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Abstract

Information theory deals with the study of problems concerning any system. This includes
information processing, information storage, information retrieval and decision making.
Information theory studies all theoretical problems connected with the transmission of
information over communication channels. This includes the study of uncertainty (infor-
mation) measures and various practical and economical methods of coding information
for transmission. In this chapter, the introduction of a new generalised measure of fuzzy
information involving two real parameters is given. The proposed measure satisfies all the
necessary properties of being a measure. Some additional properties of the proposed
measure have also been studied. Further, the monotonic nature of generalised fuzzy
information measure with respect to the parameters is studied and validity of the same is
checked by constructing the computed tables and plots on taking different fuzzy sets and
different values of the parameters. Also, a new generalised fuzzy information measure
involving three parameters has been introduced.

Keywords: fuzzy set theory, entropy, fuzzy information measures, monotonicity,
symmetry

1. Background

Shannon [1] introduced the concept of entropy in communication theory and founded the

subject of information theory. The stochastic system has an important property known as

entropy which is widely used in various fields.

Further, the second law of thermodynamics that explains that there cannot be spontaneous

decrease in the entropy of system described that over time the systems tend to be more

disordered. Thus, information theory has found wide applications in statistics, information

processing and computing instead of concerned with communication systems only.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



If we consider entropy equivalent to uncertainty then an enormous deal of insight can be

obtained. Zadeh [2] introduced and enlightened about a generalised theory of vagueness or

ambiguity. In order to observe about the external world, uncertainty plays a very important role.

For understanding composite phenomena, any discipline that contributes in order to under-

stand measure, regulate, maximise or minimise and control is considered as a significant input.

Uncertainty plays a significant role in our perceptions about the external world. Any discipline

that can assist us in understanding it, measuring it, regulating it, maximizing or minimizing it

and ultimately controlling it to the extent possible, should certainly be considered an impor-

tant contribution to our scientific understanding of complex phenomena.

Uncertainty is not a single monolithic concept. It can appear in several guises. It can arise in

what we normally consider a probabilistic phenomenon. On the other hand, it can also appear

in a deterministic phenomenon where we know that the outcome is not a chance event, but we

are fuzzy about the possibility of the specific outcome. This type of uncertainty arising out of

fuzziness is the subject of investigation of the relatively new discipline of fuzzy set theory.

We shall first take up the case of probabilistic uncertainty. Probabilistic uncertainty is related to

the uncertainty connected with the probability of outcomes.

Consider a set of events E = (E1, E2,…, En) with a set of probability distribution P = (p1, p2, …,

pn), pi ≥ 0,
Pn

i¼1 pi ¼ 1.

Then the Shannon [1] entropy associated with P is given by,

H Pð Þ ¼ �
Xn

i¼1

pi log pi (1)

The base of logarithm is taken as 2. Also it is assumed that

0 log0 ¼ 0:

Shannon [1] obtained (Eq. (1)) on the basis of following postulates:

1. H(P) should be a continuous permutationally symmetric function of p1, p2,…, pn, that is,

ambiguity changes by slight quantity if there is slight quantity changes in pi’s and ambi-

guity remain unchanged if pi’s exchange among themselves.

2. H(p1, p2,…, pn, 0) = H(p1, p2,…, pn), that is, uncertainty should not change when an

impossible outcome is added to the scheme.

3. H(P) should beminimumwhen P is any one of the n degenerate distributionΔ1 ¼ 1; 0;…; 0ð Þ,

Δ2 ¼ 0; 1;…; 0ð Þ,…,Δn ¼ 0; 0;…; 1ð Þ and the minimum value should be zero because in all

these cases, there is no uncertainty about the outcome.

4. H(P) should be maximum when p1 = p2 = … = pn = 1/n because in this case the uncertainty

is maximum.

Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications8



5. H(P*Q) = H(P) + H(Q), that is, the uncertainty of two independent probability distributions

is the sum of the uncertainties of the two probability distributions.

6. H(p1, p2,…, pn) = H(p1+ p2,p3,…, pn) + (p1+ p2)H(p1/p1 + p2, p2/p1 + p2)

The measures in (Eq. (1)) not only measures uncertainty, but it also measures equality of p1, p2,

…, pn, since it has the maximum value when p1, p2,…,pn, are all equal and has the minimum

value when pi’s are most unequal. In fact pi’s can be regarded as proportions rather than

probabilities.

After Shannon’s [1] entropy, various other measures of entropy have been proposed.

