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Abstract

Semi-supervised learning (SSL) that can make use of a small number of labeled data with
a large number of unlabeled data to produce significant improvement in learning perfor-
mance has been received considerable attention. Manifold regularization is one of the
most popular works that exploits the geometry of the probability distribution that gener-
ates the data and incorporates them as regularization terms. There are many representa-
tive works of manifold regularization including Laplacian regularization (LapR), Hessian
regularization (HesR) and p-Laplacian regularization (pLapR). Based on the manifold

regularization framework, many extensions and applications have been reported. In the
chapter, we review the LapR and HesR, and we introduce an approximation algorithm of
graph p-Laplacian. We study several extensions of this framework for pairwise constraint,

p-Laplacian learning, hypergraph learning, etc.

Keywords: Laplacian regularization, Hessian regularization, p-Laplacian regularization,
semi-supervised learning, manifold learning

1. Introduction

In practical applications, it is generally laborious to obtain the labeled samples, though vast

amounts of unlabeled samples are easily achieved and provide auxiliary information. Semi-

supervised learning (SSL), which takes the full advantages of unlabeled data, is specifically

designed to improve learning performance. In representative semi-supervised learning algo-

rithms, it is usually assumed that the intrinsic geometry of the data distribution is supported

on the low-dimensional manifold.

The popular manifold learning methods include principal components analysis (PCA),

multidimensional scaling (MDS) [1, 2], generative topological mapping (GTM) [3], locally

linear embedding (LLE) [4], ISOMAP [5], Laplacian eigenmaps (LE) [6], Hessian eigenmaps

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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(HLLE) [7], and local tangent space alignment (LTSA) [8]. PCA aims to find the low-

dimensional linear subspace which captures the maximum proportion of the variation within

the data. MDS aims to place each object in N-dimensional space such that the between-object

distances are preserved as well as possible. GTM can be seen as a nonlinear form of principal

component analysis or factor analysis. LLE assumes a given sample can be reconstructed by its

neighbors, represents the local geometry and then seeks a low-dimensional embedding.

ISOMAP incorporates the geodesic distances imposed by a weighted graph. LE preserves

neighbor relations of pairwise samples by manipulations on an undirected weighted graph.

HLLE obtains the final low-dimensional representations by applying eigenanalysis to a matrix,

which is built by estimating the Hessian over neighborhood. LTSA [8] exploits the local

tangent information as a representation of the local geometry, and this local tangent informa-

tion is then aligned to provide a global coordinate. Regularization is a key idea in the theory of

splines [9] and is widely used in machine learning [10] (e.g., support vector machines). In 2006,

Belkin et al. [11] proposed the manifold regularization framework by introducing a new

regularization term to exploit the geometry of the probability distribution. Based on this

framework, many successful manifold regularized semi-supervised learning (MRSSL) algo-

rithms have been reported.

Laplacian regularization (LapR) [11, 12] is one prominent manifold regularization-based SSL

algorithm, which approximates the manifold by using the graph Laplacian. Putting the simple

calculation and prominent performance together, the LapR-based SSL algorithms have been

widely used in many applications. Liu et al. [13] introduced Laplacian regularization for local

structure preserving and proposed manifold regularized kernel logistic regression (KLR) for

web image annotation. Luo et al. [14] employed manifold regularization to smooth the func-

tions along the data manifold for multitask learning. Ma et al. [15] proposed a local structure

preserving method that effectively integrates Laplacian regularization and pairwise con-

straints for human action recognition. Hu et al. [16] introduced graph Laplacian regularization

for joint denoising and superresolution of generalized piecewise smooth images.

Hessian regularization [17] (HesR) has attracted considerable attentions and has shown empir-

ically to perform well in practical problems [18–26]. Liu et al. [27] incorporated both Hessian

regularization and sparsity constraints into auto-encoders and proposed a new auto-encoder

algorithm called Hessian regularized sparse auto-encoders (HSAE). Liu et al. [28] proposed

multi-view Hessian regularized logistic regression for action recognition. While the null space

of the graph Laplacian along the underlying manifold is a constant function, HesR steers the

learned function varying linearly in reference to the geodesic distance. In result, HesR can be

more accurate to describe the underlying manifold of data and achieves the better learning

performance than LapR-based ones [18]. However, the stability of Hessian estimation depends

mostly on the quality of the local fit for each data point, which leads to inaccurate estimation

particularly when the function is heavily oscillating [17].

As a nonlinear generalization of the standard graph Laplacian, discrete p-Laplacian has been

well studied in mathematics community and solid properties have been investigated by previ-

ous work [29, 30]. Meanwhile, graph p-Laplacian has been proved having the advantages for

exploiting the manifold of data distribution. Bühler et al. [31] provided a rigorous proof of the

approximation of the second eigenvector of p-Laplacian to the Cheeger cut which indicates the
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superiority of graph p-Laplacian in local geometry exploiting. Luo et al. [32] proposed full

eigenvector analysis of p-Laplacian and obtain a natural global embedding for multi-class

clustering problems, instead of using greedy search strategy implemented by previous

researchers. Liu et al. [33] proposed p-Laplacian regularized sparse coding for human activity

recognition.

