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Abstract

Cancer exhibits adaptive features typical of complex systems, like resilience and robust-
ness to environmental challenges through the emergent co-evolution of its components. 
These events promote carcinogenesis through dynamic interactions among numerous 
components and subsystems, including the immune system. During the past decade, our 
research group has provided substantial evidence that the peptide GK-1 has important 
immunomodulatory properties. In elderly mice, GK-1 acts as a potent adjuvant of the 
influenza vaccine through a mechanism that involves the activation of antigen-present-
ing cells (APCs) and an increased production of pro-inflammatory cytokines and chemo-
kines (IFN-γ, TNFα, CCL2). To date, there is solid evidence supporting the antitumoral 
properties of GK-1 in murine cancer models. First, a lower occurrence and smaller size of 
spontaneous bronchiolar adenomas were found in elderly GK-1-treated mice compared 
to paired untreated mice. In two independent studies, GK-1 treatment reduced tumor 
growth and increased mouse survival in a murine model of melanoma and breast tumor. 
In the former model, a synergy between GK-1 and anti-PD-L1 treatment was observed, 
while in the latter, GK-1 alone controlled the metastatic burden. The effective activation 
of APCs induced by GK-1, restoring the antitumor-specific immunity, may underlie 
some of its antineoplastic effects.
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1. Introduction

1.1. Immunomodulation

Immunosurveillance comprises interactions between the immune system and cancer cells 

that take place even before the tumor formation [1, 2]. This process includes the recognition 

and control of transformed cells through antitumor immune responses, with three related 

outcomes: elimination, equilibrium, and escape [1–5]. In this regard, stimulating the innate 

immune system by immunogenic cells plays a role in the removal of incipient tumors, activat-

ing cells from the adaptive response like T and B cells, as well as promoting acute inflamma-

tion due to the concomitant production of immunostimulatory cytokines. Nevertheless, some 

transformed cells may not be eliminated. This escape phase of immunosurveillance is charac-

terized by tumor growth promotion through a phenomenon called tumor-induced tolerance, 
which involves an increased expression of immunosuppressive components such as myeloid-

derived suppressor cells (MDSC), regulatory T cells (Tregs), as well as T cell exhaustion and 

the production of immunosuppressive soluble factors [6, 7]. Indeed, some of these cells could 

be used as prognosis factors, since increased numbers of Treg and MDSC cells are related to a 

poorer outcome in cancer patients [8–13]; by contrast, a Th1 response is associated with a good 

prognosis in melanoma, breast, head, neck, colorectal, prostatic, and renal cancer [14–16].

The immune response can be modulated by compounds capable of enhancing (immunopo-

tentiation) or diminishing (immunosuppression) the immune response, either in an antigen-

specific or in a nonspecific manner; the latter implies that the immune system requires to be 
stimulated to restore the patient’s immunocompetence. Immunomodulators are biological or 

nonbiological substances that can modify one or more components of the immunoregulatory 

network to achieve a specific antitumor immunity, such as inducing effector tumor-specific 
cytotoxic T lymphocytes (CTLs), activating macrophages and natural killer (NK) cells, and/or 
promoting the production of inflammation mediators [17–21].

Immunomodulators include adjuvants, vaccines, and immunoglobulins used to prevent or 

treat infectious diseases. They are characterized by their ability to activate cells of the innate 
immune system, mainly dendritic cells (DCs) and macrophages. Some examples of this type 

of agents are pathogen-associated molecular patterns (PAMPs) and molecules like squalene, 
aluminum salts, and peptides, which are often used as adjuvants in vaccines [21, 22].

1.2. Peptide-based therapies

Anticancer strategies based on peptides have several advantages over other chemotherapeu-

tic approaches, like being nongenotoxic or possessing adjuvant properties; they also have 

a strong specificity, high affinity, good tissue penetration, and low toxicity with respect to 
small-molecule drugs and monoclonal antibodies [23–26]. Examples of anticancer peptides 

are (1) necrotic peptides (some of them are expressed in a wide diversity of species, includ-

ing insects, fish, amphibians, and mammals, e.g., cecropins A and B found in mammals and 
various insects) [27]; (2) apoptotic peptides, cationic peptides known as host defense peptides 
(HDP) such as the bovine lactoferricin, magainin 2, hCAP109-135 (comprising the C-terminal 
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domain of human CAP18), and BMAP-28 from bovine myeloid cathelicidin [28–31]; (3) block-

ing peptides; (4) receptor-interacting peptides; (5) peptides that bind to cell-adhesion pro-

teins; (6) protein kinase inhibitors; (7) protease inhibitors; (8) peptides with antiangiogenic 

properties; and (9) peptides with immunostimulatory activity [27].

