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Abstract

The human skin serves as a source for a large number of neurohormones and neuropep-
tides, which affect skin biology on multiple different levels. Intriguingly, this includes the 
control of keratin expression by neurohormones such as thyrotropin-releasing hormone, 
thyrotropin, opioids, prolactin, and cannabinoid receptor 1-ligands. While this neuroen-
docrine regulation of human keratin biology in situ is likely to be involved in the main-
tenance of skin and hair follicle homeostasis and may participate in skin pathology, this 
regulation remains to be appreciated and explored by mainstream keratin research. Here, 
we review recent progress in this frontier of neuroendocrine and keratin skin research, 
define the many open questions in the field, and elaborate how neurohormones may be 
harnessed to treat selected genodermatoses and other skin disorders accompanied by 
abnormal keratin expression.

Keywords: keratins, neuroendocrinology, hair, skin, dermatology

1. Introduction

Keratins are the major constituents of the epidermis and skin appendages, which by forming 
an intracellular structural network provide cellular stability and resilience to the tissue [1].  
Furthermore, they exert a surprisingly wide and complex range of additional functions in 
the skin, including regulating epithelial differentiation and proliferation, migration and 
wound healing, carcinogenesis and apoptosis, and immunomodulation [2–5]. Taking into 
consideration the key roles keratins play in the skin, it is of utmost importance to under-

stand and dissect the mediators that affect their expression. One of the key mediators of 
skin function is the endocrine system, which is also expressed and active in the skin itself. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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An important pathway by which the endocrine system controls skin function is by chang-

ing keratin expression, and these effects have been described in detail previously [6].

Throughout the last decade, it became clear that the skin reacts and generates not only steroid 
hormones, but also a large array of neuroendocrine mediators [2, 3, 7–10]. The skin has even 
formed a hypothalamic-pituitary-adrenal (HPA) neuroendocrine signaling axis, equivalent 
to the central axis [10–12], and a semi-equivalent hypothalamic-pituitary-thyroid (HPT) axis 
[13–16]. These neuroendocrine mediators take part in the regulation of many different pro-

cesses and functions of the skin, both in normal healthy skin and in disease states. These 
include, for example, regulation of stress response [10, 17], hair follicle (HF) growth [18–22], 

pigmentation of the skin and HF [18–21, 23, 24], sebaceous gland function [10, 12], prolifera-

tion and apoptosis of keratinocytes [9, 10, 25], and mitochondrial activity [16, 26, 27]. They 
are also involved in controlling the immune privilege of the HF epithelium and the immune 
response of the skin [24, 28].

Taking into consideration the fact that keratins constitute up to 85% of the cell mass of a ter-

minally differentiated keratinocyte and have such important roles not only in keratinocyte, 
sebocyte, and trichocyte biology, but also for overall skin physiology [29–31] and the fact that 

the vast majority of neuroendocrine mediators is expressed in the skin epithelium [11, 12, 17], 

it is reasonable to ask whether some of the functions exerted by neurohormones in the skin 
are actually mediated by changing keratin expression. Indeed, in recent years, several studies 
have demonstrated that keratin expression in human skin and HFs is manipulated by neuro-

hormones and underlies previously ignored, important neuroendocrine controls that invite 
therapeutic targeting.

In this chapter, we systematically explore the effects of neuroendocrine mediators on keratin 
expression and connect these changes to physiologically relevant functions of the skin and 
HFs. We also dissect the ways by which such keratin changes might be harnessed to alleviate 
different skin conditions.

2. The hypothalamic-pituitary-thyroid axis in the skin and its effects 
on keratin expression

The fact that skin and HFs are prominent targets for the thyroid hormones, triiodothyronine 
and thyroxine, is well established [15, 16]. These thyroid hormones also promote cutaneous 
wound healing [32, 33]. Furthermore, patients suffering from thyroid disorders manifest with 
significant hair and skin phenotypes [15]. It is possible that some of these changes are due 
to an effect of thyroid hormones on keratin expression. For example, T3 increases K6, K16, 
and K17 gene expression in human keratinocytes in culture, keratins that are known to be 
upregulated during the wound healing process [34], and mice with hypothyroidism have 
reduced K6 expression [34]. In addition, T3 and T4 stimulate K6 expression and decrease K14 
expression in cultured human HFs [15].