Entropy of order α was described by Renyi [3] in the way as:

Hα Pð Þ ¼
1

1� α
log

Pn

i¼1
pα
i=Pn

i¼1
pi

� �

,α 6¼ 1,α≻ 0

�

(2)

Entropy of order α and type β was described by Kapur in the way as:

Hα,β Pð Þ ¼
1

1� α
log

Pn

i¼1
p
αþβ�1

i =Pn

i¼1
p
β

i

� �

,α 6¼ 1,α≻ 0, β≻ 0,αþ β� 1≻ 0 (3)

Havrada and Charvat [4] gave the first nonadditive measure of entropy and it is used in the

modified form as

Hα Pð Þ ¼
1

1� α

X

n

i¼1

pαi � 1

 !

,α 6¼ 1,α≻ 0: (4)

Behara and Chawla [5] defined the nonadditive τ entropy as

Hτ Pð Þ ¼
1�

Pn
i¼1 p

1
τ

i

� �τ

1� 2τ�1
, τ 6¼ 1, τ≻ 0: (5)

Kapur [6] gave the following nonadditive measures of entropy:

Ha Pð Þ ¼ �
X

n

i¼1

pi log pi þ
1

a

X

n

i¼1

1þ api
� �

log 1þ api
� �

� api
� 	

, a≻ 0 (6)

Hb Pð Þ ¼ �
X

n

i¼1

pi log pi þ
1

b

X

n

i¼1

1þ bpi
� �

log 1þ bpi
� �

� 1þ bð Þ log 1þ bð Þpi
� 	

, b≻ 0 (7)

Hc Pð Þ ¼ �
X

n

i¼1

pi log pi þ
1

c2

X

n

i¼1

1þ cpi
� �

log 1þ cpi
� �

� cpi
� 	

, c≻ 0 (8)

Hk Pð Þ ¼ �
X

n

i¼1

pi log pi þ
1

k2

X

n

i¼1

1þ kpi
� �

log 1þ kpi
� �

� 1þ kð Þ log 1þ kð Þpi
� 	

, k≻ 0 (9)
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2. Technical aspects of fuzzy measures

Zadeh [2] introduced fuzzy set theory which is associated with vagueness arising in human

cognitive methods. The alteration for an element connecting membership and nonmembership

in the universe of classical sets is abrupt whereas in the universe of fuzzy sets the transition is

gradual. Thus, the membership function describes the vagueness and ambiguity of an element

and takes values in the interval [0, 1].

Kapur [7] explained the concept of fuzzy entropy by considering the following vector

μA x1ð Þ;μA x2ð Þ;…;μA xnð Þ

 �

.

If μA xið Þ ¼ 0 then the ith element does not belong to set A and if μA xið Þ ¼ 1, then the ith element

belongs to set A. If μA xið Þ ¼ 0:5 then highest ambiguity arises as to ith element belongs to set A

or not. Thus, μA x1ð Þ;μA x2ð Þ;…;μA xnð Þ

 �

is termed as fuzzy vector and the set A is identified

as the fuzzy set. Thus crisp set are those sets in which each element is 0 or 1 and hence

uncertainty does not arise in these sets whereas those sets in which elements are 0 or 1 and

others lie among 0 and 1 are entitled as fuzzy sets. A fuzzy set A is represented as A =

xi=μA xið Þ; i ¼ 1; 2;…; n
n o

where μA xið Þ gives the degree of belongingness of the element xið Þ to

A. We explain the concept of membership function μA:X ! 0; 1½ � as follows:

μA xið Þ ¼

0, if x ∉ A and there isnoambiguity

1, if x∈A and there isnoambiguity

0:5, if there ismaximum ambiguity whether x ∉ A x∈A

8

>

<

>

:

9

>

=

>

;

(10)

Further if μB xið Þ = μA xið Þ either 1 � μA xið Þ or then fuzzy sets A and B are characterised as fuzzy

equivalent sets. Also, without being fuzzy equivalent, two sets can have same entropy but it is

obvious to have identical entropy for fuzzy equivalent sets. Now if all the membership values

of class of fuzzy equivalent sets are less than or equal to 0.5 then that set is defined as standard

fuzzy set.

