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Abstract

This chapter describes the significance of plasmonics to the field of intracellular delivery.
We begin by discussing the significance of intracellular delivery, its applications in biology
and medicine, and the currently available intracellular delivery techniques. Next, we
discuss the field of plasmonic intracellular delivery, beginning with the discovery of
optoporation. In optoporation, a laser beam is tightly focused onto a cell membrane to
generate a transient pore, through which membrane-impermeable cargo can enter the cell.
To improve the throughput of this technique, plasmonic materials were used for their
ability to efficiently absorb laser light and generate spatially confined electric fields. Here,
we describe the process by which plasmonic materials absorb laser light energy and
generate plasmons. These plasmons transfer their energy to their surroundings, resulting
in a rise in temperature and the subsequent creation of a bubble or shockwave. Finally, we
describe how the properties of plasmons and plasmon-mediated effects facilitate cell
poration for intracellular delivery.

Keywords: plasmonic, thermoplasmonic, intracellular delivery, cell poration, cell
membrane perforation, cell transfection

1. Introduction

Plasmonic materials have found utility in biological applications ranging from photothermal

therapy (killing cancer cells) to bio-sensing to intracellular delivery [1–3]. The ability to deliver

membrane-impermeable cargoes into cells is a critical step in the development of many thera-

peutics and an important problem in the field of biology [4–7]. Light-activated thermo-

plasmonic nanostructures are a potential solution to this problem and can be used to deliver a

range of cargoes into a range of cell types at high efficiency and high throughput, with spatial

selectivity, while maintaining cell viability [8–10].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Currently available intracellular delivery techniques

The delivery of membrane-impermeable cargoes such as nanoparticles, genetic materials, or

functional proteins directly into cells is a critical step for applications in biology and medicine

[4]. For instance, the delivery of gene-editing tools could be used to manipulate cells and

tissues for regenerative medicine or engineer cells for personalized cell therapies [4–7]. Intra-

cellular delivery methods include biological vectors such as viruses, chemical modifications of

delivery cargoes such as lipofection, and physical techniques such as microinjection, electro-

poration, and optoporation [11–24]. While research efforts have led to a continuous increase in

efficiency and sophistication, each of the currently available approaches has its own advan-

tages and disadvantages. To this point, no platform technology exists that combines high-

efficiency delivery, high-throughput processing, low-toxicity, versatility with respect to type

of cell and cargo, and simple, cheap and affordable production. The research presented in this

thesis is an attempt toward developing a solution to this problem.

Viral-based delivery is a popular biological technique that offers high-efficiency delivery at

high throughput. However, it is limited in terms of cargo-carrying capacity, the ability to only

deliver genetic material, the requirement to customize the virus for each cargo and cell type,

and the potential for immunologic and oncogenic risks [11–15].

Lipofection, a chemical method, offers high throughput but varies in efficiency depending on

cell type, can require complex chemical customization depending on the cargo, and risks

endosomal trapping of the cargo [7, 25, 26].

Electroporation, the most widely used physical delivery method, offers high-efficiency deliv-

ery and high throughput for a range of cargo types, but can lead to high cell death, particularly

for sensitive cell types [27, 28]. Nucleofection, a variation of electroporation, offers improved

viability but can require expensive customized reagents and can still be low viability for the

most sensitive cell types. Ultrasound-mediated methods offer a low-cost high-throughput

technique for delivering membrane-impermeable cargo into cells [12]. However, the cavitation

dynamics are not spatially localized, which can lead to nonuniform results and high cell death.

Other physical methods such as microinjection, nanowire-mediated delivery, and microfluidic

squeezing are promising, but offer limited throughput and/or reproducibility [14, 29–32].

