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Abstract

Epitaxial nitride thin films and heterostructures are one of the most celebrated class of
materials not only due to their utility in fundamental materials science and device physics
studies, but also for their numerous industrial applications from hard coating technology
to solid-state lighting. Transition metal nitrides such as TiN and others have been utilized
for decades in hard coating and tribology applications. The last two decades have also
seen the emergence and dominance of GaN for solid-state lighting and power electronic
applications. Though TiN, and other wurtzite III-nitride semiconductor such as GaN
remain the most important nitride coating materials for a range of applications, several
other rocksalt nitride thin film and superlattice heterostructures such as ScN, CrN, and
TiN/(Al,Sc)N metal/semiconductor superlattices have attracted significant interests in
recent years for applications in thermoelectricity, plasmonics, solar energy conversion,
and in high temperature electronic, optoelectronic, and plasmonic devices. In this chapter,
we present an up-to-date summary of rocksalt nitride thin film and heterostructure coat-
ing materials for their applications in energy transport and conversion research fields. The
suitability and usefulness of such nitride coating materials in the most recent scientific and
engineering advances related to the energy transport and conversion research fields are
highlighted.

Keywords: transition metal nitrides, epitaxy, superlattice, refractory electronics,
thermoelectric, plasmonics

1. Introduction

Epitaxial nitride thin film and superlattice heterostructures are one of the most celebrated

materials class, not only for their wide ranging industrial applications such as in corrosion

resistant hard coating, light emitting diode (LED) and power electronic devices, but also for
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their utility as model systems for fundamental materials science studies as well as device

physics research. Transition metal nitrides (TMNs) such as TiN have long been used as a

coating material in every day home appliances such as watches and others, while III-Nitride

semiconductors such as AlN is used in many devices as a dielectric and piezoelectric mate-

rial. The last 20–30 years have also seen the emergence of GaN as one of the most celebrated

nitride semiconductors for its applications in LED and power-electronics/optoelectronics

devices.

Such wide-ranging applications of nitride thin film and superlattice heterostructures are inher-

ently related to their excellent properties, which are scarce in most other class of materials.

Some of these interesting properties are

a. Diversity in electronic properties: nitrides comprise materials having a full spectrum of

electronic properties (from highly conductive metals to excellent dielectric or insulators).

For example, TMNs such as TiN, ZrN and others are highly conductive metals with their

electrical conductivity as high as traditional noble metals such as Cu, Ag, Au and others in

some cases. AlN, BN and others are insulators with large bandgap (>5 eV) and highly

resistive, which makes them essential parts in many devices as dielectric layers. GaN, InN,

ScN and others are excellent semiconductors with bandgap ranging from few 100 s of meV

to several eV. Because of such great diversity in electrical properties nitride have attracted

many industrial applications.

b. High melting temperature: nitrides usually possess extremely high melting temperature in

�2000–3000�C temperature range, which make them suitable for several high-temperature

electronic, optoelectronic and plasmonic applications. For example, TiN has a melting tem-

perature of about 2600�C, while the same for GaN is �2500�C.

c. Corrosion resistant and high mechanical hardness: nitride thin film and multilayer heterostr-

uctures are well-known to be corrosion resistant and mechanically hard materials with

hardness at room temperature ranging more than�25 GPa for thin film to�40 GPa or more

for multilayers. Such high hardness and corrosion resistant properties of are extremely

useful for many applications such as cutting tools, bearings and in tribology, especially for

harsh conditions.

d. Potential for large acoustic impedance mismatch: due to the mass difference of metal atoms

forming mono-nitrides, the nitride family of materials offer tremendous opportunity to

create large acoustic impedance mismatch. Acoustic impedance mismatch in a heterostru-

cture material creates phonon bandgap, which help in reducing thermal conductivity neces-

sary for several applications such as thermoelectricity. For example, the acoustic impedance

mismatch between HfN and ScN resulting from the mass difference between Hf (178.49 u)

and Sc (44.95 u) atoms, results in a significantly lower cross-plane thermal conductivity in

HfN/ScN multilayers compared to the individual thin films.

e. Low homologous growth temperature: deposition temperature of nitrides is typically much

smaller in comparison to their melting temperatures, which assist in uniform thin film and

superlattice heterostructure growth with standard deposition methods such as magnetron

sputtering, molecular beam epitaxy, chemical vapor deposition and others.
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Given such excellent set of physical properties, it is not surprising that nitrides are researched

and developed for decades, and many industrial products are available in commercial market

having nitride materials as components.

However, more recently, a large number of new properties and functionalities that were previ-

ously neglected and were relatively unexplored have emerged with nitrides. TMN semiconductor

ScN, and its solid state alloys (Al1�xScxN and others) [1] and superlattices ((Hf, Zr)N/ScN

and TiN/(Al, Sc)N) [2] have emerged as attractive materials for solid state energy transport and

conversion research fields with applications ranging from thermoelectricity, plasmonics, and solar

thermo-photovoltaics . Though several books, books chapter and research articles have addressed

the broader implications of nitrides in materials science and solid-state physics, a detailed discus-

sion on the most recent advances of TMNs thin film and superlattice heterostructures on energy

transport and conversion research fields are lacking. In this chapter, we will discuss the recent

progress and development on the epitaxial nitride thin film and superlattice heterostructures for

applications in solid state energy conversion and transport.

