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Chapter 1

Clustering Algorithms for Incomplete Datasets

Loai AbdAllah and Ilan Shimshoni

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78272

Abstract

Many real-world dataset suffers from the problem of missing values. Several methods
were developed to deal with this problem. Many of them filled the missing values within
fixed value based on statistical computation. In this research, we developed a new ver-
sions of the k-means and the mean shift clustering algorithms that deal with datasets with
missing values without filling their values. We developed a new distance function that is
able to compute distances over incomplete datasets. The distance was computed based
only on the mean and variance of the data for each attribute. As a result, the runtime
complexity of our computation was O 1ð Þ. We experimented on six standard numerical
datasets from different fields. On these datasets, we simulated missing values and com-
pared the performance of the developed algorithms using our distance and the suggested
mean computations to other three basic methods. Our experiments show that the devel-
oped algorithms using our distance function outperform the existing k-means and mean

shift using other methods for dealing with missing values.

Keywords: missing values, distance metric, weighted Euclidean distance, clustering,
mean shift, k-means

1. Introduction

Missing values in data are common in real-world applications. They can be caused by human

error, equipment failure, system-generated errors, and so on.

In this research, we developed two popular clustering algorithms to run over incomplete

datasets: (1) k-means clustering algorithm [1] and (2) mean shift clustering algorithms [2].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Based on [3–6], there are three main types of missing data:

1. Missing completely at random (MCAR): when the missing value is not related to any other

sample;

2. Missing at random (MAR): when the probability that a value is missing may depend on

some known values but it does not depend on the other missing values;

3. Not missing at random (NMAR): when the probability that a known value is missing

depends on the value that would have been observed.

There are two basic types of methods to deal with the problem of incomplete datasets. (1)

Deletion: methods from this category ignore all the incomplete instances. These methods may

change the distribution of the data by decreasing the volume of the dataset [7]. (2) Imputation: in

these methods, the missing values were replaced with known value according to statistical

computation. Based on these methods, we convert then incomplete data to complete data, and

as a result, the existing machine learning algorithms can be run as they deal with complete data.

One of the most common approaches in this domain is the mean imputation (MI) method that

replaces each incomplete data point with the mean of the data. There are several obvious

disadvantages to this method: (a) using a fixed instance to replace all the incomplete instances

will change the distribution of the original dataset and (b) ignoring the relationship among

attributes will bias the performance of subsequent data mining algorithms. These problems

were caused since we replace all the incomplete instances with a fixed one. On the other hand,

a variant of this method is to replace the missing values only based on the distribution of the

attributes. It means that the algorithm will replace each missing value with the mean of the of

its attribute (MA) and the whole instance [8]. And in a case that the values were discrete, the

missing value will be replaced by the most common (MCA) value in the attribute [9] (i.e.,

filling the unknown values of the attribute with the value that occurs most often for the same

attribute). All those methods ignore the other possible values of the attribute and their distri-

bution and represent the missing value with one value, that is, wrong in real-world datasets.

Finally, the k-Nearest Neighbor Imputation method [10, 11] estimates the values that should

be replaced based on the k nearest neighbors based only on the known values. The main

obstacle of this method is the runtime complexity.

We can summarize the main drawbacks of each suggested method as: (1) inability to approx-

imate the missing value and (2) inefficiency to compute the suggested value. Based on our

suggested method [12], the distance between two points, that they may include missing value,

is not only efficient but also takes into account the distribution of each attribute.

To do that in the computation procedure, we take into account all the possible values of the

missing value with their probabilities, which are derived from the attribute’s distribution. This

is in contrast to the MCA and the MA methods, which replace each missing value only with

the mode or the mean of each attribute.

There are three possible cases between the values: (a) both of them are known: in this case, the

distance will be computed as the Euclidean distance; (b) both of them are missing; and (c) one
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value is missing. In the last two cases, the distance will be computed based only on the mean

and the variance of the attribute. As a result, the runtime of the developed distance is O 1ð Þ as

the Euclidean distance.

In this research, we integrated this distance function in order to develop the k-means and the

mean shift clustering algorithms. To this end, we derived more two formulas to compute the

mean (for k-means algorithm) and for computing the gradient function of the local estimated

density (for mean shift clustering algorithm).

The developed algorithms yield better results than the other methods and preserve the

runtime of the algorithms which deals with complete data as can be seen in the experiments.

