ZnO filled EVA

specimen had been set as contrast. ZnO’s dispersion in the EVA matrix had been explored

through scanning energy dispersive spectrum analysis (EDS) and electron microscopy (SEM)

with Hitachi S4800. The mixed doping composites as well as 5 wt% nano ZnO doped EVA’s

SEM photograph can be seen in Figure 1. The white spots are the nano fillers in Figure 1a. No

important aggregation can be seen in the specimens and the nano fillers are dispersed in a

uniform way. The bigger particle stands for the micro-sized ZnO in Figure 1b. Figure 2 is

EDS’s from Figure 1 and the zinc factor’s higher contents are introduced because of more ZnO

doping. The fillers’ uniform dispersion may be helpful for analyzing the space charge proper-

ties as well as the mechanism for dielectric.

Figure 1. Distribution of ZnO particles in EVA composite.
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2.2. Test procedure

2.2.1. Space charge measurements

The PEA strategy had been adopted to study the space charge characteristics in ZnO/EVA

composites. The width of 10 ns as well as the pulse voltage with 500 V amplitudes had been

adopted and silicone oil had been adopted for ensuring great acoustic contact between the

electrodes and the specimen. The materials had been dealt with by the Lab VIEW software

through the use of a deconvolution technique and a calibration. The specimen has a diameter

of about 40 mm and a thickness of 500 μm. The temperature was set as 40�C and the electrical

field was set averagely as �25 MV/m. Space charge profiles had been recorded along the

depolarization and polarization process every 5 s.

2.2.2. Dielectric properties and DC conduction current measuring

The ZnO/EVA composites’ dielectric properties had been measured in the paper through

Novocontrol Concept 40. An electrometer (Keithley 6517B) had been used to measure the conduc-

tion currents with the space charge measurements under the same condition. Every specimen had

been held between electrodes before the measurements for more than 12 h for the purpose of

dissipating excess charges. The existing values had been recorded in the stressing process every 2 s.

3. Effects of ZnO contents

3.1. Specimen characteristics

The relation among the frequency, dissipation element and the relative permittivity of the

EVA/ZnO composites is presented in Figures 3 and 4. As the ZnO concentration varies from 0

to 10wt %, relative permittivity improves from 2.59 to 2.92. While it comes to 3.0 for the hybrid

doping. The dissipation factor has been greatly improving over a majority of the frequency

range for the doped specimens, but an opposite trend is shown by the undoped specimen. The

5 and 1 wt% filled specimen’s loss factor is lower at the lower frequencies compared with that

Figure 2. EDS of EVA/ZnO composite fracture surface.
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of the undoped one. The dissipation element is bigger for the higher frequency range or the

higher doping proportion.

The relaxation mechanisms and the dielectric polarization determine the dielectric properties

in the nanocomposites to a great extent [18]. The polarization which connects with the permit-

tivity happens in the matrix-filler interfaces and the EVA, ZnO particles. In terms of the base

EVA, the mobility of the long molecular chain makes contributions to the polarization process.

Therefore, the relative permittivity is not high. Because there is relatively higher permittivity in

the inorganic ZnO particles, the fillers are helpful to improve the EVA composites’ permittivity

with higher fillgrade. Nevertheless, the polarization is not improved so much as expected with

less content of particles. The possible cause is that the matrix-filler interfaces are introduced by

the nanoparticles doping, which may impose restrictions to the polymer polarization and

cause the slow improvement of permittivity (Figures 3 and 4).

3.2. Space charge accumulation

Figure 5 presents ZnO/EVA composites’ space charge polarization under �25 kV/mm on

average. The homocharges within the pure EVA comes from the positive electrode with the

application of the stress. The charge packages consisting of holes continued to move toward

the negative electrode with the increase of time under the electric stress. There was no clear

charge injection in EVA near the negative electrode. Figure 5b shows that the homocharges

injected from negative electrode, which is opposite to the pure specimens. It’s noticeable that

good performance is demonstrated by the EVA composites doped with 5 wt% nano-sized ZnO

to suppress the injection of the space charge within the dielectric matrix. According to

Figure 5d, space charge distribution’s region near the 10 wt% doped specimen’s negative

Figure 3. The relative permittivity of EVA/ZnO composites.
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electrode is bigger compared with that of the Figure 5c. According the space charge pattern

analyzed in group e, it is obvious to see a uniform charge close to either electrode. The

homocharges migrate gradually toward the specimen matrix.

