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Abstract

Severe malaria presents with varied pathophysiological manifestations to include 
derangement in glucose homeostasis. The changes in glucose management by the 
infected human host emanate from both Plasmodium parasitic and host factors and/or 
influences which are aimed at creating a proliferative advantage to the parasite. This 
also includes morphological changes that that take place to both infected and unin-
fected cells as structural alterations occur on the cell membranes to allow for increased 
nutrients (glucose) transportation into the cells. Without the availability, effective and 
efficient intervention there is a high cost incurred by the human host. Hyperglycaemia, 
hypoglycaemia and hyperinsulinemia are critical aspects displayed in severe malaria. 
Conventional treatment to malaria renders itself hostile to the host with negative glucose 
metabolism changes experiences in the young, pregnant women and malaria naïve indi-
viduals. In malaria, therefore, host effects, parasite imperatives and treatment regimens 
play a pivotal role in the return to wellness of the patient. Phytotherapeutics are emerg-
ing as treatment alternatives that ameliorate glucose homeostasis alternations as well 
as combat malaria parasitaemia. The phytochemicals e.g. triterpenes, have been shown 
to alleviate the “disease” and “parasitic” aspects of malaria pointing at key aspects in 
ameliorating malaria glucose homeostasis fallings-out that are experienced in malaria.
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1. Introduction

Malaria is one of the most prevalent parasitic diseases ever to infect the human being with 

causalities exceeding 200 million a year of mostly children <5 years of age, pregnant women, 

and people form none-endemic areas who happen to be non-immune to the disease [1]. 

Continuous and frequent infections for the Plasmodium parasites from holoendemic areas 

induces immune semi-protection to the malaria disease mostly the malaria naïve visitors 

[2]. There are several parasites species of the Plasmodium genus (>100 species) but only a few 

have the correct virulence to cause malaria in humans. These include Plasmodium falciparum, 

Plasmodium vivax, Plasmodium ovale, Plasmodium malariae and the zoonotic Plasmodium knowlesi. 

These parasites give diverse malarial syndromes with P. falciparum giving the most virulent 

and fatal disease. Even with this infection, the disease poses varying degrees of severity with 

one extreme displaying an asymptomatic blood smear erythrocytic phase positive infection 

and the other extreme displaying severe malarial disease with high mortality risk [3]. Severe 

malaria (SM) manifests as clinical and pathological heterogeneous complications that differ in 
the rate of occurrence, age of the subjects and geographical distributions [4] following disease 

patterns and time course that may be predictable or completely obscure to researchers, clini-
cians and the subjects alike.

While cerebral malaria (CM) ranks as the most dangerous, with the highest fatality of all 

forms of SM, severe malaria anaemia (SMA) [5] follows a close second in sub-Saharan Africa. 

Hypoglycaemia [6–8], hypotension, acute kidney injury (AKI) [9], acute respiratory distress 

syndrome (ARDS) and acute lung injury (ALI) [10], pulmonary oedema, non-respiratory 

acidosis (nRD) and hyperlactaemia [11–13], bleeding and blood clotting irregularities with 
thrombocytopaenia, aberrant inflammatory response [14] and pre-hepatic jaundice are often 

presented in SM although at varying incidence and prevalence [15]. The pathophysiology and 

parasitic influences are indeed variable in individuals. However, in all complications there 
is a base line of metabolic and homeostatic dysfunctions that have been observed over time, 

especially of glucose and associated processes that seem to be ameliorated by agents trained 

at the “disease” aspect of malaria [8, 10, 16] as compared to the “parasitic” influences.

Several factors tend to influence glucose homeostasis in malarial infections. These include 
parasite metabolism, malarial pyrexia, human host hormonal changes, inflammatory soluble 
mediators (cytokines and chemokines), natural immunological responses irregularities, 

malarial anorexia and cachexic tendencies and gastrointestinal disturbances [11]. There 

is a general trend observed in the glucose homeostasis that follows a tendency towards 

hypoglycaemic phenotype which, without appropriate intervention, evolves into end stage 

disease hyperglycaemia. Insufficient hormonal effectiveness associated with immunological-
inflammatory aberrations of severe malaria play a pivotal role in the malaria-induced glucose 
homeostasis decline.

Insulin is the foremost and most important hormone that is involved in the plasma glucose 

homeostasis and is counter regulated by almost other hormones that are involved in carbo-

hydrate metabolism such as glucagon, thyroid hormones (thyroxine and triiodothyronine) 

growth hormone, cortisol, somatomedins, somatostatins, gastrointestinal secretin of the other 

hormones.
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In malaria, the intracellular-erythrocytic malaria parasite partly influences glucose homeosta-

sis. Generally, the red blood cell (RBC) or erythrocyte is categorised as an insulin-independent 

tissue having no plasma membrane insulin receptors (IR’s). Glucose uptake by the RBC’s is 

transported across their plasma membrane through the facilitation of glucose transporter 1 

(GLUT 1). There is a significant and dramatic transformation of parasitized RBC’s (pRBC’s) 
plasma membranes after invasion by the Plasmodium parasite through insertion of various 

transmembrane proteins forming knobs which are interactions between the host and parasite 

proteins. These structures are formed from pRBC proteins such as spectrin and actin combin-

ing with parasite derived molecules such as ring-infected erythrocyte surface antigen (RESA), 

knob associated histidine-rich protein (KAHRP), mature parasite-infected erythrocyte surface 
antigen (MESA), Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and PfEMP3 

[17]. These protein remodel the pRBC for increase parasite virulence, expedite the movement 

of parasite requirements into and discarded products out of the pRBC to meet the needs of the 

growing intra-erythrocytic food vacuole enclosed parasites [18]. There is a distinct change that 

occurs in the cell membrane structure and function in pRBC’s with targeted disruption para-

site proteins genes invariably leading to changes in membrane rigidity and, cytoadherence and 

glucose transportation [19, 20] (Figure 1). The resultant changes in the cell membrane is neces-

sary to maintain the structural formation or remodelling necessary for exchanges between the 

food vacuole and the host cell cytoplasm. Channels formed in the plasma membrane need to 

be maintained without disruption until the parasite intra-erythrocyte parasite has matured. 

This also means the mechanism for glucose transport into the pRBC’s are also maintained.

The main parasitic energy source is glucose. The P. falciparum hexose transporter (PfHT), which 
transports both glucose and fructose, is the main transporter of glucose shuttle from the cyto-

plasm to the parasitophorous vacuole [15, 21–23]. Within the parasite vacuole, glucose concen-

tration may be higher than that in the pRBC due to the efficient transport of the PfHT driving 
hypoglycaemia to some extent, although it was thought to be an passive action before [24].  