2. Nitride thin film and heterostructure growth

Traditionally nitride thin film and superlattice heterostructures are deposited by a variety of

deposition techniques such as molecular beam epitaxy (MBE), chemical vapor deposition

(CVD), magnetron sputtering, arc discharge method and others. Each of these deposition

methods have their own advantages, and both research and development in academia and

industries employ deposition techniques suitable for specific applications. For example, corro-

sion resistant hard coating technology, which has traditionally been the most prevalent appli-

cation space for nitrides usually employ magnetron sputtering and arc discharge methods. The

use of sputtering and arc discharge for hard coating applications are justified as several of such

materials such as TiN, Ti1�xAlxN and others are TMNs having metallic characteristics, and

controlling electronic defects are not of great concern. Instead the sputtering and arc discharge

methods allow industries large volume scalability, which may not be possible with some of the

other methods.

LED and other optoelectronic industries, however, prefer several types of CVDmethods due to

their high through-puts and industrial scalability. Use of CVD are also necessary due to the

requirement of controlling defects in epitaxial nitrides, and selective doping of the materials to

n-type or p-type. For example, GaN based LED and power electronic devices are generally

deposited via. Metal organic chemical vapor deposition (MOCVD) technique in industries.

Research and development of nitrides, however, employ almost all available techniques inclu-

ding ultra-high vacuumMBE, magnetron sputtering and others. As unwanted impurities such

as oxygen, carbon, halogens, and others could significantly alter the electronic properties of

semiconducting nitrides, device research with nitride thin film and heterostructures usually

require ultra-high vacuum-based methods. A detailed discussion on each of these deposition

techniques are beyond the scope of this book chapter, however, readers could refer to [2] for

further details.
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3. Historical perspective: TiN as hard coating and GaN as solid-state

lighting materials

3.1. Hard coating materials

Hard coating industries are one of the early adopters of nitride thin film and heterostructures.

Since tribology applications require materials that are mechanically hard, chemically stable at

elevated temperatures with low wear rate and coefficient of frictions over wide working

conditions, TMNs such as TiN found immediate attention and applications. Titanium nitride

(TiN) is a leading coating material and is used for edge retention and corrosion resistance on

machine tooling, such as drill bits and milling cutters, often improving tool lifetime by a factor

of three or more (Figure 1). However, the hardness of TiN is relatively low (�20–24 GPa) and

the oxidation resistance of TiN in air is limited to temperatures below 700�C, beyond which

TiN forms TiO2 and nitrogen bubbles, which significantly limits its application range [3, 4]. To

overcome these limitations, several ternary nitrides thin film coating material have been

developed starting from 1980s by solid state alloying TiN with other metals such as aluminum

(Al), vanadium (V), molybdenum (Mo), zirconium (Zr), etc. (see Table 1).

Titanium-aluminum-nitride (Ti1�xAlxN) is the most celebrated among these ternary nitrides,

as it overcomes several limitations of TiN as a coating material. Aluminum atoms exhibit

higher mobility compared to titanium atoms, therefore, exposure of Ti1�xAlxN in air or in

oxygen environment results in the formation of thin aluminum oxide layer on Ti1�xAlxN

surfaces at elevated temperatures [3]. Aluminum oxide layer acts as a barrier for further

oxygen diffusion inside the Ti1�xAlxN thin film, thus preventing further oxidation of the

nitride film. Such oxidation resistant properties of Ti1�xAlxN makes it an effective tooling

material at elevated temperatures, where TiN fail to operate. Apart from the oxidation resis-

tant behavior, Ti1�xAlxN also exhibits enhanced hardness (�35 GPa) in comparison to TiN

(�24 GPa) necessary for tribology applications. Ti1�xAlxN coated cutting tools have also

shown excellent wear resistance in machining sticky metals such as aluminum alloys and

austenite stainless steel, and widely used in other industries.

Apart from Ti1�xAlxN, several other ternary nitrides have found applications in tribology

applications such as titanium-vanadium-nitride (Ti1�xVxN), titanium-molybdenum-nitride

Figure 1. Nitride coating materials used in hard coating applications (adapted from Advanced Coating Service, Roches-

ter, NY, USA).
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(Ti1�xMoxN), etc. [4]. Ti1�xVxN is a technologically important thin film coating and it is used in

a diverse range of areas such as the packaging industry, transparent barrier coatings, micro-

electronics and others. Magnetron sputtered Ti1�xVxN thin films have high hardness

(�28 GPa) and excellent thermal stability [4]. Similarly, Ti1�xMoxN is also an effective alterna-

tive ternary thin film coating material and is used in industries improve the mechanical

properties of TiN. Ti1�xMoxN have a lower friction coefficient and wear rates compared to

TiN thin film. The hardness of Ti1�xMoxN is significantly high at �30 GPa [4].

Apart from these ternary nitride coating materials, recent study on quaternary titanium-

aluminum-scandium-nitride (Ti1�x�yAlxScyN) has shown significantly higher hardness of

�46 GPa at room temperature [5]. Experimental results showed that incorporation of a small

amount of scandium nitride (ScN) inside Ti1�xAlxN matrix improved the crystal quality and

the hardness of the alloy thin film. The exact mechanism of the hardness enhancement,

however, still remains to be addressed in details.