Since the electric field under the material’s DC stress for cable accessories concerns a lot for the

practical adoption, the distribution of the electric field E(x) which is presented in Figure 6 of

EVA composites across the specimen had been worked out on the basis of Poisson’s Eq. (1):

E xð Þ ¼ �
1

ε0 � εr

ð
x

0

r xð Þdx (1)

Where εr and ε0 are the relative and vacuum permittivity; r(x) is charge density; x is the

specimen’s thickness and d is the boundary [19]. The accumulation of the space charge

distorted the electric field in undoped EVA more seriously compared with others. The distri-

bution of electric field in 1 wt% filled specimen becomes nicer through the comparison with

the undoped one. It seems that the electrical field in 5 wt% filled one is the best result.

Additionally, the electrical stress is the highest in hybrid filling.

In general, homocharges usually generate from charges which are injected from metal elec-

trodes. Moreover, they depend on the balance between charge injection and carrier diffusion to

the EVA matrix. That is to say, the homocharges remain when people extract negative or

positive carriers into the positive electrode/negative electrode electrodes. In terms of the base

EVA, the homocharges which are injected from positive electrode move through the polymer

Figure 4. The dissipation factor of EVA/ZnO composites.
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Figure 5. EVA/ZnO composites’ space charge profiles during the polarization.
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matrix. Because there are some similarities between the molecular chains in EVA matrix and

the things in PE, which contain electrons that move along the inter chains [20], it’s not difficult

for the electrons to extract into the positive electrode, which may form positive homocharges

and transport into the polymer matrix. Because there are some chemical groups or free chains

in the pure EVA within the experiment, acting as space charge or charge carries may be

injected very easily. Nevertheless, it’s easy to observe the homocharges near the negative

electrode when considering the less doping content of ZnO. The electrons are captured by the

ZnO nanoparticles and prevented from extracting into the positive electrode.

It’s clear that the space charge injection is restrained to a great degree by the sample which

contains 5 wt% nanoparticles. Since a lot of traps may be introduced by the ZnO nanoparticles’

incorporation into EVA matrix, it is able to capture enough homopolar charges for the purpose

of impairing useful electric fields between the specimen’s surfaces and the electrodes and

devote to the carrier injection’s restraint from electrodes. It is possible to form the percolation

network with higher fillgrade, which may cause more negative injection close to the negative

electrode. Compared with the nanocomposites, the EVA with hybrid doping has done worse.

The micro-sized fillers may impair the nanoparticle interface effect and destroy the major

polymer chain, which makes the homocharges inject from the electrodes. The space charges’

distribution corresponds well with the dielectric properties’ outcomes.

3.3. Space charge dissipation

EVA nanocomposites’ space charge profiles are displayed in Figure 7b and c as well as d. Both

homocharges can be found within the specimen at the initial stage. The beginning stage’s

Figure 6. Electric field distribution in EVA/ZnO composites.
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Figure 7. Space charge behaviors of EVA/ZnO composites during depolarization.
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decay speed is more quickly compared with the pure EVA. A minute later, the residual charge

will reduce in a rather slow rate. More complicated depolarization procedures can be seen in

Figure 7e. In terms of the EVA doped with micro-sized and nano-ZnO particles, there are some

similarities between the nanocomposites and the quick dissipation at the beginning stage.

Even so, homocharges have been injected to the matrix’s deeper areas instead of being

transported into electrodes.

EVA/ZnO composites’ space charge profiles are shown in Figure 7 in the process of the

depolarization when removing thirty-minute stressing. It’s obvious that the charges dissipate

rather quickly at first for the pure sample in Figure 7a and positive charges occupy most of the

polymer matrix. Later on, both the positive and negative carriers migrate through the elec-

trodes and keep a little totally. The entire charge within the matrix will be worked out by

Eq. (2) for further discussion.

Q ¼

ð
d

0

r xð Þj j � S � dx (2)

Where d is the specimen’s thickness, S is the electrode area and r(x) is charge density. The

entire charge’s outcome after being stressed at �25 kV/mm for 30 min is presented within

Figure 8. It’s clear that the 5 samples dissipate fast at the beginning and the base EVA’s charge

dissipation continues all the time. Nevertheless, the amount of charge remains rather constant

nearly a minute later for the doped specimens. It is obvious that the specimens’ entire charges

in higher fillgrade sample decay more quickly compared with the samples with lower ZnO

contents. The decay of the charges with hybrid doping within specimens presents the trend

with pure EVA. However, the 10 wt% specimen causes the residual charges in minimum.