However, thyroid hormones can themselves change the production of neurohormones such 
as prolactin and thyroid-stimulating hormone (TSH, thyrotropin), also in the skin [13, 35]. 
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Indeed, in recent years, it has become evident that the skin expresses receptors for the thyroid 
hormones and for TSH and thyrotropin-releasing hormone (TRH) [13, 18, 23, 26]. It has also 
been observed that, just as in the central HPT axis, thyroid hormones decrease intraepidermal 
TSH expression, while TRH stimulates it in human skin, therefore suggesting that an elemen-

tary functional HPT axis also exists in the human skin [36].

Thyrotropin-releasing hormone is expressed by the human HF and can be found in the outer 
root sheath (ORS). The TRH receptor (TRH-R), on the other hand, is expressed in the inner root 
sheath (IRS) of the HF [23]. TRH can affect keratin expression: it has been found to upregulate 
the expression of the hair keratins K31 and K32, while it downregulates the expression of the 
hair keratins K85 and K86 at the protein level [37]. TRH also has profound effect on the keratins 
expressed by the ORS in the HF, leading to reduced expression of K6, K14, and K17 [23, 37]. 
The above-listed keratins have been confirmed to be regulated by TRH at the protein level in 
the HF, but it should be noted that additional keratins and keratin-associated proteins (KAPs) 
may be affected by TRH according to microarray results obtained with organ-cultured human 
HFs [37]. However, further experiments are required to confirm regulation of these keratins 
and KAPs by TRH. Another important open question is to which extent the TRH-induced 
changes in keratin expression observed in the HF underlie the complex functional changes 
exerted by TRH in the HF [2, 16], namely, the stimulation of hair shaft production by TRH [23].

In contrast to the ORS of the HF, TRH stimulated K6, K14, and K17 expression in the epi-
dermis, sweat glands, and sebaceous glands in human skin ex vivo at the protein and mRNA 
levels [37]. The same promoting effect of TRH on human K6 expression was also evident in 
frog skin in vitro [25], and this stimulating effect was suggested to accompany the promo-

tion of wound healing in the frog skin [25]. This suggests that the keratin regulatory effects 
of TRH are highly conserved in vertebrate skin and underscores the functional importance 
of this neuroendocrine control of keratin biology. This makes it even more surprising that 
mainstream keratin research continues to largely ignore this evolutionarily conserved control 
mechanism, which must have provided significant species survival advantages to have been 
maintained from frogs to humans. Interestingly, previous studies have found that TRH can 
also stimulate mitochondrial activity in human epidermis and scalp HFs [26]. This invites the 
intriguing question whether the part of this TRH-induced increased mitochondrial activity, 
and thus energy metabolism is actually recruited to promote and support the energy inten-

sive synthesis of selected keratins.

Thyroid-stimulating hormone is another key neurohormone involved in the regulation of 
keratin expression in human skin. TSH is expressed in the epidermis, and the gene encod-

ing its receptor reportedly is also transcribed in the epidermis [14], while TSH-R protein is 
most prominently, if not exclusively, found in the skin mesenchyme, including the dermal 
sheath of human scalp HFs [18]. However, there is still a debate on the exact location of the 
TSH-R protein [13, 38]. In whole skin organ cultures, TSH stimulated the expression of K5 
and K14, the two prototypic keratins that are expressed in the basal layer of the epidermis, 
connect to the hemidesmosomes in the basal side of the keratinocytes and are critical for 
keratinocyte function [6, 29]. Interestingly, TSH did not affect basal epidermal keratinocyte 
proliferation ex vivo, pointing to the fact that the upregulation of K5 and K14 was not just due 
to enhanced keratinocyte proliferation. Therefore, these findings suggest that TSH effects on 
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keratin expression are direct and independent of cellular proliferation changes. Just like with 
TRH, TSH was also found to enhance mitochondrial activity in the epidermis [27] and the 

HF epithelium [16], again raising the possibility of a coordinated, neurohormone-controlled 
increase in intraepithelial energy metabolism and keratin synthesis.

