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Abstract

This chapter explains the significant potential of the pyrolytic biomass char for use as a
sustainable carbon black replacement filler for rubber materials. The manufacture of
rubber filler is not only energy-consuming, contributing significantly to global CO2 emis-
sions, but uses nonrenewable feedstock in production making it unsustainable. Ongoing
work focused upon the development of carbonaceous rubber fillers based on coconut
shell, a sustainable and renewable source, is presented in this chapter. A comparison
between coconut char and commercial carbon black N772 demonstrates the profound
potential of the pyrolytic coconut char to be used as filler. The char filler obtained was
mixed with SBR and the resulting rubber product was evaluated for their technological
performance, exhibiting high surface area and good tensile strength.

Keywords: rubber, reinforcing filler, carbon black, pyrolysis, biomass

1. Introduction

At present, it is seldom to see a rubber product using the polymer in an unfilled condition.

Various materials are added during the rubber manufacture process. Carbon black is widely

used as a rubber reinforcing filler from the third century B.C. in China. It is added to help to

enhance the physical properties of the given rubber, such as hardness, tensile strength, and

tear strength, etc. In 2015, the global production of carbon was about 13.9 million metric tons.

It is indicated that by 2022, the production will reach 19.2 million metric tons [1]. There is no

doubt that the cost of making carbon black will increase rapidly. As a result, the potential effect

of the prediction may lead to an increasing demand of the fossil fuel hydrocarbon feedstock.

On the other hand, the manufacture of carbon black is not only energy-intensive but also

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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unsustainable in the long term as a feedstock due to the finite supply and the contribution to

global warming.

Given the increasing pressure against using nonrenewable resources, it is essential to develop

alternative materials to act as novel rubber fillers. Recently, several researches have been

conducted focusing “green” fillers, which are based on the waste materials having potential

“renewability” [2]. By using bio-based fillers, the dependence on fossil fuel would be improved

and a sustainable material basis for rubber filler production could be established. In this

chapter, the development of new type of fillers for rubber materials based on char produced

during pyrolysis of biomass (coconut shell) is illustrated.

2. Rubber reinforcing filler: carbon black

Over the past century, the importance of rubber to human society has been paid more and

more attentions. Several types of particulate fillers have been applied in rubber industry for

different purposes, which are based on reinforcement, low material cost, and processing ease.

The presence of fillers is key to achieve durable products, increase strength, and prolong life.

The modulus of elasticity which is a measure of stiffness of the given materials can also be

improved by fillers. Currently, carbon black is the most widely used particulate fillers, which

has the ability to bond with the elastomer component enhancing the strength of vulcanized

rubbers more than 10-fold as well as imparting durability to the materials [3]. Due to the

incomplete combustion of fossil-origin hydrocarbon fuels during the carbon black manufac-

ture, the process has a considerable carbon footprint. About 2.4 tons of CO2 are estimated to be

emitted per ton of carbon black, which compares to 0.8 tons of CO2 per ton of cement for

cement manufacture [4, 5].

Carbon black is usually present as types of aggregates. According to the TEM graph, its

structure can be defined as partly graphitic. More graphitic structure can be observed from

the outer layers than from center. Although carbon black particle aggregates are reported to

work as a unit in the rubber matrix, its reinforcement ability is not determined by the aggre-

gate units but by each individual particle within the unit. With the particle size decrease, the

dispersion ability of carbon black, as well as the interface extension, can be improved, resulting

in good reinforcement ability [6, 7].

Particle size, the morphology of aggregates, and the microstructure offered by carbon black

can be considered as the key properties contributing to the reinforcement of elastomers.

Furthermore, the surface of carbon black and its structural organization, surface area, and its

chemical composition are also important. The development of a large polymer-filler interface is

highly expected. The upper limit of useful specific surface area for significant reinforcement

can reach 300–400 m2/cm3, and is determined by considerations of dispersibility, processability

of the unvulcanized mix, and serious loss of rubbery characteristics of the composite [8, 9].