Thin-film multilayers and superlattices are also a potential configuration that realize extraor-

dinarily hard materials with long lifetime at high operating temperatures. Koehler had pro-

posed in the 1970s that the interfaces in multilayers should act as high energy barriers for

dislocation motion, thereby increasing hardness [6]. Based on that suggestion, several nitrides

Material Deposition technique Hardness

(GPa)

Challenges

TiN Magnetron sputtering �24 Oxidation above �700�C

Arc discharge method �25

Ti1i�xAlxN Magnetron co-sputtering �24 High temperature stability and AlN cubic-to-wurtzite phase

transformation
Cathodic arc vapor

deposition

�27

Multiple arc vapor

deposition

�35

Ti1�xVxN Magnetron sputtering �28 Lower hardness values

Cathodic arc ion plating �26

Arc ion plating �24

Ti1�xMoxN Magnetron sputtering �30 Low solubility of Mo in TiN

TiN/NbN Magnetron sputtering �48 Porosity at column boundary weakens the multilayer

TiN/VN Magnetron sputtering �54 –

TiN/CrN Magnetron sputtering �37 Poor oxidation resistance and interdiffusion at interface above

700�C

TiN/AlN Pulsed laser deposition �30 Extremely low AlN layer thickness

TiN/

Al1�xScxN

Magnetron sputtering �46 –

Significant challenges of each of these coating materials are also highlighted.

Table 1. Hardness of various TMN coating materials are presented along with the deposition methods.
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multilayer system (e.g., TiN/NbN, TiN/VN, and TiN/CrN) have been developed in 1990s and

2000s that showed improved hardness compared to TiN and Ti1�xAlxN thin films (see Table 1).

However, all of the nitride multilayers mentioned above are miscible at temperatures exceed-

ing 800�C, which significantly limits their usefulness in cutting tool applications, where the

surface temperature can reach as high as 1000�C during the cutting process. Cubic (rocksalt)-

TiN/AlN superlattices were developed to overcome the miscibility problem since TiN/AlN

superlattices are immiscible up to �1000�C. TiN/AlN superlattices also exhibit excellent oxi-

dation resistance, relatively high hardness compared to TiN, and they are already used com-

mercially as a coating material.

However, TiN/AlN superlattice coatings have a significant drawback. The hardness of TiN/

AlN superlattices is around 33–35 GPa when the thickness of the AlN layers is less than 2–

3 nm but decreases sharply to 23–24 GPa as the AlN layer thickness is increased [5]. This large

reduction in hardness is attributed to the transition from the epitaxially stabilized metastable

cubic-AlN phase to the stable wurtzite-AlN phase when the AlN layer thickness exceeds the

critical thickness of 2–3 nm [7]. The formation of wurtzite-AlN breaks the epitaxial relationship

with cubic-TiN leading to polycrystalline grain growth and a significant hardness reduction.

The same cubic-AlN to wurtzite-AlN transition is also the cause for deteriorating hardness in

industrial Ti1-xAlxN tool coatings at times.

Saha et al. have successfully addressed this challenge by developing nominally single crystal-

line cubic-TiN/(Al, Sc)N epitaxial superlattices on MgO substrates, where the (Al, Sc)N is in

metastable cubic (rocksalt) phase for more than 120 nm thickness [5]. The lattice-matched

superlattices showed increased hardness as a function of the decreasing period thickness

proposed by Koehler [6] and for a period thickness of 3 nm, a maximum hardness of 42 GPa

was achieved at room temperature. Further analysis related to the temperature dependent

hardness evolution and other mechanical properties are needed for TiN/(Al, Sc)N superlattices

before its full potential for industrial applications can be realized. Therefore, nitrides are a

reliable coating material for more than four-to-five decades, and significant research and

development is currently underway with nitrides for their applications as coating materials.

3.2. Solid state lighting materials

While the coating industry continues to develop and utilize nitrides, the last two-to-three

decades have seen the emergence of semiconducting GaN for solid state lighting applications

and dominated the research and industrial materials development space. GaN have been

attractive for blue emission from 1950s owing to its direct gap of 3.4 eV. However, high quality

GaN growth on common substrates like Si and Sapphire was a significant challenge. Large

lattice-mismatch of GaN with several common substrates rendered poor quality thin films,

therefore, sub-standard electronic and optical properties. Moreover, development of p-type

GaN necessary for LED and other electronic and optoelectronic and optoelectronic devices

were also significantly difficult.

Significant breakthroughs were achieved in 1970s when using newly developed molecular

beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) techniques,
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researchers started to grow high quality GaN films. The most significant of these efforts could

be attributed to the work of Amano et al. where they deposited high quality GaN thin films by

using a polycrystalline AlN as a buffer layer [8]. Similarly, Nakamura et al. at Nichi Chemical

Company deposited high quality GaN films by using a low temperature GaN buffer layer with

low background of n-type doping [9]. Development of low temperature GaN as a buffer layer

proved to be an attractive and industry wide approach for mass production of GaN based light

emitting devices.

Apart from the materials quality issue, another important challenge in early years was on how

to develop p-type GaN thin films. Though the idea of p-type doping of GaN through the

incorporation of Mg was known, most experimental efforts to achieve p-type GaN were

unsuccessful. Amano et al. managed to develop p-type GaN by electron beam irradiation [10].

However, the electron beam irradiation technique was an inefficient method and required a lot

of time for hole-doping. Efforts to develop p-type GaN with Mg incorporation via chemical

vapor deposition methods were also unsuccessful initially. Important breakthrough was made

when modeling work showed that Mg bonds with hydrogen (H) thus forming Mg-H complex

during the CVD growth process, which prevent the hole-doping activity of Mg and render

development of p-type GaN difficult. Nakamura et al. addressed this important challenge by

annealing Mg-doped GaN in N2 environment, where Mg frees up from the Mg-H complex and

enable p-type GaN [11].