With regard to receptor-interacting peptides, compounds like CpG, imiquimod, poly I:C (toll-

like receptor (TLR) agonists), α-GalCer (glycolipid ligands), GM-CSF, IL-2, and IFNα/β have 
antitumoral activity, as well as adjuvant properties [32-34]. These compounds are capable of 

directly or indirectly enhancing APC functions and T effector activity. In this sense, some of the 
most employed immunotherapeutic agents in polytherapy induce the effector function of tumor 
microenvironment (TM)-associated T cells and macrophages [35–38]. For instance, CpG was a 

promising cancer immunotherapy adjuvant due to its capacity to induce a Th1 immune response 

and activate APCs through TLR9 signaling [35–38]; however, it failed to stimulate the immune 

response in clinical trials [39]. The identification of new adjuvants showing low toxicity and 
capable of stimulating a cellular Th1 response in humans would be a great advancement in the 

development of vaccines for infectious and noninfectious diseases such as cancer [40].

Unfortunately, several immunostimulators have failed to revert the immunosuppressive 

conditions in TM. For example, IL-2, IL-12, GM-CSF [41–44], and immunological adjuvants 

administered with highly immunogenic antigens like incomplete Freund’s adjuvant, bacil-

lus Calmette-Guerin [BCG], and MF59 have shown disappointing results [43, 44]. Moreover, 

these compounds have been associated with toxic effects [45–47].

2. Identification of the GK-1 peptide

Based on the nonspecific reactivity and immunopotentiator properties of GK-1, our group 
has been studying it as a promising adjuvant for cancer immunotherapy. This 18-amino acid 

peptide was first derived from the KETc7 protein, isolated from a Taenia crassiceps cysticercus 

cDNA library [48]; KETc7 is part of a broad family of proteins associated with membrane pro-

cesses [49]. When searching for T cell epitopes in silico, GK-1 exhibited a strong association with 

MHC-I and, to a lesser extent, with MHC-II [49]. The immunomodulatory properties of GK-1 

are associated with an efficient activation of cells involved in antigen presentation (such as DCs) 
by promoting the expression of the costimulatory molecules CD86 and MHC-II, as well as the 

secretion of soluble pro-inflammatory factors like IFN-γ, TNF-α, and CCL2 [50]. GK-1-treated 

DCs enhanced the proliferative response of antigen-specific CD4+ T cells both in vivo and in 

vitro [50]. GK-1 also induced the proliferation of CD8+ T cells and higher IFN-γ levels [51] even 

in the absence of adjuvant [52]. Considering that this peptide can promote APC function and 

enhance Th1 cell effector pathways, its capacity as an adjuvant of the influenza vaccine was 
evaluated. GK-1 increased the levels of specific IgG antibodies in vivo, before and after infection, 

in a murine model of influenza in elderly mice [53], favoring virus clearance after infection in 

both young and aged mice, which could be associated with an early infiltrate of mononuclear 
cells (lymphocytes and macrophages) to the lung parenchyma following the GK-1 peptide co-

administration. Furthermore, lung histological examination showed better preserved alveolar 
spaces and less congested alveolar walls with respect to the vaccine-only animals [53].
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3. GK-1 as an anticancer immunotherapy

In neoplasms, the host is often immunocompromised due to the presence of immunosuppres-

sive cells and molecules in the TM, to prevent the removal of cancer cells [2]. This highlights 

the relevance of stimulating the host immune response against cancer antigens by administer-

ing immunoadjuvants along with chemotherapy, radiotherapy, or surgery [54]. In this regard, 

small peptides with a nonspecific immunostimulatory response like GK-1, long known to act 
as vaccine adjuvants, are potentially useful in cancer therapy. The antitumor effect of GK-1 
has been studied in melanoma and breast cancer murine models.