Figure 1. Scanning electron micrograph of normal RBC and Plasmodium falciparum pRBC. The three normal RBC at the 

centre appear regular and smooth and have a biconcave structure. In contrast the two peripheral pRBC have an irregular 

and rough surface and have lost the biconcave structure. (Published with permission, Professor David Ferguson, Oxford 

University, Oxford, UK). Scale bar = 1 μm.
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Also, pRBC anchor protein glycosylphosphatidylinositol (GPI) have an insulinomemetic 

effect that may also drive hypoglycaemia. However, insulin resistance seen in end-stage 
SM, fuels hyperglycaemia where insulin-dependent tissues like muscle and adipose tissue 

may be deficient of glucose intracellularly in the face of hyperinsulinism depicting glucose 
disturbances during SM [25]. Counter regulatory glucose metabolism also has been shown 

to increase gluconeogenesis in SM without necessarily increasing their activities due to the 

tissue resistance to insulin [26]. In addition to hormonal effects, inflammatory mediators play 
a crucial role in the hyperglycaemia experienced in SM.

It is imperative to explain the normal glucose homeostasis before a description of the patho-

physiology of malarial glucose metabolism may be attempted. Here the process by which 
aberrant glucose metabolism occurs in SM is explored with critical emphasis on how manage-

ment of the malaria disease may be useful in averting glucose homeostasis derangements.

1.1. Glucose homeostasis

Human blood glucose concentration control is one of the most tightly and acutely physiologi-
cal processes. Glucose utilisation, storage and remarshalling takes place in diverse number of 

tissues to include in the blood. When carbohydrates are consumed, blood glucose diminishes 

in concentration through an insulin-stimulated glucose transport process into the skeletal 

muscles and adipose tissue for storage. Glucose is stored as glycogen in the skeletal muscles 

which is subsequently oxidised to provide energy following an active transport process.

Glucose transporter 4 (GLUT4) is the key player in modifiable whole-body glucose homeo-

stasis and balance. Even after a huge caloric intake, elevated glucose concentrations are 

promptly restored to concentrations between 5 and 6 mmol/L which would vary to slightly 

lower concentration in times of long term starvation or considerable food intake deprivation. 

This way, severe dysfunctions induced by hypoglycaemia such as loss of consciousness and 

peripheral tissue noxiousness of chronic diabetes mellitus are forfended. In malaria, however, 

GLUT1 is more prominent in glucose transport in both the pRBC and the hepatocyte although 

GLUT2 is the resident transporter of glucose in the liver cells.

2. Glucose transporter 4 (GLUT4)

To modulate the glucose homeostasis, an exogenous glucose load transport into skeletal 

muscles is mediated by the solute carrier 2A4 (SLC2A4) gene coded protein GLUT4 which 

is a 12-transmembrane domains containing sugar transporter. GLUT4 is one of the 13 sugar 

transporter proteins (GLUT1-GLUT12 and HMIT) which are encoded in the human genome 
[27] which catalyse hexose transport across cell membranes through ATP-independent, facili-

tative diffusion mechanism [28].

There is a varied display of kinetics and substrate specificities amongst the sugar transporters 
with GLUT5 and GLUT11 specialising in the transport of fructose. There is a high expression 

of GLUT4 in adipose tissue and skeletal muscle although a selective cohort of other transport-

ers are also present with GLUT1, GLUT5 and GLUT12 significantly contribute to the glucose 
uptake by muscle tissue [30, 31] while GLUT8, GLUT12, HMIT are also expressed by adipose 
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tissue [27, 32]. GLUT4 remains in the cytoplasm when it is in its inactivated state making a 

unique and characteristic rapid response when plasma glucose concentrations are increased 

with an acute redistribution to the plasma membrane under the influence of insulin [33]. 

The cytoplasmic domains of GLUT4 provides the distinctive plasma membrane mobiliza-

tions capabilities of this sugar transporter in that it contains a unique sequence in its N- and 

COOH terminals (Figure 2). In the N-terminal GLUT4 has a critical phenylalanine residue 

[34], a dileucine and acidic motifs in the COOH terminus, which motifs directs kinetic facets 
of endocytosis and exocytosis recycling trafficking coordination [35, 36]. GLUT4 plays a criti-

cal role in both insulin signalling and plasma membrane trafficking [37].

Stimulation of GLUT4 recruitment to the surface of plasma membranes of muscle and adipose 

cells is carried out by insulin and exercise in a non-transcription or translation dependent 

process [38, 39]. However, the signalling mechanisms that are initiated by these two physi-
ological stimulations leading to the translocation of GLUT4 and the uptake of glucose are 

distinct and separate [40, 41] as shown by the diagrammatic representation in Figure 3. This 

has a profound implication on the hyper-muscular/physical activities (physical movement or 

malaria pyrexia) and hyperinsulinemia that tend to be associated with malaria which may 

lead to and or worsen hypoglycaemia of malaria.

In the canonical insulin signalling pathway, activation of the insulin receptor (IR) tyrosine 

kinase triggers the process leading to insulin receptor substrate proteins (IRS) tyrosine phos-

phorylation and their recruitment of PI 3-kinase. PI 3-kinase catalyses the conversion of phos-

phatidylinositol (4,5)P2 to phosphatidylinositol (3,4,5)P3 (PIP3), which triggers protein kinase 

Akt activation through intermediate proteins PDK1 and Rictor/mTOR [42, 43].

A number of cellular stress signals enhance glucose uptake by skeletal muscle. Free fatty 
acids (FFT’s), increased cytokines, endothelial reticulum stress, hypoxia, oxidative stress, 

Figure 2. Predicted topology map of GLUT4. The membrane topology was predicted using the TOPCONS web server for 

consensus prediction of membrane protein topology and signal peptides [29]. Grey amino acids were added for aiding 

purification and removal of purification tags.
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inhibitors of cellular metabolism, decreasing cellular energy supply and increasing AMP/ATP 

ratios (Figure 3) tend to increase glucose uptake by muscle cells. These effectors of glucose 
uptake are readily found in malaria infection as both a result of parasite and host mechanism 

for survival. In adipocytes and muscle cells, hyperosmotic stress, a common feature of SM, 

promote GLUT4 translocation by activating AMPK and Gab-1 dependent signalling path-

way, respectively [44]. Furthermore, osmatic shock activates Akt substrates, which promotes 