3. Laser-mediated cell poration for intracellular delivery

Optoporation, a physical delivery technique, utilizes a tightly focused laser beam to create a

transient pore in the cell membrane [18, 19, 33, 34]. This technique offers high delivery efficiency,

high cell viability and is versatile with respect to cargo and cell type. However, each cell has to be

porated individually by focusing the laser beamdirectly onto themembrane, causing optoporation

tohave an extremely low throughput.Modifications, including theuseof active flow inmicrofluidic

channels and a nondiffracting beam, slightly increase the throughput but not to the scale necessary

for applications such as cell therapy, which can require on the order of 108 cells [35, 36].
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Laser-activated thermoplasmonic nanostructures improve the throughput of optoporation by

efficiently absorbing the laser energy at multiple localized hotspots, generating a rise in tem-

perature, and transferring the energy to the surrounding medium [2, 8–10, 31, 37–39]. This

transfer of energy to the surrounding solution results in the creation of a bubble or pressure

wave that can generate sufficient mechanical stress to create a transient pore in the cell

membrane, through which membrane-impermeable cargo can diffuse into the cell [1, 3, 8–10,

40]. This process is shown briefly in Figure 1, and the physics of this process will be explained

in greater detail in the following section of this thesis. Gold nanoparticles are the most com-

monly used plasmonic nanostructures for intracellular delivery and have been successfully

used to porate cell membranes for a range of cell types [37, 38, 41–46]. Gold nanoparticles

potentially outperform other physical techniques by offering high efficiency, viability, and

throughput [1, 45]. However, the gold nanoparticles remain in the cell after delivery as metallic

residue and can form aggregates, and the long-term toxicity of these gold nanoparticles is still

not fully understood [47, 48].

Laser-activated nanostructured substrates bypass this potential toxicity problem, as cells can

be cultured on the substrates, porated, and removed from the substrates (which remain intact)

after intracellular delivery without leaving metallic particles within the cells [31, 39, 49–52]. In

this thesis we explore the fabrication of various thermoplasmonic nanostructured substrates

for intracellular delivery and use the fabricated substrates to deliver a wide range of

membrane-impermeable cargoes (dyes, dextrans, proteins, etc.) to a wide range of cell types

(HeLa CCL2 cells, induced pluripotent stem cells (iPSCs), etc.).

4. Physics of plasmonic intracellular delivery

4.1. Properties of localized surface plasmons

Plasmonic structures have proven valuable in intracellular delivery as well as numerous other

applications requiring the ability to generate electric fields in a highly localized manner [1].

These structures are capable of supporting plasmons, or quanta of plasma oscillations.

Figure 1. Schematic of gold nanoparticle-mediated intracellular delivery. (a) Gold nanoparticles adhere to the cell mem-

brane. (b) The gold nanoparticles are illuminated by a pulsed laser system. (c) Laser illumination of the gold nanoparticles

leads to the formation of a bubble around the gold nanoparticle. (d) The bubble creates a temporary pore in the cell

membrane, through which membrane-impermeable cargo can enter. Reprinted with permission from [1]. Copyright 2013,

Elsevier.
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Plasmons can be described classically as the collective oscillations of free electrons with respect

to the positively-charged ion lattice in a metallic nanoparticle in the presence of an oscillating

electromagnetic field [53, 54].

It is simplest to picture a spherical metallic nanoparticle immersed in an aqueous environment

in the presence of an electromagnetic wave, such as laser light. If the diameter of the nanopar-

ticle is less than half the wavelength of the light, then at any point in time the entire nanopar-

ticle will experience a uniform electric field pointing in one direction, as shown in Figure 2a.

The free electrons in the metallic nanoparticle will accelerate in the direction of the uniform

electric field. As a result, the electrons are displaced from the positively-charged lattice ions of

the metallic nanoparticle. The electrons experience an attractive Coulomb force that drives

them back toward the positively-charged lattice ions, and this movement results in a collective

oscillation of the free electrons with respect to the fixed positively-charged lattice ions. The

oscillator is termed a localized surface plasmon, and the electromagnetic wave, for instance

laser light, is the driving force.