We experimented on six standard numerical datasets from different fields from the Speech and

Image Processing Unit [13]. Our experiments show that the performance of the developed

algorithms using our distance function was superior to using other methods.

This chapter is organized as follows. A review of our distance function (MDE) is described in

Section 2. The mean computation is presented in Section 3. Section 3 describes several direc-

tions for integrating the (MDE) distance and the computed mean within the k-means clustering

algorithm. The mean shift clustering algorithm is presented in Section 4. Section 4.1 describes

how to integrate the (MDE) distance and the derived mean shift vector within the mean shift

clustering algorithm. Experimental results of running the developed clustering algorithms are

presented in Section 5. Finally, our conclusions and future work are presented in Section 6.

2. Our distance measure

Firstly, we will give a short preview to basic distance function that is able to compute distances

between points with missing values developed by [2].

Let A⊆RK be a set of points. For the ith attribute Ai, the conditional probability for Ai will be

computed according to the known values for this attribute from A (i.e., P Ai
� �

� χ
i), where χi is

the distribution of the ith coordinate.

Given two sample points X,Y⊆RK, the goal is to compute the distance between them. Let xi

and yi be the ith coordinate values from points X,Y, respectively. There are three possible cases

for the values of xi and yi:

1. Two values are known: the distance between themwill be defined as the Euclidean distance.

2. One value is missing: Suppose that xi is missing and the value yi is given. Since the value of

xi is unknown, we cannot compute the distance using the Euclidean distance equation.

Instead, we compute the expectation of all the distances between the given value yi and all

the possible values from attribute i according to its distribution χi.

Therefore, we approximate the mean Euclidean distance (MDE) between yi and the miss-

ing value mi as:

Clustering Algorithms for Incomplete Datasets
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MDE mi
; yi

� �

¼ E x� yi
� �2
h i

¼

ð

p xð Þ x� yi
� �2

dx ¼ yi � μ
i

� �2
þ σ

i
� �2

� �

:

That means, to measure the distance between known value yi and unknown value, the algo-

rithm will compute the expectation distance for all the distances between yi and all the possible

values of the missing value. These computations did not take into account the possible corre-

lations between the missing values and the other known values (missing completely at random

—MCAR) and the probability was computed according to the whole dataset. The resulting

mean Euclidean distance will be:

MDE mi
; yi

� �

¼ yi � μ
i

� �2
þ σ

i
� �2

� �

, (1)

where μi and σi
� �2

are the mean and the variance for all the known values of the attribute.

3. Both values are missing: In this case, in order to measure the distance, we should compute

all the distances between each possible pair of values one for each missing value xi and yi.

Both these values are selected from distribution χi.

Then, we compute the expectation of the Euclidean distance between each selected value

as we did for the one missing value problem. As a result, the distance is:

MDE xi; yi
� �

¼

ð ð

p xð Þp yð Þ x� yð Þ2dxdy ¼ E x½ � � E y½ �ð Þ2 þ σ
2
x þ σ

2
y

� �

:

As x and y belong to the same attribute, E x½ � ¼ E y½ �≔μi and σx ¼ σy ≔σi. Thus:

MDE xi; yi
� �

¼ 2 σ
i

� �2
: (2)

As we mentioned, all these computations assume that the missing data is MCAR. However, in

real-world datasets, the missing data are MAR. In this case, the probability p xð Þ depends on

the other observed values, and then, the distance will be computed as:

MDE mi
; yi

� �

¼

ð

p xjxobsð Þ x� yi
� �2

dx ¼ yi � μ
i
x∣xobs

� �2
þ σ

i
x∣xobs

� �2
� �

,

where xobs denotes the observed attributes of point X, and μi
x∣xobs

and σix∣xobs

� �2
are the condi-

tional mean and variance, respectively.

On the other hand, in the case that the missing values are NMAR, the probability p xð Þ that was

used in Eq. (1) will be computed based on this information, and then, the distance will be:

MDE mi
; yi

� �

¼

ð

p xjmi
� �

x� yi
� �2

dx ¼ yi � μ
i
x∣mi

� �2
þ σ

i
x∣mi

� �2
� �

,

where p xjmi
� �

is the distribution of x when x is missing.
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3. Mean computation

Since one of our goals is developing a k-means clustering algorithm over incomplete datasets,

we need to derive a formula to compute the mean of a given set that may contain incomplete

points. We decide to derive this equation based on our distance function MDE.