The development of high quality GaN thin film growth technique and of p-type GaN lead to

the ultimate discovery of blue LEDs, which has significantly changed our society. Akasaki,

Amano and Nakamura were awarded the 2014 Noble Prize in Physics for their pioneering

work on GaN LED development. GaN today is the workhorse for producing blue emission

and along with a suitable dye, most commercially available LED light sources employ GaN.

Significant efforts are also currently underway to develop GaN based electronic and optoelec-

tronic devices for power-electronic applications.

4. Recent advances in energy transport and conversion

4.1. Thermoelectrics

Thermoelectric materials convert waste heat energy directly into electrical power and are

attractive for harvesting energy in automobiles, power plants, and for deep space exploration.

Such materials could also be used as a Peltier cooler in microelectronic chips and devices,

where unwarranted heat generation (hot spots in integrated circuits (IC)) limit device efficien-

cies. Devices made from thermoelectric elements are environmentally friendly and they do not

have any movable parts except for a fan in most cases. The efficiency of a thermoelectric

material is represented by its dimensionless figure-of-merit, ZT = (S2σ T)/ (κe + κp), where S is

the Seebeck coefficient, σ is the electrical conductivity, κe and κp are the electronic and lattice

contributions to the thermal conductivity, respectively, and T is the absolute temperature. The

higher the thermoelectric figure-of-merit (ZT) of a material, the more efficient the energy
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conversion is. To be competitive with conventional power-generator and refrigeration technol-

ogy, thermoelectric materials need to exhibit a ZT of about 3–4 over a wide temperature range.

However, extensive research in the last decade has only improved the ZT to �2 at high

operating temperatures [12]. Designing high-efficiency thermoelectric materials having ZT > 2

is particularly challenging due to the mutually conflicting design parameters. While the indi-

vidual thermoelectric materials must exhibit high ZT values at the required temperature

ranges of interest, practical thermoelectric devices require both n-type (electron conducting)

and p-type (hole-conducting) materials with high ZTs, as well as effective methods to integrate

them with metals having low contact resistances. Such restrictions naturally impose additional

challenges in terms of material selection and device fabrication techniques.

Traditionally nitrides are regarded as poor thermoelectric materials, primarily because of their

higher thermal conductivity. For example, GaN has a room temperature thermal conductivity

in excess of 100 W/m-K, which is about two orders of magnitude higher compared to the most

celebrated thermoelectric materials like Bi2Te3, having a thermal conductivity of �1 W/m-K at

room temperature [2]. Other traditional III-nitride semiconductors (AlN, etc.) also have high

thermal conductivity, which significantly limits their suitability in thermoelectricity. Apart

from the high thermal conductivity, most commonly known nitrides also do not possess

electronic properties that are commensurate for high ZT, such as (a) asymmetric distributions

of density of states near the Fermi energy, (b) suitable carrier density (electron or hole) of

�1019/cm3 and others, which has limited the exploration of nitrides as thermoelectric materials

for a long time.

This situation has changed significantly in recent years with the emergence of scandium

nitride (ScN) as a rocksalt (cubic) semiconducting material. ScN is a promising group III

(B)-nitride semiconductor with an indirect bandgap and octahedral coordination [2]. Like

most other transition metal nitrides (TMNs), ScN is structurally and chemically stable,

mechanically hard (23 GPa), corrosion resistant, and possesses high melting temperatures

in excess of 2873 K. Due to its rocksalt (cubic) crystal structure, ScN also offers a materials

platform for engineering the band structure of alloys with the III–V nitride semiconduc-

tors (AlN, GaN, and InN, which adopt the wurtzite crystal structure without ScN)

for applications where integration of the semiconductor with cubic(rocksalt) metals is

required.

Although controversies persisted about the nature of its electronic structure during the 1990s and

early 2000s, recent experimental results and theoretical modeling have demonstrated conclu-

sively that ScN has an indirect bandgap of 0.9–1.2 eV and a direct gap of 2.2 eV. Kerdsongpanya

et al. have demonstrated an extremely large power factor of 2.5� 10�3 W/m-K2 in ScN thin films

grown on Al2O3 substrates [13]. While later research by Burmistrova et al. have improved the

power factor values to �(3.3–3.5) � 10�3 W/m-K2 at 600–850 K in sputter deposited n-type ScN

thin films grown on MgO substrates [14]. These power factors at 600–850 K temperature ranges

are higher than those of Bi2Te3 and its alloys at 400 K, as well as the best high-temperature

thermoelectric materials such as La3Te4 at 600 K and compare well with undoped crystalline

SiGe in the same temperature range. The origin of such large power factors can be explained by

the changes in ScN’s electronic structure with respect to the presence of point defects and

impurities (such as Sc and N vacancies, and doping effects of O and C on N-sites, and Ca and
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Ti on Sc sites on ScN’s electronic structure). For sputter deposited ScN grown onMgO substrate,

Burmistrova et al. have showed that as-deposited ScN thin films exhibit a large n-type carrier

concentration of (1–6)� 1020 cm�3 due to the presence of oxygen as unwanted dopant impurities

incorporated during deposition [14]. Several other studies have also reported the presence of

carbon (C) and fluorine (F) as impurities inside sputter-deposited ScN thin films, which could

potentially be electronically active [15].