As alluded to above, keratin changes following TSH stimulation were also evident in human 
HFs ex vivo. Except for K5 in hair matrix keratinocytes, which was upregulated [18], all the 

other keratins examined were downregulated following TSH stimulation at the gene and 
protein levels. These included keratins expressed in the HF ORS, such as K6, K14, and K17, 
and hair keratins expressed in the hair cortex, such as K31, K32, and K85 [39]. While the exact 
mechanisms by which TSH changes keratin expression remains unknown, it is noteworthy 
that TSH also upregulated expression of MSX2 [39], a key transcription factor that controls 
keratin expression [40, 41]. It is also interesting to note that all these keratin changes were 
observed in the HF, although TSH itself does not affect hair growth, thus suggesting that these 
TSH-regulated changes in keratin expression do not translate into altered hair growth [18].

TRH has been found to enhance TSH expression in the human epidermis [13]. Since TSH can 
change keratin expression as we have just reviewed, it is possible that some of the effects of 
TRH on keratin expression are indirectly mediated by TSH. Indeed, some of the keratins that are 
modulated by TRH, such as K14, K17, and K85, are affected in a comparable manner by TSH [39].

3. The hypothalamus-pituitary-adrenal axis in the skin and its effects 
on keratin expression

Corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol 
form the HPA axis, which has a major role in controlling stress response by producing steroid 
hormones and regulatory peptides [9]. This axis is also active in human skin and HFs, where, 
namely, keratinocytes, but also other cutaneous cell populations act as both targets and also 
as nonclassical producers of these HPA constituents [10–12, 42, 43].

There are plenty of studies that report on the effect of glucocorticosteroids on keratin expres-

sion in the skin, effects that accompany physiological processes, such as wound healing [6]. 
Nevertheless, little is known on the effects of the other components of the HPA axis on keratin 
expression, and the available information is limited to CRH, which reportedly upregulates K1 
and downregulates K14 in HaCaT cells and in human adult epidermal keratinocytes, as part of 
the induction of the terminal differentiation program [44, 45]. Taking into consideration the fact 
that the HPA is fully functional in human skin [2, 10–12], it is likely that additional keratins are 
regulated by these neuromediators, yet have escaped notice so far. Therefore, further research 
is warranted to explore this neuroendocrine frontier of keratin biology, namely, in human skin.

4. Prolactin effects on keratin expression

Prolactin and its receptor have been found to be expressed at the gene and protein levels 
in the human skin [19, 35, 46, 47], where they control a large number of functions, such as 
hair growth [19] and keratin expression (see below). Given the major role of prolactin in the 
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control of mammary development, growth, and milk production, it is not surprising that the 
first evidence for an effect of prolactin on keratin expression arose from mammary gland 
studies [48]. These studies have shown that if the prolactin receptor gene is knocked out, mice 
do not develop normal mammary buds, accompanied by decreased expression of selected 
keratins, such as K8, K17, K18, and K19 [48].

Since the mammary gland is basically a sweat gland-like derivative of the epidermis, and 
a prolactin-like protein has actually been found in human eccrine sweat glands [49], it was 

reasonable to hypothesize that prolactin may regulate keratin expression also in other skin 
appendages. Indeed, prolactin administration to organ-cultured human HFs resulted in 
upregulation of keratins expressed in the ORS, including K5 and K14, while the hair keratin 
K31 was downregulated ex vivo [50].

Perhaps the most interesting observation that emerged from this study was the stimulatory 
effect of prolactin on K15 and K19, that is, marker keratins for epithelial HF stem cells [51–53]. 
This stimulatory effect was reversed when a selective prolactin receptor antagonist was added 
to the culture medium. This effect was further confirmed when prolactin had a stimulatory 
effect on KRT15 promoter activity in situ [50]. This finding strengthens the importance of 
prolactin as a stem cell promoting agent, as was also observed later in other classical prolactin 

target organs, such as the mammary gland [54]. Once again, this underscored the unique 
instructiveness of HFs as a discovery tool in skin research, namely, in cutaneous neuroendo-

crinology [2], from which novel, general neuroendocrine principles can be deduced.