Figure 8. Total space charge decay process of different samples.
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After we remove the applied stress from the specimen, the space charges transport with time

mostly because of the detrapping process. The differences in the decay rate at various times

can depend on the time constants for the trapping of deep and shallow traps. The quick

dissipation in the initiative stage corresponds with the detrapping from the shallow traps. In

addition, capturing charge carriers are hard in deep traps, which results in a slow rate of

charge dissipation in doped specimens. More deep traps and shallow are introduced by

nano-sized ZnO particles doping into the polymer. However, deeper traps are produced by

the micro-sized ZnO particles through the comparison with the nanocomposites, as the form of

brand-new disadvantages, causing more remnant charges. In terms of the base EVA, the traps’

energy level is homogeneous to some extent. Therefore, the speed for the base EVA does not

have too many changes at the time of dissipation.

A lot of studies have shown that the space charge correlates with the mobility, the conduction

as well as the trap features [7]. The model is derived thinking about the trapping-detrapping

equilibrium among the trap levels because of the thermal excitation. In accordance with the

space charge density’s changes and the Poisson’s equation with the time of the depolarization,

the carriers’ obvious mobility as well as the relative trap depth is able to be analyzed as

follows:

μ tð Þ ¼
2ε

q2 tð Þ
�
dq tð Þ

d t
(3)

n tð Þ ¼ kT � ln μ tð Þ �
h

eR2

� �

(4)

Where R is the mean distance between localized states (5 � 10�7 m), e is the electron’s quantity,

h is the Planck constant, T is the absolute temperature, ε is the permittivity, k is Boltzmann

constant and q(t) is the average charge density [21]. The obvious mobility’s outcome which is

worked out by equation from the data of Figure 8 is analyzed in Figure 9. it is obvious that

undoped EVA’s mobility keeps invariant with the time of the depolarization, which is in

accordance with EVA copolymer’s uniform structure. Nanocomposites’ migration rate is high

at the original period and the mobility becomes lower with further improvement. 10 and 1 wt%

ZnO nanoparticles doped specimens have the highest mobility in accordance with the total

space charges’ quick dissipation at the initial stage. The specimen’s trend with 5 wt%

nanoparticles presents a proper central symmetry on the basis of the neat EVA. In terms of the

entire mobility expression of the nanocomposite, this value decreases as the time increases,

because the doping of nanoparticles leads to deeper traps in the charge release mechanism. It is

predicted that the micro-sized particles act as constraint carriers migrating and big disadvan-

tages in the process of the depolarization. According to Figure 10, it is clear to see the outcomes

of the relative trap depth by Eq. (4). Compared with the change in apparent mobility over time,

the results of the depth of the trap show the opposite trend. The base EVA’s trap depth on

average is nearly 0.81 eV and the deep traps’ depth in the EVA composites can be improved by

the filler doping. A wide range of trap depth is produced by the 1 wt% nanoparticles doping

because of the localization state’s changes, where deep traps play an important role in the

space charge injection’s suppression. A majority of the volume may be covered by the matrix

Nanocomposite for Space Charge Suppression in HVDC Cable Accessory
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Figure 9. Apparent mobility with depolarization time.

Figure 10. The trap depth with depolarization time.
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filler interface region at the time of introducing more filler. Moreover, the deep trap depth can

be increased on average, which will prevent the injection of space charge from the electrodes.

Nevertheless, the percolation network may be formed or the interface is possible to overlap

with the fillgrade reaching 10 wt%, which may reduce the negative homocharge injecting

barrier as well as the trap depth. As is mentioned before, the chain may be broken by the extra

micro-sized particles and brand-new disadvantages may appear which may act as local deep

traps and is not sufficient to construct an injection barrier. In addition, the charge injecting can

be accelerated by the weaker interface effect.