In this chapter, we first present some related work, and then introduce several extensions

based on the manifold regularization framework. Specifically, we present the approximation

of graph p-Laplacian and the p-Laplacian regularization framework.

Notations: We present some notations that will be used throughout this chapter. We use L
0 0

as

the novel graph Laplacian constructed by the traditional graph Laplacian L and the side

information. Lp, Lhpp and L represent the graph p-Laplacian, hypergraph p-Laplacian and

ensemble graph p-Laplacian, respectively.

2. Related works

This section reviews some related works on manifold regularization, pairwise constraints and

hypergraph learning.

2.1. Manifold regularization framework

In semi-supervised learning, assume that N training samples X containing l labeled samples

xi; yi
� �� �l

i¼1
and u unlabeled samples xj

� �� �lþu

j¼lþ1
are available. The labeled samples are pairs

generated from probability distribution, while unlabeled samples are simply drawn according

to the marginal distribution. To utilize marginal distribution induced by unlabeled samples,

we assume that if two points x1, x2 are close in the intrinsic geometry of marginal distribution,

then the labels of x1 and x2 are similar.

Manifold regularized method introduces appropriate penalty term ∥f∥2I
� �

and reproducing

kernel Hilbert spaces (RKHS) norm ∥f ∥2K
� �

that is used to control the complexity of the intrinsic

geometric structure of the function and the complexity of the classification model, respectively.

By incorporating two regularization terms, the standard framework aims to minimize the

following function:

f ∗ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

V xi; yi; f
� �

þ ΥA fk k2K þ ΥI fk k2I : (1)

where V is some loss function, such as the hinge loss function max 0; 1� yif xið Þ
� �

for support

vector machines (SVM). The parameters ΥA and ΥI balance the loss function and two regular-

ization terms. For semi-supervised learning, the manifold regularization term fk k2I is a key to

smooth function along the manifold estimated from the unlabeled samples.
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2.2. Pairwise constraints

Pairwise constraints (side information) [34, 35] is a type of supervised information that specify

whether a pair of data samples belong to the same class (must-link constraints) or different

classes (cannot-link constraints). Compared with class labels, pairwise constraints can provide

us weak and more general supervised information. Currently, it has been widely used in semi-

supervised clustering [36, 37], distance metric learning [38], feature selection [39] and dimen-

sion reduction [40, 41].

Donate X ¼ xif gni¼1 as data set with Y ¼ yi
� �n

i¼1
as class labels. LetM ¼ xi; xj

� �� �

be the pairwise

must-link constraints set and C ¼ xi; xj
� �� �

be the pairwise cannot-link constraints set, that is,

M ¼ xi; xj
� �

jxi and xj belong to the same class
� �

C ¼ xi; xj
� �

jxi and xj belong to different classes
� �

:

Defined on the pairwise must-link constraint set and the cannot-link constraint set, we con-

struct similarity matrices SM and SC, respectively:

SMij ¼
1, if xi; xj

� �

∈M

0, otherwise

�

(2)

SCij ¼
1, if xi; xj

� �

∈C

0, otherwise
:

�

(3)

Then, the must-link Laplacian matrix LM is given by LM ¼ DM � SM, and the cannot-link Lapla-

cianmatrix LC is given by LC ¼ DC � SC. WhereDM andDC are two diagonal matrices withDM
ii ¼

Pn
j¼1 S

M
ij andDC

ii ¼
Pn

j¼1 S
C
ij , respectively.

Ding et al. [42] introduced pairwise constraints into spectral clustering algorithm. Especially,

they revised the distances between sample points by the distance matrix D, where Dij ¼

0 if xi; xj
� �

∈M

∞ if xi; xj
� �

∈C

(

.

Kalakech et al. [43] developed a semi-supervised constraint score by using both pairwise

constraints and local properties of the unlabeled data.

Luo et al. [44] denoted the training set with side information by xi; xj; yij

n oN

i, j¼1
, where yij ¼ �1

indicates xi and xj are similar or dissimilar. The side information was utilized by denoting the

loss function yij 1� ∥xi � xj∥
2
Am

h i

, where Am is the metric in the m’th heterogeneous domain.

2.3. Hypergraph learning

Hypergraph [45] is a generalization of a simple graph. Compared with simple graphs, a

hypergraph illustrates the complex relationship by hyperedges that connect three or more
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vertices (see in Figure 1). Thus, the hypergraph contains more local structure information in

comparison to simple graph. Hypergraph has been widely used in image classification [46],

ranking [47] and video segmentation [48].