For any fuzzy set A* to be a sharpened version of set A the subsequent requirements has to be

fulfilled:

μA∗ xið Þ ≤μA xið Þ, if μA xið Þ ≤ 0:5; ∀i (11)

and

μA∗ xið Þ ≥μA xið Þ, ifμA xið Þ ≥ 0:5; ∀i (12)

Thus, when x1, x2,…, xn are components of universe of discourse then, μA x1ð Þ;μA x2ð Þ;…;μA




xnð Þg are positioned among 0 and 1 but since their sum is not unity therefore they are not

considered as probabilities. However,

ϕA xið Þ ¼
μA xið Þ

Pn
i¼1 μA xið Þ

, i ¼ 1, 2,…, n (13)

Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications10



gives a probability distribution.

With the ith element, fuzzy uncertainty is defined as f (μA xið Þ) with the following properties:

1. f(x) = 0 when x = 0 or 1.

2. f(x) increases as x goes from 0 to 0.5.

3. f(x) decreases as x goes from 0.5 to 1.

4. f(x) = f(1 � x).

The total fuzzy uncertainty defined as fuzzy entropy for n independent elements is given by,

H Að Þ ¼
X

n

i¼1

f μA xið Þ
� �

(14)

This is called fuzzy entropy.

When there is uncertainty due to fuzziness of information it is known as fuzzy entropy

measures whereas when the uncertainty is due to information available in terms of probability

distribution it is known as probabilistic entropy. Following similarities and dissimilarities are

there between fuzzy entropy measures and probabilistic entropy measures:

1. 0 ≤ pi ≤ 1 for each i. Also 0 ≤ μA xið Þ
�

≤ 1 for each i.

2.
Pn

i¼1 pi ¼ 1 for all probability distributions, but
Pn

i¼1 μA xið Þ
� �

need not be equal to unity

and it need not even be the same for all fuzzy sets.

3. The probabilistic uncertainty measure measures how close the probability distribution (p1,

p2, …, pn) is to the uniform distribution (1/n, 1/n, …, 1/n) and how far away it is from

degenerate distributions. Fuzzy uncertainty measures how close the fuzzy distribution is

from the most fuzzy vector distribution (1/2, 1/2, …, 1/2) and how far it is from the

distribution of crisp sets.

4. μA xið Þ
� �

gives the same degree of fuzziness as 1 � μA xið Þ
� �

because both are equidistant

from 1/2 and the crisp set values 0 and 1. However probabilities p and 1� p make different

contributions to probabilistic uncertainty. As such while most measures of fuzzy entropy

are of the form
Pn

i¼1 f μA xið Þ
�

+
Pn

i¼1 f 1� μA xið Þ
� �

, most measures of probabilities entropy

are of the form
Pn

i¼1 f pi
� �

. However some measures of probabilistic entropy can also be of

the form
Pn

i¼1 f pi
� �

+
Pn

i¼1 f pi
� �

.

5. Similarly while many measures for fuzzy directed divergence are all of the form
Pn

i¼1 f μA xið Þ, μB xið Þ þ
Pn

i¼1 f 1� μA xið Þ
� �

, 1� μB xið Þ
� �� �

, most of the probabilistic mea-

sures are of the form
Pn

i¼1 f pi; qi
� �

. For each measure of probabilistic entropy or directed

divergence, we have a corresponding measure of fuzzy entropy and fuzzy directed diver-

gence and vice-versa.
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6. The common properties arise from the consideration that both types of measures are based

on measures of distance from (1/n, 1/n,…, 1/n) in one case and from (1/2, 1/2,…, 1/2) in the

other.

7. The dissimilarity arises because while
Pn

i¼1 pi ¼ 1,
Pn

i¼1 μA xið Þ
�

is not 1. The probabilities

of n � 1 outcomes will determine the probability of the nth outcome. However fuzziness of

n elements of the fuzzy set are quite independent and our knowledge of fuzziness of n � 1

elements gives us no information about the fuzziness of the nth element.

8. Conceptually the two types of uncertainty are poles apart. One deals with probabilities or

relative frequencies and repeated experiments, while the other deals with estimation of

fuzzy values. The probabilities can be determined objectively and experimentally and

should naturally be the same for everyone. Fuzziness is one’s perception of membership

of an element of a set and can be subjective. However, after finding fuzzy value for every

member of the set, everything else is objective. In probability theory also after assigning

probabilities, everything is also objective.

