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Abstract

The results of the experimental study of coherent flow structures in turbulent jets with
different swirl rates are reported. The focus is placed on analysis of their impact on mixing
of a passive scalar in the jets and on regular flame front deformations during combustion
of fuel-lean and fuel-rich methane/air mixtures in case of a strongly swirling jet with
vortex breakdown. The measurements are performed by applying simultaneously the
particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques
(acetone and HCHO for the nonreacting and reacting flows, respectively). The PIV data
are processed by a proper orthogonal decomposition (POD), and the PLIF data are condi-
tionally sampled according to the correlation coefficients of the velocity POD modes. The
coherent velocity fluctuations are associated with regular patterns in the concentration
fluctuation fields and flame front deformations. These patterns correspond to unsteady
mixing by large-scale vortex structures in the outer mixing layer and also to variations of
the entrainment rate for the flows with swirl.

Keywords: swirling jet, mixing, swirling flame, vortex breakdown, coherent structures,
precessing vortex core

1. Introduction

Swirl is often superimposed to jet flows to promote mixing and heat and mass transfer in the

initial region of the flow [1–4]. Whereas ring-like vortices are formed in the shear layer of the

nonswirling and weakly swirling jets, helical vortex structures are formed in the mixing layer

of strongly swirling jets and considered to enhance mixing [4–8]. When the swirl rate exceeds a

certain critical value, a breakdown of the vortex occurs in swirling jets [6, 7, 9–12]. The vortex

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



breakdown corresponds to formation of a wake region or recirculation zone at the jet axis and

intensifies mixing even more via unsteady flow dynamics. The low velocity region at the low-

pressure core of the swirling flow provides favorable local conditions for successful ignition

and stable combustion of flames [1, 13]. Thus, swirling jet flows are often implemented in

combustion chambers and furnaces.

Structure of swirling flows with combustion has been studied extensively in a number of

experiments. Heat release and local density decrease during combustion strongly affect the

shape of the recirculation zone [14, 15]. Hot combustion products tend to concentrate at the

vortex core and are captured by the central recirculation zone [16–20]. Moreover, combustion

is known to induce vortex breakdown, which was absent for the nonreacting flow before

ignition of the flame [21–23]. Besides, amplitude of the vortex core precession is found to be

suppressed by combustion in some studies, whereas in the other, it was not strongly affected

[24, 25]. Detailed experimental data on flow structure of swirling flows with combustion is

necessary for verification of numerical simulations, which are currently performed with eddy-

resolving methods [26–31].

Presently, the impact of unsteady swirling flow dynamics, such as precession of the vortex

core, which is found to produce intensive velocity and pressure pulsations in jets with vortex

breakdown, on unsteady combustion is not completely understood [32]. In particular, the

impact of the precessing vortex core on flame instabilities and unsteady operation of swirl-

stabilized combustors is still a debated issue [33]. Ruith et al. [11] and Liang and Maxworthy

[7] suggest that formation of the recirculation zone triggers a global instability mode, which

results in unsteady dynamics of swirling jets, related to intensive velocity and pressure fluctu-

ations during precession of the swirling vortex core near the nozzle. Oberleithner et al. [12]

have suggested that during the increase of the jet swirl rate the central recirculation zone first

appears in an intermittent manner and then remains permanently. Further increase of the swirl

rate gives rise to a global flow instability to a helical mode, corresponding to precession of the

swirling jet.

From conditionally sampled velocity measurements by the laser Doppler velocimetry tech-

nique, Cala et al. [34] have detected a coherent structure in a high-swirl jet, consisted of a

spiraling vortex core and secondary helical large-scale vortex structures in the inner and outer

mixing layers. Later, similar structures were detected from 2D particle image velocimetry (PIV)

measurements for high-swirl nonreacting jets [35, 36] and flames [37–39]. Later, the presence of

double-helical coherent vortex structure was confirmed from direct 3D PIV measurements in

[8, 40]. However, there is still a lack of experimental studies on mixing in swirling turbulent jets

and quantitative analysis of large-scale vortices contribution to this process.

