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Abstract

Comparative cytogenetics permits the identification of human chromosomal homologies 
and rearrangements between species, allowing the reconstruction of the history of each 
human chromosome. The aim of this work is to review evolutionary aspects regarding 
human chromosome 13. Classic and molecular cytogenetics using comparative banding, 
chromosome painting, and bacterial artificial chromosome (BAC) mapping can help us 
formulate hypotheses about chromosome ancestral forms; more recently, sequence data 
have been integrated as well. Although it has been previously shown to be conserved 
when compared to the ancestral primate chromosome, it shows a degree of rearrange-
ments in some primate taxa; furthermore, it has been hypothesised to have a complex 
origin in eutherian mammals which has still not been completely clarified.

Keywords: FISH, evolution, mammals, human synteny

1. Introduction

Comparative cytogenetics has been widely applied to many mammalian species [1–3] 

through banding methods and, later, with fluorescence in situ hybridization (FISH) of whole 
chromosomes and bacterial artificial chromosome (BAC) probes; these approaches permit the 
definition of regions of chromosomal homology, rearrangements, and breakpoints, as well as 
elucidate phylogenetic relationships between taxa [4]. In addition, the comparative cytogenetic 
approach is particularly useful in the reconstruction of human chromosome (HSA) history. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Indeed, parsimony analysis of homologies and rearrangements permits us to define ancestral 
chromosomal syntenies (synteny is the colocalization of two or more genetic loci) and derived 
ones [2]. Banding allows us to first evaluate rearrangements between species; the mapping of 
whole chromosomes through the chromosomal painting approach allows researchers to bet-
ter define rearrangements at the molecular level, such as Robertsonian ones and breakpoints. 
At a finer level, the use of DNA cloned inside vectors such as yeast artificial chromosomes 
(YACs) or BAC, used as mapping probes, permits the evaluation of chromosomal dynamics 
[5, 6], defining marker orders and intrachromosome rearrangements. Moreover, the use of 
specific loci or repetitive probes permits the localization of specific sequences, such as repeti-
tive ones, which are often supposed to be responsible for the plasticity of chromosomes [7–10] 

and human genes involved in cancers [11].

More recently, the integration of cytogenetic data with sequence data has been proposed  
[12–16]. These kinds of data are available from genomic browsers and are helpful for testing pre-

viously proposed phylogenomic hypotheses and chromosomal organisation reconstructions.

In this review, we report the principal approach which has proven useful for studying human 
chromosome history by analysing previous cytogenetic and sequence data regarding human 
chromosome 13.

2. The reconstruction of human chromosome history

At least three or four principal approaches can be used to reconstruct human synteny history. 
In a comparative perspective, the analysis of banding data permits the identification of chro-

mosomal homologies. In particular, the analysis of the banding patterns obtained by the enzy-

matic digestion of chromosomes in metaphases using proteolysis and Giemsa solution staining 
permits the identification of chromosomal homologies and principal rearrangements occurring 
between species. Consequently, by focusing attention on a single chromosome, it is possible to 
track the principal evolutionary steps involving each individual human chromosome [1].

Another approach is the analysis of comparative painting data; the painting approach con-

sists of a whole chromosome undergoing FISH on cytogenetic preparations, allowing the 
identification of molecular level homologies, interchromosomal rearrangements and genomic 
breakpoints. First, human chromosome probes are mapped onto metaphases of target species 
(chromosome painting [CP]) [17], then, for a better comparison, animal chromosomal probes 
are mapped onto human metaphases in a reciprocal hybridization (RP) [18]. Subsequently, 
whole animal chromosomes are mapped onto other animal metaphases in an approach known 
as ZOO-FISH, Z-F [19]. The analysis of these data regarding a single chromosome, consequen-

tially, permits the tracking of each change involving the human chromosome under study.

In addition, human chromosome evolution can be studied using another kind of probe, the 
BAC probe, containing an insert of 50–300 Kb of the human genome. It can be mapped by 
FISH onto the metaphases of many species. BACs are available for each human chromo-

some and can be purchased from the BAC/PAC Resource Center (Chori), and some of them 
are commercially available for medical diagnosis. These probes are very useful in detecting 
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small interchromosomal rearrangements which are not detectable by painting and in defin-

ing marker order along chromosomes, thus revealing inversions, new centromere evolutions 
(new centromeres arise without the occurrence of inversions, maintaining the marker order), 
and duplications [3].