9. Fuzzy and probabilistic entropies are concave functions of μA x1ð Þ;μA x2ð Þ;…;μA xnð Þ

 �

and

p1, p2, …, pn respectively. If we start with any value of μA x1ð Þ;μA x2ð Þ;…;μA xnð Þ

 �

and

approach the vector 1/2, 1/2,…, 1/2, the fuzzy entropy will increase. Similarly, if we start with

any probability vector p1, p2,…, pn and approach the vector 1/n, 1/n,…, 1/n, the probabilistic

entropy will increase. Thus, Z ¼ F μA x1ð Þ;μA x2ð Þ;…;μA xnð Þ

 �

, where F is a fuzzy entropy is

a concave surface with maximum value at 1/2, 1/2, …, 1/2. Similarly Z = G(p1, p2, …, pn)

where G is probabilistic entropy is a concave surface with maximum value at 1/n, 1/n,…, 1/n.

While processing information, making decision and in our language we can find fuzziness.

Many authentic world objectives and human thinking consider uncertainty and fuzziness as

their fundamental nature. Uncertainty and fuzziness are removed by the utilization of infor-

mation. The degree of information is the quantity of uncertainty eliminated whereas the degree

of vagueness and ambiguity of uncertainties is the quantity of fuzziness.

The theory of fuzziness is related to various areas of research such as Statistics, Information

theory, Clustering and Decision analysis, Medical and Socio-economic prediction, Image

processing, etc. The preparation and analysis of information development method are the

applications of the mathematical designs related to system research.

In order to deal with fuzziness there is a small area from the extremely large fields of theories

and applications which have been developed from the concept of fuzziness.

We define problems in the form of decision, management and prediction and by analysis,

understanding and utilization of information, we can find their solutions. Thus, a significant

quantity of information together with significant quantity of uncertainty is considered as the

ground of many problems.

As we become aware of how much we know and how much we do not know, as information

and uncertainty themselves become the focus of our concern, we begin to see our problems as

centring on the issue of complexity.

Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications12



Thus, ambiguity due to fuzziness of information is calculated by fuzzy entropy whereas

vagueness due to information which is accessible in context of probability distribution is

computed by probabilistic entropy.

Entropy theory was developed to measure uncertainty of a probability distribution and there-

fore it was natural for researchers in fuzzy set theory to make use of entropy concepts in

measuring fuzziness.

Entropy of a fuzzy set A having n support points was characterised by Kauffman [8] in the

way as

Hk Að Þ ¼ � 1

log n

Xn

i¼1
ϕA xið Þ logϕA xið Þ (15)

Deluca and Termini [9] suggested the measure

HD Að Þ ¼ � 1

n log 2

X

n

i¼1

μA xið Þ logμA xið Þ þ 1� μA xið Þ
� �

log 1� μA xið Þ
� �� 	

(16)

Bhandari and Pal [10] suggested the following measure:

He Að Þ ¼ 1

n
ffiffiffiffiffiffiffiffiffiffiffi

e� 1
p

X

log μA xið Þe1�μA xið Þ þ 1� μA xið Þ
� �

eμA xið Þ � 1
h i

(17)

Some other measures of fuzzy entropy are:

1. Corresponding to Sharma and Taneja’s [11] measure of entropy of degree α, β

Hβ
α Pð Þ ¼ 1

β� α

X

n

i¼1

pαi �
X

n

i¼1

p
β
i

" #

, α 6¼ β (18)

we get the measure

Hβ
α Að Þ ¼ 1

β� α

X

n

i¼1

μα
A xið Þ þ 1� μA xið Þ

� �α � μ
β
A xið Þ þ 1� μA xið Þ

� �β
h i

(19)

where either α ≥ 1, β ≤ 1 or α ≤ 1, β ≥ 1 and α = β only if both are unity.

2. Corresponding to Kapur’s measure of entropy of degree α, β

Hβ
α Pð Þ ¼ 1

αþ β� 2

X

n

i¼1

pαi þ
X

n

i¼1

p
β
i � 2

" #

(20)

we get the measure

Fuzzy Information Measures with Multiple Parameters
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Hβ
α Að Þ ¼

1

αþ β� 2

X

n

i¼1

μα
A xið Þ þ 1� μA xið Þ

� �α
� μ

β

A xið Þ þ 1� μA xið Þ
� �β

� 2
h i

(21)

3. Corresponding to Kapur’s [12] measure of entropy

Hα Pð Þ ¼ �
X

n

i¼1

pi log pi þ
1

a

X

n

i¼1

1þ api
� �

log 1þ api
� �

�
1

a
1þ að Þ log 1þ að Þ

 �

, a ≥ 0 (22)

we get the measure

Hα Að Þ ¼ �
X

n

i¼1

μA xið Þ log μA xið Þ þ 1� μA xið Þ
� �

log 1� μA xið Þ
� �� 	

þ
1

a

X

n

i¼1

1þ aμA xið Þ
� �

log 1þ aμA xið Þ
� �� 	

þ
1

a

X

n

i¼1

½ 1þ a� aμA xið Þ
� �

log 1þ a� aμA xið Þ
� �

" #

�
1

a
1� að Þ log 1� að Þ

(23)