Dynamics of flow and flame in swirl combustors is studied successfully by combination of PIV

and planar laser-induced fluorescence (PLIF) of OH* (see [41, 42]). The hydroxyl radical OH*,

produced in flame front and present in hot combustion products, is commonly used for

tracking of the front. Stöhr et al. [42] have found that large-scale vortices improve mixing

between the combustion products and reactants. Meanwhile, Boxx et al. [41] have observed

events of local flame extinction during its interaction with large-scale vortices in the high-swirl

flow. Nevertheless, further detailed analysis of the reaction zone shape correlations with large-

scale flow motions in swirling jet flows is desirable.

Swirling Flows and Flames12



Formaldehyde (HCHO) is an important combustion intermediate, occurring in lower-

temperature regions of hydrocarbon-fueled flames. It plays an important role in several com-

bustion processes, including fuel oxidation and autoignition. It appears in the initial step of the

HCHO!HCO! CO oxidation pathway of conventional hydrocarbons [43]. High concentra-

tion of HCHO specifies preheat zone of hydrocarbon flames. One of the most prevalent

strategies for HCHO PLIF measurements is the excitation of 410 transition by using the third

harmonic of Nd:YAG laser radiation at 355 nm [44].

The aim of the current study is to analyze the impact of large-scale vortex structures on mixing

in turbulent jets with different swirl rates on the basis of the combined PIV and PLIF measure-

ments and to reveal regular flame front deformations during combustion of fuel-lean and fuel-

rich flames in the swirling jet with high swirl rate and vortex breakdown.

2. Experimental setup and data processing

Measurements were carried out for swirling jets and premixed methane/air flames at the

atmospheric pressure. The flow was organized in an open combustion rig by using a contrac-

tion axisymmetric nozzle with a changeable vane swirler installed inside to generate jet flows

with swirl. The outlet diameter of the nozzle was d = 15 mm (see [37] for the details). The swirl

rate S was estimated based on the geometric parameters of the swirler [1]:

S ¼
2

3

1� d1=d2ð Þ3

1� d1=d2ð Þ2

 !

tan ψð Þ (1)

where d1 = 7 mm is the diameter of the center body supporting the vanes, d2 = 27 mm is the

external diameter of the swirler, and ψ is the vanes inclination angle relative to the axis. Three

cases of the swirl rate are considered, viz., nonswirling jet without swirler (S = 0) and swirling

jets for ψ = 30, 45, and 55�, corresponding to S = 0.41, 0.7, and 1.0, respectively, whereas the

critical value for the vortex breakdown in jet flows is S ≈ 0.6 [14, 45–47].

The air flow was supplied from a pressure line, and its flow rate was precisely controlled by

mass flow meters (Bronkhorst). To introduce acetone vapor into the nonreacting jet flows, a

part of the air flow was bubbled through liquid acetone, contained in a thermostabilized

container at a fixed temperature. The concentration of the acetone in the jet was below 3%.

The Reynolds number based on the flowrate of air was fixed as 5000 (bulk velocity for the air

jet was U0 = 5.0 m/s).

For the reacting flows, the container with acetone was not used. Instead, the air was premixed

with methane, supplied by another set of Bronkhorst mass flow meters. The equivalence ratio

φ of the methane/air mixtures issued from the nozzle was equal to 0.7 and 2.5. To provide PIV

measurements, the jet flow was seeded by 0.5 μm TiO2 particles. The surrounding air was

seeded by using a fog generator.

A sketch of the PIV/PLIF experimental setup is shown in Figure 1. Two CCD PIV cameras

(ImperX IGV-B2020) were oriented horizontally as shown in Figure 1. The cameras were
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equipped with narrow band-pass optical filters (532 � 10 nm). A double-head Nd:YAG laser

(Quantel EverGreen) was used to illuminate the tracer particles in the central plane of the flow

for the PIV measurements. Duration of each laser pulse was approximately 10 ns. The time

interval between two PIV laser pulses for the reacting flows was 35 μs.

The velocity fields were evaluated by an adaptive iterative cross correlation algorithm with

continuous image shift and deformation (see [48] for the definition), included an in-house

software “ActualFlow.” The final size of the interrogation areas was 32 � 32 pixels. The spatial

overlap rate between the neighbor interrogation areas was 50%. Calibration of the stereo PIV

and PLIF cameras was performed by using a plane calibration target and third-order polyno-

mial transform. This was done by processing images of the calibration target placed in five

different positions in the normal-to-plane direction with the step of 0.5 mm. In addition, to

minimize the calibration error, an iterative correction procedure of possible misalignment

between the laser sheet and the target plane was applied [49]. For almost the entire measure-

ment domain, the mismatch between the actual marker locations on the target and their

coordinates in the obtained calibration model was below 1 pixel.