Another important observation that emerged from these keratin studies was that the addition 

of a prolactin receptor antagonist alone also resulted in changes in keratin expression [50]. 
This shows that endogenous production of prolactin and/or prolactin receptor stimulation is 

an important element of normal skin physiology and homeostasis and is actually required to 
maintain the production of keratins in the HF. This is similar to the autocrine/paracrine effects 
attributed to prolactin also in the pituitary gland, where blocking of the prolactin receptor 
resulted in changes in cell turnover and prolactin receptor expression [55], and in extrapitu-

itary locations such as the mammary gland, where changes in prolactin receptor patterning 
resulted in disruption of lobuloalveolar development [56].

It has been previously shown that there is an interplay between the different hormones and 
neurohormones in the skin and HFs, and that some of these connections are similar to those 
that exist in the pituitary. As an example, TRH can stimulate prolactin expression in the HF, 
while it can inhibit expression of the prolactin receptor [35]. Such an interplay is highly likely 
to also be at play in the regulation of keratin expression, and given that both neurohormones 
profoundly change the expression of selected keratins in human skin. Obviously, this adds 
another level of complexity to the challenge of segregating the direct effects of each of these 
neurohormones from indirect and cross-regulatory ones.

5. The effects of endocannabinoids on keratin expression

Accumulating data show that the endocannabinoid system (ECS) plays a major role in mam-

malian skin [57, 58]. Indeed, endocannabinoids are being produced by the epidermis and 
the skin appendages, including the HF, sweat glands, and sebaceous glands [58], and the 
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cannabinoid receptors CB1 and CB
2
 are prominently expressed on different skin cell popula-

tions [58]. Many different skin functions of the skin are now appreciated to be regulated by 
the ECS. For example, in the epidermis, it controls keratinocyte proliferation and differentia-

tion, thereby affecting the epidermal barrier, and regulates melanogenesis [59–61].

The ECS also affects the skin appendages profoundly. Signaling via CB1 inhibits hair growth 

and induces catagen, the regression phase of the HF [22, 62]. In sweat glands, anandamide 
stimulated sweat secretion of epithelial cells and reduced their proliferation [63]. The ECS 
can also affect sebaceous gland function, and by acting via CB

2
, endocannabinoids positively 

control sebaceous lipid synthesis [64]. Furthermore, cannabidiol, a CB1 antagonizing nonpsy-

chotropic phytocannabinoid, reduced sebocyte proliferation and normalized excess sebum 
production that can be observed in acne lesions [65, 66].

Taking into consideration its importance in epidermal keratinocyte function, it was not surpris-

ing that ECS modulation also affects keratin expression. For example, cannabinoid receptor 
activation on human HaCaT cells by the prototypic endocannabinoid, anandamide, inhibited 
cell differentiation, accompanied by reduced transcription of the KRT1 and KRT10 genes [67]. 
When tested in human skin culture and again in HaCaT cells, anandamide also inhibited K6 
and K16 expression, independent of its antiproliferative properties [68]. Conversely, admin-

istration of the CB1 antagonist, arachidonyl-2′-chloroethylamide (ACEA), upregulated K10 in 
human epidermis while decreasing the expression of K1 ex vivo [69].

Given its antiproliferative and differentiation-promoting effects in human epidermis as well 
as its overall largely anti-inflammatory properties (e.g., by reducing mast cell degranulation 
and maturation in loco [70]), CB ligands are coming under scrutiny as potential new therapeu-

tics in the therapy of psoriasis [71]. If this line of research continues to be productive, it will 
become clinically even more important to dissect the relative contribution of CB-mediated 
changes in epidermal keratin expression to any beneficial effects observed by therapeutic CB 
stimulation. The use of ECS antagonists to change keratin expression underscores that, like 
we have seen in the case of prolactin, blocking the autocrine/paracrine effects of intracutane-

ously generated neuroendocrine mediators induces functionally relevant changes in human 
skin, such as altered keratin expression patterns.