Let G ¼ V;Eð Þ denote a hypergraph with the vertex set V and the hyperedge set E. Denote the

weight associated with each hyperedge e as w eð Þ. The degree d vð Þ of a vertex is defined by

d vð Þ ¼
P

e∈Ejv∈ ef gw eð Þ. The degree of a hyperedge e is denoted as δ eð Þ ¼ ej j. Denote the vertex-

edge incident matrix H by a ∣V∣� ∣E∣ matrix, where entry h v; eð Þ ¼ 1 if v∈ e, and h v; eð Þ ¼ 0

otherwise. By these definitions, we have:

d vð Þ ¼
X

e∈E

w eð Þh v; eð Þ, δ eð Þ ¼
X

v∈V

h v; eð Þ: (4)

Then, we denote Dv as the diagonal matrices consisting of vertex degree, De as the diagonal

degree matrices of each hyperedge and W as the diagonal matrix of edge weights. Then, the

hypergraph Laplacian can be defined.

A number of different methods have been used in the literature to build the graph Laplacian of

hypergraphs. The first category includes star expansion [49], clique expansion [49],

Rodriquez’s Laplacian [50], etc. These methods aim to construct a simple graph from the

original hypergraph, and then partitioning the vertices by spectral clustering techniques. The

second category of approaches defines a hypergraph Laplacian using analogies from the

simple graph Laplacian. Representative methods in this category include Bolla’s Laplacian

[51], Zhou’ normalized Laplacian [52], etc. According to [52], the normalized hypergraph

Laplacian Lhp is defined as

Lhp ¼ I �Dv�1=2HWDe
�1HTDv�1=2: (5)

Figure 1. The block scheme of hypergraph. Left: A simple graph in which two points are joined together by an edge if

they are highly similar. A hypergraph completely illustrates the complex relationship among points by hyperedges. Right:

The H matrix of the hypergraph. The entry vi; ej
� �

is set to 1 if a hyperedge ej contains vi, or 0 otherwise.
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It is worth noting that Lhp is positive semi-definite. The adjacency matrix of hypergraph Whp

can be formulated as follows:

Whp ¼ HWHT �Dv: (6)

For a simple graph, the edge degree matrix De is replaced by 2I. Thus, the standard graph

Laplacian is

L ¼ I �
1

2
Dv�

1
2HWHTDv�

1
2

¼
1

2
I �Dv�1=2WhpDv�1=2

	 


:

(7)

3. LapR-based SSL

Laplacian regularization is one of most prominent manifold regularization methods that

utilizes the graph Laplacian matrix to characterize the manifold structure. In this section, we

introduce the traditional Laplacian support vector machines (LapSVM) and Laplacian kernel

least squares (LapKLS) as examples of Laplacian regularization algorithms. Then, we extend

the algorithms by building the novel graph Laplacian L
0 0

which combines the traditional graph

Laplacian L with the side information to boost locality preservation.

3.1. LapSVM and LapKLS

As previously mentioned, the manifold regularization framework is built by Eq. (1). The

traditional LapSVM solves this optimization problem with the hinge loss function

f ∗ð Þ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

1� yif xið Þ
� �

þ
þ ΥA fk k2K þ

ΥI

lþ uð Þ2
fTLf: (8)

where f is given as f ¼ f x1ð Þ; f x2ð Þ;⋯; f xlþuð Þ½ �T , L is the graph Laplacian with L ¼ D�W ,

where W ij is weight vector, the diagonal matrix D is given by Dii ¼
Pn

j¼1 W ij.

According to the representer theorem, the solution of the aboveproblemcan be expressed as below:

f ∗ xð Þ ¼
X

lþu

i¼1

α
∗

i K xi; xð Þ: (9)

where K is the kernel function. Therefore, we rewrite the objective function as

f ∗ð Þ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

1� yif xið Þ
� �

þ
þ ΥAα

T
Kαþ

ΥI

lþ uð Þ2
α
T
KLKα: (10)

By employing the least square loss in Eq. (10), we can present the locality preserved kernel

least squares model defined in Eq. (11) as follows
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f ∗ð Þ ¼ min
f EΗΚ

1

l

X

l

i¼1

yi � f xið Þ
� �2

þ ΥAα
T
Kαþ

ΥI

lþ uð Þ2
α
T
KLKα: (11)

Taking the derivation to the objective functions, we can get the solution of α.

3.2. Pairwise constraints-combined manifold regularization

Assume that samples with the similar features tend to have the similar class labels, combining

the Laplacian regularization and pairwise constraints is a good way to exploit the local

structure and boost the classification results. Therefore, we introduce the pairwise constraints

into traditional LapR. Particularly, we introduce three combination strategies based on experi-

ences. Finally, we present the locality preserved support vector machines and kernel least

squares respectively.

According to the definition, we can compute the must-link Laplacian matrix LM and the

cannot-link Laplacian matrix LC. The first two forms of the combination are defined on the

traditional graph Laplacian L and must-link constraints and can be written as

L
0 0

¼ L LM þ αΙ
� �

(12)

and

L
0 0

¼ Lþ αLM (13)

respectively, where α is the parameter to balance the weight between the two types of

Laplacian matrices.

Based on the cannot-link constraints C, we can compute the similarity matrix S as Sij ¼

�1, if xi; xj
� �

∈C

1, otherwise

�

. The third form of the combination is defined on the traditional graph

Laplacian and pairwise cannot-link constraints and can be written as

L
0 0

¼ L:∗S: (14)

Actually, there are other combination strategies using both the must-link and cannot-link

constraints to get a better result than traditional methods. However, the performance is no

better than the result using one only from the experiences. Therefore, we just put these three

proposed graph Laplacian into practice.