GLUT4 exocytosis to the plasma membranes of adipocytes increasing glucose uptake [45] and 

in malaria, inducing hypoglycaemia. In a paradox of some sorts, chronic hyperosmotic stress 

causes insulin resistance in isolated or cultured adipocytes as shown by increased insulin 

concentration and hyperglycaemia. Apparently, mTOR signalling pathway arbitrates this 

hyperosmolality-induced hyperinsulinemia a phenomenon that has been observed in end 

stage SM disease in animals where a cycle of hyperglycaemia breeding more hyperosmolality 

leads to more insulin resistance [44]. An intricate mTOR signalling, involving an intricate 

negative feedback mechanism, aiming at insulin and AMPK signalling pathways have been 

revealed [46]. Further to that, GLUT4 compromised sensitivity to insulin signalling pathway 

is a common feature of obesity and diabetes mellitus mediated by fatty acids activity [47], 

Figure 3. Convergence of signalling pathways: initiated by insulin and exercise leading to GLUT4 translocation 

insulin signalling through the PI 3-kinase pathway and muscle contraction through both elevated AMP/ATP ratios 

and intracellular [Ca2+] leads to activation of downstream protein kinases (Akt, aPKCl/z, AMPK, CaMKII cPKC) that 

phosphorylate putative effectors that modulate steps in the GLUT4 trafficking pathways. Negative regulation of these 
pathways by fatty acids, cytokines, and endoplasmic reticulum stress responses are observed in obesity and diabetes, 
contributing to insulin resistance. Dashed lines imply hypothetical pathways not yet experimentally verified.
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cytokines activity [48] and endoplasmic reticulum stress response [49] (Figure 3). Activation 

of stress protein kinases that are involved in the phosphorylation of IRS proteins serine resi-

dues attenuate tyrosine phosphorylation of IRS by insulin causing the negative regulation of 
GLUT4 translocation to the plasma membrane surface (Figure 3). These processes are inimical 

to glucose homeostasis as does end stage non-reversible SM [15].

3. Glucose transporter I (GLUT1) and it involvement in malaria

Most cell depends on glucose as a key substrate for a variate of metabolic processes that 

are necessary for energy production and cellular building blocks. Transportation of glucose, 

and other carbohydrates, into the cytoplasm of most cells is through a 14 member family of 

integral membrane glucose transporter molecules also known as solute carrier 2A protein 

which are sub-divided into Classes I–III [50]. Within this superfamily is the glucose trans-

porter 1 a Class I facilitative glucose transporter expressed in the hepatocytes [51] with the 

highest expression being found in the membrane of the erythrocyte or red blood cells (RBC’s) 

[52] and also influences the glucose uptake across the blood brain barrier [53]. GLUT1 has 

various functions in the body amongst which being a receptor for the human T cell leukae-

mia virus [54] and glucose transport in T-cells where it regulates infection by the Human 
Immunodeficiency virus [55] appear to be the most prominent ones besides its involvement 

with malaria infection in both the red blood cell and the hepatocyte [55].

The malarial parasite expurgates a uni-directional trajectory during its infection of the human 

being from the time the Plasmodium sporozoites are injected into the bite by an infected mos-

quito to the period of overt symptomatic infection. After crossing the hepatic endothelium, 

sinusoids and entering the liver, sporozoites transverse several parenchymal liver cells before 

finally invading one in which the productive asymptomatic exoerythrocytic forms (EEF’s) dif-
ferentiation takes place with the origination thousands of RBC’s-infective merozoites which 

are released into the circulation to start symptomatic infection [56].

Production of adenosine triphosphate (ATP) [24], the energy source of the blood stage mero-

zoites and other erythrocytic stage parasites, is derived from glycolysis of which a model now 

exist for the Plasmodium falciparum [57] showing it as an equilibrated than an active process 

in the parasite [24]. GLUT1 has been shown to transport glucose from human plasma to the 

erythrocyte cytoplasm [58] from where the parasite encoded facilitative hexose transporter 

(PfHT) [59], which limits glucose entry into parasite’s glycolysis [60]. Thus, the PfHT tar-

geting in novel malaria treatment is plausible undertakings [61] seeing that in the murine 

malaria model, P. berghei, orthologous hexose transporter (PbHT), is expressed throughout 
the parasite’s development in the mosquito vector, during hepatic and transmission stages 

[62]. When the PbHT are inhibited (by compound 3361), a drastic inhibition of growth of the 
hepatic parasitic stage of the P. berghei was observed, showing that glucose uptake is crucial in 

infected hepatocytes for both energy and nutrients supply for the parasite [61]. In vitro studies 

have established that the key parameters in the development of liver stage parasites were the 

glucose concentration in the cell culture media and utilisation of glucose by the Plasmodium 

liver stages [63]. Glucose requirements during the course of parasite development in the 
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hepatocyte and the host cell molecular receptors involved with the uptake of glucose by 

the cells was studied in this work. P. berghei infection resulted in the depletion of ATP with 

subsequent translocation of GLUT1 from the cytoplasm to the membrane surface of infected 

hepatocytes which resulted in significantly higher glucose uptake compared to non-infected 
cells. Furthermore, glucose plays in a critical role during the development of the liver stage 

infection, modulating the Plasmodium development in the EEF’s [52].

3.1. Effect of glucose on hepatic murine malaria infection model

Experiments have been carried out to the effect of glucose in the propagation of malaria dis-

ease in vitro and in vivo. Inclusion of various glucose from 1.25 to 20 mM in a hepatic cell 

(Huh7 cells) line which cover the physiological glucose concentration range, 2.5 to 10 mM 
[64], unravelled that the increasing glucose concentrations availability 48 hours post infection 

(hpi) correlated with overall Plasmodium patent infection [52]. Using a parasite load marker 

and cell viability, luminescence intensity [65], investigators reported that concentrations of 

glucose <10 mM, which is the cell medium standard, significantly impairs hepatic Plasmodium 

infection while excess glucose does not affect cell viability but is decreased at 2.5 and 1.5 mM 
glucose concentrations [52]. A flow cytometry-based approach using green fluorescent pro-

tein (GFP)-expressing P. berghei parasites [66] was used to determine the number of infected 

hepatic cells and parasite growth. The ability of parasite to transverse or invade hepatic cells 

was not dependent on glucose concentration within the initial 2 hours when sporozoites 

hepatocytes invasion was virtually complete [66], but after 48 hpi glucose concentration was 

important with concentrations of >20 mM showing the higher parasite development and 

lower at concentrations of glucose lower than glucose physiological range.