The surface area of carbon black is an important morphological characteristic for reinforcing. It

indicates how much available surface can be accessed by rubber molecules for the interaction
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between the rubber and the filler surface. It is necessary to note that meso- and macropores

seem to play the decisive role on the surface unlike micropores for the application of activated

carbon. Since the rubber polymer chains are much larger than the micropores, the polymer

cannot access these pores.

The research of the reinforcement mechanism offered by carbon black has been widely under-

taken since 1960s [10]. It is widely known that the vulcanization process can only achieve

resilient properties with little strength. Then, the strength properties need to be introduced by

the addition of “reinforcement” fillers. After carbon blacks are added to the rubber compound,

several changes occur: (1) an increase in modulus, or stress at a particular strain, (2) an increase

in elongation at break for vulcanizates having a given degree of cross-linking, and (3) conse-

quently, an increase in tensile strength [10, 11]. The improvement of stiffness and the physical

properties such as tear resistance, tensile strength, and abrasion resistance are regarded as the

crucial contribution of carbon black. The reinforcing ability of a filler can be demonstrated in

Figure 1; the only difference between two SBR vulcanizates is the presence or absence of 50phr

carbon black N220 in the recipe. With the addition of carbon black N220, the stress-strain curve

shows a sharp rise, almost 10-fold compared with the unfilled rubber.

Large amount of literatures report about the reinforcement properties of carbon black for

decades. So far, there are more than eight postulations have been wieldy applied to explain

the reinforcement mechanisms, which are given in Table 1.

Due to the increasing price of natural rubber and other compounding ingredients, there are

several concerns about the ongoing use of nonrenewable resources based carbon black feedstock.

Figure 1. Comparison between filled and unfilled rubber matrix [11, 12]. (Rubber: SBR 1502, 100; zinc oxide, 3; stearic

acid, 1.5; Santoflex 13, 0.5; Santoflex 77, 0.5; Sundex 8125, 3; DPG, 0.3; Santousure NS, 1.2; Sulfur, 2. Press cure: 40 min at

153�C. Same formulation with addition of 50 phr N220 carbon black).
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Theories on filled

elastomer

Summary References

Small particle size The reinforcement mechanism is attributed to an interfacial effect consequent upon

small particle size. Any finely divided solid material that can be dispersed in the

polymeric matrix will reinforce rubber compounds.

[12–14]

Slippage at interface Stress can be redistributed by the slippage of molecular chains, and then helps

prevent the molecular rupture. The frictional heat occurring during the relative

motion between rubber molecular chains and filler can help release the strain

energy so that hysteresis can be seen in the matrix instead of breakup.

[15, 16]

Chemical reaction Functional groups on the surface of carbon black are most likely subjected to a

variety of inter- and intramolecular interactions. Acid/base reaction and hydrogen

bonding are probably the main reactions that may occur between the rubber

matrix and the carbon black.

[17–19]

Stored energy function Use thermodynamic concepts to study the relationship between stress and strain.

The order and disorder of system correlate to the extension of the molecular

chains.

[20–23]

Hydrodynamic theory Rigid fillers typically increase the stiffness of the elastomer. The presence of the

rigid fillers lead to local strains, which is greater than globally applied strains.

[24–26]

Strain amplification Modifications to hydrodynamic model at high strains. [19, 27, 28]

Model of weak and

strong linkage

The filled rubber can be regarded to be made of strong and weak linkages.

Different weak linkages can be broken by different stresses contributing to

softening.

[28, 29]

The Bueche model The fillers are connected with the molecular network chains within a filled rubber. [30, 31]

Table 1. Eight postulations of carbon black reinforcement mechanisms [11].

Material Short summary References

Chicken eggshell The eggshell calcium carbonate filled epoxidized natural rubber showed superior

vulcanization characteristics (higher maximum torque and cure rate index, lower cure

time, and scorch time), higher tensile properties, and lower tension set value.

[32]

Fly ash Fly ash (up to 60 phr) can be used as a nonreinforcing filler for ESBR compounds,

where abrasion resistance is not significantly required. The 300% modulus values

remained unchanged with increasing loading.

