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Abstract

Maintenance of adequate blood flow to tissues and organs requires that endothelial cells
dynamically respond in a stimulus-specific manner to elicit appropriate changes in
smooth muscle contractility and thus, arterial diameter. Endothelial cells can be stimu-
lated directly by increases in blood flow and by humoral factors acting on surface recep-
tors, as well as through flux of second messengers from smooth muscle cells activated by
release of neurotransmitters from perivascular nerves. The ability of endothelial cells to
generate stimulus-specific responses to these diverse inputs is facilitated by organization
of ion channels and signaling proteins into microdomains that permit finely-tuned,
spatially-restricted Ca2+ events to differentially activate key effectors such as nitric oxide
(NO) synthase and Ca2+-activated K+ (KCa) channels. NO is a diffusible mediator which
acts locally to cause vasodilation. Opening of KCa channels causes hyperpolarization of
the endothelial membrane potential which spreads to surrounding smooth muscle cells to
also cause local vasodilation. However, once initiated, hyperpolarization also spreads
longitudinally through the endothelium to effect coordinated changes in blood flow
within multiple arterial segments. Thus, the signaling pathways activated by a particular
stimulus determine whether it’s effects on arterial diameter are localized or can impact
blood flow at the level of the vascular bed.
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1. Introduction

Appropriate local control of blood flow through resistance arteries is critical to the function-

ing of tissues and organs, and to regulation of blood pressure. Lying at the interface

between the blood and smooth muscle cells of the vessel wall, the endothelium plays a vital

role in this dynamic process by transducing diverse chemical and mechanical stimuli into
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coordinated changes in arterial diameter. Endothelial cells respond to vasodilatory stimuli

by releasing diffusible mediators such as nitric oxide (NO) and prostacyclin (PGI2) and by

initiating membrane hyperpolarization that spreads to surrounding smooth muscle cells via

myoendothelial gap junctions (MEGJs) to inhibit contractility, a mechanism termed

endothelium-dependent hyperpolarization (EDH) [1–3]. NO and PGI2 are local mediators

that diffuse to surrounding smooth muscle cells to cause relaxation. Once initiated, EDH

spreads to surrounding smooth muscle cells to affect relaxation but conduction of hyperpo-

larization longitudinally through the endothelial layer means that EDH also contributes to

coordination of changes in blood flow in multiple arterial segments within a vascular bed [4].

Thus, the ability of a stimulus to engage diffusible mediators versus EDH determines

whether it’s effects on arterial diameter and thus blood flow, are restricted to the local area

or can impact blood flow at the level of the vascular bed.

Increases in endothelial intracellular Ca2+ concentration ([Ca2+]i) drive these vasodilator path-

ways; NO is synthesized from L-arginine by the Ca2+-calmodulin-dependent enzyme NO

synthase (NOS) [3], PGI2 is generated by the actions of cyclooxygenase on arachidonic acid

released by the actions of Ca2+-dependent phospholipase A2 on membrane phospholipids [5, 6],

and opening of Ca2+-activated K+ (KCa) channels causes hyperpolarization [3, 7]. Global changes

in endothelial [Ca2+]i have been widely studied [8, 9], but development of new technologies such

as high-speed, high-resolution confocal Ca2+ imaging and generation of transgenic mice

expressing genetically encoded Ca2+ indicators has allowed resolution of a wide range of tran-

sient Ca2+ events within endothelial cells of intact arteries to provide a growing body of support

for the concept of stimulus-specific engagement of effectors underpinned by spatially and tem-

porally discrete Ca2+ signaling patterns that occur independently of changes in bulk endothelial

[Ca2+]i [10–13].

Pulsars [10] and wavelets [11] are spontaneous, short-lived, (<0.03 s duration) spatially fixed

Ca2+ events originating from distinct clusters of inositol 1,4,5-trisphosphate (InsP3) receptors

on the membrane of endoplasmic reticulum (ER). First identified in mouse mesenteric artery

and hamster skeletal muscle arteriolar endothelial cells, these events predominantly occur

close to endothelial projections that abut or form MEGJs with smooth muscle cells [10, 11]

and exert a basal vasodilator influence through activation of intermediate conductance (IKCa)

Ca2+-activated K+ channels. Their dependence on InsP3 provides a mechanism by which

pulsars are linked to and regulated by G protein-coupled receptor (GPCR) signaling. Elevation

of InsP3 by endothelium-dependent vasodilators [10] or by flux of InsP3 from smooth muscle

cells following stimulation of α1-adrenoceptors [11] increases pulsar size and/or frequency

through recruitment of new sites and a reduction in the interval between pulsars at a given

site. In porcine coronary arteries, InsP3-dependent Ca
2+ events similar to pulsars propagate

into longer lasting Ca2+ waves (>8 s duration) facilitated by the longitudinal arrangement of

ER/InsP3 receptors to promote directional Ca2+-induced Ca2+ release along the endothelial cell

axis and are associated with activation of both NOS and KCa channels [12].