Let A⊆R
K be a set of n points that may contain points with missing values. Then, the mean of

this dataset is defined as:

x ¼ argmin
x∈R

Xn

i¼1

distance x; pi
� �� �2

,

for any x∈RK, where pi ∈A denotes each point from the set A, and distanceðÞ is a distance

function.

Let f xð Þ be a multidimensional function: f : R
K

:! R which is defined as:

f xð Þ ¼
Xn

i¼1

distance x; pi
� �� �2

,

In our case, the distanceðÞ ¼ MDE. Thus,

f xð Þ ¼
Xn

i¼1

distance x; pi
� �� �2

¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XK

j¼1

MDE xj; p
j
i

� �

v
u
u
t

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TheMDEðÞdistance

0

B
B
B
B
B
@

1

C
C
C
C
C
A

2

¼
Xn

i¼1

XK

j¼1

MDE xj; p
j
i

� �

,

where xj is the coordinate j and p
j
i is the coordinate j in point pi. Since each point pi may contain

missing attributes, and according to the definition of theMDE distance in the previous section,

f xð Þ will be:

f xð Þ ¼
XK

j¼1

X
nj

i¼1

xj � p
j
i

� �2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

there are nj known coordinates

þ
X
mj

i¼1

xj � μ
j

� �2
þ σ

j
� �2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

there aremj missing coordinates

2

6
6
6
6
4

3

7
7
7
7
5

:

x is the solution of f 0 xð Þ ¼ 0, and in a multidimensional case: x is the solution of ∇f ¼0
!
, where

∇f ¼ f 0x1 ; f
0
x2 ;…; f 0xk

� �
¼ 0,

is the gradient of function f . Firstly, we will deal with one coordinate, and then, we will

generalize it for the other coordinates.
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) f 0xl ¼ 2
X

nl

i¼1

xl � pli
� �

þ 2
X

ml

i¼1

xl � μ
l

� �

¼ 0

) nxl ¼
X

nl

i¼1

pli þmlμ
l
) xl ¼

X

nl

i¼1

pli

n
þ
mlμ

l

n

) xl ¼
nl
n

X

nl

i¼1

pli

nl
þ
n� nl

n
μ
l
¼ μ

l
:

Thus, we simply get:

xl ¼ μ
l
: (3)

Repeating this for all the coordinates yields x ¼ μ1
;μ2

;…;μk
� �

. In other words, each coordi-

nate of the mean is the mean of the known values of that coordinate.

In the same way, we derive a formula for computing the weighted mean for each coordinate l,

yielding:

xlw ¼

Pnl
i¼1 wix

l
i þ

Pnl
i¼1 wiμ

l

Pn
i¼1 wi

,

where wi is the weight of point xi. It means, in order to compute the weighted mean of a set of

numbers that some of them are unknown, we must distinguish between known and unknown

values. If the value is known, we multiply it with its weight. On the other hand, if the value is

missing, we replace it with the mean of the known values and then multiply it by the matching

weight.

4. k-Means clustering using the MDE distance

Based on the derived formulas, the MDE distance and the mean, our aim in this research is to

develop k-means clustering algorithms for incomplete datasets [1].

The MDE distance and the mean are general and can be integrated within any algorithm that

computes distances or mean computation. In this section, we describe our proposed method to

integrate those formulas within the framework of the k-means clustering algorithm.

We developed three different versions for k-means. For simplicity, we assume that all the

points are from R
2. We have two way to look about incomplete points. The first one considers

each point as a single point, this version is similar to the GMM algorithm described in [14, 15].

On the other hand, the second way is to replace each incomplete point with a set of points

according to the data distribution (these are the other two methods). As will be shown in our

experiments, they outperform the first algorithm.

Recent Applications in Data Clustering6



The k-means clustering algorithm is constructed from two basic steps: (1) associate each point

with its closest centroid, and then, (2) update the centroid based on the new association from

Eq. (1). Given dataset D that may contain points with missing values. In the first step, theMDE

distance is used to compute the distances between each data point and the centroids in order to

associate each point with the closest centroid. This association is general for all the three

versions. However, there are several possible ways to then compute the new centroids of the

clusters. We use Figure 1(a) in order to illustrate those possibilities. In this example, we see two

clusters (i.e., C1 was assigned to be the yellow cluster and C2 was assigned to be the brown

cluster). Our goal is to calculate the centers of each cluster. As an example, we will deal only

with C1. If all the instances do not contain missing values, the centroid will be computed based

on the Euclidean mean formula, resulting in the magenta star.