Comparative cytogenetics has been applied to reconstructing most human chromosome his-

tory; these published works have mainly been done by reviewing previous painting data or 
by mapping BAC probes on primates (see review in [2]) and other eutherian mammals; some 
works have analysed only specific chromosome regions (see Table 1 for representative works).

Furthermore, alignments of sequences (SA) of many mammal species, obtainable from the 
NCBI, UCSC, and Ensemble genome browsers, can be integrated with molecular cytogenetic 
information in order to shed light on the history and peculiar features characterising each 
human chromosome.

2.1. The evolutionary history of HSA 13

Human chromosome 13 has been sequenced, and it has been shown to be the largest acro-

centric chromosome in the human karyotype. Currently, the NCBI reports 1381 total genes, 
41 novel genes, and 477 pseudogenes for a size of 114.36 MB [47]. It is among the human 
chromosomes with the lowest percentage of duplicated sequences [48].

The analyses of classical and molecular cytogenetics, using comparative banding and chromo-

some painting, have allowed researchers to formulate hypotheses about its ancestral forms. In 
this report, we delineate the principal steps regarding the history of human chromosome 13, 
tracked through the analysis of previous cytogenetics literature and sequence data. We have 
reported a list of species analysed by painting or sequence information, chromosome homo-

logues to human chromosome 13, human associations with HSA 13, chromosome type if 
available, references and methods from which we obtained the data, such as CP, RP, Z-F, and 
SA (see Table 2). The principal steps in the evolution of human chromosome 13 are illustrated 
in a graphical reconstruction of the mammal phylogenetic tree, Figure 1; the mammal phylo-

genetic tree has been drawn in agreement with previous ones [16, 49], with some modifica-

tions, and was created using Mesquite v.2.75 [50]. Among mammals, three major groups are 
distinguishable: monotremes (Prototheria, platypus), marsupials (Metatheria, opossum), and 
placental mammals (eutherian), with these last two known as Theria; among placental mam-

mals, Afrotheria, Xenarthra, and Boroautherian are recognized, with the latter comprising 
Laurasiatheria and Euarchontoglires (or Supraprimates) [49]. In the mammalian phylogenetic 
tree are shown the orthologue blocks that correspond to human chromosome 13—in yellow—
in representative eutherian species for which reciprocal chromosome painting is available; for 
some of them also DNA sequence alignments have been previously showed, see Table 2 for 
reference. For each species are reported chromosome ideograms on which human synteny 
13 is found, and on the left of the ideograms are reported the species’ chromosome number 
and on the right HSA syntenies; the black circle is the centromere. Syntenies homologues 
of human chromosome 13 in platypus (Monotremata) are on chromosomes 2, 10, and 20, in 
opossum (Metatheria) are on chromosomes 4 and 7, and in chicken (Aves) are on chromosome 
1. These chromosomes are reported in box because they are representative eutherian mammal 
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HSA chr. Methods References

1 Region study by BAC mapping

History by multidisciplinary approach

History by BAC mapping

[20]

[21]

[2]

2 Region study by BAC mapping

History by BAC mapping

[22]

[2]

3 Region study by BAC mapping

Review

[23–25]

[26]

4 Region study by BAC mapping

History by BAC mapping

Region study by BAC mapping

[27]

[2]

[28, 29]

5 Region study by BAC mapping

review

[30, 31]

[2]

6 History by BAC mapping [32, 33]

7 Painting

Review

Region study by BAC mapping

[34]

[35]

[36]

8 Brief history by BAC mapping [2]

9 Region study by BAC mapping [37]

10 History by BAC mapping [37, 38]

11 History by BAC mapping [39]

12 Brief history by BAC mapping [2]

13 History by BAC mapping [40]

14 Region study by BAC mapping [41]

15 Region study by BAC mapping [41, 42]

16 History by BAC mapping,

Painting

[43]

[34]