Introducing the novel graph Laplacian L
0 0

to SVM, we rewrite the learning model as follows:

f ∗ð Þ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

1� yif xið Þ
� �

þ
þ ΥA fk k2K þ

ΥI

lþ uð Þ2
fTL

0 0

f: (15)

According to the representer theorem, the solution of the above problem can be expressed as

below:
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f ∗ xð Þ ¼
X

lþu

i¼1

α
∗

i K xi; xð Þ: (16)

Therefore, we rewrite the objective function as

f ∗ð Þ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

1� yif xið Þ
� �

þ
þ ΥAα

T
Kαþ

ΥI

lþ uð Þ2
α
T
KL

0 0

Kα: (17)

By employing the least square loss in Eq. (17), we can present the locality preserved kernel

least squares model defined in Eq. (18) as follows

f ∗ð Þ ¼ min
f EΗΚ

1

l

X

l

i¼1

yi � f xið Þ
� �2

þ ΥAΥAα
T
Kαþ

ΥI

lþ uð Þ2
α
T
KL

0 0

Kα: (18)

We compare our proposed local structure preserving algorithms with the traditional well-

known Laplacian algorithms on CAS-YNU-MHAD dataset [53]. CAS-YNU-MHAD dataset

contains 10 human actions including jumping up, jumping forward, running, walking S,

walking quickly, walking, standing up, sitting down, lying down and typing. Figure 2 shows

the examples. In experiments, we choose the data from four sensors (be placed in the right

shoulder, left forearm, left hand and spine) to construct multi-view features. Ninety percent

data of per action are randomly selected as the training data, and the rest for testing.

In semi-supervised classification experiments, we randomly select a certain percentage (10, 20,

30, 50%) samples of training data as labeled data. All the classification methods are measured by

the average precision (AP) [54] based on the testing data. Note that the supervised information

Figure 2. Three examples from 10 actions, jumping up, walking S and sitting down (up to bottom).
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(labeled information and side information) are randomly selected from training set. To avoid any

potential bias induced by data selecting, the above process is repeated for five times.

For the first two proposed algorithms using the must-link constraints, we first determine the

parameter αwhich balances the traditional graph Laplacian and the must-link Laplacian matrix.

The parameter α of novel methods is tuned from the candidate set eiji ¼ �10, � 9, � 8,⋯, 10
� �

through cross-validation. In addition, the regularization parameters ΥA,ΥI are chosen from

10�8
; ; 10�7

; ; 10�6
;⋯; ; 106; ; 107; ; 108

� �

through cross-validation on the training data. We verify

the AP performance to select the proper parameters. Note that the parameter α may be different

for the same classifier to get the best performance under the different proportion of side

Figure 3. The total classification result under 10% labels (a) KLS, (b) SVM.

Figure 4. The total classification result under 20% labels (a) KLS, (b) SVM.
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information. In results, the legend NewLapKLS-1 represents the kernel least squares classifier

using algorithm L
0 0

¼ L L
M
þ αΙ

� �

, NewLapSVM-2 stands for the support vector machines clas-

sifier using algorithm L
0 0

¼ Lþ αL
M, and so on.

Figure 3 shows the classification results achieved by KLS and SVM classifiers under the 10%

labeled samples. We can see two main points. First, our proposed three local structure preserv-

ing algorithms with pairwise constraints usually get the overall better performances than the

well-known semi-supervised methods (LapKLS and LapSVM) without side information. Sec-

ond, we can clearly see, in most cases, the results gradually become better with the increase of

side information. From Figures 4–6, we can get the analogous observations for our proposed

Figure 5. The total classification result under 30% labels (a) KLS, (b) SVM.

Figure 6. The total classification result under 50% labels (a) KLS, (b) SVM.
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methods compared with their counterparts. These observations indicate that our proposed

learning model can better explore and exploit the local structure by taking advantage of the

geometrical structure information in the pairwise constraints and manifold regularization.

What we can note is that the classification results have slight fluctuation with more side

information when the number of class labels is large. These observations suggest it is critical

to select parameters for our proposed methods.

To investigate whether the single action of CAS-YNU-MHAD can get the outperformance, we

choose jumping up as an example in Figure 7. We can find that, our proposed algorithm

consistently performs better than the previous algorithm without side information. Especially,

we can see, the classification result can get a significant development when the number of

labeled samples is limited.

4. HesR-based SSL

Although LapR has received extensive attention, it is observed that the null space of the graph

Laplacian along the underlying manifold is a constant function that possibly results in poor

generalization. In contrast to Laplacian, Hessian can properly exploit the intrinsic local geom-

etry of the data manifold. In recent works [23–26, 28], HesR based SSL algorithms have been

proved to achieve better performance than LapR based ones.

Hessian matrix can be computed by the following four steps.

Step 1: Neighborhood construction. Using k-neighborhood to define neighbors in Euclidean

distance for each input point xi, we get neighborhood matrix Ni.