Furthermore, the parasite size correlates well with glucose concentration (very small parasites 

<50 μm2 and fewer infected cells) while increasing glucose concentration (10–20 mM) favoured 

increased parasite sizes (>200 μm2) and number of infected cells [52]. While hepatoma cells 

(Huh7 cells) depend highly on glucose uptake for ATP glycolysis synthesis [67], primary liver 

cells store glucose as glycogen from which ATP is obtained through oxidative phosphoryla-

tion. However, regardless of the hepatocyte source, parasite proliferation depends greatly on 
glucose concentration with increased glucose uptake highest in plasmodium-infected hepato-

cytes, parasite development and survival [52].

To demonstrate the link between hepatic stage parasite development, plasmodium replica-

tion and increased glucose uptake, fluorescent glucose analogue, 2-deoxy-2-[(7-nitro-2,1,3-
benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) [68, 69], has been used. At 30 hpi set point 

and onward, significant glucose uptake by the hepatocyte and the parasite increases in cells 
infected by viable parasites as compared to non-infected cells and infected cells with non-

replicating cells [52, 66].

Glucose uptake depends on several influences that include feeding and fasting status, 
exposure to heat or cold [70], physical activity [71], oxidative stress [72], hepatic diseases 

(steatosis, non-alcoholic fatty acid liver disease, hepatitis C virus infection) [73]. However, 
none of the stress-inducing factors contribute to the increase in glucose uptake besides the 

presence of malaria parasites in infected hepatocytes in any comparable measure which indi-

cate Plasmodium parasite has a specific and unique way for handling glucose homeostasis. 
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Actually, experiments carried out have invariably shown that the malaria parasites induce 

glucose uptake that is not a non-specific response to stress or to infection but a specific and 
enhanced marked glucose uptake with a calculated end. Other intracellular organisms have 

been reported to have a dissimilar effect on glucose uptake which makes the Plasmodium glu-

cose metabolism rather inimitable. Toxoplasma gondii does not depend on glucose uptake from 

the host [74]. On the other hand, cellular glucose uptake is suppressed through downregula-

tion of cell surface glucose transporters expression during active hepatitis C virus replication 

[75]. This, then, characterises Plasmodium infection as an exceptional intracellular parasite 

glucose homeostasis machinery whose aetiology and mechanism of action has insidious con-

notations to human survival seeing that the parasites life cycle is intimately associated to and 

manipulates human biology at will.

3.2. Specific indications of GLUT1 implication in malarial parasite-infected-cell 
glucose uptake

In experiments that sought to ascertain by which specific glucose transporter was uptake 
enhancement possible, genes for the expression of 5 transmembrane glucose transporters 

were sequentially down-regulated and the effect of this measured in Huh& cell lines. Class I 
GLUT genes (GLUT1-4) and GLUT9, which is a HepG2 hepatoma cells (and Huh7 equivalent) 
glucose influx regulator [76], were screened for their influence of glucose uptake in malaria 
parasite-infected cells through silencing each gene at a time and determining the parasite load 

[52]. The GLUT1 gene knock down (KD) resulted in the most significant decrease in malaria 
parasites in these experiments. This did not only show that glucose uptake was important 

for parasite development but also that GLUT1 was responsible for the glucose uptake that 

causes enhanced parasite growth in the liver cells. Down-regulation of GKUT2, which the 

major glucose transporter in hepatocyte did not affect the glucose uptake in cells holding 
actively replicating parasites as it was observed that GLUT1 KD did not affect glucose uptake 
in non-infected cells [52]. Chemical inhibition of GLUT1 (adding 100 μM WZB117 to cell cul-

ture) in both hepatoma cells and primary hepatocytes has been reported as having the same 

decreased effect on glucose uptake, parasite development and replication as does GLUT1 KD.

3.3. Glucose transporter 1 expression in Plasmodium-infected cells

A hypothesis that the enhanced glucose uptake in Plasmodium-infected cells may due to an over 

expression of the GLUT1 in malaria is an intruding and tempting approach to explaining the 

increased glucose uptake that is associated with malarial hypoglycaemia. However, Meireles et al. 
[52] monitored the expression of the GLUT1 in infected Huh7 cells, at increasing time periods hpi, 
revealed a different and amazing phenomenon contrary to the hypothesis. No significant increase 
in GLUT1 mRNA was observed between infected and non-infected cells using fluorescence- 
activated cell sorting (FACS) technique [77] and analysing with quantitative real-time polymerase 

chain reaction (qPCR) and GLUT1 specific primers. This, therefore, means that the amplified glu-

cose uptake by Plasmodium parasite-infected cells does not emanate from genetically induced 

GLUT1 synthesis but from the circulating pool of already existing glucose transporters.

As Plasmodium parasites increase in number in the infected cell, there is a proportional deple-

tion of cytoplasmic ATP overall. It is necessary that GLUT1 to remain inactive during normal 
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or reduced cellular energy demands or else it will derive hypoglycaemia. This necessary regu-

lation occurs through the binding of ATP by GLUT1 cytoplasmic pockets [78] which causes 

conformational changes to the molecule inhibiting glucose transportation [79]. In a com-

petitive binding principle, Adenosine monophosphate (AMP) and Adenosine diphosphate 

(ADP) counteract the ATP-induced conformational modulation by binding to the same site 

activating the glucose GLUT1-mediated transportation [78]. True enough, intracellular ATP 

has been reported to be significantly decreased in Plasmodium parasite-infected cells as com-

pared to non-infected cells validating presumably decreased ATP/ADP/AMP ratio of malaria 

infection that drives conformational changes in GLUT1 [78–80]. The sequence of events in 

GLUT1 metabolism in malaria infection tends to follow a transcendence guided by the deple-

tion of intracellular ATP, which activates the GLUT1 proteins and subsequent translocation 

to the infected cell membrane where it enhances glucose uptake driving the hypoglycaemia 

pathophysiology of malaria.

4. Comparison of GLUT1 and GLUT2 involvement in glucose 
uptake in malaria

The significant increase in infected liver cells through an enhanced action and translocation of 
GLUT1 to the surface membrane looks like the key mechanism by which Plasmodium parasites 

acquire the source of energy that is obligatory for their replication and survival. The ability to 

transport glucose across plasma membranes is a feature in most cells that make the hexose a 

ubiquitous common currency of metabolism [50]. Whereas GLUT2 represents the major glu-

cose transporter, (uptake and release, in hepatocytes during the fed and starved state, respec-

tively [50, 81], GLUT1 is also transcribed and expressed in the liver cells of the periportal and 

perivenular hepatic areas [82].