4. Corresponding to Kapur’s [4] measure of entropy of degree α and type β

Hα,β Pð Þ ¼
1

β� α
log

Pn
i¼1 p

α
i

Pn
i¼1 p

β

i

,α 6¼ β (24)

we get the measure

Hα,β Pð Þ ¼
1

β� α
log

Pn
i¼1 μ

α
A xið Þ þ 1� μα

A xið Þ
� �α

Pn
i¼1 μ

β

A xið Þ þ 1� μA xið Þ
� �β

,α ≥ 1, β ≤ 1 or α ≤ 1, β ≥ 1: (25)

Kosko [13] introduced fuzzy entropy and conditioning. Pal and Pal [14] gave object back-

ground segmentation using new definition of entropy. Parkash [15] proposed new measures

of weighted fuzzy entropy and their applications for the study of maximum weighted fuzzy

entropy principle. Parkash and Gandhi [16] suggested new generalised measures of fuzzy

entropy and properties. Parkash and Singh [17] gave characterization of useful information

theoretic measures. Taneja [18] introduced generalised information measures and their appli-

cations. Taneja and Tuteja [19] gave characterization of quantitative-qualitative measure of

relative information. Tuteja [20] introduced characterization of nonadditive measures of rela-

tive information and accuracy. Tuteja and Hooda [21] proposed generalised useful information

measure of type α and degree β. Tuteja and Jain [22, 23] gave characterization of relative useful

information having utilities as monotone functions and an axiomatic characterization of rela-

tive useful information. Tahayori [24] presented a universal methodology for generating an

Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications14



interval type 2 fuzzy set membership function from a collection of type 1 fuzzy sets. Kumar

and Bajaj [25] introduced NTV metric based entropies of interval-valued intuitionistic fuzzy

sets and their applications in decision making.

Mishra [26] introduced two exponential fuzzy information measures and characterised axiom-

atically. To show the effectiveness of the proposed measure, it is compared with the existing

measures. Further, two fuzzy discrimination and symmetric discrimination measures are

defined and their validity are checked. Important properties of new measures are studied and

their applications in pattern recognition and diagnosis problem of crop disease are discussed.

Hooda and Mishra [27] gave two sine and cosine trigonometric measures of fuzzy information

and obtained new measures of trigonometric fuzzy information.

3. A new parametric measure of fuzzy information measure involving two

parameters α and β

A new generalised fuzzy information measure of order α and type β has been suggested and

their necessary and required properties are examined. Thereafter, its validity is also verified.

Also, the monotonic behaviour of fuzzy information measure of order α and type β has been

conferred.

The generalised measure of fuzzy information of order α and type β is given by,

Hβ
α Að Þ ¼

1

1� αð Þβ

X

n

i¼1

μ
αμ

A
xið Þ

A
þ 1� μ

A
xið Þ

� �α 1�μ
A
xið Þð Þ

� �β

� 2β
 �

,

α≻ 0,α 6¼ 1, β 6¼ 0:

(26)

3.1. Properties of Hβ
α Að Þ

We have supposed that, 00:α ¼ 1, we study the following properties:

Property 1: Hβ
α Að Þ ≥ 0 i.e. Hβ

α Að Þ is nonnegative.

Property 2: Hβ
α Að Þ is minimum if A is a non-fuzzy set.

For μ
A
xið Þ ¼ 0, it implies Hβ

α Að Þ = 0 and μ
A
xið Þ ¼ 0 we have Hβ

α Að Þ = 0.

Property 3: Hβ
α Að Þ is maximum if A is most fuzzy set.

We have, ∂H
β
α Að Þ

∂μ
A
xið Þ ¼

α
1�α

μ
A
xið Þ


 �αμ
A
xið Þ

þ 1� μ
A
xið Þ


 �α 1�μ
A
xið Þð Þ

h iβ�1

μ
A
xið Þ


 �αμ
A
xið Þ

1þ logμ
A

�

h

xið ÞÞ � 1� μ
A
xið Þ


 �α 1�μ
A
xið Þð Þ 1þ log 1� μ

A
xið Þ

� �� 	

.