3.1. GK-1 in a mouse melanoma model

Melanoma is the most malignant form of skin cancer, mainly affecting the Caucasian popula-

tion [55, 56]. Until recently, systemic therapy for metastatic melanoma had been inefficient, 
with a 5-year survival rate for patients (<30%) [57, 58]. However, new therapies were recently 

approved to treat melanoma, such as pegylated-interferon-α2b (IFN-α2b) in the adjuvant set-
ting; ipilimumab, an anti-CTLA4 monoclonal antibody, for metastatic disease; vemurafenib, 
an oral BRAF inhibitor indicated for patients with metastatic melanoma harboring BRAFV600 
mutations, and more recently antibodies against PD-1 like pembrolizumab [59–61] and anti-

bodies blocking PD-L1 pathways, as well as inhibitors of the mitogen-activated protein kinase 
(MAPK) pathway. Additionally, nonspecific immunomodulation by several cytokines (IL-2, 
IL-12, TNF-α, and IFN-γ) and TLR ligands [62–64] in addition to adoptive transfer approaches 

have been widely used [65]. For over a decade, DCs have also been used in immunother-

apy against various types of cancer [66–68] as an alternative to chemotherapy, by vaccina-

tion with DCs loaded with tumor peptides (i.e., MAGE-AX [69–72] and/or with necrotic or 
apoptotic tumor cells to induce effector tumor-specific T cells [73, 74]). The efficacy of this 
immunotherapeutic approach was also evaluated against murine melanoma, using GK-1 as 

an immunostimulant.

GK-1 has been reported to increase the mean survival and significantly delays tumor growth 
in a melanoma model with B16-F10 cells, showing more necrotic areas along with the pres-

ence of numerous neutrophils (Figure 1). Neutrophilia inside pulmonary blood vessels was also 

observed, without evidence of macroscopic or microscopic metastasis. In a melanoma lung met-

astatic model, GK-1 decreased lymphocyte count, while increased the number of neutrophils 

and decreased the serum levels of IFN-γ; on the other hand, an increase in the levels of IFN-γ 
and IL-12 in the intratumor (lung metastases) environment, along with a decrease in IL-17, IL-4, 
IL-22, and IL-23 was also observed [75, 76]. The antitumor activities of IL-12 have been estab-

lished in preclinical studies against various tumor cell lines; the increased concentration of the 

antitumor cytokine IL-12 found in primary tumors may enhance the damage to tumor cells, 
limiting the number of cancer cells detaching from the primary tumor [77–79]. Its antitumor 

activity is also mediated by the induction of IFN-γ [67, 78, 80], which upregulated the expression 

of MHC-I and -II by B16 cells in vitro, favoring a cytolytic response in MHC-I-restricted CTL 
(Figure 1) [81]. There is a consensus that the induction of a Th1 profile or the release of cytokines 
like IFN-γ and TNF-α by T cells is essential for an effective antitumor immune response in 
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melanoma [82–84]. In fact, IFN-γ released from CTLs has been considered as a potent mediator 
of the antitumor response in bulky melanoma tumors [17, 85]. In contrast, IL-17 was proved 
to directly promote tumor growth and angiogenesis [86–88]. Indeed, it has been shown that 

IL-17 can promote tumor growth by a direct effect on IL-6 induction, which in turn activates 
STAT3 in both tumor and nontransformed cells in the TM [89]. Finally, IL-23 is an important 
molecular driver of Th17 cells in humans; IL-23 is increased in several tumors, and the expres-

sion of this cytokine antagonistically regulates local inflammatory responses in the TM, as well 
as the infiltration of epithelial lymphocytes [80]. Thus, the intratumoral subexpression of IL-17 
and IL-23 in GK-1-treated mice could explain the reduced tumor progression (Figure 1).

Figure 1. GK-1 in a preclinical mouse melanoma model. In a melanoma murine model with B16-F10 cells, GK-1 led to 
an increase in neutrophils with the increase of IFN-γ and IL-12 cytokines, along with a decrease in IL-17 and IL-23. On 
the other hand, the MAGE-AX/GK-1 treatment showed an increase in areas of cell death, characterized by eosinophilic 
regions and production of IFN-γ by CD8+ T-cells.
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Considering the capacity of GK-1 to enhance DC activation [50], BMDCs matured with TNF-α 
and stimulated with GK-1 and MAGE-AX were administrated to tumor-bearing mice in the 