There are disparities between GLUT1 and GLUT2 in terms of their capacity to handle and 

affinity for glucose. GLUT2’s capacity and affinity for glucose are inversely related, i.e. high 
capacity and low affinity shown by a Km value (glucose concentration at which transport is 
half of its maximum value) of 17 mM [83]. The Km value of GLUT1 is higher and much closer 

to that of the PfHT at 3 mM [83] as compared to 1 mM [23]. Therefore, GLUT1 may be bet-

ter matched for hexose supply to the Plasmodium parasite in malarial hypoglycaemia where 

glucose concentration decreases towards the Km of the solute transporter.

There is a restriction of GLUT1 to membrane of liver cells that are proximal to the hepatic ven-

ule during basal states, although the transporter is expressed by all hepatocytes [50, 51, 82].  

There is a decreasing gradient of oxygen and glucose as blood flows from the portal to hepatic 
venule due to the unidirectional perfusion of the hepatocyte plate [84]. This environment 

of reduced circulating glucose concentration [85] and hypoxia [86] are instrumental and 

conducive to the enhanced membranous expression of GLUT1. Hypoxia boosts liver stage 
malarial infection as much as does an activator of hypoxia inducible factor-1α (HIF-1α) or the 
hypoxia mimetic CoCl

2
 [87]. On the other hand, increased concentrations of HIF-1α have been 

shown to upregulate GLUT1 expression [88] and CoCl
2
 is known to enhance the transloca-

tion of the hexose transporter to the plasma membrane [52, 89]. Overall, GLUT1-mediated 
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glucose transport seems to provide the important linkages defining the preferred tendency 
of Plasmodium parasites in infecting hypoxic hepatocytes and red blood cells or inducing 

hypoxia as a driver of enhanced infectivity.

5. Mode of action of GLUT1 in glucose transport

Consequent to the extensive replication of the Plasmodium parasite in hepatocyte is the 

depletion of intracellular glucose concentration and subsequently concentration of ATP as 

well. The compensatory mechanism is an increase in glucose uptake. This may either result 

from activation of GLUT1 transporters at cell membrane as a result of AMP-dependent con-

formational alterations or from the GLUT1 translocation to the plasma membranes towards 

parasite final development stages [52]. The resultant momentous increase in glucose uptake 

during malarial infection does not only affect Plasmodium infected cells. Non-infected cells 

within the immediate environ of the infected cells also experience a glucose and energy 

deficit that tends to trigger similar glucose uptakes, albeit at inferior response. A comparable 
slight decrease in intracellular ATP and increase in translocation of GLUT1 with concomitant 

slight increase in glucose uptake in non-infected cells although it is still not clear what mecha-

nisms are involved in the regulation of GLUT1’s translocation or activation [52]. Activation 

of pre-existing GLUT1 on the plasma membranes which enhance glucose uptake has been 

shown to be associated with stimulation of AMP-activated kinase activity [90]. Also, GLUT1 

translocation to the plasma membrane has been shown to be prompted by insulin and isch-

aemia (GLUT4 too) [91] in a manner dependent on a phosphoinositide 3-kinase (PI3K) [92]. 

Captivatingly, down-regulation of the α1 and α2 subunits does not seem to affect parasite 
development and glucose uptake by parasite-infected cells [52]. Furthermore, insulin addi-

tion or inhibition of PI3K with Wortmannin [93] did not seem to have a negative effect on 
infection and infected cell glucose uptake [52]. Protein kinase C phosphorylation of GLUT1 

generated rapid glucose uptake and heightened plasma membrane localization of GLUT1 

[94]. Speculation that the same mechanism may be at play in malarial glucose transported 

is well supported as the inhibition of GLUT1 result in reduced parasite replication parasite 

general infectivity.

The liver should be considered as a major site for postprandial glucose removal seeing that it 

holds a volume to remove 30–40% of glucose existing after ingestion [95] which could mean a 

huge glucose supply necessitating uptake that will support parasite growth. The association 

between increased risk from malaria infection with P. falciparum and diabetes type 2 (DM 2)  

is emerging [96] which may link GLUT1 glucose uptake as a possible instigator in these dis-

ease common trajectory. Sub Saharan Africa has seen an upsurge in DM 2 [97] in an area 

where malaria has been endemic for several years. Plasmodium parasites from infected DM 

2 individuals have also been shown to have a higher infective capacity than those from non-

DM 2 individuals [98] showing possibly the uptake of glucose by parasite infected cells plays 

a critical role in rendering the parasites more potent in transmission of the disease. As such, 

GLUT1 may be a druggable target for the treatment of malaria. The modulation of GLUT1 in 

cells that contain the malaria parasite provides leads towards the use of energy supply inhibi-

tion as a potential weaponry in the arsenal to combat malaria.
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6. Interactions of glycosylphosphatidylinositol glucose homeostasis 
in malaria

The molecular interactions that brings about the activation of GLUT1 either on the plasma 

membrane or in the cytoplasm has been directly linked to the decrease of glucose and 

subsequently ATP from within the cell. Depletion of either glucose or ATP is associated 

with an increase in parasite replication and maturation. However, the triggering of the 
events in the decrease in glucose and ATP should a Plasmodium parasite initiative as other 

intracellular parasites discussed do not have such an inherent mechanism of glucose 

homeostasis.

Glycosylphosphatidylinositol (GPI) belongs to a class of glycolipids that are ubiquitous in 

eukaryotes where they display a number of biological effects [99]. In parasites, GPI’s are par-

ticularly abundant as free lipids or as anchors of proteins. The GPI also formulate the majority 

of glycoconjugates in the intraerythrocytic P. falciparum where it anchors to the cell membrane 

functionally important parasite proteins like the merozoite surface proteins (MSP-1, MSP-2, 

MSP-4) [100]. P. falciparum GPI synthesis is a developmental stage-specific manner which is 
crucial for development and survival of the parasite [101] in the same way GLUT1 recruit-

ment has been discussed elsewhere. The parasite GPI mediates hypoglycaemia through an 

insulin mimetic activity in a manner that increases GLUT1 population of the molecule on 

the surface membrane of Plasmodium infected cells via a tyrosine kinase dependent signal 

transduction [102] which puts this molecule at the centre of the processes leading to glucose 

and ATP depletion in the infected cell.