Taking, ∂H
β
α Að Þ

∂μ
A
xið Þ ¼ 0 which is possible μ

A
xið Þ ¼ 1� μ

A
xið Þ that is if μ

A
xið Þ ¼ 1

2.

Now, we have, ∂
2
H

β
α Að Þ

∂
2μ

A
xið Þ
, Thus, at μ

A
xið Þ ¼ 1

2:
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∂
2
H

β
α Að Þ

∂
2μ

A
xið Þ

¼
�1

1� 1
α

21�
α
2

� �β�1
22�

α
2 þ α:21�

α
2 1� log 2ð Þ2 ≺ 0

h i

Hence, the maximum value exists at μ
A
xið Þ ¼ 1

2.

Property 4: Hβ
α A

∗ð Þ ≤Hβ
α Að Þ, where A∗ be sharpened version of A.

When μ
A
xið Þ ¼ 1

2,

H
β
α Að Þ ¼

n:2β

1� αð Þβ

1� 2
αβ

2

2
αβ

2

 !

When μ
A
xið Þ lies between 0 and 1/2 then H

β
α Að Þ is an increasing function whereas when μ

A
xið Þ

lies between 1/2 and 1 then H
β
α Að Þ is a decreasing function of μ

A
xið Þ

Let A∗ be sharpened version of A which means that

i. If μ
A
xið Þ < 0:5 then μ

A
∗ xið Þ ≤μ

A
xið Þ for all i = 1, 2,…, n

ii. If μ
A
xið Þ > 0:5 then μ

A
∗ xið Þ ≥μ

A
xið Þ for all i = 1, 2,…, n

Since H
β
α Að Þ is an increasing function of μ

A
xið Þ for 0 ≤μ

A
xið Þ ≤ 1

2 and decreasing function of

μ
A
xið Þ for 1

2 ≤μA
xið Þ ≤ 1, therefore

i. μ
A
∗ xið Þ ≤μ

A
xið Þ this implies Hβ

α A
∗ð Þ ≤Hβ

α Að Þ in [0, 0.5]

ii. μ
A
∗ xið Þ ≤μ

A
xið Þ this implies Hβ

α A
∗ð Þ ≤Hβ

α Að Þ in [0.5, 1]

Hence, Hβ
α A

∗ð Þ ≤Hβ
α Að Þ.

Property 5: Hβ
α Að Þ ¼ H

β
α A
� �

, where A is the compliment of A i.e. μ
A
xið Þ= 1 - μ

A
xið Þ.

Thus when μ
A
xið Þ is varied to (1 � μ

A
xið Þ) then H

β
α Að Þ does not change.

Under the above conditions, the generalised measure proposed in (26) is a valid measure of

fuzzy information measure.

3.2. Monotonic behaviour of fuzzy information measure

In this section we study the monotonic behaviour of the fuzzy information measure. For this,

diverse values of Hβ
α Að Þ by assigning various values to α and β has been calculated and further

the generalised measure has been presented graphically.

Case I: For α > 1, β =1, we have compiled the values of Hβ
α Að Þ in Table 1, (a) and presented the

fuzzy entropy in Figure 1(a) which unambiguously illustrates that the fuzzy information

measure is a concave function.

For α = 2, β = 1, values of Hβ
α Að Þ have been represented with the help of graph for α = 2 and

β = 1 which implies that the proposed measure is a concave function. Similarly, for other values

of α and β, we get different concave curves.
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Case II: For α > 1, 0 < β < 1 we have compiled the values of Hβ
α Að Þ in Table 1, (b) and presented

the fuzzy entropy in the Figure 1(b)which unambiguously illustrates that the fuzzy entropy is

a concave function.

For α = 1.5 and β ¼ 0.1, values of Hβ
α Að Þ have been represented with the help of graph for

α = 1.5 and β = 0.1 which implies that the proposed measure is a concave function. Similarly,

for other values of α and β, we get different concave curves.

Case III: For α > 1, β > 1 we have compiled the values ofHβ
α Að Þ in Table 1, (c) and presented the

fuzzy entropy in Figure 1(c) which unambiguously illustrates that the fuzzy entropy is a

concave function.