However, when the associated points for a given cluster contain incomplete points, it is not

clear how to compute the mean. In the given example, let x0; ?ð Þ (i.e., the red star) be a point

with a missing y value and x ¼ x0. This point was associated with C1’s cluster using the MDE

distance. It is important to note that we are able to associate incomplete points with closest

centroid even though their geometric locations are unknown since we use the MDE distance.

On the other hand, using the MDE distance is similar to use the MA-method based on the

Euclidean distance, the point x0; ?ð Þwill be replaced with x0;μy

� �

. It is clear that the difference

between the two methods is only the variance of known values in coordinate y, a fixed value

that does not influence the association result.

The naïve method to compute the new centroid is by replacing the point with the missing

value with all the possible points

x0ð Þpossible ¼ x0; yp

� �

jyp ∈Ypossible

n o

,

the set of all the possible points that satisfy x ¼ x0. And

Figure 1. An example for computing the centroids for two clusters in a dataset with missing values. (a) shows the results

of the different methods of computing the mean. (b) shows the Voronoi diagram.

Clustering Algorithms for Incomplete Datasets
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Ypossible ¼ y∈Rj∃ x; yð Þ∈Df g,

denote all the possible values for attribute Y. And then computing the mean according to these

points (C1real and x0ð Þpossible), where each point from C1real has weight one and each point from

x0ð Þpossible has weight 1
∣Ypossible ∣

. Where

C1real ¼ x; yð Þ∈Dj x; yð Þ∈C1f g

be the set of all the data points without missing values that are associated with the C1 cluster.

As a result, the weighted mean of C1 is:

mean C1ð Þ ¼

P

x;yð Þ∈C1real
x; yð Þ þ x0;μy

� �

∣C1real∣þ
P

1
∣Ypossible ∣

: (4)

This is identical to the Euclidean mean when the missing point is replaced with x0;μy

� �

and is

equivalent to the MAmethod when x0;μy

� �

is associated with C1. As a result, the real centroid

of the cluster (the magenta star) moves to the green star as described in Figure 1(b), where not

all the blue “+” marks are belonging to C1.

As a result, the mean computation must distinguish between two possible methods. The first

method (which we call k-mean-MDE) takes into account all the possible points that their y

coordinates are the y coordinates of the real data points from the yellow cluster in addition to

the real points within the yellow circle. As a result, the mean of this set will be computed based

on all the real points C1real and C1 x0ð Þpossible
where,

C1 x0ð Þpossible
¼ x0; yp

� �

∈ x0ð Þpossiblej∃ x; yð Þ∈C1real ∧ y ¼ yp

n o

:

Computing the new centroid using Eq. (3) yields not only the same centroid as using the

Euclidean distance, but also preserves the runtime of the standard k-means using the Euclid-

ean distance.

The second method (which we called k-mean-HistMDE): In this case, we first associate each of

the points from x0ð ÞYpossible with its nearest center, and after that compute a weighted mean. It

means that to compute the mean, we will take into account all the real points C1real, in addition

to PC1possible where

PC1possible ¼ x0; yp

� �

∈ x0ð Þpossiblej x0; yp

� �

∈C1
n o

:

According to this method, use all the points from x0ð Þpossible that are associated with the C1 cluster

and not only the points from x0ð Þpossible whose y coordinates are from the real points associated

with that cluster. Since the weights are computed using the entire dataset, we cannot use Eq. (3).

To this end, our suggested method for implementing the mean computation is simply to replace

each point with a missing value with the ∣Ypossible∣ points, each with a weight 1
∣Ypossible∣

, and run
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weighted k-means on the new dataset. This method, in one hand, is simple to implement, but in

the other hand, its runtime is high, since each point with, for example, a missing y value will be

replaced with all ∣Ypossible∣ points. As a result, the size of the dataset will be:

∣Dreal∣þ jDj � jDrealjð Þ � ∣Attpossible∣,

where Dreal is the set of each data points that do not contain missing values. In order to reduce

the runtime complexity, we turn to use Voronoi diagram. Based on Voronoi diagram, the data

space is partitioned to k subspaces (as can be seen in Figure 1(b)). Each point is associated with

the subspace of the cluster in which it lies.