Sparklets are generated by spatially restricted Ca2+ influx through members of the transient

receptor potential (TRP) ion channel family [14, 15]. Sparklets were first identified in mouse

mesenteric arteries under experimental conditions in which InsP3-mediated pulsars were
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eliminated [14]. Exposure of the endothelium to TRPV4 agonists and/or acetylcholine increased

the activity of these discrete Ca2+ signals which were linked to activation of both IKCa and small

conductance (SKCa) Ca
2+-activated K+ channels, effects which were absent in arteries from mice

lacking TRPV4 [14]. In rat cremaster arterioles, clustering of TRPV4-mediated sparklets in endo-

thelial projections was linked exclusively to activation of IKCa channels [16] and in mouse small

pulmonary arteries, shear stress-stimulated TRPV4 activity was linked to NO production [17].

Larger endothelial sparklets mediated by simultaneous opening of two TRPA1 and leading to

activation of IKCa channels were shown to underlie dilation to reactive oxygen species in rat

cerebral arteries [18]. We will now discuss how grouping of Ca2+ signaling and effector proteins

into microdomains allows dynamic, stimulus-specific Ca2+ events which determine the recruit-

ment of effectors thus the degree to which blood flow is impacted.

2. Stimulus-specific endothelial Ca2+ signaling

2.1. Shear stress

In vivo, endothelial sensing of laminar shear stress, the tangential frictional force exerted by

blood flowing across the cell surface, plays a dominant role in acute modulation of vascular

tone and therefore, tissue perfusion [19–21]. In the majority of resistance arteries, increases in

blood flow stimulate endothelium-dependent relaxation of surrounding smooth muscle cells

and increase arterial diameter, a response termed flow-mediated dilatation. Flow also influ-

ences gene expression and structural remodeling with areas of disturbed flow and reduced

shear stress is associated with development of atherosclerotic plaques [22]. Measurement of

acute responses to increases in shear stress is the most widely used clinical index of endothelial

function and vascular health with attenuation of flow-induced dilation associated with

increased risk of cardiovascular diseases [23, 24]. Indeed, reductions in shear stress are a likely

mechanism by which endothelial function is altered with inactivity, an effect which can be

overcome by exercise interventions [25, 26].

In animals and humans, acute shear stress-induced vasodilation can be mediated by both NO

and EDH [27–31]. Although endothelial cells express both SKCa and IKCa channels, data from

isolated arteries indicate that it is SKCa channels that play a predominate role in mediating the

EDH component of this response. Deletion of SKCa but not IKCa channels impaired both NO

and EDH-mediated dilation to shear stress stimulation in mouse isolated carotid arteries [32].

In rat isolated perfused mesenteric beds, shear stress-induced modulation of sympathetic

vasoconstriction was prevented by both the NOS inhibitor L-NG-nitroarginine methyl ester

(L-NAME) and apamin, a selective blocker of SKCa channels, but not by the IKCa channel

inhibitor TRAM-34 [33]. Similarly, shear stress-evoked dilation of mouse isolated coronary

arteries was inhibited by apamin [34] and L-NAME [35].

Mechanotransduction, the conversion of increases in shear stress into changes in arterial

diameter, is reliant upon rises in endothelial [Ca2+]i mediated by Ca2+ entry. In vitro studies

have identified multiple candidates as potential endothelial mechanosensors including
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integrins [36], tyrosine kinase receptors [37], intercellular junction proteins [38], and P2X4

receptors which are cation channels activated by adenosine triphosphate (ATP) [39]. Work

with transgenic mice has implicated GPR68, a proton-sensing rhodopsin-like GPCR [40],

inwardly rectifying K+ channels [41] and PIEZO1, a Ca2+-permeable, non-selective cation

channel [42, 43]. However, recently, it is the role of TRPV4 in endothelial responses to increases

in shear stress that has received particular attention. This Ca2+ permeable channel can be

directly activated by shear stress [34, 44] via membrane deformation or through a lever-like

action involving cytoskeletal linkages to molecules embedded in the glycocalyx [45, 46], the

layer of proteoglycans and glycoproteins that covers the luminal surface of the endothelium, or

indirectly through upstream production of arachidonic acid metabolites [47]. Genetic deletion

of TRPV4 results in blunted flow-mediated dilation of mouse carotid and mesenteric arteries