17 History by BAC mapping [2]

18 Region study by BAC mapping,

History by BAC mapping

[44]

[2]

19 Painting,

Brief history by BAC mapping

[34]

[2]

20 History by BAC mapping [45]

21 Region study by BAC mapping

Brief history by BAC mapping

[23]

[2]

22 Brief history by BAC mapping [2]

X Brief history by BAC mapping [2]

y Region study by BAC mapping [46]

Table 1. List of representative works, (references and methods) analyzing each human chromosome evolution and/or 
marker order in particular chromosomal region.
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Chromosome type Chr. Human association References Methods

Dermoptera

Galeopterus variegatus Acrocentric 13 [58] RP

Proboscidea

Loxodonta africana Acrocentric

Submetacentric

16,26 13, 6/13/3 [59]

[12, 16]

CP

SA

Elephas maximus Acrocentric

Submetacentric

16, 26 13, 6/13/3 [59] CP

Tubulidentata

Orycteropus afer Submetacentric 1 19/16/13/2/8/4 [59, 60] CP

SA

Afrosoricida

Chrysochloris asiatica Metacentric 8 13/18 [61, 60] RP

SA

Macroscelidea

Elephantulus rupestris

Elephantulus edwardii

Submetacentric 2 13/3/21/5 [61]

[60]

CP

SA

Macroscidelis proboscidens Submetacentric 2 13/3/21/5 [53] CP

Sirenia

Trichechus manatus Metacentric 19 13/3 [62] CP

Eulipotyphla

Sorex araneus Metacentric bc 9/5/2/13/8/7 [16, 63] CP, SA

Blarinella griselda Submetacentric 3 13/10/13/4/5 [63] CP

Neotetracus sinensis Submetacentric

Acrocentric

3,10 13/4/20/10,

1/13/10/12/22

[63] CP

Hemiechinus auritus [64] CP

Talpa europaea Metacentric 6 2/13 [65] CP

Cingulata

Dasypus novemcinctus Submetacentric 19 [66] CP

Pilosa

Choloepus didactylus Acrocentric 17 [64] CP

Coniochaeta hoffmannii Acrocentric 12 [66] CP

Tamandua tetradactyla Metacentric 4, (2*) 13/1 [64, *66] CP

Bradypus torquatus Acrocentric 12 [67] CP

Bradypus variegatus Acrocentric 17 [67] CP

Carnivora

Mustela putorius [68] CP
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Chromosome type Chr. Human association References Methods

Vulpes vulpes Submetacentrics 6,9 13/14, 2/8/13/3/19 [69] RP

Canis lupus familiaris Acrocentrics (25*) 22, 28 [*70]

[69]

[71, 72]

[16]

RP

CP

Z-F

SA

Felis silvestris catus Acrocentric A1 [69]

[12, 13, 51]

CP

SA

Mephitis mephitis Submetacentric 19 [73] CP

Procyon lotor Metacentric 3 13/2 [73] CP

Perissodactyla

Equus caballus Acrocentric 17 [74]

[13, 16]

[19]

[40]

RP

SA

Z-F

BAC

Equus asinus 11 [19] Z-F

Equus burchelli Submetacentric 6q 13/9 [19] RP

Z-F

Equus grevyi 6q 13/9 [19] Z-F

Equus zebra hartmannae 15 [19] Z-F

Equus hemionus onager 5q 12/13/22 [19] Z-F

Equus przewalskii 16 [19] Z-F

Diceros bicornis Acrocentric 10 [19] Z-F

Ceratotherium simum 10 [19] Z-F

Tapirus bairdii 1 [19] Z-F

Tapirus indicus Acrocentric 18 [19] Z-F

Tapirus pinchaque 13 [19] Z-F

Tapirus terrestris 8 [19] Z-F

Hemiechinus auritus Submetacentrics 5q,6 5/13, 2/22/12/13/12 [64] CP

Pholidota

Manis javanica Submetacentric

Metacentric

1,9q 13/5/2p, 18/13 [64]

[75]

CP

CP

Manis pentadactyla Submetacentric

Acrocentric

1q, 17 13/5/2, 13 [75] CP

Cetartiodactyla

Bos taurus Acrocentric 12 [12, 16]