Step 2: Create local tangent coordinates. Conduct singular value decomposition on neighbor-

hood matrix Ni ¼ UDV. The first d columns of V (Vi ¼ v1;v2;…;vd½ �) mean the tangent

coordinates of data points xi.

Figure 7. The result of jumping up with the different proportion of side information by LapKLS, LapSVM, NewLapKLS-1

and NewLapSVM-1.
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Step 3: Build local Hessian estimator. Apply Gram-Schmidt procedure on the matrix 1;Vi;Qi½ �

with the first column is a vector of ones, Qi ¼ vi⊠vj

� �
1 ≤ i ≤ j ≤d

is a matrix of m mþ 1ð Þ=2

columns to get bMk
i . Then taking the last m mþ 1ð Þ=2 columns of bMk

i as H
i.

Step 4: Construct Hessian matrix H. A symmetric matrix H is constructed with the entry

Hij ¼
P

l

P
r H

l
r, iH

l
r, j.

The HesR model can be expressed in:

f ∗ð Þ ¼ argmin
f EΗΚ

1

l

Xl

i¼1

V xi; yi; f
� �

þ ΥA fk k2K þ
ΥI

lþ uð Þ2
fTHf: (19)

Hessian has been widely utilized in improving the SSL classification performance. Liu et al. [18]

present multi-view Hessian discriminative sparse coding (mHDSC) which seamlessly integrates

Hessian regularization with discriminative sparse coding for multi-view learning problems. In

[24], HesR was employed into support vector machine to boost the classifier. In [19], HesR was

integrated into multi-view learning for image annotation, extensive experiments on the PASCAL

VOC’07 dataset validate the effectiveness of HesR by comparing it with LapR.

5. pLapR-based SSL

Although the p-Laplacian has nice theoretical foundations, it is still a strenuous work to

approximate graph p-Laplacian, which extremely limits the applications of p-Laplacian regu-

larization. In this section, we provide an effect and efficient fully approximation of graph p-

Laplacian, which significantly lows down the computation cost. Then we integrate the approx-

imated graph p-Laplacian into manifold regularization framework and develop p-Laplacian

regularization. Based on the pLapR, several extended algorithms were proposed.

5.1. pLapR

The graph p-Laplacian is approximated by getting all eigenvectors and eigenvalues of p-

Laplacian [55]. Assume that f ∗1, f ∗2,⋯, f ∗K are K eigenvectors of p-Laplacian ∆w
p associated

with unique eigenvalues λ
∗
1,λ

∗
2,⋯,λ∗

K. Luo et al. [32] introduced an approximation for full

eigenvectors of p-Laplacian by solving the following p-Laplacian embedding problem:

minF JE Fð Þ ¼
X

k

P
ijwij f

k
i � f kj

���
���
p

∥f k∥pp

s:t: F
T
F ¼ I:

(20)

Solving the Eq. (20)with the gradient descend optimization,we can then obtain the full eigenvalues

Λ
∗ ¼ λ

∗
1;λ

∗
2;⋯;λ∗

K

� �
of p-Laplacian associated with the eigenvectors F ∗ ¼ f ∗1; f ∗2;⋯; f ∗K

� �
by

λp ¼

P
ij
wij f i�f jj j

p

2∥f∥
p
p

. Finally, the graph p-Laplacian approximated by Lp ¼ F
∗
ΛF

∗T.
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We introduce the approximation graph p-Laplacian into a regularizer to exploit the intrinsic

local geometry of the data manifold. Therefore, in p-Laplacian regularization framework, the

optimization problem in Eq. (1) becomes

f ∗ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

V xi; yi; f
� �

þ ΥA fk k2K þ
ΥI

lþ uð Þ2
fTLpf: (21)

Here, Lp is the graph p-Laplacian.

The proposed pLapR can be applied to variant MRSSL-based applications with different

choices of loss function. Here, we apply pLapR to support vector machines (SVM) and kernel

least squares (KLS) as examples.

Applying the hinge loss function in p-Laplacian learning, the p-Laplacian support vector

machines (pLapSVM) solves the following optimization problem:

f ∗ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

1� yif xið Þ
� �

þ
þ ΥA fk k2K þ

ΥI

lþ uð Þ2
fTLpf: (22)

The representer theorem has been proved exist and has the general form in Eq. (16). Hence the

optimization problem (21) can be expressed as

f ∗ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

1� yif xið Þ
� �

þ
þ ΥAα

T
Kαþ

ΥI

lþ uð Þ2
α
T
KLpKα: (23)

We outline the KLS with p-Laplacian regularization. For p-Laplacian kernel least squares

(pLapKLS), it solves the following optimization problem

f ∗ ¼ min
f EΗΚ

1

l

X

l

i¼1

yi � f xið Þ
� �2

þ ΥAα
T
Kαþ

ΥI

lþ uð Þ2
α
T
KLpKα: (24)

To evaluate the effectiveness of the proposed pLapR, we apply pLapSVM and pLapKLS to

scene recognition on the Scene 67 database [56] and Scene 15 data set [57]. Figure 8 illustrates

the framework of pLapR for scene recognition.