The GPI has also been reported to drive the pathophysiology of malaria through the ability to 

induce proinflammatory cytokines in the host which include tumour necrosis factor (TNF-α), 
interleukin-1β (IL-1β), nitric oxide (NO), interferon-γ (IFN-γ) [19, 103]. There is an up-regu-

lation of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and e-selectin 

expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence 

via tyrosine kinase dependent signal transduction that has been observed [104]. Most of these 

synthetic processes where GPI is involved are energy dependent and expend ATP whose 

source is glucose thereby indivertibly upregulate demand for the hexose by most cells inter-

active with the anchoring molecule. There are structural similarities between insulin second 

messengers (phosphatidylinositol-PI) and Plasmodium GPI which makes the insulin memetic 

effect of the membrane anchored glycolipid induce hypoglycaemia [105, 106]. The structural 

similarity will entail the activation of steps for glucose uptake by-passing the insulin receptor 

(IR) position of insulin signal transduction system. With the numerous GPI production capac-

ity of the Plasmodium parasite, there arises a multitude of cellular GLUT1 activation that give 

increased glucose uptake into the cells. This brings about increased glucose availability to the 

growing parasites.

To bring this into perspective the relationship between the GLUT1 transporters and the sub-

sequent uptake of glucose uptake by the parasite, the glucose transporter in the parasite’s role 

in final glucose utilisation by the parasite needs be explored.
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7. Glucose transport in the intraerythrocytic Plasmodium parasites

With blood being a steady and abundant source of glucose, Plasmodium parasites find a 
haven and shelter of protection in the intraerythrocyte where they multiple and grow utilis-

ing glucose as the main energy source. When malarial parasites are deprived of glucose, ATP 

concentrations drop drastically and their hydrogen ion activity increased (pH drop) [107]. 

Parasite plasma membrane tend to depolarize with reduction in glucose concentration or 

reduced glycolysis or reduction of anaerobic fermentation of pyruvate to lactate, which are 

the systems by which parasites main sources of ATP [108]. Glycolysis provide faster ATP, 

although less efficient, than does oxidative phosphorylation at rates hundred times faster 
than the latter [109]. The malarial parasite does possess a glycolysis functionally disconnected 

branched TCA cycle which does not contribute to the Plasmodium energy homeostasis [110].

GLUT1, as mentioned elsewhere, delivers glucose to the cytoplasm of the RBC from the plasma 

in a passive down-a-concentration gradient facilitative process [111]. From the cell cytoplasm, 

the glucose has to transcend parasitophorous food vacuole (PFV) membrane which is highly 

porous to the solutes with molecular weights <1400 Da through high-capacity, low selectivity 

channels [112]. Uptake of glucose from the PFV is through a facilitative transport system 

carried out by, for P. falciparum, Plasmodium falciparum hexose transporter (PfHT) [PlasmaoDb 
accession number:PFB0210c] [24, 113].

There PfHT gene is a putative gene to the human glucose transporter gene with a homol-
ogy to GLUT1. The predicted topology of PfHT protein has 12 transmembrane helices with 
both of its carboxy and amino terminals positioned in the cytoplasm of the cell (Figure 4). 

Functional characterisation of PfHT has shown that the parasite sugar transporter is a 
sodium-independent, saturable, facilitative hexose transporter [113] with a mechanistic dif-

ference with GLUT1 in the way it interacts with substrates [109]. Whereas PfHT transports 
D-glucose (Km-1 mM) and D-fructose (Km-11.5 mM), GLUT1 is selective for D-glucose  

(Km-2.4 mM). The affinity for glucose by PfHT, therefore means that the parasite may be 
acquire the hexose at very low plasma concentrations. This is also corroborated by the low 

Km of GLUT1, which transporter increases activity in infected cells, providing an efficient 
linkage between the infected and the parasite for glucose uptake. As shown in Figure 4, the 

unidirectional glucose uptake is favourable for parasite survival and maturation and can 

drive severe hypoglycaemia of severe malaria.

There has been a critical observation of hyperglycaemia occurring during severe malaria which 

has a penchant for fatal outcomes. In unpublished data, it has been observed that animals that 

develop hyperglycaemia with or without treatment or intervention tended to have adverse 

outcomes and hyperglycaemia in malaria was determined to be an end-point marker which 

required intervention. The molecular basis of hyperglycaemia development in a disease that 

hypoglycaemia is more of the norm than the exception finds its basis on a number of factors 
that include parasite infection, inflammatory host response and hormonal aberrations. These 
factors revolve around the gluconeogenesis and glycogenesis-glycogenolysis-glycolysis axis 

and how these play-out in malaria pathophysiology.
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8. Production of glucose in malaria

Malaria has been associated with reduced glucose emanating from increased glucose utilisa-

tion by the growing intracellular parasites, especially towards the schizogony. Just as it has 

been shown that increased glucose trafficking is not as a result increased synthesis of GLUT1 
but increased activation of the hexose transporter brought about depletion of ATP, there is no 

considerable doubt that there is increased glucose production in P. falciparum malaria which 

could be driven by the plasma hypoglycaemia. This same phenomenon was shown in adults 

infected with malaria that displayed increased glucose production [115].

Stimulation of gluconeogenesis is attributed to be the underlying reason for the increase in 
glucose production is severe malaria which leads to increased plasma glucose concentration. 

Concomitant with the rise in plasma glucose concentration is the rise in concentration of 

a hormone milieu comprising of plasma cortisol, glucagon and adiponectin. Surprisingly, 

the rise in the glucogenic hormones is not the cause of the increase in plasma glucose 

concentration.

In malaria, there is an increase in cytokine activities with TNF-α and IL-6 [116] which are 

known to have a stimulatory effect on glucose production indirectly through their influence 
on the secretion of glucose counter regulatory hormones [117]. Moreover, TNF-α stimulates 
the synthesis of prostaglandin synthesis by Kupffer cells and in turn, to complicate the pic-

ture somewhat, glucose production is inhibited by prostaglandin [117] showing an intricate 

mechanism involving glucose utilisation and production in severe malaria.