[76]

SA

RP
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Chromosome type Chr. Human association References Methods

Sus scrofa Metacentric 11 [12, 16]

[76]

SA

RP

Camelus dromedarius Metacentric 14 [76] RP

Globicephala melas Metacentric 15 [77] Z-F

Hippopotamus amphibious Metacentric 15 [77] Z-F

Giraffa camelopardalis Metacentric 12 14/15/13 [77] Z-F

Okapia johnstoni Acrocentric 11 [77] Z-F

Moschus moschiferus Acrocentric 17 [77] Z-F

Lagomorpha

Oryctolagus cuniculus Submetacentric 8 13/12 [78]

[51]

RP

SA

Rodentia

Mus musculus 3,5,8,14,14 [13]

[79]

[16]

SA

SA

SA

Rattus norvegicus 2,12,15,15,16 [13]

[16]

SA

SA

Sciurus carolinensis Submetacentric 6 10/13 [80]

[81]

RP

RP

Petaurista albiventer Metacentric 11 10/13 [81] CP

Tamias sibiricus Metacentric 10 10/13 [81] CP

Castor fibre Submetacentric 4 8/13 [79] CP

Pedetes capensis Submetacentric 6 13/12/22 [79] CP

Sicista betulina Metacentric,

Submetacentric

1,9 13/4/10/11/9/10, 
3/6/313/19

[79] CP

Chiroptera

Eonycteris spelaea Submetacentric E11 13/4/8/13 [82] CP

Rhinolophus mehelyi Acrocentric R6 13/4/8/13 [82] CP

Hipposideros larvatus Metacentric H1 13/3/21 [82, 83] CP

Mormopterus planiceps Metacentric M7 13/18 [82] CP

Myotis myotis Metacentric V5/6 4/8/13/12/22 [82] CP

Aselliscus stoliczkanus Metacentric 1 22/12/13/4/8/13 [83] CP

Megaderma spasma Metacentric 12 20/13/8b/4c [84] CP

Taphozous melanopogon Submetacentric 1 4c/8b/13/16b/7c/5a [84] CP
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Chromosome type Chr. Human association References Methods

Primates

Strepsirrhini

Avahi laniger 12 [85] CP

Daubentonia 

madagascariensis

8p 10/13 [85] CP

Eulemur fulvus 12 [85] CP

Hapalemur griseus griseus 15 [85] CP

Indri indri Submetacentric 3p 13/17 [85] CP

Lemur catta Acrocentric 13 [85, 86] BAC

CP

Lepilemur ankaranensis 14 [87] CP

Lepilemur dorsalis 6p [85, 87] CP

Lepilemur edwardsi 6p [87] CP

Lepilemur leucopus 1q ter [87] CP

Lepilemur microdon 5p [87] CP

Lepilemur mittermeieri 7p [87] CP

Lepilemur mustelinus 8 ter [87, 85] CP

Lepilemur jamesi 5q ter [87] CP

Lepilemur ruficaudatus 5q prox [85, 87] CP

Lepilemur septentrionalis 14 [85, 87] CP

Microcebus murinus Submetacentric 13 [85, 87] CP

Propithecus verreauxi 6q 5/13 [85] CP

Otolemur crassicaudatus Acrocentric 14 [88] CP

Galago moholi Metacentric 5 13/16/12 [88] CP

Otolemur garnettii Submetacentric 14 [89] RP

Nycticebus coucang Submetacentric 18

17

[89, 90] RP

CP

Platyrrhini

Alouatta belzebul Acrocentric 14 [91] CP

Alouatta caraya Acrocentric 15 (20*) [92, *93] CP

Alouatta guariba guariba Acrocentric 14 [93] CP

Alouatta seniculus 

arctoidea

16 [91] CP

Alouatta seniculus 
macconnelli

Submetacentric 4q 13/19 [92] CP

Alouatta seniculus sara 12 [91] CP
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Chromosome type Chr. Human association References Methods