The fourth harmonic (266 nm) of a pulsed Nd:YAG laser (Quantel Brilliant B) was used for

excitation of the acetone fluorescence. During excitation of the HCHO fluorescence (410 transition

of A–X band) for the reacting flows, the third harmonic (355 nm) of the same laser was used.

Duration of each laser pulse was approximately 10 ns. The laser beams for the PLIF and PIV

systems were combined by using a dichroic mirror and converted into a collimated laser sheet

with the width of 50 mm. The laser sheet thickness was below 0.8 mm in the measurement region.

Figure 1. Sketch of the PIV/PLIF setup and geometry of the nozzle (inset).

Swirling Flows and Flames14



Fluorescence of HCHO and acetone was collected by a system of UV-sensitive image intensi-

fier (LaVision IRO, photocathode S20 multialkali provided quantum efficiency about 25% for

wavelengths in UV spectral region) and sCMOS camera (LaVision Imager sCMOS, 16 bit

images with resolution of 2560 � 2160 pixels), equipped with a UV lens (100 mm, f# = 2.8)

and band-pass optical filter. The exposure time for each PLIF image was 200 ns. The PLIF

signal was collected almost in the center of the time interval between two pairs of the PIV laser

pulses.

The raw PLIF images contained different types of systematic and random errors. The system-

atic errors were produced by spatially nonuniform laser sheet intensity, nonuniform spatial

sensitivity of the photocathode and CCD, dark current of the sensors, and background signal

(due to possible reflections, etc.). A set of post-processing algorithms were applied to the PLIF

images to remove the dark current and background intensity and to correct for the spatial

nonuniformity of the laser sheet intensity and sensitivity of the sensors. An additional ICCD

camera (PCO DicamPro) was used to monitor the spatial distribution of energy in each pulse

of the PLIF lasers by using a quartz cuvette filled with uniform solution of a fluorescent dye

(Rhodamine 6G).

Typical magnification of the PIV and PLIF systems was 29.9 and 35.0 pixels per mm, respec-

tively. The optical resolution of the PLIF system corresponded to a Gaussian-type smoothing

with the full width at the half maximum of approximately 15 pixels. The resolution was

evaluated based on a “knife-edge technique” similar to that in [50]. To fit grids of the PIV and

PLIF data, the latter was spatially averaged over domains with the size of 0.96 mm and 50%

overlap rate. The laser sheet thickness in the region of interest for both systems was approxi-

mately 0.8 mm.

To reveal coherent structures in the flows, the fluctuating velocity data set W = [u0(x, t1)…u
0(x,

tN)] for each flow case was processed by a snapshot proper orthogonal decomposition (POD)

[51]. POD is based on a singular value decomposition:

u
0
x; tkð Þ ¼

XN
q¼1

αq tkð Þσqφq xð Þ or in a matrix formW ¼ UΣVH , (2)

where

ð

Ω

φiφjdx ¼ δij and
1

N

XN
k¼1

αi tkð Þαj tkð Þ ¼ δij (3)

Each set of the fluctuating velocity fields u0(x, tk) is represented as a finite series of the products

of the spatial orthonormal basis functions ϕq (U = [ϕ1…ϕN]) with nondimensional temporal

coefficients αq (corresponding to the conjugate transpose of a matrix V that is composed of the

right-singular vectors of W) and singular values σq (Σ = diag[σ1… σN]). N is the number of the

snapshots in the set. The singular values characterize the amplitude (square root of the kinetic

energy of the velocity fluctuations) of each POD mode in the data sequence and are equal to

square root of the eigenvalues of the covariance matrix WWH. For the used snapshot POD

method, the POD modes can be represented as:
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φq xð Þ ¼
XN
k¼1

akqu
0 x; tkð Þσ�1

k or U ¼ WΣ
�1V (4)

To reveal coherent structure effect on mixing and flame front deformation, fluctuations I0(x, t)

of the PLIF data are conditionally sampled according to the temporal coefficients akq (from

matrix V) of the POD modes:

cq xð Þ ¼
urms

Irms

XN
k¼1

akqI
0 x; tkð Þσ�1

k ,where u2rms ¼

ð

Ω

u02dx and I2rms ¼

ð

Ω

I0
2
dx (5)