[31, 47, 48] and pharmacological inhibition of these channels blocked flow-evoked increases in

endothelial [Ca2+]i in isolated mouse mesenteric, human coronary, and rat carotid and gracilis

arteries [31, 49–51]. In bovine coronary endothelial cells block of TRPV4 inhibited both shear

stress-evoked increases in [Ca2+]i and activation of SKCa channels [34], indicating that there

may be a direct link between TRPV4-mediated Ca2+ influx and SKCa channel activity. This idea

is supported by the demonstration that in rat pulmonary arteries, vasodilation to the TRPV4

agonist GSK1016790A was mediated by activation of SKCa channels [52]. In the same vessels,

and in mouse small pulmonary arteries, shear stress-stimulated TRPV4 activity was also

linked to NO production [17] suggesting a further link between TRPV4 and NOS.

Building on these findings, several lines of evidence now support the notion that acute

increases in shear stress cause Ca2+ influx through TRPV4 channels to selectively activate both

SKCa channels and NOS, and that this pathway is enabled by organization of TRPV4, NOS,

SKCa channels and the caveolae scaffold protein caveolin-1 into microdomains within

caveolae, flask-shaped structures on the endothelial cell surface rich in signaling proteins [34,

53, 54]. SKCa channels are localized to the luminal membrane of endothelial cells in rat

mesenteric arteries [55] and SKCa channel protein was co-immunoprecipitated with caveolin-1

from endothelial cells of the same arteries and from porcine coronary arteries [56]. It is well

established that endothelial NOS is localized to caveolae where it is negatively regulated

through its interaction with caveolin-1 [57]. Increases in [Ca2+]i promote recruitment of Ca2+-

calmodulin to displace caveolin-1 from NOS thereby activating it [53]. In bovine coronary and

human microvascular endothelial cells, SKCa channels were co-localized with caveolin-1, NOS

and TRPV4 channels within microdomains at the luminal endothelial cell surface [34, 57, 58].

Furthermore, in mesenteric arteries from mice lacking caveolin-1, endothelial TRPV4 channel

activity was impaired indicating that a direct interaction between TRPV4 and caveolin-1 may

be functionally important for Ca2+ entry in response to shear stress [57]. Caveolin-1 has been

shown to initiate downstream signaling in response to increases in shear stress [59] leading to

the suggestion that caveolae act as mechanosensors to elicit a cascade of events that promote

vasodilation. In line with this proposal, shear stress-induced dilation is defective and endothe-

lial SKCa current reduced in coronary and carotid arteries of mice lacking caveolin-1, an effect

rescued by re-introduction of endothelial specific caveolin-1 [58, 60].

Together these findings, gathered using a range of approaches and from a number of different

arteries, support an elegant model in which shear stress-evoked Ca2+ influx through TRPV4

channels on the luminal surface of endothelial cells leads to spatially-restricted Ca2+ sparklets
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within a signaling microdomain to selectively activate SKCa channels and NOS to elicit vaso-

dilation (Figure 1). However, a number of questions remain to be addressed. Shear stress

increases PGI2 production in bovine coronary and human umbilical vein endothelial cells [34,

61] and rabbit isolated femoral arteries [62], and hydrogen peroxide (H2O2) contributes to

flow-mediated dilation in coronary arterioles from patients with heart disease [63] but the

functional role of these factors in acute flow-mediated vasodilation has not fully been

explored. A significant component of flow-induced dilation remained in isolated mesenteric

arteries of mice lacking TRPV4 [31] which could indicate that, as suggested in earlier reports,

Ca2+-independent processes may also contribute to this response [64] or the involvement of

another route for Ca2+ influx. The possibility that flow-induced increases in endothelial cell

[Ca2+]i are stimulated by localized release endothelium-derived paracrine mediators such as

ATP, substance P or acetylcholine, first proposed over 30 years ago [65, 66], has recently

received renewed support with the demonstration that endothelial organic cation transporters

release acetylcholine in response to increases in shear stress in rat isolated carotid arteries [67].