Aotus lemurinus 

griseimembra

Acrocentric 17 [93, 94] CP

Aotus nancymaae Acrocentric 19 [95] CP

Ateles geoffroyi [96] CP

Ateles belzebuth hybridus Acrocentric 12 [97] CP

Ateles belzebuth marginatus Submetacentric 12 [98] CP

Ateles paniscus paniscus Metacentric 4 13a/13b/3c/7b/1a2 [98] CP

Brachyteles arachnoides Acrocentric 20 [98] CP

Callicebus donacophilus 

pallescens

Acrocentric 15 [99] CP

Callicebus lugens Submetacentric 1 1/13–12/13 [100] CP

Callicebus moloch Acrocentric 21 [101] CP

Callicebus cupreus Submetacentric

Acrocentric

7,17 3/21/13, 13/17 [102] CP

Callimico goeldii Acrocentrics 19,17 13/9/22, 13/17 [18, 103] CP

RP

Callithrix argentata Submetacentrics 2,1 13/9/22, 20/17/13 [18, 103] CP

RP

Callithrix jacchus Submetacentrics 1,5 13/9/22, 20/17/13 [18, 103] CP

RP

Cebuella pygmaea Submetacentrics 1,4 13/9/22,20/17/13 [18, 103] CP

Saguinus oedipus Submetacentrics 1,2 9/13/22,20/17/13 [18, 103] CP

Cebus apella (Sapajus) Acrocentric 17 [104, 105] CP

Z-F

Sapajus a. paraguayanus Acrocentric 17 [105] Z-F

Sapajus A. robustus Acrocentric 17 [105] Z-F

Cebus capucinus Acrocentric 11 [105] CP

Cebus nigrivitatus Acrocentric 17 [97] CP

Chiropotes israelita Acrocentric 15 [95] CP

Chiropotes utahicki Acrocentric 15 [95] CP

Lagothrix lagotricha Submetacentric 8 [106] CP

Leontopithecus chrysomelas Submetacentrics 1,2 9/13/22,13/17/20 [107] CP

Pithecia irrorata Submetacentric 8 22/13 [108] CP

Cacajao calvus rubicundus Acrocentric 13 [108] CP

Saimiri sciureus Acrocentric 16 [18, 101] CP
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outgroups and data come just from sequence alignments. When HSA 13 synteny, in yellow, 
is rearranged with just few human syntenies, these are represented in different colours and 
are reported on the right of the ideogram (e.g., in Indri chromosome 3, synteny 13 is fused 

Chromosome type Chr. Human association References Methods

Catarrhini

Chlorocebus aethiops Metacentric 3 [109] CP

Cercopithecus erythrogaster Submetacentric 12 [110] Z-F

Cercopithecus neglectus Metacentric 19 [111] RP

Cercopithecus stampflii Submetacentric 13 [110] Z-F

Presbytis cristata Metacentric 19 [112] CP

Colobus guereza Metacentric 19 [113] CP

Erythrocebus patas Submetacentric 15 [111] RP

Hylobates concolor Metacentrics 5,9 1/13; 1/4/10/13 [114] CP

Hylobates klossii 4q 3/13 [115] CP

Hylobates lar Metacentric 4q 3/13 [17] CP

Hylobates moloch 4q 3/13 [115] CP

Macaca fuscata Submetacentric 16 [116] CP

Nasalis larvatus Metacentric 15 [117] CP

Pygathrix nemaeus Submetacentric 17 [118] CP

Semnopithecus francoisi Metacentric 9 [119] CP

Semnopithecus phayrei Metacentric 9 [115] CP

Symphalangus syndactylus 15 [17] CP

Pongo pygmaeus Acrocentric 14 [17] CP

Gorilla gorilla Acrocentric 14 [17] CP

Pan troglodytes Acrocentric 14 [17] CP

Scandentia

Tupaia belangeri Acrocentric 17 [120] CP

Tupaia minor Acrocentric 16 [121] CP

Galliformes

Gallus gallus 1 [51, 52] SA

Monotremata

Ornithorhynchus anatinus Submetacentric

Metacentrics

2,10,20 [51] SA

Didelphimorphia

Monodelphis domestica Submetacentrics 4,7 [51, 52] SA

Table 2. List of species analyzed by chromosomal painting (CP or reciprocal P) and/or sequence alignments (SA) and the 
references used. For each species is reported the human chromosome 13 homologous and eventually, if present other 
human associations.
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with synteny 17 in red), whereas when HSA 13, in yellow, is rearranged with many human 
syntenies, these are represented by white segments for logistic issue (e.g., on chicken chromo-