The Scene 67 data set contains 15,620 indoor scene images collected from different sources

including online image search tools, online photo sharing sites and the LabelMe dataset. Partic-

ularly, these images can be categorized into 67 classes covering 5 big scene groups (i.e., stores,

home, public spaces, leisure and working place). Some example images are shown in Figure 9.

Scene 15 data set is composed of 15 scene categories, totally 4485 images. Each category has 200–

400 images. The images contain not only indoor scenes, such as living room, kitchen, and store,

but also outdoor scenes, such as forest, mountain, tall building, open country, and so on (see in

Figure 10).

For Scene 67 dataset, we randomly select 80 images of each class to form the training set and

the rest as testing set. For Scene 15 dataset, 100 images per class are randomly selected as the
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training set, and the rest for testing. In semi-supervised experiments, a certain percentage (10,

20, 30, 50%) samples of training set are randomly assigned as labeled data. To avoid any bias

introduced by the random partitioning of samples, the above assignment is carried out for five

times independently.

Figure 8. The framework of pLapR for indoor scene recognition.

Figure 9. Some example images of Scene 67 database. The dataset totally has 67 indoor scene categories that can be

grouped into 5 big scene groups. Each row demonstrates one big scene group.
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The regularization parameters that is, γA and γI are tuned from the candidate set 10iji ¼ �10,
�

�9, � 8,⋯, 10g and the parameter p for pLapR from the candidate set 1; 1:1; 1:2;⋯; 3f g through

cross-validation on the training data with 10% labeled sample, respectively. The performance is

measured by the average precision (AP) for single class and mean average precision (mAP) for

overall classes. Firstly,we show themAPboxplot of the pLapR on Scene 67 datasetwhen p ¼ 2 and

the standard LapR for comparison in Figure 11. We can clearly see that the performance of pLapR

with p ¼ 2 is similar to standard LapR, which demonstrates that the graph p-Laplacian with p ¼ 2

becomes the standard graphLaplacian.

Figure 12 illustrates the performance of pLapKLS with different p values. The upper subfigure

is the performance of the Scene 67 database. We observe that the best performance of indoor

scene classification on the Scene 67 dataset can be obtained with p ¼ 1:1. The lower subfigure is

the performance of the Scene 15 database and the best performance is achieved when p = 1.

Figure 10. Some example images of Scene 15 data set. The dataset totally has 15 scene categories.

Figure 11. mAP of pLapR(p = 2) and LapR on Scene 67 dataset. Each subfigure reports the results under different labeled

samples. In each subfigure, the y-axis is the mAP over all scene classes, and the x-axis is different classifiers.
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Then we evaluate the performance of the pLapR with the representative LapR and HesR.

Figure 13 and Figure 14 show the mAP performance on Scene 67 data set and Scene 15 data

set, respectively. The four subfigures of upper row are KLS methods, and the lower four ones

are SVM methods. From the results of two data sets, we can see that the pLapR outperforms

both LapR and HesR especially when only a small number of samples labeled.

To discuss the AP performance of different algorithms for single class, we show the results

of several classes of Scene 15 data set including mountain, open country, tall building and

industrial. Each subfigure corresponds on single scene class. The upper four subfigures are

Figure 12. mAP results of pLapKLS under different pwith 10% labeled sample.The y-axis is the mAP over all classes, and

the x-axis is the parameter p.
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KLS methods, and the lower four ones are SVM methods. In each subfigure, the y-axis is the

AP results and the x-axis is the number of labeled samples. From the AP results, we can find

that, in most cases, the pLapR performs better than the traditional methods including LapR

and HesR (Figure 15).

Figure 13. mAP of different algorithms on Scene 67 data set. The four subfigures of upper row are KLS methods, and the

lower four ones are SVM methods.

Figure 14. mAP of different algorithms on Scene 15 data set. The four subfigures of upper row are KLS methods, and the

lower four ones are SVM methods.
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5.2. Hypergraph p-Laplacian (HpLapR)

In this subsection, we propose a hypergraph p-Laplacian regularized method for image recogni-

tion. The hypergraph and p-Laplacian [31, 58, 59] both provide convincing theoretical evidence to

better preserve the local structure of data. However, the computation of hypergraph p-Laplacian

is difficult. We provide an effect and efficient approximation algorithm of hypergraph p-

Laplacian. Considering the higher order relationship of samples, the hypergraph p-Laplacian

regularizer is built for preserving local structures. Hypergraph p-Laplacian regularization

(HpLapR) is also introduced to logistic regression for remote sensing image recognition.

Assume that hypergraph p-Laplacian has n eigenvectors F ∗hp
¼ f ∗hp1; ; f ∗hp2; ⋯; ; f ∗hpn
	 


asso-

ciated with unique eigenvalues λ∗hp
¼ λ

∗hp
1 ;λ

∗hp
2 ;⋯;λ

∗hp
n

	 


, we compute the approximation of

hypergraph p-Laplacian Lhpp by Lhpp ¼ F
∗hp
λ
∗hp
F

∗hpT. Thus, it is important to obtain all eigen-

vectors and eigenvalues of hypergraph p-Laplacian.