6. Opioids and keratin expression

Murine and human skin both express opioid receptors, including the μ-, κ-, and δ-opioid 

receptors. Stimulation of these receptors participates in the control of melanocyte [72] and 

keratinocyte functions, such as impeding DNA synthesis and cell differentiation [73, 74]. 
Therefore, their connection to skin disorders, such as psoriasis, basal cell carcinoma, and 

wound healing, is currently under scrutiny [73, 75, 76].

As one might expect by now, opioid receptor ligands also induce changes in keratin expres-

sion. For example, the key endogenous ligand for the μ-opiate receptor, beta-endorphin, 

enhances the intraepidermal expression of K16 at the wound margin [77]. In psoriasis, a 
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hyperproliferative dermatosis, K16 expression is upregulated, and this is accompanied by 
downregulation of the μ-opiate receptor [75], and treatment of skin organ cultures with beta-

endorphin resulted in elevated K16 production [75].

K10 is an additional keratin to be regulated by opioids, as mice knocked out for the δ-opioid 

receptor had enhanced K10 expression, together with a thinner epidermis [78], and the Achillea 

millefolium extract, a strong inducer of the μ-opioid receptor-1, led to increased differentiation 
of the cells in the epidermis with stronger K10 expression [79]. Yet, our current understand-

ing of the role of opioid receptor-mediated signaling within the emerging neuroendocrine 

controls of keratin biology remains even more rudimentary than that of the neuromediators 
discussed further above.

7. Other neurohormones can alter keratin expression

Parathyroid hormone-related protein (PTHrP) is another important neuroendocrine mediator, 
which has importance in the normal formation of the mammary gland [80]. Keratin expres-

sion was tested in a K14 promoter-driven PTHrP mouse, and an overexpression of K17 in the 
nipple epidermis was evident in this mouse model [81]. Interestingly, PTHrP signaling affects 
BMP signaling and Msx gene activation, both of which are critical regulators of HF growth 
and function [80], just like PTHrP itself strongly modulates murine HF cycling [82, 83]. Yet, 
how PTHrP impacts on intrafollicular keratin remains to be evaluated.

Catecholamines can also change keratin expression, and when evaluated in limbal epithelial 

cells in culture, isoproterenol, a beta-adrenergic receptor agonist, led to pronounced changes 

in keratin expression [84]. When tested in HaCaT cells, the same compound stimulated dif-
ferentiation, which was accompanied by increased K1 and K10 production [85].

In contrast, histamine led to decreased expression of differentiation markers in skin models 
and human keratinocyte cultures, among others, and also to decreased production of K1 and 
K10 [86]. The cholinergic system can also affect keratin expression. When tested in skin cul-
tures in vitro, blocking of the cholinergic system resulted in decreased expression of differen-

tiation markers, such as K2 and K10 [87]. Although these mediators clearly led to changes in 
keratin expression in these cases, it remains to be dissected whether these changes were due 

to a direct effect of the tested compound or reflected secondary events, resulting, for example, 
from changes in keratinocyte proliferation and differentiation.

8. Possible clinical implications of neuroendocrine-mediated 
changes in keratin expression

As reviewed in detail above, neuroendocrine mediators can change keratin expression in 

what appears to be a relatively selective manner. Let us now discuss, therefore, how this phe-

nomenon might be translated into the treatment of several skin and hair conditions. This is 
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of special clinical relevance since neuromediator analogs, in principle, may be formulated to 
be topically applicable, thus circumventing or reducing the risk of undesired systemic effects. 
Some of the possible clinical scenarios for which such analogs may conceivably be used are 
described briefly below.