For this phenomenon to occur, the real part of the permittivity, εr, of the plasmonic material

must be negative (a condition satisfied by metals), and the real part of the permittivity of the

surrounding material must be positive (a condition satisfied by dielectrics) [1]. This allows the

following boundary condition in electrodynamics to be satisfied:

D1 �D2ð Þ � bn ¼ D1,⊥ �D2,⊥ ¼ σf (1)

Figure 2. (a) Principle of localized surface plasmons. At any point in time, the gold nanoparticle experiences a uniform

electric field. The electrons accelerate in the direction of the electric field and are displaced from the positive lattice ions.

The electrons are then attracted back to the positive lattice ions by Coulomb forces. This electromagnetic oscillator is

called a plasmon. (b) The gold nanoparticles are illuminated by a pulsed laser system. (c) For a gold nanoparticle with a

50-nm diameter, resonance occurs at a wavelength of approximately 550 nm [1]. Copyright 2013, Elsevier.
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given that

D ¼ εE (2)

whereD is the electric displacement field,E is the electric field, ε is the permittivity of thematerial,

σf is the free charge density and bn points in the direction frommedium 2 to medium 1 [55].

When the eigen frequency of the collective electron oscillation, or the plasma frequency,

matches the frequency of the electromagnetic wave, the system is said to be in resonance.

Resonance results in enhanced absorption of the laser light energy by the metallic nanoparticle,

and a greater near field enhancement, as shown in Figure 2b and c [1]. The resonance wave-

length is affected by the shape, size and material of the nanoparticle as well as the dielectric

constant and refractive index of the environment [1, 56]. Although resonance results in more

efficient absorption and a higher near-field enhancement, resonance is not a necessary condi-

tion for the thermoplasmonic cell poration described in this thesis [57].

4.2. Interactions of laser pulses and plasmonic structures in an aqueous environment

4.2.1. Energy transfer from light source to plasmonic nanostructure to aqueous environment

When a plasmonic nanostructure in an aqueous environment is illuminated with laser light,

the resulting absorption of laser energy and near-field enhancement initiates a series of energy

transfers. Depending on the conditions of the laser pulse, these energy transfers can result in

the creation of a shockwave or vapor bubble [1, 57–59]. In our theoretical discussions, we will

use water as the aqueous environment, as cell media is water-based and biological tissue has a

refractive index (1.36–1.39) comparable to that of water (1.33) [60].

First, the photons in the laser light are absorbed by the electrons in the plasmonic nanostruc-

ture, causing them to collectively oscillate, generating plasmons. The plasmons generate an

enhanced near field. For ultrashort pulses in the fs regime, the peak intensities of the laser

pulses and therefore of the enhanced near-field can be high enough to photo-ionize the water

and generate a plasma [1]. Because the research presented in this thesis makes use of a ns-

pulsed laser system rather than a fs-pulsed laser system, we will not focus on the effects of the

enhanced near-field. We will instead focus on other effects of laser energy absorption by the

plasmonic structure. As the plasmon oscillations decay, the energy is transferred into a distri-

bution of nonthermal electrons (Figure 3) [1]. Over approximately 500 fs, the nonthermal

electrons decay into a population of thermalized electrons via electron–electron scattering. It

takes 1–3 ps for the thermalized electrons to couple with the phonon lattice of the plasmonic

nanostructure and reach thermal equilibrium. According to Boulais et al., over a timescale of

approximately 100 s of ps, thermal energy is transferred from the phonon lattice to the

surrounding medium. However, it is worth noting that the characteristic timescale over which

energy is transferred from a gold plasmonic nanostructure to water can vary depending on the

laser system used and the laser power.

The research presented in this thesis makes use of a ns-pulsed laser system with 11-ns

pulses. These pulse widths are relatively long compared to the electron-phonon coupling
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time and the time over which the thermalized phonon lattice couples to the surrounding

medium. These subsystems therefore reach thermal equilibrium during the lifetime of the

laser pulse, and the laser pulse can be considered as heating the electrons, phonon lattice,

and surrounding medium at the same time.