Although a complete analysis of hypergraph p-Laplacian is challenging, we can easily generate

a hypergraph with a group of hyperedges [52]. In detail, we construct hypergraph Laplacian

Lhp and compute adjacency matrix Whp by Eq. (5) and Eq. (6), respectively.

Following the study on plapR [31, 55], eigenvalue and the corresponding eigenvector on

hypergraph p-Laplacian can be computed by the following hypergraph p-Laplacian embed-

ding problem:

Figure 15. AP of different methods on several classes of Scene 15 data set including mountain, open country, tall building

and industrial. Each subfigure corresponds on single scene class. The upper four subfigures are KLS methods, and the

lower four ones are SVM methods. In each subfigure, the y-axis is the AP results and the x-axis is the number of labeled

samples.
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minF hpJE F
hp

� �

¼
X

k

P

ijw
hp
ij f

hpk
i � f

hpk
j

�

�

�

�

�

�

p

∥f hpk∥pp

s:t: F
hpT
F

hp ¼ I

(25)

Solving the problem of Eq. (25) with the gradient descend optimization. We can also get the

full eigenvalue λhp ¼ λ
hp
1 ;λ

hp
2 ;⋯;λ

hp
n

	 


by λ
hp
k ¼

P

ij
w

hp

ij
f
hpk

i
�f

hpk

j

�

�

�

�

�

�

p

∥f hpk∥
p
p

.

Finally, the approximation of Lhpp can be solved by Lhpp ¼ F
hp
λ
hp
F

hpT.

According to the manifold regularization framework, the proposed HpLapR can be written as

the following optimization problem:

f ∗ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

V xi; yi; f
� �

þ ΥA fk k2K þ
ΥI

lþ uð Þ2
fTLhpp f: (26)

Here, Lhpp is hypergraph p-Laplacian. We employ the proposed HpLapR with logistic regression.

Substitute logistic loss function in Eq. (26), the HpLapR can be rewritten as

f ∗ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

log 1þ e�yif xið Þ
	 
	 


þ ΥA fk k2K þ
ΥI

lþ uð Þ2
fTLhpp fT : (27)

According to the representer theorem, the solution of (27) w.r.t. f exists and can be expressed

by Eq. (16). Thus, we finally construct the HpLapR as the following optimization problem:

f ∗ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

log 1þ e�yiK xi ;xð Þα
	 
	 


þ ΥAα
T
Kαþ

ΥI

lþ uð Þ2
α
T
KLhpp Kα: (28)

Apply the conjugate gradient algorithm, we can get the solution of the optimized f .

To evaluate the effectiveness of the proposed HpLapR, we compare HpLapR with other local

structure preserving algorithms including LapR, HLapR and pLapR. Figure 16 illustrates the

framework of HpLapR for UC-Merced data set.

UC-Merced data set [60] consists of totally 2100 land-use images collected from aerial

orthoimage with the pixel resolution of one foot. These images were manually selected into

21 classes: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residen-

tial, forest, freeway, golf course, harbor, intersection, medium density residential, mobile home

park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts

(see in Figure 17).

In our experiments, we extract high-level visual features using the deep convolution neural

network (CNN) [61]. We randomly choose 50 images per class as training samples and the rest
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as testing samples. For hypergraph construction, we regard each sample in the training set as a

vertex, and generate a hyperedge for each vertex with its k nearest neighbors (so the hyperedge

connects kþ 1 samples) [62]. It is worthy to notice that, for our experiments, the kNN-based

hyperedges generating method is implemented only in six groups, not in the overall training

samples. For example, for a sample of baseball diamond, the vertices of the corresponding

hyperedge are chosen from the first group (baseball diamond, golf course and tennis courts) of

Figure 17. The setting of class labels is as same as pLapR.

We conduct the experiments on the data set to obtain the proper modal parameters. The

neighborhood size k of a hypergraph varies in a range 5; 6; 7;⋯; 15f g through cross-validation.

The setting of regularization parameters γA,γI and p are as same as pLapR experiments.

Figure 16. The framework of HpLapR for remote sensing image classification.

Figure 17. Class examples of UC-Merced data set. The dataset totally has 21 remote sensing categories that can be simply

grouped into six groups according to the distinction of land use. Each column represents one group.
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Figure 18 illustrates the mAP performance of pLapR and HpLapR on the validation set when p

varies. The x-axis is the parameter p and the y-axis is mAP for performance measure. We can

see that the best mAP performance for pLapR can be obtained when p ¼ 2:3, while the best

performance of HpLapR is achieved when p = 2.6.

We compare our proposed HpLapR with the representative LapR, HLapR and pLapR. From

Figure 19, we can observe that, HpLapR outperforms other methods especially when only a

small number of samples are labeled. This suggests that our proposedmethod has the superiority

to preserve the local structure of the data because it integrates hypergraph learning with graph p-

Laplacian. To evaluate the effectiveness of HpLapR for single class, Figure 20 shows the AP

results of different methods on several land-use classes including beach, dense residential, free-

way and tennis court. From Figure 20, we can find that, in most cases, HpLapR performs better

than both pLapR and HLapR, while pLapR and HLapR consistently outperforms than LapR.