some 1). Through painting and sequence analysis in mammals, human chromosome 13 has 
been previously shown to be conserved, with some exceptions (Table 2, Figure 1). Indeed, 
the homologues to human chromosome 13 are found as single conserved chromosomes in 
most representative mammalian orders analysed by chromosome painting, for example 
in Dermoptera, Pilosa, Carnivori (cat—Felis silvestris catus ch A1), Lagomorpha (rabbit—
Oryctolagus cuniculus ch 8), Perissodactyla (horse—Equus caballus ch 17), and Cetartiodactyla 
(cattle—Bos tauros ch 12 and pig—Sus scrofa ch 11; in pig, the synteny is metacentric due to 
a new centromere formation). Human synteny 13 has gone to many rearrangements such 
as translocation and fission in other different groups; indeed, it is associated with one or 
more human syntenies due to translocation, as in Tubulidentata, Afrosoricida, Eulipotyphla, 
Macroscelidea, Sirenia, Pholidota, Chiroptera (Table 2). For example, among Chiroptera in 
Greater mouse-eared bat, on Myotis myotis ch 5/6 is present human synteny 13 associated 
with many other human syntenies (8 lightgreen/4 bordoux/13 yellow/12 green/22 darkgreen) 
and among Rodentia in eastern grey squirrel, Sciurus carolinensis ch 6, human synteny 13 in 
yellow is associated with other human syntenies (reported in white in Figure 1). Furthermore, 
human synteny 13 is fragmented into two segments or into many segments and associated 

Figure 1. The mammalian phylogenetic tree showing the orthologue blocks that correspond to human chromosome 
13—in yellow—in representative eutherian species for which reciprocal chromosome painting is available. For some 
species also DNA sequence alignments have been previously showed, see Table 2 for citation; in the tree, it is reported 
the ancestral synteny 13 form described by painting data analysis and in the box the eutherian ancestral chromosome 13 
alternative reconstruction obtained through sequence data* [17]. The platypus (Monotremata), opossum (Metatheria) and 
chicken (Aves) chromosomes homologues are reported in the box to the low right; these last species are representative 
outgroups. Different colours represent HSA human syntenies which are reported on the right of the ideogram; white 
region represents parts of chromosomes covered by many different human syntenies; on the left of the ideogram are 
reported the species’ chromosome number of the 13 human homologues; the black circle is the centromere.
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with other HSA syntenies, for example in Carnivori (Canis—Canis lupus familiaris ch 22, 28), 
in Proboscidea (elephant—Loxodonta Africana ch 16, 26), and in Rodentia species such as birch 
mouse (Sicista betulina ch 1, 9; in these last species, many other human syntenic associations 
are reported in white segments for logistic concern in Figure 1).

Through genome assembly analysis (alignments of sequences, SA), chromosome 13 has also been 
shown to be conserved in many mammals such as pigs, horses, and cats [13], very rearranged in 

mice (Mus musculus ch 3, 5, 8, 14) [14] and fragmented in platypus (Ornithorhynchus anatinus ch 2, 

10, 20) [51]; moreover, it has also been shown to be present in the outgroups Opossum (Monodelphis 

domestica ch 4, 7) and chicken (Gallus gallus ch 1) [52] (Table 2, Figure 1). More recently, researchers 
analysing more than 19 placental mammals have hypothesised that the eutherian homologue 13 
ancestor was fused with other human syntenies (HSA 4, and parts of HSA 2 and 8) [16]. This 
alternative reconstruction obtained through sequence data (in Figure 1 reported in the box*) see 
synteny 13 on EUT ch 1 associated with other HSA syntenies (2 orange/8 lightgreen/4 bordoux) 
according with previous sequence alignments work [17]. Part of this human associations (13/2/8/4) 
involving human synteny 13 is found through painting just in Greater mouse-eared bat ch 5/6, 
HSA syntenies 4/8/13/12/22, and for this reason, the alternative reconstruction do not find support 
through painting. Thus, the two reconstructions, by painting and by sequence analysis, regarding 
the ancestral synteny 13 in eutherian are not in agreement. Better analysis is needed in order to 
clarify this complex origin. The main issue to be considered to shed light on this issue is the use of 
appropriate outgroups in the reconstruction of the ancestral eutherian chromosome forms and the 
incomplete set of taxa analysed. Indeed, the lack of comparative chromosome painting between 
eutherians and other mammals, such as monotreme and marsupials, and on the other hand the 
lack of data on many genomes do not permit an exact reconstruction [16, 53].