[34]

Soy spent flakes The soy spent flakes can partially replace carbon black as the reinforcement cofiller in

rubber composites. The elasticity of the cofiller network structure is close to that of

carbon black-filled composites.

[35]

Lignin Reinforcing properties of lignin as filler in nitrile rubber can be improved on suitable

chemical treatment for good thermal stability.

[36]

Pyrolytic tire Chars obtained from pyrolytic tire can be successfully reused as semireinforcing fillers

in rubber formulations. The physical and mechanical properties of the rubber filled

with pyrolytic tire were found to be comparable to rubber containing N772 and with

N772 and silica.

[4]

Waste newsprint

fibers

The sodium silicate and magnesium chloride treated newsprint fiber waste at 40phr

can improve the electrical and mechanical properties of the rubber composite.

[37]

Marble sludge with

carbon black

Marble sludge can be used as a cofiller with carbon black in natural rubber. High

tensile strength, modulus, tear strength, and hardness can be achieved.

[38]

Table 2. Novel rubber filler from green feedstock [11].
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On one hand, the price of carbon black feedstock witnesses a gradual increase every year. On the

other hand, severe environmental problems have been caused by the nondegradability feedstock

of carbon black. Consequently, many researches have been conducted in the rubber industry to

develop fillers derived from biodegradable waste feedstock, by which transforming its sourcing

to a sustainable material basis. Their recyclability and utilization has become a major driving

factor in their acceptance and employability, as well as low cost and abundant availability. This

new class of carbon black-like feedstock includes natural sources (e.g., natural fibers), industrial

by-products (e.g., saw dust, rice husk, coconut shell), and even industrial waste material (e.g.,

rice husk ash). This field is very attractive from both the ecological and economic point of view,

since it could enable rejected material to become valuable material, which could be reused in

industry [32, 33]. Some of the popular green feedstocks of novel rubber filler have been summa-

rized in Table 2.

3. Process description

3.1. Feedstock and reference material

3.1.1. Feedstock: coconut shell

As a single and simple genus species, coconut is grown around the world sharing similar

properties. In order to make the experiments standardized, after being crushed into to small

pieces (less than 10 mm) by a laboratory-scale hammer miller (Glen Creston, UK), the small

pieces of coconut shell were then dried at 105�C to constant weight, to reduce the moisture

content (Figure 2).

3.1.2. Reference material: carbon black N772

Carbon black N772 belongs to low to semidispersion, middle-active grades of carbon black,

which has the largest particle size and lowest structural and surface area among the whole

Figure 2. Dried coconut shell [11].
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range of carbon black. N772 provides high elasticity, low heat-up, good aging-resistance, and

superior dynamic performance to the technical rubber products or tire frames.

3.2. Pyrolysis process

Pyrolysis is a thermal treatment with limited oxygen by which organic materials are chemi-

cally decomposed by heat. It is a promising method by using waste materials such as biomass

as feedstock to convert waste into energy and other valuable products. During the pyrolysis,

large molecules break down into small molecules, resulting in carbonaceous materials, com-

bustible gases, and condensable liquid hydrocarbons for renewable energy resources [39–42].

According to Sienkiewicz et al. [43], it is obvious that there is a significant potential of

pyrolysis treatment based on ongoing works along with increasing cost of energy and petro-

leum and resources such as carbon black.

The pyrolysis of coconut shell was performed in a Carbolite 11/150 laboratory scale rotary

furnace (Carbolite, Hope Valley, UK) situated in a walk-in fume cupboard. As shown in

Figure 3, a rotatory horizontal tubular quartz vessel with the capacity of almost 5 liters is

suspended by air-tight rotary fixtures inside an electrically heated box-furnace. According to

several studies, the rotation rate is set as 10 ramp/min. The temperature is controlled at 600�C

by the thermal system with a thermocouple in the box furnace. Nitrogen gas is introduced into

the reaction vessel from the gas inlet ports at 550 ml/min flow rate [44]. The nitrogen flow

maintaining in the vessel throughout the pyrolysis is to protect the char from oxidation and

help to carry and remove the pyrolytic volatiles (oil and gas) toward the oil trap. At the same

time, the noncondensable volatiles (gases) were vented from a small opening on the top of the

oil trap to the fume cupboard.