4.2.2. Heat-mediated bubble and/or shockwave formation

Absorption of laser energy by a plasmonic nanostructure can result in a temperature increase

that generates a shockwave or a bubble, among other possible effects [1, 3, 8–10, 40]. The exact

event that results from the laser energy absorption is dependent on the conditions of the laser

pulse—most importantly, the fluence and the width of the laser pulse. Figure 4 shows the

various effects on a plasmonic gold nanoparticle immersed in water after absorption of an

incoming laser pulse, ranging from a relatively low fluence on the left to increasingly higher

fluences on the right [3].

The laser fluences used in the research presented in this thesis are sufficient to cause protein

denaturation and to generate acoustic waves and water vapor bubbles, and we will therefore

Figure 3. Energy transfers following laser illumination of a plasmonic nanostructure. The photons in the laser light

couple with the electrons in the plasmonic nanostructure, generating plasmon oscillations. The plasmons decay into a

nonthermal electron distribution, which thermalizes within 100s of fs. The thermalized electrons transfer energy to

the phonon lattice of several ps. The phonons transfer thermal energy to the surrounding medium within a timescale on

the order of 100 ps. This can result in effects such as temperature increase, the formation of a pressure wave, and/or the

formation of a vapor bubble. Reprinted with permission from [1]. Copyright 2013, Elsevier.
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focus the discussion in this section on these events. Because the research presented in this

thesis is based on the use of an 11-ns pulsed laser system, we will restrict the discussion to

mechanism processes that can be initiated by laser pulses of this width.

Proteins can denature at temperatures above 50–160�C [3]. The distance from the plasmonic

material at which proteins are denatured is also dependent on the width of the laser pulse. For

instance, proteins 18 nm away from a gold nanoparticle illuminated with a microsecond laser

pulse of sufficient energy are denatured, whereas only proteins up to 4 nm away from a gold

nanoparticle illuminated with a femtosecond pulse are denatured [3]. In the case of nanosec-

ond pulses, as are used in the research presented here, proteins 6 nm away from a gold

nanoparticle are denatured [3]. This is because heat is able to diffuse further for longer pulse

widths; in other words, shorter pulse widths result in greater thermal confinement.

When the plasmonic material absorbs light from a pulsed laser source, the material undergoes

thermal expansion. If the rate of thermal expansion is greater than or approximately equal to

the speed of sound in the surrounding media, compression waves can form, known as the

photoacoustic effect [3]. These acoustic waves can form at lower temperatures, and thus at

lower fluences, than those required for bubble formation [3].

If the laser fluence is high enough for the surrounding media to reach 90% of the critical

temperature, (Tc ¼ 373:9
�

C) bubbles can be generated via phase explosion, which is a combi-

nation of spinodal decomposition and homogenous nucleation [1, 61–63]. Thermal energy

is deposited rapidly into the system, and the water temperature rises rapidly as a consequence.

The heating occurs too rapidly for the water to build up pressure at a sufficient rate, and

the pressure drops below the saturation pressure. The system crosses the binodal line into the

metastable region, and crosses the kinetic spinodal line into the unstable region. In the

Figure 4. Various effects of laser illumination of plasmonic gold nanoparticle in liquid environment. Laser fluence

increases from left to right. Reprinted with permission from [3]. Copyright 2008, Astro Ltd.
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unstable region, there is no energy barrier between the liquid and vapor phases. The water

relaxes into an equilibrium state of both liquid and vapor. This process is accompanied by an

increase in pressure, termed phase explosion. The green line in Figure 5 represents the path-

way of this process [1].

For nanosecond pulses and longer, the damage caused to the cells is most likely due to bubble

formation and collapse, and not due to the formation of acoustic shockwaves. This is because

the timescale for the shockwaves generated by a nanosecond pulse (on the order of 109 s) is

longer than the characteristic relaxation time for thermomechanical stress in biological tissues

(1011–1012 s) [3].