The high electrical mobility of �100 cm2/Vs at room temperature and �3 � 1020 cm�3 carrier

concentration creates a favorable condition for high thermoelectric power factors in ScN,

evidenced by the measured Seebeck coefficient of �156 μV/K, and an electrical conductivity

of �1300 S/cm at 840 K [13] (Figure 2). Modeling analysis have showed that unwanted impuri-

ties such as oxygen incorporation during growth process dope the material heavily n-type and

shift the Fermi level from inside the bandgap to inside the conduction band. Though the thermal

conductivity of ScN thin films (�14W/m-K) are not as high as many other traditional III-nitrides,

it is still higher than the values suitable for achieving high ZT. The best obtained ZT values for

ScN is 0.18 at 800 K temperature.

Significant efforts have been made in recent years to reduce the thermal conductivity of ScN

with the development of ScCrN and ScNbN solid-solution alloys, which exhibit reduced

thermal conductivities due to increased alloy scattering [16, 17]. However, like the challenges

encountered in most other thermoelectric materials systems, the reduction in thermal conduc-

tivity must be attained without reducing the power factor, for achieving higher figure-of-merit

(ZT). In this regard, incorporation of nanoparticles, phase separation, a small amount of heavy

element inclusion, and other approaches may be explored. For example, incorporation of rare-

earth metallic nanoparticles such as ErAs inside GaAs and InGaAlAs matrix have already

demonstrated enhanced thermoelectric performance in such semiconductors [12]. Similarly,

heavy metallic nitrides such as ZrN, HfN or WN could be incorporated inside ScN matrix, and

the thermoelectric properties could be explored.

Figure 2. Temperature dependence of (a) Seebeck coefficient, (b) resistivity and (c) power factor of n and p-type of ScN.

Reprinted with permission from Saha et al. [15]. Copyright 2018 American Physical Society.
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While the large power factor in the as-deposited n-type ScN is attractive for thermoelectricity,

practical devices also require a highly efficient p-type material. Reducing the carrier concentra-

tion in ScN, and eventually turning it into a p-type semiconductor was also important for a

host of other applications. Saha et al. have demonstrated p-type Sc1�xMnxN and Sc1�xMgxN

thin film alloys by solid-state alloying of ScN with MnxNy and MgxNy, respectively [2]. The p-

type ScxMg1�xN thin film alloys were found to be (a) substitutional solid solutions without any

detectable MgxNy precipitation, phase segregation, or secondary phase formation; (b)

exhibited a maximum hole-concentration of 2.2 � 1020 cm�3 and hole mobility of 21 cm2/Vs;

(c) did not show any defect states inside the direct gap of ScN, thus retaining its basic electronic

structure; and (d) exhibited impurity scattering by Mg addition that dominated hole conduc-

tion at high temperatures. The p-type ScxMg1�xN thin film alloys also exhibit very high

Seebeck coefficients, in excess of 200 μV/K. However, due to the reduced mobility, the electrical

conductivities are an order of magnitude lower, which results in a lower power factor values.

Apart from ScN, chromium nitride (CrN) has shown great promise for thermoelectric applica-

tions. Thermal conductivity of CrN is much smaller compared to ScN thin film, and as a result

it may be possible to engineer CrN for high thermoelectric figure-of-merits (ZT). Similarly YN

and several other rare-earth nitrides such as GdN, ErN, etc. exhibit semiconducting properties.

Due to their higher atomic mass, such materials should exhibit lower thermal conductivity,

and could be explored for thermoelectric applications.

4.2. Plasmonics

Traditionally noble metals such as Au and Ag are regarded as the best plasmonic materials in

the visible spectral range both for research as well as for limited number of industrial applica-

tions. However, noble metal-based plasmonic components have materials properties that

significantly limit realization of practical plasmonic devices [18]. Some of the severe materials

challenges with noble metals are (a) incompatibility with standard complementary metal oxide

semiconductor (CMOS) fabrication processes, (b) noble metals are morphologically not stable

at high temperatures >500�C, (c) the real part of the dielectric permittivity (ε0) for noble metals

are too large for several applications, (d) because of their high surface energies noble metals are

difficult to fabricate in thin film or ultrathin film form, and (e) it is difficult to engineer optical

properties of noble metals though materials engineering. Due to such materials challenges real

life applications of plasmonics as a research field with noble metals have been extremely

limited to only a handful of applications.

Transition metal nitrides and their epitaxial metal/semiconductor superlattices have enor-

mous promise and potential in the plasmonics research field as they overcome several of the

shortcomings of noble metals [18]. Optical characterizations have showed, that TiN and ZrN

are excellent plasmonic materials in the visible spectral range (500–900 nm) [19]. The real

part of the dielectric permittivity (ε0) of TiN and ZrN (Figure 3) are smaller compared to

noble metals (such as Au and Ag films) due to their relatively lower carrier concentrations.

For several practical applications such as in devices for transformation optics, or in hyper-

bolic metamaterials, lower values of ε0 are a necessity and the nitrides have already attracted

significant interest in that pursuit. The imaginary parts of the dielectric permittivity (ε00) of
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the nitrides (Figure 3) however, are larger compared to noble metals due to increased inter-

band transitions, which is a limitation.

Detailed studies on the plasmatic properties of TMNs (TiN and ZrN) such as surface plasmon

polariton (SPP) propagation length, SPP mode size, second harmonic generation, absorption

and emission have already demonstrated superior plasmonic qualities of nitrides (e.g. TiN,

ZrN and others) in comparison to Au and Ag. Vigorous research activity is currently under-

way to convert the wonderful optical properties of nitrides into device applications.