5.3. Ensemble p-Laplacian regularization (EpLapR)

As a natural nonlinear generalization of graph Laplacian, p-Laplacian has been proved having

the rich theoretical foundations to better preserve the local structure. However, it is difficult to

Figure 18. Performance of mAP with different p values on validation set.
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determine the fitting graph p-Lapalcian, that is, the parameter p that is a critical factor for the

performance of graph p-Laplacian. In this section, we develop an ensemble p-Laplacian regu-

larization to fully approximate the intrinsic manifold of the data distribution. EpLapR incor-

porates multiple graphs into a regularization term in order to sufficiently explore the

complementation of graph p-Laplacian. Specifically, we construct a fused graph by introducing

an optimization approach to assign suitable weights on different p-value graphs. Then, we

conduct semi-supervised learning framework on the fused graph.

Assume a set of candidate graph p-Laplacian L
p
1;⋯; Lpm

� �

, according to the manifold regulariza-

tion framework, the proposed EpLapR can be written as the following optimization problem:

f ∗ ¼ argmin
f EΗΚ

1

l

X

l

i¼1

V xi; yi; f
� �

þ ΥA fk k2K þ
ΥI

n2
fTLf: (29)

where L is the optimal fused graph with L ¼
P

m

k¼1

μkL
p
k , s:t:

P

m

k¼1

μk ¼ 1, μk ≥ 0, for k ¼ 1,⋯, m.

Figure 19. mAP performance of different algorithms.
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To avoid the parameter μk overfitting to one graph [63], we make a relaxation by changing μk

to μ
γ
k , and obtain the optimization problem as:.

f ∗ ¼ argminf EΗΚ

1

l

X

l

i¼1

V xi; yi; f
� �

þ ΥA fk k2K þ
ΥI

n2
fT

X

m

k¼1

μ
γ
kL

p
k

 !

f:

s:t:
X

m

k¼1

μk ¼ 1, μk ≥ 0, for k ¼ 1,⋯, m

(30)

The representor theorem presents us with the existence and the general form of Eq. (16) under

a fixed μ. Therefore, we rewrite the objective function as

f ∗ ¼ argminf EΗΚ

1

l

X

l

i¼1

V xi; yi; f
� �

þ ΥAα
T
Kαþ

ΥI

lþ uð Þ2
αT
K

X

m

k¼1

μ
γ
kL

p
k

 !

Kα:

s:t:
X

m

k¼1

μk ¼ 1, μk ≥ 0, for k ¼ 1,⋯, m

(31)

Figure 20. AP performance of different methods on several classes.
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Here, an alternating optimization procedure is utilized to minimize f ∗.

We compare EpLapR with other local structure preserving algorithms including LapR, HesR

and pLapRon UC-Merced data set. We apply the support vector machines and kernel least

squares for remote sensing image classification.

In the experiments, we apply the parameter setting as the same as pLapR, and the experiment

of pLapR is conducted with p ¼ 2:8. For EpLapR, we created two graph p-Laplacian sets. For

the first set (EpLapR-3G), we choose p ¼ 2:5; 2:7; 2:8f g, which led to 3 graphs. For another one

(EpLapR-5G), with 5 graphs where p ¼ 2:4; 2:5; 2:6; 2:7; 2:8f g.

We compare our proposed EpLapR with the representative LapR, HesR and pLapR.

Figures 21 and 22 demonstrate the mAP results of different algorithms on KLS methods

and SVM methods, respectively. We can see that, in most cases, the EpLapR outperforms

LapR, HesR and pLapR, which shows the advantages of EpLapR in local structure of

preserving.

Figure 21. mAP performance of different algorithms on KLS method.
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6. Conclusions

In this chapter, we show the LapR, HesR, pLapR and present several extensions based on the

manifold regularization framework. We propose a local structure preserving method that

effectively integrates manifold regularization and pairwise constraints. We develop an efficient

approximation algorithm of graph p-Laplacian and propose p-Laplacian regularization to

preserve the local geometry. Considering the hypergraph contains more local grouping infor-

mation in comparison to simple graph, we propose hypergraph p-Laplacian regularization to

preserve the geometry of the probability distribution. In practical application of p-Laplacian

regularization model, it is difficult to determine the optimal graph p-Lapalcian because the

parameter p usually chose by cross validation method which lacks the ability to approximate

the optimal solution. Therefore, we propose an ensemble p-Laplacian regularization to better

approximate the geometry of the data distribution.

Figure 22. mAP performance of different algorithms on SVM method.
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7. Expectations

In the general image recognition, images are naturally represented by multi-view features,

such as color, shape and texture. Each view of a feature summarizes a specific characteristic of

the image, and features for different views are complementary to one another. Therefore, in the

future work, we will study the multi-view p-Laplacian regularization to effectively explore the

complementary properties of different features from different views. Meanwhile, we will try to

combine the p-Laplacian learning with the deep learning to get a more effective p-Laplacian

learning algorithm.
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