4.2.3. Bubble dynamics

For a nanosecond laser pulse, bubbles can grow and collapse on the timescale of 100 ns to 5 μs

[3]. The bubble grows due to its high relative temperature and pressure, but loses energy as it

grows due to friction with the surrounding liquid. The pressure of the surrounding liquid and

surface tension eventually cause the bubble to collapse, which occurs over approximately the

same timescale as the bubble’s growth [1]. When the bubble collapses, it can generate a

shockwave [3]. It is also possible for the bubble to contract and expand repeatedly, resulting

in bubble oscillations [3].

The formation of a bubble or pressure wave can be measured using pump-probe spectroscopy

[1]. Pump-probe spectroscopy measures scattered light, or a drop in transmitted light. The

lifetime of the drop in transmitted light is equivalent to the lifetime of a bubble, which can

be used to calculate the diameter of the bubble [1]. Operating under the assumptions that the

surrounding liquid is incompressible and there is no heat or mass transfer from the bubble

Figure 5. Density-temperature phase diagram for water. The green line labeled “I” shows the trajectory for phase

explosion. The system crosses the binodal line into the metastable region before crossing the kinetic spinodal line into

the unstable region, where there is no energy barrier between the two phases. The red line labeled “II” shows the

trajectory for trivial fragmentation. CP is the critical point. Reprinted with permission from [1]. Copyright 2013, Elsevier.
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(water vapor has relatively low heat conduction), and given that the temperature T of the

surrounding water is 293 K, the mass density rL ¼ 998 kg=m3 and the saturation pressure

rsat ¼ 2:3 kPa for water, one can simplify the Rayleigh-Plesset equation to obtain the following

relation between the lifetime of a bubble and its diameter [1]:

τbubble ¼ 0:0915
s

m

� �

d
max

bubble
(3)

This estimation is well supported by experimental results, as shown in Figure 6 [1].

The growth and collapse of thermoplasmonic bubbles can generate sufficient thermome-

chanical stress to porate cells [1, 3, 8, 9, 40]. In addition to this effect, the formation of a vapor

bubble affects the interaction between the incoming laser light and the plasmonic nanostruc-

ture by modifying the refractive index of the system and by scattering the incoming light and

reducing the absorption of light by the plasmonic structure [1, 3]. The presence of the bubble

also prevents significant heat conduction to the surrounding liquid, because the vapor of the

bubble consists of relatively low thermal conductivity [1].

5. Conclusion

The challenge of delivering membrane-impermeable cargoes into living cells is an important

problem in the fields of biology and medicine [4–7]. Over the past few decades, solutions such

Figure 6. Plot showing fit of Rayleigh-Plesset equation to experimental data measuring the maximum diameters and

lifetimes of bubbles generated by light-irradiated melanosomes. Photographic image on left shows melanosome before

irradiation; image on right shows melanosome and bubble after irradiation. Ambient pressure of 101 kPa, saturated vapor

pressure of 2.33 kPa, and water density of 998 kg/m3. Reprinted with permission from [1]. Copyright 2013, Elsevier.
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as viral vectors, lipofection, electroporation, nucleofection, microfluidic squeezing, and micro-

injection have offered potential solutions to this complex and critical problem [11, 14–17, 19, 20,

22–24, 28, 29, 35, 64–66]. However, there is still a need for a high-efficiency, high-throughput,

low-toxicity, cost-effective intracellular delivery technique that is applicable to a range of cells

types for a range of cargoes. Plasmonic nanostructured surfaces may be a promising alternative

to the currently available intracellular delivery techniques and utilize the unique ability of

plasmonic structures to absorb laser light energy and transfer the energy to a confined volume

within the nearby surrounding medium [31, 39, 49–52]. Upon illumination with a short laser

pulse, the laser light energy is strongly absorbed by the plasmonic nanostructures, resulting in

a rise in temperature [1, 57–59]. Thermal energy is transferred to the surrounding medium; if

the rise in temperature is sufficient, a bubble is formed in the surrounding medium [1, 57–59].

The subsequent growth and collapse of the bubble can generate sufficient thermomechanical

stress to create a transient pore in nearby cell membranes [1, 3].
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