In order to confirm these assumptions, the conduction current had been evaluated at �25 kV/

mm. It can be seen within Figure 11. It’s clear that the base EVA conductivity can be greater in

general compared with the doped specimen’s conductivity. EVA composites’ resistance may be

increased by both the nanometer and micron-sized ZnO particles at EVA filler ratios. There is a

certain relationship between charge mobility and conduction current. A change in conduction

can be caused by the interfacial interaction between the polymer body and the filler, or the

space charge which is accumulated close to the electrode may limit the conduction current. A

charge blocking area can be formed by the trapped charge through the increase of the barrier

to the carrier injection. Additionally, the negative and positive charges are localized because of

the low charge mobility, which will impair carrier migration. Nevertheless, it seems that the

extra micro-ZnO may decrease the mobility of the charge carrier, which in turn increases in the

entire conductivity. EVA composites’ charge carrier mobility may be reduced by the ZnO

particles. The outcomes above can strongly prove the space charge suppression mechanism.

Figure 11. DC conduction currents of EVA/ZnO composite under �25 kV/mm.

Nanocomposite for Space Charge Suppression in HVDC Cable Accessory
http://dx.doi.org/10.5772/intechopen.80217

13



4. Conclusions

In the paper, EVA composites which contain 10, 5, 1, and 1 wt% ZnO nanoparticles had been

prepared where specimens doped with the comparison of 5 wt% micro-sized and nano-sized

ZnO. Micron and nano-ZnO particles on EVA composites’ space charge actions and dielectric

properties had been researched. Below are the major conclusions.

1. According to the analysis of the SEM, the micro-scaled and nano-particles had been in

homodispersewithin the EVA composites. The ZnOdoping can increase the dielectric constant

and thedissipation element of EVAcompositeswith 5 and1wt%nanoparticlesmaybe lower at

lower frequencies through the formation of the areas which are restricted by polarization and

the impediment of the carriers’ transport through various kinds of interfaces and chains.

2. When ZnO nanoparticles are introduced, co-directional charge injection takes place at the

negative electrode rather than at the positive electrode, thus the change in electron extrac-

tion induced by the matrix-filler interface. In 5 wt% nanoparticle-doped EVA, the electric

field is uniformly distributed under high electrical stress.

3. During depolarization, the total residual charge of the 10 wt% doped specimen was less

than the final remaining charge at last. For dissipating speeds, for micron- and nano-sized

particle doping, it is faster at higher filling levels, which has been decided by the obvious

mobility and the conductivity.

4. Through correctly doping the nanoparticles, the injection of space charge can be suppressed

through the help from the deeper average trap depth. The chain may be damaged by extra

micro particles and brand-newdisadvantages can be created, whichmay act as charge carriers.

5. Considering about the outcomes mentioned before, we can conclude that doping with

proper ZnO may suppress the injection of space charge, cause to lower loss elements,

increase the resistivity of volume and uniform the distribution of electric field. Thus, EVA/

ZnO nanocomposites can be hopeful candidates for the applications of HVDC cable attach-

ment insulation. Mechanical properties and breakdown strength should be further studied.

Author details

Boxue Du, Jin Li* and Zhuoran Yang

*Address all correspondence to: lijin@tju.edu.cn

Key Laboratory of Smart Grid of Education Ministry, School of Electrical and Information

Engineering, Tianjin University, Tianjin, China

References

[1] Zhou Y,He J, Hu JL, HuangXY, Jiang PK. Evaluation of polypropylene/polyolefin elastomer

blends for potential recyclable HVDC cable insulation applications. IEEE Transactions on

Dielectrics & Electrical Insulation. 2015;22:673-681. DOI: 10.1109/TDEI.2015.7076762

Nanocomposites - Recent Evolutions14



[2] Marzinotto M, Mazzanti G. The statistical enlargement law for HVDC cable lines part 1:

Theory and application to the enlargement in length. IEEE Transactions on Dielectrics &

Electrical Insulation. 2015;22:192-201. DOI: 10.1109/TDEI.2014.004626

[3] Chen G, Hao M, Xu Z, Vaughan A, Cao J, Wang H. Review of high voltage direct current

cables. CSEE Journal of Power & Energy Systems. 2015;1:9-21. DOI: 10.17775/CSEEJPES.

2015.00015

[4] LongW, Nilsson S. HVDC transmission: Yesterday and today. Power & Energy Magazine

IEEE. 2007;5:22-31. DOI: 10.1109/MPAE.2007.329175

[5] Fu ML, Dissado LA, Chen G, Fothergill JC. Space charge formation and its modified

electric field under applied voltage reversal and temperature gradient in XLPE cable. IEEE

Transactions on Dielectrics & Electrical Insulation. 2008;15:851-860. DOI: 10.1109/TDEI.