4.3. Solar selective coating technology

Solar selective coatings are spectrally selective layers which has high absorptance in visible

region and high reflectance (or low thermal emittance) in IR region of solar spectrum. These

spectrally selective coatings are used to efficiently capture sunlight as heat in solar thermal

converters, which has variety of applications such as solar water heating, solar thermal elec-

tricity generation, solar thermoelectric generator, solar thermophotovoltaics, etc. Though solar

thermal conversion has been used for water heating purposes for several years, currently this

technology is gaining significant attention in electricity production as it has achieved overall

efficiency >30% and more suitable technology for large scale electricity production. In addition,

solar thermal technology has efficient ways to store heat energy so that it can be used to

generate power in overcast conditions and also at night.

Conversion of solar radiation into useful heat energy is dependent on the optical properties of

the solar selective materials such as α, the solar absorptance (fraction of the solar energy

absorbed by a surface) and ε, the thermal emittance (faction of radiant energy emitted from

the surface with respect to energy radiated by a blackbody at same temperature). Ideally a

Figure 3. (a) Real (ε0) and (b) imaginary (ε00) parts of the dielectric permittivity of TMNs such as TiN, ZrN and TCOs

(AZO, GZO and ITO) are plotted along with those of gold and silver. The arrows show the wavelength ranges in which

nitrides and TCOs are respectively metallic. Reproduced with permission from Naik et al. [19]. Copyright 2011 Optical

Society of America.
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selective surface must have α close to 1 in the wavelength range of 0.3–2 μm of the solar

emission spectrum, which covers the 95% of the solar energy and ε close to 0 beyond 2 μm

(Figure 4a).

However, in practice most material surfaces do not meet these requirements perfectly. There-

fore, the research has been focused on materials in order to maximize α at the same time

reducing ε as lower values. Since solar thermal electricity production requires high operating

temperatures in excess of 500�C, in addition to these optical properties the solar selective materials

must be stable at such operating temperature. Several types of spectrally selective coatings have

been developed based on the following concepts (Figure 4b): (a) intrinsic absorber, (b) metal-

semiconductor tandem, (c) multilayer absorbers, (d) multi-dielectric composite, (e) textured sur-

face, and (f) selectively solar-transmitting coating on a blackbody-like absorber, etc.

Intrinsic absorbers such as W, Mo doped-MoO3, ZrB2, etc. inherently have spectral selectivity

induced by dielectric dispersion as a function of wavelength. Though such materials are easy

to fabricate, their spectral selectivity is less than ideal and require some kind of structural and

compositional modification to achieve near-ideal spectral selectivity. Therefore, combination of

design concepts such as metal-semiconductor tandem, multilayer absorbers, metal-dielectric

composites, etc. are most widely studied. In metal-dielectric composites, cermets (metal

nanoparticles dispersed in dielectric matrix) such as Mo-Al2O3, W-AlN, Mo-AlN, Mo-SiO2,

W-Al2O3, Cr-Cr2O3, etc. have been investigated as selective coatings for high temperature

applications. These composite coatings exhibit excellent solar selectivity and are thermally

stable in vacuum. Hence they are already commercialized by many manufactures such as Luz

International Ltd., USA, Siemens (formerly Solel), Germany, Archimede Solar Energy, Italy

and Schott, Germany [20]. Major concerns with these cermets based coatings is their thermal

stability in air above 400�C. Beyond this temperature the optical properties, emittance in

particular, starts degrading due to oxidation and/or diffusion of metal particles.

TMNs possess a good combination of chemical, mechanical properties, and are extremely stable

at high-temperatures. Until last decade the optical properties of the TMNs were rarely studies.

Initial studies on optical properties of TiAlN and TiAlON have exhibited high absorption coeffi-

cient and low reflectance in visible region [21, 22]. Further studies on TiN based compounds

Figure 4. (a) Spectral reflectance for an ideal solar selective surface (green line) compared with solar spectrum (red line)

and black body radiation (blue line) and (b) schematic diagram of different type of solar selective coating.
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showed that the refractive index, absorptance or reflectance, can be tuned from that of metallic to

dielectric characteristic by varying the composition and/or by incorporating O, N, C and Si. This

can be attributed to changes in the electronic structure and bonding nature (i.e., metallic to

covalent) with the change in stoichiometry of TiN based compounds and incorporation of

elements such as Al or O, respectively [20]. In addition, these TMNs can act as diffusion barrier

for metals, which may diffuse into the absorbers or oxidize at high operating temperatures

(above 400 �C). Consequently, preventing the degradation of optical properties of the coatings

[23]. These properties give TMNs an edge over cermets for high temperature (i.e., above 500�C)

solar selective applications.

Taking advantage of these properties, several groups have developed TMN based tandem (metal/

dielectric) solar selective coatings. For instance, Barshilia et al. fabricated TiAlN/TiAlON/Si3N4

solar selective tandem absorbers on copper substrate demonstrating high solar selectivity 0.95/0.06

and thermal stability up to 525�C in air (50 h) and 800�C in vacuum [23]. In this case, TiAlN

(metallic in nature) acts as a main absorber, TiAlON (with low metallic content) acts as a semi-

absorber and Si3N4 as an antireflection coating. The tandem absorber was fabricated such that the

refractive index (in visible region) gradually increases from the coating surface to substrate. Such

graded refractive index ensures that reflectance is minimized in visible region and absorptance is

increased. Following this many other transition metals-based nitride, oxynitride, carbonitrides

coatings have been developed in order to improve solar selectivity and thermal stability further,

which are listed in Table 2. Detailed review on various combination of TMNs based solar selective

coatings, their optical properties and growth methods can be found in Ref. [20].