8.1. Treatment of keratin-related skin and hair genetic disorders

The list of genetic disorders linked to mutations in keratin genes continues to expand, and 

more than half of the keratin genes have been linked to a genetic disorder [88–92]. These 
disorders include ichthyoses, blistering disorders such as epidermolysis bullosa, hair condi-
tions such as wooly hair and sparse hair, and changes in the normal growth of nails. A novel 
promising approach for the treatment of keratin disorders is the utilization of small molecule 
drugs to upregulate expression of compensatory keratins or to downregulate the expression 
of the mutated keratins [89, 93]. Such an approach has already been successful in several auto-

somal dominant keratin disorders, such as epidermolysis bullosa simplex and pachyonychia 
congenita [94–96].

It has also been reported to be of potential benefit in epidermolytic ichthyosis, an uncommon 
genodermatosis caused by mutations in keratins 1 or 10, when Reichelt et al. have shown that 
increased stability of keratins 5 and 14 could lead to the formation of normal epidermis in 
K10-null mice [97]. Furthermore, treatment of immortalized cell lines from a KRT10-mutated 

epidermolytic ichthyosis patient with all-trans retinoic acid led to a 200-fold decrease in 
mRNA expression of K10, accompanied by decreased keratin aggregation [98].

As reviewed above, the CB1 agonist ACEA increased K10 expression, while reducing K1 pro-

duction in human epidermis in culture [69]. Such changes could potentially be harnessed in 
epidermolytic ichthyosis patients to decrease the expression of mutated K1 while upregulat-
ing the expression of K10 that can functionally compensate in part for the mutated keratin. 
Given their differential regulation of distinct human keratins in human skin ex vivo, defined 
neuromediators now need to be systematically explored for their capacity to execute such 
therapeutically desirable reverse regulation of clinically relevant keratins in selected genoder-

matoses, perhaps starting with primary keratinocyte cultures derived from affected patients.

8.2. Treatment of inflammatory skin conditions (e.g., psoriasis)

Several inflammatory skin disorders are characterized by overexpression of K6. These include, 
for example, lichen planus and discoid lupus erythematosus [99]. However, the most promi-
nent example is psoriasis, a chronic inflammatory skin condition, which is characterized by 
increased expression of K6, K16, and K17 [3, 68, 100]. K17 is probably of special importance 
in psoriasis pathogenesis, since it has been suggested to act as an antigenic target for T lym-

phocytes in the affected epidermis [101]. Furthermore, mice overexpressing K17 developed an 
inflammatory reaction and epidermal hyperplasia [102]. Moreover, K6, K16, and K17 expres-

sion pattern can impact on the cytokine or chemokine secretion of keratinocytes [102–105] and 

thus the intraepidermal inflammatory signaling milieu.
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Therefore, compounds that can decrease the expression of these keratins might be therapeuti-

cally beneficial in these dermatoses, namely, in psoriasis, especially if they can also exert anti-
inflammatory effects [106, 107], such as in the case of cannabinoid receptor agonists, which 

independently decrease the expression of K6 and K16 [68], combined with anti-inflammatory, 
antiproliferative, and antiangiogenic properties [3, 57, 71, 108, 109].

8.3. Wound healing

In healthy nonglabrous epidermis, K6, K16, and K17 are largely absent and not constitu-

tively expressed by keratinocytes. However, in hyperproliferative states and conditions of 
epidermal stress, such as during wound healing, these keratins are rapidly upregulated and 
strongly expressed, since they play a major role in epidermal repair, as they are required 
for normal migration of keratinocytes from the wound edges and to ensure optimal closure 
of the wound [29, 110, 111]. Opiate receptor agonists that can boost wound healing are also 
stimulators for K16 expression, suggesting again the hypothesis of a coordinated neuroen-

docrine control of both, expression of optimally suited keratins and wound healing as such 
[77, 112]. Conceivably, therefore, neuroendocrine mediators that upregulate K6, K16, and K17 
expression (e.g., catecholamines and endocannabinoids) might become therapeutically useful 
as promoters of re-epithelialization during wound healing.