3. Results

3.1. Swirling jets without combustion

Figure 2 shows the time-averaged velocity fields and turbulent kinetic energy for the

nonreacting jets. The core of the nonswirling jet (S = 0) is surrounded by the circular mixing

layer, where velocity fluctuations grow downstream. For the case S = 0.41 (referred to as low-

swirl jet), a wake region is formed at the jet axis, where the average axial velocity remains

positive. The velocity fluctuations for the outer mixing layer of the low swirl are considerably

greater. Also, their intensity at the onset of the central wake region reached 35% of U0. For the

cases S = 0.7 and 1.0 (referred to as high-swirl jets), the black solid line surrounds the region

with negative values of the mean axial velocity, corresponding to the central recirculation zone.

Thus, there are two mixing layers in the flow of the swirling jets, viz., the inner mixing layer

between the annular swirling jet and the central recirculation zone/wake region and the outer

mixing layer between the jet and the surrounding air. The swirl results in a greater opening

angle for the jet. It is increased from approximately 11 to 37� (half angle) for the considered

range of swirl rates.

The normalized spatial distributions of the time-averaged acetone concentration are shown in

Figure 3. The swirl results in a faster mixing of the jet with the surrounding air. The contour

lines show values of the local variance of the concentration. Thus, the concentration fluctuates

in the outer mixing layer. The swirl decreases the length of the mixing region, viz., it is less

than one nozzle diameter for the case S = 1.0. Thus, the flow swirl and vortex breakdown

dramatically promote the mixing.

Examples of the instantaneous velocity and concentration fields, measured simultaneously

and plotted in Figure 4, show an effect of large-scale vertical structures on turbulent mixing

in the studied jets. The large-scale vortex structures are visualized by regions with positive

values of a 2D modification (Eq. (6)) of Q-criterion [52], viz., Q2D > 5U0
2d�2. For the

nonswirling jet, it is expected that the vortex cores in the outer mixing layer correspond to

ring-like vortices. They engulf and entrain the surrounding air, whereas the jet core remains

almost unmixed. For the low-swirl jet, the acetone spreads faster into the surrounding air and

the mixing is more efficient.

Swirling Flows and Flames16



Q2D
¼ �

1

2

∂ux
∂x

∂ux
∂x

�

1

2

∂uy

∂y

∂uy

∂y
�

∂ux
∂y

∂uy

∂x
: (6)

Whereas the vortex structures present both in the inner and outer mixing layers of the low-

swirl jet, their contribution to the mixing near the wake region is small. During the mixing in

the high-swirl jets, some amount of the surrounding air is captured by the central recirculation

zone and mixed with annular jet, issued from the nozzle. Thus, the contribution of large-scale

vortex structures to the jet dilution in the inner mixing layer increases with swirl rate.

To reveal coherent structures in the flows and to analyze their contribution to mixing, POD is

applied to the sets of the measured velocity fields. The POD spectra of the velocity fluctuations

in the nonreacting jets for different swirl rates are shown in Figure 5. For the high-swirl jets

with vortex breakdown, there are two most energetic modes. They contain approximately 9

and 16% of the spatial-averaged turbulent kinetic energy for the cases of S = 0.7 and 1.0,

respectively, whereas the energy of rest modes is below 2%. Values of the temporal coefficients

for the first two modes for S = 1.0, shown in Figure 5, are scattered around a circle-like figure,

indicating that these modes are statistically correlated.

Figure 2. Time-averaged velocity fields and distributions of the turbulent kinetic energy for nonreacting swirling jets.

Black solid line includes regions with negative axial velocity.
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Spatial distributions of the first four POD modes for the nonswirling jet with corresponding

conditionally sampled fluctuations of the acetone concentration are shown in Figure 6. The

distributions of the fluctuations correspond to growing downstream vortex structures and

expanding traveling waves of the concentration fluctuations. The first and second POD modes

appear to be shifted by π/2 phase and are expected to be related to growing downstream ring-

like vortices. The third and fourth modes are likely to be associated with pairing process of

these ring-like vortices at approximately 1.5d downstream the nozzle exit and related modula-

tion of amplitude of the subsequent vortices upstream via pressure feedback mechanism [53].