The third possibility is to divide the y value space to several disjoint intervals. Where, each

interval will be represented by its mean, and the weight of each interval will be the ratio

between the number of points in the interval to the number of all possible points. This method

we called k-mean-HistMDE. k-mean-HistMDE method approximates the two methods men-

tioned before that compute the weighted mean.

In conclusion, we have three methods:

• The naïve method which is equivalent to the MA method.

• k-means-MDE

• k-mean-HistMDE

These methods differ in their performance, efficiency, and the way they work.

5. Mean shift algorithm

In this section, we will describe another use case that integrates the derived distance function

MDE within the framework of mean shift clustering algorithm. Firstly, we will give a short

overview of the mean shift algorithm, and then, we will describe how we use MDE distance in

this algorithm. Here, we only review some of the results described in [16, 17] which should be

consulted for the details. Let xi ∈R
d, i ¼ 1,…, n is associated with a bandwidth value h > 0.

The sample point density estimator at point x is

bf xð Þ ¼
1

nhd

Xn

i¼1

K
x� xi
h

� �
: (5)

Based on a symmetric kernel K with bounded support satisfying

K xð Þ ¼ ck,dk ∥x∥2
� �

∥x∥ ≤ 1 (6)

is a nonparametric estimator of the density at x in the feature space. Where k xð Þ, 0 ≤ x ≤ 1 is the

profile of the kernel and the normalization constant ck,d assures that K xð Þ integrates to one. As a

result, the density estimator Eq. (5) can be rewritten as

Clustering Algorithms for Incomplete Datasets
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bf h,k xð Þ ¼
ck,d

nhd

Xn

i¼1

k
x� xi
h









2

� �
: (7)

As a first step in the analysis is to find the modes of the density which are located among the

zeros of the gradient ∇f xð Þ ¼ 0, of a feature space with the underlying density f xð Þ, and the

mean shift procedure is a way to find these zeros without the need to estimate the density.

Therefore, the density gradient estimator is obtained as the gradient of the density estimator

by capitalizing on the linearity of Eq. (7).

∇bf h,K xð Þ ¼
2ck,d

nhdþ2

Xn

i¼1

x� xið Þk0
x� xi
h









2

� �
: (8)

Define g xð Þ ¼ �k0 xð Þ, then the kernel G xð Þ is defined as:

G xð Þ ¼ cg,dg ∥x∥2
� �

:

Introducing g xð Þ into Eq. (8) yields

∇bf h,K xð Þ ¼
2ck,d

nhdþ2

Xn

i¼1

xi � xð Þg
x� xi
h









2

� �

¼
2ck,d

nhdþ2

Xn

i¼1

g
x� xi
h









2

� �" # Pn
i¼1 xig

x�xi
h



 

2
� �

Pn
i¼1 g

x�xi
h



 

2
� � � x

2

4

3

5,

(9)

where
Pn

i¼1 g
x�xi
h



 

2
� �

is assumed to be a positive number. Both terms of the product in Eq. (9)

have special significance. The first term is proportional to the density estimate at x computed

with the kernel G. The second term

mG xð Þ ¼

Pn
i¼1 xig

x�xi
h



 

2
� �

Pn
i¼1 g

x�xi
h



 

2
� � � x (10)

is called the mean shift vector. The mean shift vector thus points toward the direction of

maximum increase in the density. The implication of the mean shift property is that the

iterative procedure

yjþ1 ¼

Pn
i¼1 xig

yj�xi

h










� �

Pn
i¼1 g

yj�xi

h










� � j ¼ 1, 2,… (11)

In real world, most often the convergence points of this iterative procedure are the local

maxima (modes) of the density. All the points that share the same mode are clustered within

the same cluster. Therefore, we get clusters as the number of modes.
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5.1. Mean shift computing using the MDE distance

This section describes the way to integrate the MDE distance within the framework of the

mean shift clustering algorithm. To achieve this mission, we will first compute the mean shift

vector using the MDE distance. And then, we will integrate the MDE and the derived mean

shift vector within the mean shift algorithm.