μ
A
xið Þ H

β
α Að Þ μ

A
xið Þ H

β
α Að Þ μ

A
xið Þ H

β
α Að Þ

0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.5419 0.1 0.5074 0.1 2.0337

0.2 0.7749 0.2 0.7763 0.2 2.7289

0.3 0.9075 0.3 0.9534 0.3 3.0732

0.4 0.9778 0.4 1.0517 0.4 3.2411

0.5 1.0 0.5 1.0844 0.5 3.2916

0.6 0.9778 0.6 1.0517 0.6 3.2411

0.7 0.9075 0.7 0.9534 0.7 3.0732

0.8 0.7749 0.8 0.7763 0.8 2.7289

0.9 0.5419 0.9 0.5074 0.9 2.0337

1.0 0.0 1.0 0.0 1.0 0.0

(a) (b) (c)

Table 1. The values of fuzzy information measure for α = 2 and β = 1; α = 1.5 and β = 0.1; and α = 1.5 and β = 2.5.

Figure 1. Representation of the monotonic behaviour of fuzzy information measure for (a) For, α = 2 and β = 1; (b) For,

α = 1.5 and β = 0.1; and (C) For, α = 1.5 and β = 2.5.

Fuzzy Information Measures with Multiple Parameters
http://dx.doi.org/10.5772/intechopen.78803

17



For α = 1.5 and β ¼ 2.5, values of Hβ
α Að Þ have been represented with the help of graph for

α = 1.5 and β = 2.5 which implies that the proposed measure is a concave function. Similarly,

for other values of α and β, we get different concave curves.

4. A new parametric measure of fuzzy information measure involving

three parameters α, β and γ

Further, a new generalised fuzzy information measure involving three parameters α, β and γ

has been suggested and their necessary and required properties are examined. Thereafter, its

validity is also verified. Also, the monotonic behaviour of fuzzy information measure of order

α, β and γ has been introduced.

The generalised measure of fuzzy information involving three parameters α, β and γ is given

by,

Hα,β,γ Að Þ ¼
1

1� α

X

n

i¼1

μ
αþβð ÞμA

xið Þ

A
þ 1� μ

A
xið Þ

� � αþβð Þ 1�μ
A
xið Þð Þ

� �γ

� 2γ
 �

,

α≻ 0,α 6¼ 1, β 6¼ 0,γ 6¼ 0

(27)

4.1. Properties of Hα,β,γ Að Þ

We have supposed that, 00:α ¼ 1, we study the following properties:

Property 1: Hα,β,γ Að Þ ≥ 0 i.e. Hα,β,γ Að Þ is nonnegative.

Property 2: Hα,β,γ Að Þ is minimum if A is a non-fuzzy set.

for μ
A
xið Þ ¼ 0, it implies Hα,β,γ Að Þ ¼ 0 and μ

A
xið Þ ¼ 1 we have Hα,β,γ Að Þ ¼ 0.

Property 3: Hα,β,γ A
∗ð Þ ≤Hα,β,γ Að Þ, where A∗ be sharpened version of A.

When μ
A
xið Þ lies between 0 and 1/2 then Hα,β,γ Að Þ is an increasing function whereas when

μ
A
xið Þ lies between 1/2 and 1 then Hα,β,γ Að Þ is a decreasing function of μ

A
xið Þ

Let A∗ be sharpened version of A which means that

i. If μ
A
xið Þ < 0:5 then μ

A
∗ xið Þ ≤μ

A
xið Þ for all i = 1, 2,…, n

ii. If μ
A
xið Þ > 0:5 then μ

A
∗ xið Þ ≥μ

A
xið Þ for all i = 1, 2,…, n

Since Hα,β,γ Að Þ is an increasing function of μ
A
xið Þ for 0 ≤μ

A
xið Þ ≤ 1

2 and decreasing function of

μ
A
xið Þ for 1

2 ≤μA
xið Þ ≤ 1, therefore

i. μ
A
∗ xið Þ ≤μ

A
xið Þ this implies Hα,β,γ A

∗ð Þ ≤Hα,β,γ Að Þ in [0, 0.5]

ii. μ
A
∗ xið Þ ≤μ

A
xið Þ this implies Hα,β,γ A

∗ð Þ ≤Hα,β,γ Að Þ in [0.5, 1]
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Hence, Hα,β,γ A
∗ð Þ ≤Hα,β,γ Að Þ

Property 4: Hα,β,γ Að Þ ¼ Hα,β,γ A
� �

, where A
� �

is the compliment of A i.e. μ
A
xið Þ ¼ 1� μ

A
xið Þ

Thus, when μ
A
xið Þ is varied to 1 � μ

A
xið Þthen Hα,β,γ Að Þ does not change.

Under the above conditions, the generalised measure proposed in (27) is a valid measure of

fuzzy information measure.