For the low-swirl jet (see Figure 7), the first POD mode is related to oscillations of the axial

velocity near the central wake, which is in agreement with the scenario of the vortex break-

down by Oberleithner et al. [12], where formation of the permanent recirculation zone is

preceded by an intermittent formations of the reverse flow at the jet axis. It is found that such

fluctuations are coherent with large-scale variation of the entrainment rate downstream. The

second POD mode is presumably related to precession of the vortex core upstream the wake

region and also correlated with downstream variation concentration fluctuations. The third

and fourth POD modes correspond to traveling waves of the concentration fluctuations in the

outer mixing layer, produced by growing downstream large-scale toroidal vortex structures.

Figure 3. Time-averaged values and variance of the passive scalar concentration for nonreacting turbulent jets with

different swirl rate.

Swirling Flows and Flames18



Figure 4. The instantaneous velocity and concentration snapshots for turbulent jets with different swirl rate. Large-scale

vortical structures are visualized by regions with positive Q-criterion (Q2D
≥ 5U0

2d�2 with the step of 2.5U0
2d�2).

Figure 5. POD spectra for nonreacting jets and temporal coefficients for the first two POD modes for the high-swirl jet.
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Figures 8 and 9 show the first four POD modes for the high-swirl jets for S = 0.7 and 1.0,

respectively. The first two POD modes correspond to transverse velocity fluctuations around

the nozzle exit, correlated with the velocity fluctuations in the inner and outer mixing layer.

The concentration fluctuations related to these modes correspond to expanding downstream

traveling waves. In analogy to the nonswirling jet, the first and second POD modes appear to

be shifted by the phase of π/2. The main difference between the cases S = 0.7 and 1.0 is that in

the latter case the coherent fluctuations of the concentration take place both in the inner and

outer mixing layers.

The results for the high-swirl jets are in agreement with the conclusions of the previous 2D PIV

study in [37], where it was proposed that these two POD modes correspond to two orthogonal

cross planes of a single rotating coherent structure, consisting of a precessing spiraling vortex

core (in the inner mixing layer) and a secondary helical vortex structure (in the outer mixing

layer). This assumption was later supported in studies of the nonreacting swirling jets by 3D

PIV [8]. Thus, the outer helical vortex of the coherent structure produces regular large-scale

structures in the spatial distributions of the concentration fluctuations.

Figure 6. First four POD modes of the velocity fluctuations and corresponding conditionally sampled fluctuations of the

concentration for a nonswirling jet (S = 0).
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3.2. High-swirl jets with combustion

Figure 10 shows the photograph, time-averaged velocity field, and HCHO PLIF signal for the

high swirling jet with combustion. Two flame cases are considered, viz., combustion of the fuel-

lean and fuel-rich mixtures with the equivalence ratio of φ = 0.7 and 2.5, respectively. The black

solid lines in the time-averaged velocity fields surround regions with negative values of the

mean axial velocity, corresponding to the central recirculation zone. Note that the shape of the

recirculation zone for these two cases is very similar. In general, there are two mixing layers in

the flows as it is the case for the nonreacting high-swirl jet.

For the fuel-lean flame (φ = 0.7), the annular jet flow envelopes the central recirculation zone,

containing a weak reverse flow. According to the PLIF signal, the flame front is located in the

inner mixing layer of the jet flow. On average, the combustion of the fuel-rich mixture takes

Figure 7. First four POD modes of the velocity fluctuations and corresponding conditionally sampled fluctuations of the

concentration for a low swirling jet (S = 0.41).
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place both in the outer (above 0.7d from the nozzle exit) and in the inner (around the central

recirculation zone) mixing layers.

Figure 11 shows the instantaneous snapshots of the velocity and HCHO PLIF signal for the

high-swirl jets with combustion. Large-scale vortex structures are visualized by the 2D modi-

fication of Q-criterion. For the fuel-lean mixture, there are pairs of large-scale vortices, which

corrugate the flame front (indicated by arrows). The vortices in the pair envelope the flame

front from opposite sides (one vortex is located in the inner mixing layer, whereas another one

is in the outer mixing layer). In the previous study of [39], it was suggested that these vortex

pairs are cross sections of two helical vortex structures with one present in the inner mixing

layer and another one located in the outer mixing layer.