Figure 4. Hexoses uptake in Plasmodium-infected red blood cell shown in a schematic representation A. The EPM 

(erythrocyte plasma membrane), the PVM (parasitophorous vacuole membrane), the PPM (parasite plasma membrane) 

are shown. GLUT1, mammalian glucose transporter; GLUT5, mammalian fructose transporter; NPP, new permeability 

pathways (do not contribute significantly to the uptake of glucose [114]). B is the predicted topology of Plasmodium 

falciparum hexose transporter (PfHT) [113].
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8.1. Malaria-related glucose clearance

Plasma glucose concentration is a balance between production and uptake or clearance 

which assist in the maintenance of the hexose within physiologic range. In cerebral malaria, 

showing severe malaria, there is an increase of glucose clearance rate by 42% and to a lesser 

extent in uncomplicated malaria increased by 9%. However, the overwhelming determinant 
of plasma glucose concentration in malaria is not through increased or decreased produc-

tion but it is presumed to be through increased peripheral glucose uptake [115]. In theory, 

infected red blood cells have an increased glucose consumption of between 30 and 75 times 

than non-infected erythrocytes up to the time of trophozoite development of the parasite 

[118]. Increased glucose and lactate kinetics [6] and alanine metabolism have been reported 

in acute falciparum malaria [119]. The environmental stressor phenomenon brought about 

malarial illness impinges negatively on glucose utilisation with the overt outcome of glucose 

impaired metabolic processes like glycogenolysis and gluconeogenesis.

8.2. Malarial glycogenolysis

The glycogen mass in muscle and liver of infected animals has been observed to be much less 

as compared to control animals exposed to the same amount of food and water. Generally, the 

rate of glycogenesis in malaria is slow to absent as it is overridden by the quest to maintain 

euglycaemia in the face of hypoglycaemic threats and pressures. Glycogenolysis or glycogen 

breakdown to yield plasma glucose has more capacity than glycogenesis in both the liver and 

the muscles, however this occurrence may not cause hypoglycaemic tendencies of malaria. 

There is a hepatic autoregulation in as far as glycogen content is concerned in malaria, but its 

contribution to malarial hypoglycaemia is limited as compared to the increased clearance of 

glucose in malaria. Furthermore, glycogen, although lower in content in infected cases as com-

pared to non-infected cases, is always present and not depleted completely in malaria [120].

8.3. Malarial gluconeogenesis

There has been a remarkable observation that, gluconeogenesis tends to increase with sever-

ity of the disease in P. falciparum infection and the more severe the disease the higher the 

stimulation degree. The previous consensus has been to the contrary of this observation in 

both pregnant and non-pregnant women with impaired gluconeogenesis as a recognised 

paradigm in malaria [121, 122]. The increased gluconeogenic stimulation is premised on the 

very important gluconeogenic precursor, the amino acid glutamine [123]. Children with acute 

malaria tend to have low concentrations of the amino acid [124] and will result in an increase 

rate of gluconeogenesis in a negative feedback mechanism rather than cause impairment. 

Furthermore, glycerol metabolism remains intact in malaria [125] and making the increase 

in gluconeogenic activity an perpetual enigma as fatty acid metabolism is also of no conse-

quent in the aetiology of the glucose production process. Supply of gluconeogenic precur-

sors, soluble chemical mediators and counterregulatory hormones remain key protagonists 

in the increases gluconeogenesis of malaria although none of these is directly involved in the 

process. The paracrine hormones overture seems also a critical but complicated avenue in 

explaining the increased gluconeogenic activity seen in malaria as there have a close influence 
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on classical counterregulatory hormones and as well as on themselves. When prostaglandins 

synthesis, for instance, is inhibited, there is a subsequent rise in glucose production in healthy 

individuals [126].

In the liver, Kupffer cells the major producer of prostaglandins [117], have high concentra-

tions of the malaria pigment which elicit prostaglandin synthesis, tend towards hyperplastic 

production of the inflammatory mediators synthesis [127] in subjects with severe malaria 

[128]. This impairment of Kupffer cell function brings about the concomitant intrahepatic 
autoregulation loss of the glucose homeostasis. The severity of Kupffer cells dysfunctionality 
will determine the degree of disturbances in gluconeogenesis. Maximum stimulation of glu-

coneogenesis is invariably inhibited by intrahepatic factors in uncomplicated malaria cases. 

As a result, changes in the rate of gluconeogenesis become paramount in chronic adaptation 

to glucose demand while glycogenosis rates carter for adaptations to acute changes in glucose 

utilisation of developmental trophozoite stages.

Gluconeogenesis is much more stimulated in cerebral malaria as compared to non-complicated  

malaria. Therefore, the Kupffer cell-liver parenchymal cell interaction functions at a dual level 
comprising of an acute stage for emergency situations which regulates the glycogen content 

while the chronic level monitors gluconeogenesis. The glucose homeostasis regulating hor-

mones respond to the either the acute effects, i.e. insulin, glucagon catecholamines, or the 
chronically following a delay, i.e. cortisol and growth hormone. With these hormonal con-

trols, the duality of acute-chronic effects within the Kupffer cell-hepatocyte interactions are 
under the influence of wider and complex products that are produced by both cell types. In 
essence the hormonal interactions in the Kupffer cell influences the closely related functions 
in the hepatocyte and vice versa.

The synthesis of glucose by the liver involves the delivery of substrates and a gluconeogen-

esis pathway that is intact and functional. Gluconeogenesis may be selectively impaired by 

alanine supply to the liver. In severe malaria, decreased blood flow to the liver [129] as well 

as hepatocyte dysfunction [130] may play a role in the impairment of alanine delivery to 

the liver consequently affecting gluconeogenesis [119]. There is a difference in the ability of 
reduced alanine supply to the liver in influencing gluconeogenesis that is not experienced 
with glycerol or glutamine [21]. This is mainly due to two of many possible causes, one which 

is physiological and another analytical. Glutamine and glycerol are converted to glucose may 

occur in the liver and the kidney as well while glucose synthesis from alanine is mainly con-

fined to the liver. Furthermore, the measurement of glucose metabolism using stable isotopes 
does not discriminate hepatic and kidney gluconeogenesis [123]. Regardless, the complexity 

of these interactions is further intricated by the endocrinological function of the adipose tissue 

and its influence on both liver and muscle cell types but the increase in gluconeogenesis in 
malaria remains a fundamental fact.

9. Free fatty acids (FFAs) in malarial glucose regulation

While data in literature about FFAs in malaria seem conflicting, elevated plasma concentra-

tion of FFAs and triacylglycerols have been reported in acute malaria amongst adult subjects 

[131, 132] and in children too [128]. However, evidence exists on the absence of change in 

Parasites and Parasitic Diseases38



plasma concentrations of FFAs over prolonged fast in malaria patients [133]. Actually, in vitro 

data has shown a stimulation of lipogenesis and inhibition of lipolysis by malaria products 

[134]. In normal human beings an increase in glucose concentration has a tendency to sup-

press adipocytes lipolysis [135]. However, it is still not clear whether an increase of glucose 
in malaria will have the same effect. There has been a constant finding that high-density and 
low-density lipoproteins were lower in malaria cases as compared to controls and triacylg-

lycerols were higher as compared to normal controls but without statistical significance when 
compared to controls displaying some symptoms e.g. fibrillations [135]. In acute malaria, 

plasma glucose has been shown to remain significantly elevated even when plasma FFAs 
are no longer increased [132]. Hepatic autoregulation is defined by an acute increase in FFAs 
which stimulates gluconeogenesis, to replenish depleted glycolysis intermediates, [136] and 

decrease glycogenesis [137, 138] with glucose production remaining the same [136, 138–140]. 