8.4. Therapeutic regulation of stem cell-associated keratins

Prolactin increases the expression of the prototypic epithelial stem/progenitor cell-associated 
keratins, K15 and K19, [48, 50], and a continuous endogenous production of prolactin may be 
required to maintain normal K15 and K19 expression by these stem cells [50]. This raises the 
question whether neurohormones such as prolactin or related receptor agonists can be thera-

peutically recruited to ameliorate or prevent stem cell-based hair diseases characterized by 
permanent loss of the HF stem cell pool, such as lichen planopilaris or chemotherapy-induced 
alopecia [51, 113–115], or epidermal atrophy associated with an exhaustion of epidermal stem 
cell pools, as it occurs, for example, in connection with steroid therapy [116].

8.5. Hair growth

Keratins play a critical role in normal hair growth and structure. This is nicely exemplified by 
genetic hair disorders caused by keratin mutations [91]. When keratins that are produced in the 
hair cortex are mutated, the hair shaft is fragile and easy to break, and when the mutations are in 
keratins expressed in the most proximal part of the hair cortex, this leads to a more severe phe-

notype of complete hair loss [117, 118]. Instead, when keratins expressed in the IRS are mutated, 
this leads to a defect in hair curvature, oftentimes evident as wooly hair [90, 92, 119–121]. It is 
therefore conceivable that neuroendocrine manipulation of hair keratin expression may result 
in modulation of hair growth and/or hair shaft phenotype. It is therefore not surprising that 
TRH and prolactin, which both significantly modulate hair growth [2, 3, 23, 50, 122–126], also 

profoundly modulate hair keratin expression [37, 50].
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One additional important aspect when discussing hair keratins is the presence and impor-

tance of KAPs. These proteins surround the keratin intermediate filaments in the hair shaft, 
cross-linking them by disulfide bonds [127], and providing them with rigidity and strength 
[128]. The number of KAPs is much higher than keratins, and 89 functional KAP genes have 
been described in humans [128], therefore there is probably a high degree of overlap between 
these proteins. Nevertheless, changes in KAPs could probably also affect hair structure. On 
this background, it is interesting to note that preliminary studies using microarrays in cul-
tured HFs have revealed that certain neurohormones, such as TSH and prolactin, appear to 
alter the transcription of several KAP genes, such as KAP 4-4 and/or KAP 7-1 [18, 50]. These 
pilot observations deserve systematic follow up and may provide additional targets for thera-

peutic neuroendocrine intervention.

9. Conclusions

Here, we have reviewed that several neurohormones and neuropeptides generated in human 
skin as a nonclassical production site profoundly impact on the control of keratin expres-

sion. Specifically, we have presented TRH, TSH, opioids, prolactin, and cannabinoid recep-

tor ligands as prominent examples for and indicators of a likely much more widespread and 
complex, evolutionarily conserved neuroendocrine regulation of human keratin biology 
in situ than we have come to appreciate so far. We have argued that this regulation is criti-
cally involved in the maintenance of skin and HF homeostasis and may participate in skin 
pathology. Thus, it is timely that mainstream keratin and neuroendocrinology research, which 
traditionally interconnect only rarely, discover the cross-fertilization potential and clinical 
relevance of systematically exploring the neuroendocrine control of keratin expression and 
its functional consequences, namely, in human skin and HFs. Besides defining some of the 
many open questions in the field, we have provided specific examples for how neurohormones 
may be harnessed to treat selected genodermatoses and other skin disorders accompanied by 
abnormal keratin expression.

Many obstacles encumber the ongoing journey toward understanding mechanistically how 
exactly these neuromediators change keratin expression on the molecular level, and in uncov-

ering which of these effects are directly or indirectly mediated (e.g., by affecting other cuta-

neous functions, which then impact on keratin expression). This situation has been further 
complicated by increasing insight into the strong interplay between and cross-regulation of 
different neurohormones within human skin. However, recent advances and refinements of 
serum-free human skin and HF organ cultures, which permits the silencing of selected neuro-

hormone and receptor genes [70, 129], and the use of selective neurohormone receptor antago-

nists [50] surely facilitate progress in this exciting, translationally relevant line of investigation.
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