Using the derived MDE distance the density estimator in Eq. (7) will be written as:

bf h,k xð Þ ¼
ck,d

nhd

Xn

i¼1

k
x� xi
h









2

� �
¼

ck,d

nhd

Xn

i¼1

k

Pd
j¼1 MDE xj; x

j
i

� �2

h2

0

B@

1

CA: (12)

Since each point xi may contain missing attributes, bf h,k xð Þ will be:

bf h,k xð Þ ¼
ck,d

nhd

Xn

i¼1

k

Pkni
j¼1 MDE xj; x

j
i

� �2

h2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
each xi has kni known attributes

þ

Punkni
j¼1 MDE xj; x

j
i

� �2

h2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
each xi has unkni missing attributes

0

BBB@

1

CCCA:

According to the definition of the MDE distance, we obtain:

bf h,k xð Þ ¼
ck,d

nhd

Xn

i¼1

k

Pkni
j¼1 xj � x

j
i

� �2

h2
þ

Punkni
j¼1 xj � μj

� �2
þ σj
� �2

h2

0

B@

1

CA: (13)

Now, we will compute the gradient of the density estimator in Eq. (13).

∇bf h,k xð Þ ¼
ck,d

nhdþ2

Xn

i¼1

Xkni

j¼1

xj � x
j
i

� �2
þ

Xunkni

j¼1

xj � μ
j

� �2
þ σ

j
� �2

2

4

3

5
0

�k0

Pkni
j¼1 xj � x

j
i

� �2

h2
þ

Punkni
j¼1 xj � μj

� �2
þ σj
� �2

h2

0

B@

1

CA

¼
ck,d

nhdþ2

Xn

i¼1

Xkni

j¼1

xj � x
j
i

� �2

2

4

3

5
0

� k0

Pkni
j¼1 xj � x

j
i

� �2

h2
þ

Punkni
j¼1 xj � μj

� �2
þ σj
� �2

h2

0

B@

1

CA

þ
Punkni

j¼1 xj � μj
� �2

þ σj
� �2h i0

� k0

Pkni
j¼1 xj � x

j
i

� �2

h2
þ

Punkni
j¼1 xj � μj

� �2
þ σj
� �2

h2

0

B@

1

CA:

In our computation, we will first deal with one coordinate l, and then, we will generate the

computation for all the other coordinates.
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) f 0xl ¼
2ck,d

nhdþ2

X

nl

i¼1

xl � xli
� �

� k0

X

kni

j¼1

xj � x
j
i

� �2

h2
þ

X

unkni

j¼1

xj � μ
j

� �2
þ σ

j
� �2

h2

0

B

B

B

B

B

@

1

C

C

C

C

C

A

þ
2ck,d

nhdþ2

X

ml

i¼1

xl � μ
l

� �

� k0

Pkni
j¼1 xj � x

j
i

� �2

h2
þ

Punkni
j¼1 xj � μj

� �2
þ σj
� �2

h2

0

B

@

1

C

A

¼
2ck,d

nhdþ2
½xl �

X

n

i¼1

k0

Pkni
j¼1 xj � x

j
i

� �2

h2
þ

Punkni
j¼1 xj � μj

� �2
þ σj
� �2

h2

0

B

@

1

C

A

�
Xnl

i¼1
xli � k

0

Pkni
j¼1 xj � x

j
i

� �2

h2
þ

Punkni
j¼1 xj � μj

� �2
þ σj
� �2

h2

0

B

@

1

C

A

�
X

ml

i¼1

μ
l � k0

Pkni
j¼1 xj � x

j
i

� �2

h2
þ

Punkni
j¼1 xj � μj

� �2
þ σj
� �2

h2

0

B

@

1

C

A
,

where there are nl points for which the xl coordinate is known, and there are ml points where it

is missing.

f 0xl ¼
2ck,d

nhdþ2
�

X

n

i¼1

g
X

d

j¼1

MDE xj; x
j
i

� �2

0

@

1

A

2

4

3

5

�

Pnl
i¼1 x

l
i � g

Pd
j¼1 MDE xj; x

j
i

� �2
� �

þ
Pml

i¼1 μ
l � g

Pd
j¼1 MDE xj; x

j
i

� �2
� �

Pn
i¼1 g

Pd
j¼1 MDE xj; x

j
i

� �2
� � � xl

2

6

6

4

3

7

7

5

:

As a result, the mean shift vector using the MDE distance is defined as:

mMDE ,G xð Þ ¼

Pnl
i¼1 x

l
i � g

Pd
j¼1 MDE xj; x

j
i

� �2
� �

þ
Pml

j¼1 μ
l � g

Pd
j¼1 MDE xj; x

j
i

� �2
� �

Pn
i¼1 g

Pd
j¼1 MDE xj; x

j
i

� �2
� � � xl:

(14)

Now, we can use this equation to run the mean shift procedure over datasets with missing values.