The same study suggests that InsP3-mediated Ca2+ release from ER stores and Ca2+ entry

through TRPC but not TRPV4 contributes to flow-induced endothelial Ca2+ signaling in these

vessels. This finding highlights the fact that further work is required to elucidate the differen-

tial signaling networks underlying endothelial responses to acute increases in shear stress in

different arteries.

2.2. Agonists at endothelial GPCRs

Many endogenous and exogenous chemicals bind to GPCRs leading to stimulation of EDH

and production of NO, PGI2 and other diffusible mediators such as epoxyeicosatrienoic acids

and H2O2, to cause vasodilation [1, 2, 68]. Measurements of bulk endothelial [Ca2+]i established

Figure 1. Model of localized endothelial Ca2+ signaling evoked by increases in shear stress. Shear stress-evoked Ca2+

influx through TRPV4 channels on the luminal surface of endothelial cells leads to spatially-restricted Ca2+ sparklets

within a signaling microdomain to selectively activate SKca channels and endothelial NOS (eNOS).
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the role of InsP3-mediated Ca2+ release and subsequently store-operated Ca2+ entry (SOCE) in

this process [9]. The mechanism underlying endothelial SOCE has been controversial but

recent evidence supports a model in which Ca2+ store depletion allows spatial reorganization

of Ca2+ sensor protein stromal interaction molecules (STIMs) so that they can aggregate into

clusters that physically interact with Ca2+-selective Orai channels at the ER-plasma membrane

junction [69–72]. TRPC and TRPV4 can also interact with STIMs [73] and studies of knock-out

mice have provided evidence for a role for TRPC4 in acetylcholine-evoked SOCE in aortae [74]

and for TRPV4 in SOCE in mesenteric [75] and carotid arteries [76]. A receptor-operated Ca2+

entry mechanism can also be mediated by DAG-induced activation of TRPC and TRPV chan-

nels. For example, in human umbilical vein endothelial cells, bradykinin stimulated both

translocation of DAG-sensitive TRPC6 to the cell membrane and Ca2+ influx [77, 78]. Expres-

sion of mRNA for another ER Ca2+ release channel, the ryanodine receptor (RyR), has been

detected in endothelial cells of human mesenteric arteries [79], and RyRs have been suggested

to mediate Ca2+ oscillations in cultured bovine aortic and human umbilical vein endothelial

cells [80] but to date, ryanodine has been shown to have no effect on endothelial Ca2+ signaling

or vasodilation [12, 81]. There is significant variation in the reported contribution of EDH, NO

and other mediators to agonist-evoked dilation, both in terms of differences between agonists

and arteries. Thus, for the purposes of this chapter we will limit our discussion to three agents

commonly used to stimulate endothelium-dependent vasodilation in experimental studies,

acetylcholine, ATP and substance P.

The first evidence that differential endothelial Ca2+ signaling underlies agonist-evoked EDH

and NO came from a study of rat isolated middle cerebral arteries in which EDH-dependent

vasodilation to purinergic agonists required a larger increase in [Ca2+]i than for NO [82].

Measurements of global [Ca2+]i indicated that different sources of Ca2+ contributed to agonist-

stimulated production of NO and EDH; NO production is associated with SOCE [83] whereas

EDH is linked to both InsP3-mediated Ca2+ release and SOCE [84]. Similarly, both agonist

evoked SOCE and NO production are suppressed in isolated aortae from mice lacking STIM1,

the primary endothelial STIM [85]. Building on these findings, data accrued over the past

15 years from functional, histological, Ca2+ imaging and immunohistochemical studies of

intact arteries and endothelial-smooth muscle co-cultures support agonist-evoked EDH and

NO release being mediated by distinct Ca2+ signaling within specialized domains.

2.2.1. EDH

EDH is mediated by opening of both IKCa and SKCa channels but their relative contribution to

agonist-evoked vasodilation, based on the effects of selective pharmacological inhibitors, dis-

plays significant variation between agonists and arteries. Simultaneous block of both IKCa and

SKCa channels is required to inhibit acetylcholine-evoked EDH in mesenteric arteries from rats

and mice, and guinea-pig coronary arteries [86–88] whereas in rat cerebral and human mesen-

teric arteries the same response is largely reliant on IKCa channels [89, 90].