The instantaneous velocity and HCHO PLIF data for the fuel-rich flame illustrate that the

flame front surrounds the central reticulation zone with a complex shape, corresponding to

downward flow between the large-scale vortex structures in the inner mixing layer. The flame

Figure 8. First four POD modes of the velocity fluctuations and corresponding conditionally sampled fluctuations of the

concentration for a high swirling jet (S = 0.7).
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front is also located in the inner mixing layer, where turbulent mixing of the combustion

products with the surrounding air is followed by their afterburning. In general, the current

PIV/PLIF data supports results of the previous study in [37], where it was concluded that the

large-scale helical vortex structure in the outer mixing layer promotes stabilization of the fuel-

rich flame via enhanced turbulent mixing.

To reveal coherent structure effect on the flame front shape, the fluctuating velocity data sets

are processed by the POD. The POD spectra for the high-swirl flows without combustion and

with combustion of the fuel-lean and fuel-rich mixtures are shown in Figure 12. For the flows

with combustion, amplitude (i.e., the spatial-averaged variance of the velocity fluctuations;

note that the density is not constant) of the first two POD modes is considerably smaller in

comparison to that for the nonreacting flow. The spatial distributions of the first four POD

modes for the reacting flows with φ = 0.7 and 2.5 are shown in Figures 13 and 14, respectively.

Figure 9. First four POD modes of the velocity fluctuations and corresponding conditionally sampled fluctuations of the

concentration for a high swirling jet (S = 1.0).
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Figure 10. Photographs and time-averaged velocity field and HCHO PLIF for the high-swirl jets (S = 1.0) with combus-

tion. Black solid line includes region with negative axial velocity.

Figure 11. The instantaneous velocity and HCHO PLIF snapshots for turbulent high-swirl jets (S = 1.0) with combustion.

Large-scale vortical structures are visualized by regions with positive Q-criterion (Q2D
≥ 6U0

2d�2 with the step of

3U0
2d�2).
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Figure 12. POD spectra for high-swirl jets (S = 1.0) with combustion and temporal coefficients for the first two POD

modes for the fuel-lean flame.

Figure 13. First four POD modes of the velocity fluctuations and conditionally sampled HCHO PLIF fluctuations for a

high-swirl fuel-lean flame (S = 1.0, φ = 0.7).
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As for the nonreacting flow, the first two POD modes for the fuel-lean flame correspond to

coherent velocity fluctuations in the inner and outer mixing layers. The coherent fluctuations

of HCHO data correspond to traveling waves along the flame front, which spread down-

stream. This correlation is related to the regular flame front deformations during propagation

of the large-scale vortex structures. The third and fourth POD modes correspond to the

velocity fluctuations in the upper part of the recirculation zone.

For the fuel-rich flame, the spatial structure of the first three POD modes is similar to that

reported in [37] for the similar kind of flame, whereas amplitudes of these modes are different.

The latter finding is explained by the different field of view in the present and previous

experiments. Despite coherent velocity fluctuations in the mixing layers, correlated with the

transverse flow movement at the nozzle exit, strong, almost axisymmetric variation of the

longitudinal velocity takes place in the outer mixing later, induced by the buoyancy force and

resulted in an unsteady entrainment of surrounding air.

Figure 14. First four POD modes of the velocity fluctuations and conditionally sampled HCHO PLIF fluctuations for a

high-swirl fuel-rich flame (S = 1.0, φ = 2.5).
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4. Conclusions

Contribution of large-scale coherent structures on regular patterns during turbulent mixing in

jet flows with different swirl rates is evaluated on the basis of PIV/PLIF measurements and

POD of the velocity snapshots. The main findings are the following:

• For the nonswirling and weakly swirling jet (without permanently present central

recirculation zone), toroidal vortices in the outer mixing layer are associated with regu-

lar patterns of the concentration fluctuations. For the low-swirl jet, the POD has also

revealed variation of the axial velocity in the wake region and transverse movement of

the vortex core. Such flow dynamics supports the unsteady vortex breakdown scenario

of Oberleithner et al. [12] and is found to be correlated with alternation of the entrain-

ment rate downstream.

• For the strongly swirling jets with vortex breakdown and central recirculation zone, the

flow dynamics is related to rotation of a coherent structure, consisting of a pair of large-

scale helical vortices. Such coherent structure remains in the considered cases of the fuel-

lean and fuel-rich flames. The helical vortices surround the flame front of the lean

mixture from both sides and provide regular deformations and stretching of the flame.

The outer helical vortex produces ordered concentration structures during the mixing of

the jet with the surrounding air and causes large-scale coherent motion of the fuel-rich

flame.
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