6. Experiments on numerical datasets

In order to measure performance of the developed clustering algorithm (i.e., k-means and

mean shift), we compare their performance on complete datasets to its performance on

Recent Applications in Data Clustering12



incomplete data using the suggested distance function and then again using the existing

methods (MCA, MA, and MI) within the standard algorithms.

To measure the similarity between two data clusterings, we decide to use the Rand index [18].

We use it in order to compare the results of the original clustering algorithms to the results of

the other derived algorithms for incomplete datasets.

Our experiments use six standard numerical datasets from the Speech and Image Processing

Unit [13]; dataset characteristics are shown in Table 1.

We produced the missing data by drawing randomly a set consisting of 10–40% of the data

from each dataset. These sets are used as samples of incomplete data, where one attribute from

each point was randomly selected to be assigned as missing value. For each dataset, we

average the results over 10 different runs.

6.1. k-Means experiments

In the k-means algorithm, we developed two versions, k-means-MDE and k-means-HistMDE;

to cluster the incomplete datasets, we compare the performance of the k-means (k is fixed for

each dataset) clustering algorithm on complete data (i.e., without missing values) to its perfor-

mance on data with missing values, using the MDE distance measure (k-means-MDE and k-

means-HistMDE) and then again using k-means-(MCA, MA, and MI).

As can be seen in Figure 2, the new algorithms that is based on theMDE distance outperformed

the other existing algorithms on all the datasets. It occurred because in the MA MCA methods,

the whole distribution of values is replaced by the mean or the mode of the distribution of

known values, that is a fixed value. In our two developed algorithms, we use the distribution of

the observed values in all the computation stages. This additional information, taking into

account not only the mean of the attribute but also the variance, is probably the reason for the

improved performance of our methods compared to the known heuristics.

6.2. Mean shift experiments

Mean shift clustering algorithm was tested using bandwidth h ¼ 4 (because we saw that the

standard mean shift worked well for this value).

Dataset Dataset size Clusters

Flame 240� 2 2

Jain 373� 2 2

Path-based 300� 2 3

Spiral 312� 2 3

Compound 399� 2 6

Aggregation 788� 2 7

Table 1. Speech and Image Processing Unit Dataset properties.
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A resulting curve for the Rand index values was constructed for each dataset to evaluate how

well the algorithm performed.

As can be seen in Figure 3, for all the datasets except the Jain dataset, the curves show that the

new mean shift algorithm was superior and outperformed the other compared methods for all

missing value percentages, while for the Jain dataset, its superiority became apparent only

when the percent of the missing values was larger than 25%, as can be seen in Figure 3(b). In

addition, we can see that the MS�MC method outperforms the MS�MA method for the

flame and path-based datasets, and the MS�MC outperforms MS�MA for the other

datasets. As a result, we cannot decide unequivocally which algorithm is better. On the other

hand, we obviously can state that the MS�MDE outperforms the other methods especially

when the percentage of the missing values increases.

7. Conclusions

Missing values in data are common in real-world applications. They can be caused by human

error, equipment failure, system-generated errors, and so on. Several methods were developed

Figure 2. Results of k-means clustering algorithm using the different distance functions on the six datasets from the

Speech and Image Processing Unit.
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Figure 3. Results of mean shift clustering algorithm using the different distance functions on the six datasets from the

Speech and Image Processing Unit.
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to deal with this problem such as: filling the missing values with fixed values, ignoring sample

with missing values, or dealing with the missing values by defining a distance function.

In this work, we have proposed a new mean shift clustering algorithm and two versions of the

k-means clustering algorithm over incomplete datasets based on the developed MDE distance

that was presented in [1, 2, 12].

The computational complexities of all the developed algorithms were preserved and they are

the same as that of the standard algorithms using the Euclidean distance. The distance was

computed based only on the mean and variance of the data for each attribute.

We experimented on six standard numerical datasets from different fields. On these datasets,

we simulated missing values and compared the performance of the developed algorithms

using our distance and the suggested mean computations to other three basic methods.

From our experiments, we conclude that the developed methods are more appropriate for

measuring the mean, mean shift vector, and weighted mean for objects with missing values,

especially when the percent of missing values is large.
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