melanoma model with B16-F10 cells; the treatment with MAGE-AX/GK-1 increased survival 
rates, while mice receiving GK-1 alone had a smaller increase in survival. Moreover, the 

combination MAGE-AX/GK-1 significantly delayed tumor growth and increased cell death 
areas, characterized by eosinophilic regions within melanomas. Similarly, both GK-1 alone 
and MAGE-AX/GK-1 increased the production of IFN-γ-producing CD8 cells, while GK-1 
increased the percentage of IL-10 producing CD8+ T-cells [90]. The effect of MAGE-AX/GK-1 
could be associated with higher levels of CD8+ lymphocytes in peritumoral lymph nodes, 
which have been correlated with the survival of patients suffering from melanoma and other 
cancer types [67, 91, 92].

Vera-Aguilera et al. [79] hypothesized that a combined GK1/anti-PD-L1 therapy could 
synergize and maximize the individual antitumor effect and extend survival. An increased 
survival was observed in mice treated with GK1/anti-PD-L1, as well as in mice treated with 
GK-1 or PD-L1 alone. Animals treated with GK1/anti-PD-L1 had smaller tumor masses. 
Additionally, GK1/anti-PD-L1 decreased the serum levels of IL-4, IL-5, IL-6, and IL-10. The 
mechanism by which the combined GK1/anti-PD-L1 treatment improved survival rates 
remains to be determined; however, the expression of PD-1 on T cells has been proved to be 

upregulated by IL-6 through the signal transducer and activator of transcription 3 (STAT3) 
[93], a point of convergence for several oncogenic signaling pathways leading to the expres-

sion of immunosuppressing molecules [94]. Similarly, the expression of PD-L1 and PD-L2 is 
also upregulated by numerous mechanisms, including the production of IL-4 and GM-CSF 
[93]. All these findings point to a possible synergistic mechanism associated with the rever-

sion from an exhausted phenotype.

3.2. GK-1 in a breast cancer model

Considering the evidence described above, it is now clear that changes in the microenvi-

ronment could induce an antitumor response against the primary tumor and reduce the 

metastatic disease, which could allow us to control cancer progression. In this regard, immu-

nomodulators like GK-1 can be used as anticancer therapies. In 2017, GK-1 was evaluated in 
a murine model of invasive breast adenocarcinoma, which spontaneously metastasizes to the 
lungs, liver, brain, and bone, similarly to breast cancer in humans [95–98]. GK-1 was associ-

ated with an increased survival in 4T1 tumor-bearing mice and a reduction in the primary 

tumor volume rate, which was accompanied by an increase of tumor cell death areas with 

morphologic features associated with necrosis (pyknosis, karyorrhexis, and karyolysis) and 

apoptosis (apoptotic bodies) at the primary tumors. These findings, along with an increase in 
IL-12 concentration in the primary tumor, denote deep changes in the TM induced by GK-1 
[98], which could involve the infiltration of TCD8+, NK, and NKT cells in the primary tumor 
[77, 99, 100] (Figure 2). As described in the previous section, IL-12 has been associated with 
antitumor and antiangiogenic activities [100, 101], due to its capacity of inducing the infiltra-

tion of TCD8+ cells within tumor tissues [100]. In fact, it has been reported that a combined 

treatment with tamoxifen and IL-12 enhanced tumor inhibition due to an increase in apopto-

sis, and reduced tumor growth in a 4T1 cancer murine model [100].
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Those changes suppose a TM that could reduce the tumor growth rate, and the concomitant 

reduction of cancer cell egress by detachment from the primary tumor, which allows them to 

invade the stroma and break the basement membrane. These changes could explain the reduc-

tion of pulmonary metastasis associated with the GK-1 treatment [98]. Additionally, changes in 

lung microenvironment associated with the GK-1 treatment have been reported. In this sense, 

a reduction in the concentration of b-FGF, CCL-3, GM-CSF, CCL-2, TNF-α, and CXCL-9, along 
with an increased concentration of IL-6 has been found [98] (Figure 2). These changes could 

reduce metastasis development, possibly by inhibiting the proliferation of cells that are essen-

tial for the growth of secondary tumors, such as macrophage-associated metastasis (MAM) and 

MDSC [102, 103]. Considering these results, GK-1 could change the tumor microenvironment, 

inducing an active antitumoral immune response that could lead to a decrease in cancer burden.