4.2. Monotonic behaviour of fuzzy information measure

In this section we study the monotonic behaviour of the fuzzy information measure. For this,

diverse values of Hα,β,γ Að Þ by assigning various values to α, β and γ have been calculated and

further the generalised measure has been presented graphically.

Case I: For α > 1, β = 2, γ = 3, we have compiled the values of Hα,β,γ Að Þ in Table 2, (a)–(e) and

presented the fuzzy entropy in Figure 2(a)–(e) which unambiguously illustrates that the fuzzy

information measure is a concave function. For α = 1.5, β = 2, γ = 3, values of Hα,β,γ Að Þ have

been represented with the help of graph γ ¼ 3 which implies that the proposed measure is a

concave function. Similarly, for other values of α, β and γ we get different concave curves.

Further it has been shown that Hα,β,γ Að Þ is a concave function obtaining its maximum value at

μ
A
xið Þ ¼ 1

2. Hence Hα,β,γ Að Þ is increasing function of μ
A
xið Þ in interval [0, 0.5) and decreasing

function of μ
A
xið Þ in interval (0.5, 1]. Similarly, for α = 2, β = 2 and γ = 3, α = 2.5, β = 2 and γ = 3,

α = 3, β = 2 and γ = 3, α = 3.5, β = 2 and γ = 3, γ ¼ 3 values of Hα,β,γ Að Þ have been represented

with the help of graph which implies that the proposed measure is a concave function.

μA xið Þ Hα,β,γ Að Þ μA xið Þ Hα,β,γ Að Þ μA xið Þ Hα,β,γ Að Þ μA xið Þ Hα,β,γ Að Þ μA xið Þ Hα,β,γ Að Þ

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 12.8444 0.1 6.7318 0.1 4.6517 0.1 3.5865 0.1 2.9316

0.2 14.7302 0.2 7.5514 0.2 5.1212 0.2 3.8867 0.2 3.1353

0.3 15.3147 0.3 7.7794 0.3 5.2385 0.3 3.9540 0.3 3.1762

0.4 15.5250 0.4 7.8559 0.4 5.2750 0.4 3.9734 0.4 3.1870

0.5 15.5795 0.5 7.875 0.5 5.2837 0.5 3.9779 0.5 3.1894

0.6 15.5250 0.6 7.8559 0.6 5.2750 0.6 3.9734 0.6 3.1870

0.7 15.3147 0.7 7.7794 0.7 5.2385 0.7 3.9540 0.7 3.1762

0.8 14.7302 0.8 7.5514 0.8 5.1212 0.8 3.8867 0.8 3.1353

0.9 12.8444 0.9 6.7318 0.9 4.6517 0.9 3.5865 0.9 2.9316

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

(a) (b) (c) (d) (e)

Table 2. The values of fuzzy information measure for α = 1.5, β = 2 and γ = 3; α = 2, β = 2 and γ = 3; α = 2.5, β = 2 and γ = 3;

α = 3, β = 2 and γ = 3; and α = 3.5, β = 2 and γ = 3.
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Further it has been shown that Hα,β,γ Að Þ is a concave function obtaining its maximum value at

μ
A
xið Þ ¼ 1

2. Hence Hα,β,γ Að Þ is increasing function of μ
A
xið Þ in interval [0, 0.5) and decreasing

function of μ
A
xið Þ in interval (0.5, 1].

5. Conclusions

In this chapter, after reviewing some literatures on measures of information for fuzzy sets, a

new generalised fuzzy information measure involving two parameters α and β has been

introduced.

The necessary properties of the proposed measure have been verified and further it has been

studied that the proposed measure is a concave function as it has shown monotonicity.

Further, a new generalised fuzzy information measure involving three parameters α, β and γ

has been suggested and their necessary and required properties are examined. Thereafter, its

Figure 2. Representation of the monotonic behaviour of fuzzy information measure for (a) For, α = 1.5, β = 2 and γ = 3; (b)

For, α = 2, β = 2 and γ = 3; (c) For, α = 2.5, β = 2 and γ = 3; (d) For, α = 3, β = 2 and γ = 3; (e) For, α = 3.5, β = 2 and γ = 3.
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validity is also verified. Also, the monotonic behaviour of fuzzy information measure of order

α, β and γ has been conferred.

Fuzzy sets are indispensable in fuzzy system model and fuzzy system design, while the

measurement of fuzziness in fuzzy sets is the fuzzy entropy or fuzzy information measure.

Therefore, fuzzy information measures occupy important place in the processing of system

design. Thus there are enormous applications of fuzzy information in the design of neural

network classifiers.
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