4.4. Hot-electron collection for solar water splitting

Solar water splitting is a well-known photocatalytic process used to produce molecular hydro-

gen, which is an attractive source of energy as it can be stored, transported and consumed as a

fuel on demand. The photocatalytic reaction is driven by the electrons and holes generated in a

semiconductor in response to the absorbed photons. Efficiency of such a solar-to-fuel conversion

Absorber α ε Thermal stability (�C)

Air Vacuum

TiAlN/TiAlON/Si3N4 0.93–0.94 0.15–0.17 550 600

NbAlN/NbAlON/Si3N4 0.93–0.95 0.07 500 (2 h) 600 (2 h)

TiAlN/CrAlON/Si3N4 0.94–0.95 0.05–0.07 500 (2 h) 800 (2 h)

HfMoN/HfON/Al2O3 0.94–0.95 0.13–0.14 475 (34 h) 600 (450 h)

TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO 0.96 0.07 500 (2 h)

325 (400 h)

900 (2 h)

650 (100 h)

NbTiON/SiON 0.95 0.07 – 500 (40 h)

Mo/ZrSiN/ZrSiON/SiO2 0.94 0.12 – 500 (500 h)

Table 2. TMNs based metallic/dielectric tandem absorber along with their absorptance, emittance and thermal stability

at different ambiences.
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is limited by the (a) short-range of light response of the semiconductor catalysts (used

as photoelectrode) dictated by their bandgap and (b) smaller diffusion length of the photo-

generated carriers than the photon absorption depth resulting in carrier recombination, instead

of contributing in solar-to-fuel conversion. In order to overcome these limitations several strate-

gies have been developed such as (a) doping/alloying of the semiconductor to tune its band

structure, (b) fabrication of heterostructures to efficiently separate charge carrier at the junctions,

(c) decreasing the particle size of the catalysts to efficiently collect carriers before they could

recombine and (d) synthesize faceted nanostructures that are catalytically more active.

Tian and Tatsuma developed a new strategy to use plasmonic metal nanoparticles to enhance

the photocurrent, and thereby improve solar-to-fuel conversion efficiency [24]. While tradi-

tionally plasmonics are used to confine light into nanoscale volume to provide intense electro-

magnetic localization and improved light scattering, in this work the plasmon decay was used

to generate energetic electrons (hot electrons) and metal-semiconductor interface for charge

separation. Using such phenomena in Au-TiO2 photoelectrode, the authors demonstrated an

improvement in incident photon to current conversion efficiency (IPCE) by more than 20� in

the presence of suitable donors. Advantage of using plasmonic photoelectrode over that of

semiconductor is that photons with energy lesser than bandgap can also be absorbed through

plasmon resonance, hence, has a broadband photo-response. In Au-TiO2 case, photon absorp-

tion and carrier generation for TiO2 takes place at UV region (≈380 nm) and that for Au at its

plasmon band (≈520 nm). This will result in enhanced photocatalytic efficiency.

Several plasmonic based photocatalysis systems have been developed in terms of metal-

semiconductor combinations and their structural configurations such as Au (nanoroad)/TiO2-Co-

borate (oxygen evolution catalyst) grown electrochemically using anodized alumina templet [25],

Au/CeO [26], Au decorated 3D structured ZnO [27], etc. However, in such plasmonic structures,

the extraction of hot electron (generated due to plasmon decay) frommetal nanoparticle is limited

by the Schottky barrier. The electrons with energy higher than the potential barrier (ϕB) can only

be collected at electrode. This limitation is imposed by the larger difference between work

function and electron affinity of largely used noble metal (i.e., Au and Ag) and semiconductors

(TiO2 and ZnO), respectively.

In order to overcome the limitation imposed by large Schottky barrier, Naldoni et al., developed

a novel photoanode using TiN based plasmonic nanoparticle decorated on TiO2 nanoroads [28].

With TiN(nanoparticle)/TiO2, they have demonstrated twice as many hot electrons as Au nano-

particle injection into TiO2, i.e., 25% increase in photocurrent in comparison to Au/TiO2. The

observed enhancement in performance has been attributed to the broadband absorption (500–

1200) of cubic TiN as well as lower work function of TiN (ϕM ≈ 4 eV) in comparison to Au (ϕM ≈

5.2 eV) (see Figure 5). This work has opened up a new avenue for several other metallic TMNs

similar to TiN and ZrN, which found to exhibit Au-competitive optical properties.

4.5. Refractory electronics and plasmonics

TMNs are well known refractory materials that are chemically, structurally, and morphologi-

cally stable at high temperature. Further, the TMNs are electronically diverse with insulators,
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semiconductors, metals, and their heterostructures offering novel electronic and optoelec-

tronic properties that are not present in other material systems. For high-temperature and

high-power applications materials must have high melting point, large breakdown voltage,

ability to dope preferentially n- and p-type and ability to form stable metal/semiconductor or

metal/dielectric contacts (interface) for high temperature operations. Diverse properties of

TMNs makes it a suitable candidate for such applications. Previously, stable epitaxial and

low resistive contacts for high temperature applications with traditional metals was difficult

due to their high surface energy and lack of crystal structure compatibility leading to misfit

dislocations and defect states. However, recent efforts to grow epitaxial TMNs have shown

that wide range of binary and ternaries such as TixMe1�xN and TaxMe1�xN (Me = Ti, Zr, Hf,