IKCa and SKCa channels display a differential spatial distribution within endothelial cells and

their contribution to agonist-evoked EDH appears to be mediated by different signaling path-

ways. In mesenteric arteries from rats, mice and humans, IKCa channels are localized within
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regions associated with MEGJs in which ER membrane, InsP3 receptors, gap junction connexins,

TRPC3 and TRPV4 have also been identified [10, 11, 14, 55, 90–93]. In mouse and rat mesenteric

arteries, acetylcholine increased the frequency and number of InsP3-dependent Ca
2+ pulsars in

this region which were linked to activation of IKCa channels to evoke EDH [10, 93] (Figure 2).

TRPC3 may support this process by providing Ca2+ entry for refilling of InsP3-sensitive ER

stores, and/or direct activation of both SKCa and IKCa channels [91, 94]. However, in other reports

acetylcholine exclusively stimulates TRPV4 in the vicinity of MEGJs to generate Ca2+ sparklets

and which in turn activate IKCa channels in mouse mesenteric arteries [14, 95]. This occurs via

a mechanism dependent on the anchoring protein AKAP, and is consistent with deletion of

TRPV4 resulting in blunting of acetylcholine-evoked increases in endothelial [Ca2+]i and loss of

EDH in mouse mesenteric arteries [75, 76]. TRPV3 [96] and TRPA1 [97] are also expressed in

endothelial cells and activators of these channels can certainly initiate increases in Ca2+ signaling

and EDH in cerebral arteries, but a role for these channels in agonist-stimulated EDH has yet to

be demonstrated.

In contrast to IKCa channels, SKCa channels are associated with caveolae and are diffusely

distributed across the cell membrane with a higher level expression at endothelial-endothelial

cell borders [12, 55, 90, 93]. Also, unlike IKCa channels, evidence is lacking for a direct link

between agonist-evoked, InsP3-mediated Ca2+ events and SKCa channel activity. Instead, it

Figure 2. Schematic showing discrete Ca2+ signaling events elicited by agonists at endothelial GPCRs. InsP3-dependent

Ca2+ pulsars are linked to activation of IKCa channels to evoke EDH whereas Ca2+ influx through DAG-activated TRPC

channels is the primary source of Ca2+ for agonist stimulation of endothelial SKCa channels and eNOS.
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appears that Ca2+ influx through TRP channels is the primary source of Ca2+ for agonist

stimulation of endothelial SKCa channels [94, 98]. In mouse cerebral artery, ATP caused rapid

trafficking of TRPC3 to the plasma membrane to provide Ca2+ influx to selectively activate

SKCa channels to cause EDH [98] (Figure 2). As described earlier, TRPV4 are also associated

with caveolae and are a source of Ca2+ for SKCa channel activation in response to increases in

shear stress but whether this relationship accounts for engagement of SKCa channels by

agonists has not been explored.

2.2.2. NO

In contrast to EDH, the role of localized Ca2+ signaling in agonist-evoked NO release has

received little attention. NOS, TRPV4 and TRPC3 are located in caveolae microdomains, and

deletion of either channel blunts acetylcholine-evoked NO release and NO-mediated relaxa-

tion in mouse mesenteric and carotid arteries [75, 99] suggesting they may provide a source of

Ca2+ for agonist-driven NOS activation. Heteromultimers of TRPV4-TRPC1 channels mediate

vasorelaxation of rabbit mesenteric arteries in response to stimulation of the Ca2+-sensing

receptor through NO production [100] but the underlying Ca2+ dynamics were not assessed.

A recent study has shown that TRPV4-mediated sparklets underlie ATP driven activation of

endothelial NOS in mouse small pulmonary arteries. The resulting NO initiates vasodilation

and also guanylyl cyclase-protein kinase G signaling in the endothelium that limits TRPV4

channel cooperativity and serves as a negative feedback signal to regulate TRPV4 channel

function [17]. This description of ATP-evoked, spatially distinct TRPV4 sparklets and localized

TRPV4-NOS signaling support a novel paradigm that NOS can be activated by spatially

restricted Ca2+ signals, and identifies TRPV4 channels as a key regulator of NOS activity in

the pulmonary microcirculation.