Hepatic autoregulation of glucose metabolism is attributed to both intrahepatic and extrahe-

patic. Ultimately, the autoregulatory mechanism rest on the decrease of liver glycogenolysis 

facilitated by insulin secretion to counteract FFAs stimulatory effects on glucose production 
during fasting. Hepatic glycogen content plays a regulatory role in glycogenolysis such that 
in malaria, where there is a low glycogen content, it is expected that there is no effect of FFAs 
on extrahepatic regulation [141].

10. Malaria treatment and glucose metabolism

Paroxysms of fever are usually the classical presentation of P. falciparum induced malaria. 

The febrile paroxysms are generally associated with shaking chills, profuse sweating, head-

ache, rigours, fatigue, arthralgia, back ache, abdominal pain, nausea with vomiting, diarrhoea 

and at times prehepatic jaundice [142]. Atypical manifestations of malaria are more common 

as most classical symptoms are observed in a section of the malaria infected individuals 

(50–70%). In severe cases of malaria (SM) patients may present with cerebral malaria (CM), 

cerebellar ataxia or multiple seizures, hypoglycaemic seizures, cerebral malaria, acute kidney 

injury, severe malaria anaemia (SMA), thrombocytopaenia, haemoglobinuria, noncardiogenic 

pulmonary oedema, acute respiratory disease syndrome/ acute respiratory lung injury and 

other related conditions [143]. Hyperglycaemia is also a prominent finding, although usu-

ally missed, in malaria through increased glucose production and possibly insulin resistance 

driven by the proinflammatory mediatory common in malaria [144]. The hyperglycaemia 

may invariably lead to non-ketotic hyperosmolar hyperglycaemia state shock with higher 

fatal outcomes as compared to normoglycaemic individuals [26]. Therefore, treatment should 

be aimed at alleviating these manifestations more in malaria as well as the parasite. However, 
major treatment regimens are anti-parasitic than they are anti-disease. An association of 

hyperglycaemia, severe malaria and CM has been observed to have more fatal outcomes as 

there is a high glucose production stimulation [145]. However, the hyperglycaemic cases have 
been staccato in nature with reports of one or two cases out of many cases [146].

Various anti-malarial agents have been used for the treatment of malaria with some having 

negative effect on glucose homeostasis. These include the use hydroxychloroquine, hydroqui-
nolones, artemisinin and its derivatives. Experimental malaria treatment has been reported 

with a range of phytochemicals coming into use which showed preservation of glucose 
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homeostasis bearing in mind that some of the phototherapeutics have anti-inflammatory 
activities that may influences insulin resistance of malaria [147]. The effect of quinine and 
other quinolones on hypoglycaemia has been reported by many investigators and will not be 

covered here. The use of asiatic acid and other triterpenes is an area that is emerging in the 

fight against malaria. Glucose homeostasis during administration of the phytochemicals in 
malaria is given below:

10.1. Asiatic acid (AA) and glucose homeostasis in malaria

In streptozotocin (STZ)-induced diabetic rats, AA has been shown to have an anti-diabetic  

effect where it mediates glycogenolysis and release of glucose for glycolysis [148]. Hypo-
glycaemia development in malaria has been attributed to anti-malarial agents like quinine and 
hydroxychloroquine which displays hyperinsulinemia effects [149]. The triad of hypoglycae-

mia, hyperlactaemia and non-respiratory acidosis (nRA) are associated with elevated concomi-

tantly in diseases that are not associated with malaria and AA has been shown to alleviate such 

conditions through inhibition of pro-inflammatory mediators like TNF-α [150]. The causal 

relationship that exists between deranged glucose homeostasis and malaria is linked through 

TNF-α [151]. Even in diseases such as Borrelia recurrentis, the triumvirate of hypoglycaemia, 

nRA and hyperlactaemia is present showing that the inflammatory response is involved [152]. 

AA has both an anti-parasitic and anti-disease effect in malaria [5, 8, 9, 13]. It has been shown 

that AA influences glucose metabolism and this could be through its effect on the inhibition 
of soluble inflammatory mediators such TNF-α [8]. Associated with this glucose homeostasis 

attenuation by AA was also an observable effect of the phytochemical on the hormonal milieu 
in malaria [8]. Together with an anti-parasitic activity, AA has anti-hyperglycaemic, antioxi-

dant, pro-oxidant properties that are essential for glucose metabolism and has been shown 

to attenuate key glycolytic enzymes in diabetes mellitus as well as in murine malaria [8, 153].

On the hormonal modulation aspect, AA influences glucagon effects on food and water intake 
and weight in that it terminates the satiate and anorexic effect of the hormone when in high 
concentrations as in malaria [154]. AA oral administration has also been shown to ablate 

hyperlactaemia, which is a product of malaria induced-hypoxia, resulting in the wellbeing of 

the experimental animals not seen in the malaria infected non-treated animals [155].

The carbohydrate metabolic influence and anti-inflammatory effect of AA has been 
observed and this makes the phytopharmaceutical’s ability to attenuate nRA, hyperlacta-

temia and hypoglycaemia in malaria possible [8]. The transient and fatal hyperglycaemia 

observed in end-stage malaria and driven by inflammation-induced insulin resistance may 
be ameliorated by the administration of AA through its anti-hyperglycaemic and immu-

nologic effect.

11. Conclusion

Malaria syndrome vacillates between different events occurring concurrently or in episodes 
of dissimilar presentations of which glucose homeostatic dysfunction is a prominent one. 

Hypoglycaemia is driven by an increased consumption of energy which causes the activation 
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of GLUT1 glucose transporters causing increased glucose uptake into both the infected and 

uninfected cell. PfHT supplies glucose to growing parasite exacerbating hypoglycaemia. 
Hyperglycaemia, hypoglycaemia, hyperlactaemia and hyperinsulinemia are facets of the 
syndrome in contention for supremacy in malaria which other forms of malarial treatment 

tend to promote. Asiatic acid and other similar phytochemical with known pleiotropic effects 
promise to provide anti-parasitic and anti-disease effect in malaria.
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