3.3. Postpyrolysis grinding by wet TEMA milling

All the char samples after the pyrolysis were ground by wet TEMA milling using a vibratory

disc mill (Tema Machinery Company Ltd., UK). Wet milling is used for the more intensive

and efficient properties than dry grinding since it can break the char samples into finer

Figure 3. Illustration of rotary furnace.
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particles in the micron and submicron (or nanometer) particle size. Moreover, it has been

found that wet milling can cost-effectively create uniformly fine particles with limited or no

contamination [45]. The optimum condition for wet TEMA milling was confirmed as 1:1

liquid and solid ratio, 1.5 min grinding time. After the milling process, the wet samples were

dried at 105�C for 24 h until constant weight.

3.4. Char filler characterization

3.4.1. Textural characterization

Surface area of the samples were characterized by liquid nitrogen (at 77 K) adsorption and

desorption method using the OMNISORP 100. The BET surface area can be calculated with the

isotherms by using the Brunauer-Emmett-Teller equation [46]. The t-plot method was used to

find the micropore volume and the combined macropore and mesopore surface area [47]. The

significant surface areas were concluded from the difference between the BET surface area and

the macropore and mesopore surface area and used to establish the relationship between pore

size distribution and rubber uptake capacity of the fillers.

3.4.2. Toluene extraction

Toluene extraction of the char filler was test according to the ASTM D 1618-99 (Standard Test

Method for Carbon Black Extractables—Transmittance of Toluene Extract) [48]. This method

covers the measurement of the degree of toluene discoloration by carbon black extractables

and is useful in controlling the reaction process for the production of carbon black.

3.4.3. pH value

Test Method A—Boiling Slurry of ASTMD1512-05 Standard Test Method for Carbon Black—pH

value [49] was applied to obtain the pH value of the char filler. The pH value is very essential

since it can affect the vulcanization of some rubber compounds.

3.4.4. Boehm titration

The oxygen surface groups on char filler were investigated by the Boehm titration [17]. This

method is based on the principle that oxygen groups on surfaces have different acidities and

can be neutralized by bases of different strengths. Sodium hydroxide (NaOH) is the strongest

base generally used, and is assumed to neutralize all Brønsted acids, while sodium carbonate

(Na2CO3) neutralizes carboxylic and lactonic groups and sodium bicarbonate (NaHCO3) neu-

tralizes carboxylic acids. The difference between the uptake of the bases can be used to

quantify the oxygen surface groups on a char sample [50].

3.4.5. In-rubber testing

Styrene-butadiene rubber (SBR) is widely applied in tire treads. When protected by addi-

tives, excellent traction properties, good abrasion resistance, and good aging stability can be

achieved [51]. It is reported that the most common use of SBR is in pneumatic tires with

around 50% of car tires being made from a range of types of SBR. A widely used generic SBR
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formulation is shown in Table 3, which was applied in the compounding process to investi-

gate the performance of the char filler in rubber. Compounds were produced using a 60 cc

Brabender mixer set at 40�C and 60 rpm.

The moving die rheometer (MDR) test was conducted based on ASTM D5289, at 160�C for

30 min. The results of the MDR were used to evaluate the cure characteristics of each com-

pound and to allow preparation of cured sheet using a cure time of T90 + 5 min. Shore A

hardness was tested according ASTM D2240. Tensile properties were determined following

ASTM D412. A scanning electron microscopy (SEM) (Auriga Cross Beam, Zeiss) was applied

to analyze the surface morphology of the char filler-filled rubber sample and to understand the

mechanism of the char filler with the rubber matrix.

4. Results and discussion

4.1. Char characterization

The char yield, oil yield, and gas yield from the pyrolysis process are 31.6, 16.0 and 52.4%,

respectively. The char yield is satisfying and encouraging in terms of the potential commercial

opportunity for coconut shell to be used as a feedstock to produce a substitute carbon black.