Figure 2. GK-1 in a breast cancer model. GK-1 was associated with an increased IL-12 concentration in the primary 
tumor, which could involve the infiltration of CD8+ T-cells, NK, and NKT cells. IL-12 is a cytokine produced principally 
by APC, such as monocytes, macrophages, and dendritic cells. This cytokine can induce specific CD8+ T-cells that are 
primed against tumor antigens and could serve as a tumor-specific CTL. Additionally, in the lungs, the GK-1-treatment 
induces a reduction in the concentration of b-FGF, CCL-3, GM-CSF, CCL-2, TNF-α, and CXCL-9, along with an increased 
concentration of IL-6, which correlates with a minor lung-metastatic burden.
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4. Discussion

The ability of the GK-1 peptide to increase survival, significantly to delay tumor growth, and 
to reduce metastasis is discussed in this review. Considering that the immune system plays 

a crucial role in the outcome of cancer, orchestrating the response that may lead either to the 

control or dissemination of tumors [8, 78, 104], understanding the mechanisms that underlie 

the efficient response to the peptide is imperative.

It has been reported that the production of pro-inflammatory cytokines both by tumor and 
surrounding cells, along with the production of growth factors and chemokines, can promote 

the development of neoplasia by facilitating carcinogenesis programs, inducing a sustained 

cellular proliferative rate, inhibiting apoptosis and stimulating angiogenesis [105, 106]. As 

described above, GK-1 therapy contributed to decrease the levels of IL-4, IL-10, b-FGF, and 
GM-CSF; these chemoattractants, along with hypoxia, promote macrophage shift from a M1 
to a M2 phenotype. M2-like tumor-associated macrophages (TAM) stimulate immunosup-

pression and increase blood vessel density, favoring angiogenesis. In a breast cancer model, 

lower CCL2 and CCL3 levels in the lungs of mice treated with GK-1 could be decreasing the 
migration of inflammatory monocytes such as MAM and MDSC, which promote metastasis 
[8, 13, 102, 107]. These changes in the microenvironment seem to contribute to control tumor 

burden and metastasis.

On the other hand, M1-like macrophages can contribute to tumor regression by recruiting 
cytotoxic CD8+ T (CTL) and NK cells [108–110]. In this regard, IL-12 induction by APCs could 
be contributing to the increase in the proliferation of CD8+ and CD4+ lymphocytes and the 
induction of a Th1 response, as previously reported [51, 52, 111]. Several studies have sug-

gested a correlation of higher density levels of cytotoxic (CTL) and memory T lymphocytes 
(CD3+ CD45RO+) infiltrated in the primary tumor with increased survival rates of patients 
with different types of neoplasms [91, 112–116].

According to recent findings, the GK-1 peptide can induce a M1 phenotype and promote the 
efficient activation of DCs, which could be leading to the maintenance of an effector response 
against tumor growth, capable of counteracting the immunosuppressive response due to T 

cell exhaustion or DC dysfunction.

5. Conclusions

Considering the possible mechanisms of action of GK-1 and the information available, we pro-

pose that this peptide can decrease tumor growth and metastasis by changing the tumor micro-

environment. GK-1 appears to reactivate the immune system affected by the tumor-associated 
suppressive microenvironment, thereby allowing immune cells to become activated. Although 

more studies focusing on the anticancer effect of GK-1 are required, this research gives new 
evidence on the possible clinical uses of GK-1 beyond its well-established adjuvant effect.

These results have also provided us with the rationale to evaluate the effectiveness of the 
GK-1 immunotherapy to revert the exhaustion of peripheral T-cells in several types of cancer.
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APC  antigen-presenting cell

CCL-22  chemokine ligand-22

CTL  cytotoxic T lymphocytes

CTLA-4  cytotoxic T-lymphocyte antigen 4

DC  dendritic cell

HDP  host defense peptides

LAG-3  lymphocyte-activation gene 3

MDSC  myeloid-derived suppressor cells

NK  natural killer cells

PAMPs  pathogen-associated molecular patterns

PD-1  programmed cell death 1

PD-L1  programmed death-ligand 1

Treg  regulatory T cell

STAT3  signal transducer and activator of transcription 3

TM  tumor microenvironment

VEGF  vascular endothelial growth factor

VEGFR-2 vascular endothelial growth factor receptor 2
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