2008.4543123

[6] Chong YL, Chen G, Ho YFF. Temperature effect on space charge dynamics in XLPE

insulation. IEEE Transactions on Dielectrics & Electrical Insulation. 2007;14:65-76. DOI:

10.1109/TDEI.2007.302873

[7] Montanari GC. Bringing an insulation to failure: The role of space charge. IEEE Transactions

on Dielectrics & Electrical Insulation. 2011;18:339-364. DOI: 10.1109/TDEI.2011.5739438

[8] Christen T, Donzel L, Greuter F. Nonlinear resistive electric field grading part 1: Theory and

simulation. IEEE Electrical Insulation Magazine. 2010;26:47-59. DOI: 10.1109/MEI.2010.

5599979

[9] Donzel L, Greuter F, Christen T. Nonlinear resistive electric field grading. Part 2: Materials

and applications. IEEE Electrical Insulation Magazine. 2011;27:18-29. DOI: 10.1109/

MEI.2011.5739419

[10] Cavallini A, Montanari GC, Morshuis P. HVDC insulation and diagnostics. IEEE Trans-

actions on Dielectrics & Electrical Insulation. 2015;22:4-6. DOI: 10.1109/TDEI.2014.005122

[11] Delpino S, Fabiani D, Montanari GC. Feature article—Polymeric HVDC cable design and

space charge accumulation. Part 2: Insulation interfaces. Electrical Insulation Magazine

IEEE. 2008;24:14-24. DOI: 10.1109/MEI.2008.4455499

[12] Henderson AM. Ethylene-vinyl acetate (EVA) copolymers: A general review. IEEE Electri-

cal Insulation Magazine. 1993;9:30-38. DOI: 10.1109/57.249923

[13] Du BX, Li J. Electrical and mechanical ageing behaviors of used heat-shrinkable insulation

tubes. IEEE Transactions on Dielectrics & Electrical Insulation. 2014;21:1875-1881. DOI:

10.1109/TDEI.2014.104324

[14] Huang J. Carbon black filled conducting polymers and polymer blends. Advances in

Polymer Technology. 2002;21:299-313. DOI: 10.1002/adv.10025

[15] Fabiani D,Montanari GC, Palmieri F. Effect of nanoparticle size on space charge behavior of

EVA-TiO2, nanocomposites. In: Proceedings of the IEEE Electrical Insulation and Dielectric

Phenomena (CEIDP '11); 16–19 October 2011; Bologna. New York: IEEE; 2011. pp. 322-325

Nanocomposite for Space Charge Suppression in HVDC Cable Accessory
http://dx.doi.org/10.5772/intechopen.80217

15



[16] Delpino S, Fabiani D, Montanari GC. High space charge dynamics in EVA-based nano-

composite flat specimens. In: Proceedings of the IEEE Electrical Insulation and Dielec-

tric Phenomena (CEIDP '09); 26–29 October 2009; Quebec City. New York: IEEE; 2009.

pp. 137-140

[17] Montanari GC, Cavallini A, Guastavino F. Microscopic and nanoscopic EVA composite

investigation: Electrical properties and effect of purification treatment. In: Proceedings of

the IEEE Electrical Insulation and Dielectric Phenomena (CEIDP '04); 17–20 October 2004;

Boulder. New York: IEEE; 2004. pp. 318-321

[18] Singha S, Thomas MJ. Dielectric properties of epoxy nanocomposites. Dielectrics & Elec-

trical Insulation IEEE Transactions on. 2008;15:12-23. DOI: 10.1109/T-DEI.2008.4446732

[19] Zhou T, Chen G, Liao R. Charge trapping and detrapping in polymeric materials: Trap-

ping parameters. Journal of Applied Physics. 2009;106:644-637. DOI: 10.1063/1.3273491

[20] Fabiani D, Montanari GC, Dissado LA. Fast and slow charge packets in polymeric mate-

rials under DC stress. IEEE Transactions on Dielectrics & Electrical Insulation. 2009;16:

241-250. DOI: 10.1109/TDEI.2009.4784573

[21] Mazzanti G, Montanari GC, Alison JM. A space-charge basedmethod for the estimation of

apparent mobility and trap depth as markers for insulation degradation-theoretical basis

and experimental validation. IEEE Transactions on Dielectrics & Electrical Insulation.

2003;8(2):187-197. DOI: 10.1109/TDEI.2003.1194099

Nanocomposites - Recent Evolutions16