The oil yield and gas yield are both beneficial so that further implications of these two by-

products have great potential.

Table 4 summarizes the transmittance of toluene extract (T%), pH value, BET surface area, T-

plot surface area, and acidic groups and basic groups on the surface of both commercial carbon

black N772 and the pyrolytic coconut char filler.

Toluene transmittance correlates to the amount of tarry or leachable contents in the carbon

black as the leachable and unburned tarry or oil-residues on the surface of carbon black or the

char can be dissolved into it. This is very important for potential applications, since the

presence of a high leachable (oily) content may cause contamination during processing into

rubber or other applications and present problems in the appearance and performance of the

final rubber products. According to Table 4, the toluene transmittance of char fill is 99.95; it

Ingredient Parts per hundred of rubber

SBR 1502 100

Char filler 60

TDAE oil 10

Zinc oxide 5

Stearic acid 2

6PPD 1.5

TBBS 1.5

Sulfur 1.5

Table 3. SBR formulation [9, 11].
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shows that the filler is quite clean and pure with little surface contamination. However, the

carbon black N772 only has 65.9% of the T%, which indicates that a significant amount of

leachable components exists indicating a limiting effect on the purposes.

It is widely known that pores on the surface of solids are classified into three size ranges:

micropores (<2 nm width), mesopores (<2–<50 nm with), and macropores (>50 nm width).

Normally, if the pores (micropores and small mesopores) are significantly smaller than the very

large rubber polymer chains, then the polymer molecules cannot access to these pores. Therefore,

unlike micropores present in activated carbon, meso- and macropores may play the decisive role

on the filler surface. From Table 4, the area of all pores on N772 is 28.5 m2/g and the area of

meso- and macropores is 26.6 m2/g. The results indicate that meso- and macropores occupied

most of the surface area of carbon black, which reaffirms previous statements about the impor-

tance of these pores in carbon black’s application in the rubber industry. The BET surface area of

the char filler is 373.31 m2/g, whereas the t-plot surface area is 315.86 m2/g, which follows the

same trend with N772. Moreover, the surface areas are much greater than N772. These data

further support the assertion that char samples can be used as an alternative rubber filler.

The pH value of the char surface has been recognized as a foundation of the reinforcing ability

of the fillers. It is reported that basic materials may accelerate vulcanization reactions, while

acidic ones may delay the vulcanization time of a rubber compound [17, 48]. According to the

above, a solution pH value close to 9 makes N772 suitable filler for a wide range of application

with reasonable vulcanization time and ideal amount of free radicals. The pH value of the char

sample was close to 9, which also supports the proposition that coconut shell could be a

promising feedstock for rubber fillers. The surface chemical groups on the surface of char filler

are much more plentiful than the carbon black N772, which makes char surface more active

resulting in a better interaction and reinforcement from coconut shell char.

4.2. In-rubber characterization

The cure and physical properties of the rubber compounds filler with the two fillers assessed

by the moving die rheometer (MDR) test are summarized in Table 5. At the beginning, a

mixture is heated in the cavity of the rheometer under pressure. Then, the viscosity decreases

Min

(dNm)

Max

(dNm)

Ts2

(mm:ss)

T90

(mm:ss)

Shore

A (�)

M100%

(Mpa)

M300%

(Mpa)

Tensile strength

(Mpa)

Elongation

at break (%)

Char filler 1.16 14.42 7.04 13.48 59 1.99 2.82 5.68 653

CB N772 1.23 13.66 4.33 9.19 57 1.63 9.3 20.4 586

Table 5. Rheology and physical data of coconut shell char and N772.

T% pH value BET surface

area (m2/g)

T-plot surface

area (m2/g)

Acidic groups

(mmol/g)

Basic groups

(mmol/g)

Char filler 99.95 9.70 373.3 315.89 0.062 0.316

CB N772 65.9 8.5 28.5 26.6 0 0.079

Table 4. Characterization of char filler and carbon black N772.
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and the torque exerted on the rotor drops. The lowest torque value is called moment lowest

(ML), which can be used to study the stiffness of the uncured rubber compound at a given

temperature, noted as “Min” in Table 5. After the curing process begins, the torque rises.