Human chromosome 13 has also been analysed by mapping BAC probes onto representative 
Mammalian orders [40]; this work has especially focused attention on the history of this chro-

mosome, with particular focus on intrachromosomal rearrangements and the potential rela-

tionships between evolutionarily new centromeres (ENCs) and neocentromeres occurring in 
clinical cases. Indeed, it has been hypothesised that neocentromere formation, a typical event 
in many tumours, could occur in correspondence to ENC position arising during evolution 
[54]. BAC mapping has permitted the study of small intrachromosomal rearrangements along 
the human 13 homologues and the identification of the occurrence of new evolutionary cen-

tromeres. Among mammals, evolutionary centromere repositioning on HSA 13 homologues 
have been shown in pigs and many primates such as for example on Lagothrix lagotricha chro-

mosome 8 [40]; furthermore, a small inversion is common in nonprimate mammals [3, 40].

Although human chromosome 13 has been previously shown to be conserved, when com-

pared to ancestral primate chromosomes, it shows some degree of rearrangements in certain 
primate taxa. Conflicting interpretations of classical banding data on human and great ape 
chromosome 13 have been published [1, 55, 56]. Among Hominoids, humans, chimpanzees, 
and orangutans share the same acrocentric form from which the gorillas’ differs by only a 
small paracentric inversion [57]. Among Strepsirrhini, it is a single conserved chromosome as 
seen for example in grey mouse lemur (Microcebus murinus ch 13); however, in this species, 
synteny 13 is metacentric presumably due to an inversion or alternatively for the occurrence 
of a new centromere. Synteny 13 has gone to different rearrangements in other species such 
as, for example, in indri (Indri indri ch 3), where it is fused with synteny 17 in red (Figure 1).
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Among Catarrhines (Old World monkeys), the HSA 13 homologues differ in the presence of 
new centromeres, for example Vervet monkey (Chlorocebus aethiops); the Chlorocebus chromo-

some 3 are, indeed, metacentric if compared with the acrocentric human form (Figure 1).

Even if human chromosome 13 is presumably conserved in the ancestors of platyrrhines, HSA 
13 homologue has gone into many rearrangements in New World monkeys; indeed, synteny 
13 has gone to fission and subsequent translocation with other HSA syntenies in Common mar-

mosets (Callithrix jacchus), resulting in chromosome 1 and 5 (covered, respectively, by HSA 13 
yellow/9 blue/22 darkgreen and 13 yellow/17 red/20 lightgreen), and in Titi monkeys (Callicebus 

cupreus) resulting in ch 7 and 17 (covered, respectively, by HSA 3 fuxia/21 lightblue/13 yellow 
and 13 yellow/17 red; Figure 1). Furthermore, some intrachromosomal rearrangements, such 
as inversions and new centromeres, have been shown by BAC in other Platyrrhini [40].

3. Conclusion

Classic cytogenetics, using banding, and molecular cytogenetics, using painting or other map-

ping probes such as BAC, are useful methods for reconstructing human chromosome history 
in a comparative approach with mammals. Although human chromosome 13 has previously 
been shown to be conserved in mammals, it is less conserved then previously claimed; indeed, 
some interchromosomal rearrangements have been demonstrated through painting, and 
intrachromosomal rearrangements have been shown by BAC mapping in various taxa; for 
this reason, further analysis is needed. Furthermore, the ancestral eutherian form has yet to be 
elucidated, as contrasting results continue to be shown through painting and sequence data 
comparison.
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