Nb, Ta, Mo, W) with stable cubic rocksalt structure [29, 30]. With ternary alloying of TMNs,

tunable lattice parameter (0.416–0.469 nm) and electronic properties such as bandgap, con-

ductivity, work function (3.7–5.1 eV), etc. can be achieved [31]. This flexibility of TMNs in

lattice parameter (also, close to III–N) and work function has made them attractive for

electronic device application such as diffusion barriers [32], metallization and lattice mat-

ched growth templet for wide bandgap semiconductors [33], which are used in high power

devices. Apart from these passive components, TMNs are also finding application in nanoe-

lectromechanical systems (NEMS) such as TiN cantilever-type nanoelectromechanical switch

fabricated using CMOS process [34]. The fabricated switches exhibited excellent perfor-

mance and TMNs gives robustness to such devices at harsh environment such as radiation

and high temperature.

Until recent years, realization of electronic devices with TMNs as active a component was not

possible due to the fact that most known TMNs are metallic and non-availability of suitable

semiconducting TMNs. However, recent research works revealed that ScN (indirect bandgap

0.9 eV) and rocksalt-AlxSc1�xN (direct bandgap 2.2–3.7 eV) are semiconductors and can be

doped preferentially both n- and p-type [15]. This has opened up a new direction for the

development of new refractory electronic devices fully based on TMNs. Future research on

the epitaxial growth of rocksalt nitride semiconductors heterostructures will be useful for the

exploring device properties such as intersubband absorption and emission, confinement of

electrons in metallic wells, photodiodes, photo-conductors, and terahertz devices.

Figure 5. Schematic representation of plasmon induced hot electron collection in (a) Au-TiO2 photoelectrode and (b) TiN/

TiO2 photoelectrode.
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Refractory optics and plasmonics with TMNs is yet another emerging and immensely promis-

ing research direction. Traditional plasmonic materials i.e., noble metals have highly limited

absorption band width because of its resonant nature of plasmon excitation and high reflection

in non-resonant frequencies. In addition, noble metals have low melting point, hence, poor

thermal stability at high temperature and easily diffuses into surroundings. On the other hand,

refractory metals such as W, Mo and others exhibit plasmon resonance in IR region with

relatively high losses. Whereas TMN nitrides with their high melting temperatures and Au-

competitive optical properties could replace current polycrystalline refractory metals for high-

temperature applications. Making use of these superior properties, Li et al. developed a TiN-

SiO2-TiN broad band solar absorber, which can absorb 95% of light over the range of 400–

800 nm with 240 nm thick device [35]. Similarly, Ishii et al. fabricated TiN-ZnO-TiN structure,

which showed superior performance in comparison to gold in visible region [36]. Both these

devices were chemically robust, stable at high temperature and can be used in several emerg-

ing technologies such as solar-thermophotovoltaics (STPV), heat-assisted magnetic recording

(HAMR).

5. Transition metal nitride metal/semiconductor heterostructures

Transition metal nitrides have been utilized in recent years to develop the first epitaxial,

nominally single crystalline TiN/(Al,Sc)N metal/semiconductor superlattices on MgO sub-

strates. Rocksalt Al1-xScxN thin alloy films were developed with high AlN mole-fractions and

critical thickness on TiN/MgO substrates by solid-state alloying of ScN and AlN. The lattice-

matched TiN/(Al,Sc)N metal/semiconductor superlattices exhibit atomically sharp interfaces,

structurally stable at high temperatures (�950�C), and amenable to doping, alloying and

quantum size effects.

These novel (Ti,W)N/(Al,Sc)N metamaterials (Figure 6) have already exhibited lower ther-

mal conductivity (�1.7 W/mK at room temperatures) suitable for their thermoelectric appli-

cations. Coherent phonon thermal transport phenomenon was also demonstrated recently

in these materials. Saha et al. have demonstrated hyperbolic dispersion of photonic iso-

frequency surfaces in these materials and enhanced photonic densities of states. Significant

Figure 6. HRTEM and HAADF-STEM image of the superlattices (Ti,W)N/(Al,Sc)N. Reproduced with permission from

Saha et al. [37]. Copyright 2016 American Physical Society.
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research in currently underway to unlock several aspects of their physical properties to

develop practical devices.

6. Conclusions

TMNs have been the most important materials for industrial applications such as hard coatings,

corrosion and wear resistant coatings for many decades owing to their high mechanical strength,

thermal stability and chemical inertness. There has been significant progress in the understand-

ing of process-structure-properties relationship of TMNs over the years. Now it is possible to

fabricate wide variety of alloys and composites of TMNs with diverse and engineerable proper-

ties which were not available earlier. This has resulted in new device applications of TMNs such

as solar selective absorbers, refractory plasmonics, photocatalysis, etc. Further, the development

of stable epitaxial TMNs, heterostructures and superlattices has opened up new directions for

refractory electronic device applications. Particularly, recent development of semiconducting

rocksalt ScN and AlxSc1�xN and their high n- and p-type dopability has further widened the

scope for new device applications such as active components in thermoelectrics, electronic and

optoelectronic devices. Future research on the epitaxial growth of rocksalt nitride semiconduc-

tors heterostructures will be useful for many emerging and novel industrial applications. Nitride

superlattice heterostructures offer an excellent test bed for the exploration of refractory electronic

and optoelectronic device properties such as intersubband absorption and emission, confine-

ment of electrons in metallic wells, photodiodes, photo-conductors and terahertz devices.
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