When the torque increases 2 dNm unit above ML value, the time is recorded as Ts2. It tells

about the moment the curing process actually starts. With the curing progressing, the torque

Figure 4. SEM plots of compounded rubber sheets at 25 K magnification, illustrating rubber-filler bonding system [11].

(a) SEM plot of Run 20 filled rubber sheet. (b) SEM plot of N660 filled rubber sheet.
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continues increasing. After some time, the torque reaches the maximum value and a plateau

appears. The highest torque is regarded as moment highest (MH), also noted as “Max” in

Table 5. The time from the beginning of the test to the point where 90% of the MH value

attained is called T90. The hardness of the filled rubber compound is tested by the Shore A

with degree unit according to the ASTM D2240 standard. The M100 and M300% are the

stresses required to produce an elongation of 100 and 300% of the test sample. The maximum

tensile stress recorded in extending the test piece to a breaking point is shown as tensile

strength; and the elongation at break is the tensile strain in the test length at breaking point

[11, 52].

According to Table 5, the time to onset of cure (Ts2) and cure times (T90) of the coconut char

filled SBR were comparable but slightly longer than conventional carbon black N772. Different

surface chemistry may be the reason, since it may have some interactions with the cure

package. The hardness value was slightly high than N772, also indicating that coconut shell

has the potential to be used as the parent material of rubber filler. The M100% values are found

to be higher than the commercial carbon black. The low tensile strength and high elongation to

break values imply that there are low filler-polymer interactions and structure levels, allowing

for chain slippage over the filler surface, which can be enhanced through modification of the

rubber mix formulation [9]. Based on this data, the sample can be considered as a semi- to low-

reinforcing filler with broadly similar cure characteristics to conventional carbon black.

The SEM plots of coconut char compounded rubber sheet and N660 (which behaves better in

the rubber matrix than N772) filled rubber sheet at 25 K magnification are shown in Figure 4.

According to the images that base layer is the rubber matrix, the small particles on the

surface are fillers (char filler and N660). It can be seen from the images, the fillers are

unevenly attached to the surface of the rubber, indicating that the mechanism of the interac-

tion between char filler and rubber is similar to conventional carbon black. Particle shapes,

sizes, and its distribution are the main differences between coconut char and commercial

carbon black. Smaller aggregate size and more uniform size distribution of carbon black plus

spheroid particles may be helpful during the vulcanization process leading to good rein-

forcement.

5. Conclusion

Coconut shell, as a high-volume problematic waste material, has the potential to be success-

fully converted into a high-quality carbon black-like char filler, and high heat value, renewable

energy materials (mainly oil and some gases) at relatively small scale. Thus, global fossil fuel-

derived emissions can be reduced by the help of the ability of biochar to sequester the carbon

contained in the coconut shell by conversion into a stable and nonavailable form. This type of

process has been regarded as popular sector with growth potential in the global carbon market

with a controllable, clean, and simple manufacturing process.

High external surface area values (315.89 m2/g), along with high levels of purity (99.95%) and

suitable surface pH (9.70), can be achieved by the coconut shell char filler. The char filler produced
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was comparable on a physicochemical basis with the commercial semireinforcing carbon black

N772. Since most of the performance testing of the rubber products was highly comparable, the

semireinforcing carbon black can be partially replaced by the coconut char filler. If the level of

filler-polymer interaction can be enhanced, while the current level of filler-filler interactions

maintained, the char filler would have very interesting properties with regard to low energy

losses, such as tire rolling resistance. Further surface modification for the char filler has been

identified as a part of post-production process for further optimization, such as filler-rubber

interaction. At the same time, since coconut shell char is a new type of rubber filler, the vulcani-

zation and mixing process needs to be to be investigated for further improvement for short cure

time and good tensile strength.
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