In contrast, in porcine isolated coronary arteries, substance P increased the occurrence of

discrete InsP3-dependent endothelial Ca
2+ events in a concentration-dependent manner; low

concentrations primarily increased the number of Ca2+ events and at higher concentrations the

number of Ca2+ events saturated while the magnitude of individual events increased [12]. This

pattern correlated with a greater role for NO in vasorelaxation at lower concentrations

suggesting subtle Ca2+ signal expansion at low stimulation levels may preferentially target

NOS. A key finding of this study was that idiosyncratic Ca2+ signal expansion corresponded

with coronary artery vasorelaxation whereas global changes in [Ca2+]i did not highlighting

that frequency modulation of discrete Ca2+ signals is the primary driver of this functional

response and that measurement of changes in bulk [Ca2+]i do not adequately describe the Ca2

+ signaling pathways that underlie endothelium-dependent vasodilation.

2.2.3. Membrane potential and Ca2+ microdomain signaling

Production of NO and stimulation of EDH have long been regarded as separate mechanisms

for agonist-evoked vasodilation but several lines of evidence indicate that there may be a

facilitatory relationship between endothelial SKCa and IKCa channel activity and NO. SKCa

channel activity has been linked to NO-mediated vasodilation to agonists with deletion of

these channels causing impaired NO-mediated dilation to acetylcholine in mouse carotid

arteries and increased expression enhancing NO-mediated dilation of cremaster arterioles
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[32]. In rat mesenteric arteries, block of SKCa and IKCa channels reduces agonist-evoked, NO-

mediated vasorelaxation and NO release [101]. Conversely, activators of endothelial KCa chan-

nels can enhance NO release from cultured endothelial cells, enhance ATP-induced increases

in cytosolic Ca2+ concentration and NO synthesis in rat cremaster arterioles, and elicit NO-

mediated relaxation in mesenteric arteries [102–104].

Lacking voltage-operated Ca2+ channels, endothelial Ca2+ influx is mediated by TRP channels

and so membrane hyperpolarization may be required to maintain an appropriate electrochem-

ical driving force for agonist-induced Ca2+ influx and also to prevent channel inactivation and/

or reduction in unitary conductance [105, 106]. Membrane depolarization does inhibit both

agonist-induced increases in [Ca2+]i and NO release in cultured endothelial cells [107, 108], and

in rat isolated basilar arteries, endothelial depolarization was associated with a reduction in

NO-mediated relaxation to acetylcholine [109]. Nonetheless, the ability of hyperpolarization to

regulate Ca2+ entry by increasing the electrical driving force is controversial. The large concen-

tration gradient (�20,000-fold for extracellular versus intracellular) [110] and driving force for

Ca2+ entry raising the question of whether a small amplitude hyperpolarization will be insuf-

ficient to modulate Ca2+ entry. In rat mesenteric and cerebral arteries, that certainly appeared

to be the case as changes in global endothelial [Ca2+]i were independent of changes membrane

potential [89, 111]. However, more recent work with endothelial cell tubes isolated from

resistance arteries has provided renewed support for hyperpolarization enhancing

acetylcholine-evoked Ca2+ influx through TRPV4 [112] and indicate that pharmacological

activation of SKCa and IKCa channel may not only enhance Ca2+ entry to further amplify KCa

channel activity, but also boost NO production [113]. In mouse mesenteric arteries,

acetylcholine-evoked TRPV4-dependent Ca2+ signaling was inhibited in arteries from mice

lacking IKCa channels indicating that in these arteries, endothelial stimulation drives sufficient

IKCa-dependent Ca
2+ entry through TRPV4 to enhance dynamics [13]. IKCa channel activity

modestly augmented Ca2+ event amplitude but the most notable impact was in recruiting new

Ca2+ firing sites as well as increasing firing frequencies at pre-existing sites. In the same study,

increasing or decreasing SKCa expression had little additional effect on the occurrence of Ca2+

events but did promote increased amplitudes and durations indicating that SKCa channels

may play a role in positive feedback Ca2+ regulation by shaping the size and time course of

individual events. In porcine coronary arteries stimulation of NOS by InsP3-dependent, large

amplitude-low frequency Ca2+ waves [12], exactly the types of events which were lost in

mesenteric arteries from mice with an endothelial specific knockout of SKCa channels [114],

suggests that SKCa channels are required for their development. As mentioned above, deletion

of SKCa channels impaired NO-mediated dilation to acetylcholine [32] and together, these

findings support the notion that their role in protraction of Ca2+ events may be important in

stimulation NOS.

2.3. Myoendothelial feedback

The sympathetic nervous system regulates total peripheral resistance and is a key modulator

of resistance artery diameter through release of noradrenaline and co-transmitters such as ATP

and neuropeptide Y [115]. Noradrenaline causes vasoconstriction through activating α1-

adrenoceptors on vascular smooth muscle cells, a process which is limited by engagement of
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endothelial mechanisms through myoendothelial feedback. The current model of myoendot-

helial feedback involves flux of InsP3 from smooth muscle to endothelial cells to elicit localized

increases in Ca2+, activation of IKCa channels and possibly NOS, to limit smooth muscle

contractility [11, 91, 116]. This model is supported by ultrastructural and histochemical studies

showing that in rat mesenteric and basilar, and hamster retractor feed arteries, MEGJ

connexins and IKCa channels are in close spatial association with ER and InsP3 receptors

within endothelial projections that extend through the internal elastic lamina to make contact

with smooth muscle cells [11, 55, 91, 94]. In hamster retractor feed arteries, myoendothelial

feedback is fully accounted for by EDH. The α1-adrenoceptor agonist phenylephrine induced

localized, InsP3-mediated Ca2+ signaling events within endothelial projections and block of

endothelial IKCa channels enhanced smooth muscle depolarization and vasoconstriction [11].

In rat basilar arteries in which NO makes a major contribution to myoendothelial feedback,

smooth muscle depolarization to 5-HT was accompanied by IKCa channel-mediated endothe-

lial hyperpolarization. Inhibition of IKCa channels, gap junctional communication, TRPC3 or

NOS potentiated smooth muscle depolarization to 5-HT in a non-additive manner indicating

that rather being distinct pathways, NO and endothelial IKCa channel activity are part of an

integrated mechanism for the regulation of agonist-induced vasoconstriction [91]. In the latter

study, Ca2+ signaling was not investigated and the link between IKCa channel activity and NO

production was not defined. However, NOS has now been localized close to MEGJs [117] and

in co-cultures stimulation of smooth muscle cells with phenylephrine leads to MEGJ specific

NOS phosphorylation within endothelial cells to increase NO [118]. Also, in mouse mesenteric

vessels, phenylephrine stimulated endothelial TRPV4 sparklets in an InsP3-dependent manner,

to engage SKCa and IKCa channels as well as, to a lesser extent, NOS [17]. Thus, given the

ability of IKCa channels to modulate endothelial Ca2+ dynamics [12, 113, 114], it may be

proposed that activation of IKCa channels at MEGJs following stimulation of smooth muscle

cells by GPCR agonists, may amplify dynamic Ca2+ signals to enhance NO production.

3. Local versus conducted responses

The majority of studies described in this chapter have been conducted on isolated resistance

arteries which in in vivo would be part of branching network of resistance vessels supplied by

feed arteries in which effective control of blood flow requires coordinated behaviour amongst

arterial segments [119]. As described above, diffusible mediators such as NO act locally to

increase arterial diameter. In contrast, KCa channel-mediated hyperpolarization leads to both

local dilation and conduction of the response through the endothelium for distances of several

millimeters. This conduction allows for coordination of changes in arterial diameter in multi-

ple vessel segments and so optimizes blood flow [4, 119, 120]. That is not to say that diffusible

mediators do not play a role in global blood flow regulation within vascular beds. A recent

study of the vascular bed of the mouse gluteus maximus muscle revealed that NO and EDH

provide complementary endothelial pathways for ascending vasodilatation to optimize oxy-

gen delivery to the muscle. EDH of downstream arterioles conducts along the endothelium

into proximal feed arteries to cause dilation, and NO is released in response to luminal shear

stress which increases secondary to downstream dilatation [120].
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4. Conclusion

It has become apparent over the past 15 years that endothelial Ca2+ signaling patterns underlie

the engagement of effectors such as NOS and/or KCa channels. The physiological significance

of these stimulus-specific signaling pathways is not just that they determine the mediator of

vasodilation, but also the scope of the impact of each stimulus on blood flow. Stimuli which

predominantly elicit release of diffusible mediators will elicit local vasodilation whereas those

that initiate EDH have the potential to dilate multiple arterial segments and so affect tissue

perfusion. Further work is required to determine if the patterns of Ca2+ signaling described

here have widespread applicability, and how they are impacted by age, sex and cardiovascular

risk factors. Investigation of how changes in the components of signaling microdomains

contribute to the etiology of endothelial dysfunction in conditions such as diabetes and hyper-

tension may lead to the identification of new therapeutic targets.
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