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Abstract

Marker-assisted selection (MAS) is a complementary tool for conventional breeding 
where a molecular marker linked to a trait is indirectly selected. Many studies conducted 
have been able to identify and develop markers for traits such as disease and pest resis-
tance and other abiotic stresses. Despite the availability of these markers, the technology 
has been extensively used in tomato breeding for the identification of some economic 
traits in particular disease resistance. In developed countries, MAS is utilized routinely 
in breeding programs, but this cannot be said for developing countries such as Africa. It 
is high time Africa as a continent looks at the importance of the technology and invests in 
it. In addition to MAS, other strategies such as marker-assisted backcrossing and recur-
rent selection have also been employed for breeding in tomato. The use of MAS in crop 
improvement will not only reduce the cost of developing new tomato varieties but will 
also increase the precision and efficiency of selection in the breeding program as well as 
lessen the number of years required to come up with a new crop variety.

Keywords: tomato, crop improvement, molecular marker, indirect selection, efficiency, 
variety

1. Introduction

Tomato, Solanum lycopersicum L., is the second most important vegetable after potato. Indisputably, 

it is the most popular vegetable crop in the world [1]. Though a tropical plant, the crop is culti-

vated virtually all over the world [2]. In most West African countries especially Ghana, the crop is 

consumed in almost every household daily [3]. Tomato provides vitamins A and C as well as vital 
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minerals and other nutrients [4]. That notwithstanding, both the fresh and processed tomatoes 

are the richest sources of the dietary antioxidant lycopene, which debatably protects cells from 

oxidants linked to cancer [5]. Tomato is also a source of other compounds with antioxidant activi-

ties such as rutin, tocopherol, chlorogenic acid, plastoquinones and xanthophylls [6]. Tomato has 

been commonly used not merely as food, but also as research material. The tomato plant possess 

many interesting features such as fleshy fruit, compound leaves and a sympodial shoot, which 
are lacking in other model plants (e.g., Arabidopsis and rice). Moreover, tomato belongs to an 

enormous family Solanaceae, which is closely interrelated with many commercially important 

plants such as garden eggs, eggplants, peppers, potato and tobacco [7]. Information or knowledge 

obtained from studies conducted on tomato can be easily applied to these plants, hence making 

tomato an important research material. For this reason, tomato functions as a model organism 

for the family Solanaceae and especially for fleshy-fruited plants. Phenotypic selection coupled 
with traditional breeding was used to develop most commercial cultivars of tomato. Currently, 

tomato breeding has entered into a new era following the introduction of molecular markers and 

marker-assisted selection (MAS) technology. Tomato was one of the first crops for which molecu-

lar markers were suggested as indirect selection criteria for breeding purposes [8–10]. Molecular 

markers have been used extensively for genetic mapping as well as identification and charac-

terization of genes for many agriculturally important traits in tomato. The technology also has 

been utilized for marker-assisted breeding for several economically important traits. The actual 

use of MAS in tomato breeding began approximately 30 years ago with the use of the isozyme 

marker acid phosphatase (Aps-11 locus) as an indirect selection criterion for breeding for nema-

tode resistance [11]. Paradoxically, this isozyme marker is still being used in many private and 
public tomato-breeding programs for selecting for nematode resistance. However, more recently, 

with the development of new molecular markers and maps in tomato, MAS has become a routine 

practice in many tomato breeding programs, in precisely in the private sector. MAS is often used 

to assess hybrid purity from overseas production by screening seed lots with a panel of molecular 

markers [12]. MAS is used effectively for quick germplasm screening for disease resistance or 
fruit quality. Often, a panel of linked markers is used on individual selections or pools of seed 

or tissue from early generation populations to “index” breeding populations. This aids breeding 

efforts by informing the breeder about which disease resistances or fruit quality traits are segre-

gating or fixed in a given population. MAS is employed for marker-assisted backcrossing (MAB) 
after reliable linkages between markers, and simple traits of interest are discovered. Such traits 

include, but not limited to, disease resistance, fruit color and carotenoid content (e.g., lycopene 

and β-carotene), fruit-ripening-related traits (various genes including Rin and Nr), jointless pedi-

cel (j2) and extended shelf life using various genes such as alcobaca, nor and rin [12]. MAS is not 

only faster than phenotypic selection but also cheaper and more effective. However, the extent 
to which MAS has been employed in public and private tomato breeding programs has not been 

clearly determined. This chapter gives a review of the application of MAS in tomato and assesses 

the current and potential use of MABC in tomato breeding programs.

2. Breeding history of tomato

Domestication of tomato has activated a wide range of morphological and physiological traits 

that differentiate domesticated crops from their wild ancestors. At the end of the nineteenth 
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century, numerous cultivars of tomato were available in different colors and for different 
purposes. Since these cultivars require no cross-pollination, growers especially tomato farm-

ers get access to seeds effortlessly for the next planting. For the reason that tomato has only 
4% chance of outcrossing, tomato produces plants that show resemblance to the parents. As a 

matter of fact, previous or former tomato cultivars that were carefully chosen and innate in a 
family got the name heirloom. Heirloom tomato varieties though open-pollinated are unique 

in shape, size and color [13]. These cultivars could be considered as landraces and products 

of domestication. The collection, description, propagation and distribution of genetic materi-

als are of the utmost importance in tomato breeding. The Tomato Genetics Resource Center 

in Davis, California (TCRC) during the latter half of the twentieth century assembled and 
maintained thousands of wild Solanum species accessions coupled with producing large 

proportion of monogenic mutants and various genetic stocks of tomato. Currently, the 

most Solanaceae species in the world were collected and maintained by the Botanical and 
Experimental Garden (http://www.bgard.science.ru.nl/) in the Netherlands [14] (http://zamir.
sgn.cornell.edu/mutants/), which is an isogenic tomato “mutation library” containing a total 

of 13,000 M(2) families derived from treatment with ethyl methane sulfonate (EMS) and fast-

neutron mutagenesis.

Systematic breeding for improvement of the overall horticultural characteristics of tomato 

actually started in the 1930s. Tomato breeding gained prominence at the beginning of twenti-

eth century in the public institutions predominantly in the USA. Later private companies were 

formed and engaged in commercial breeding that led to hybrid development. Hybrids give a 

good combination of characters from both parents. Growers preferred to buy hybrid seeds at 

higher prices following their enormous benefits over the open-pollinated cultivars. The first 
hybrid tomato cultivar, which developed through a single cross, was released in 1946 [15].

Currently, most tomato varieties whether fresh market tomato or processed tomato are 

hybrids. The breeding process involves recognizing and combining certain traits to create 

a novelty for each market. The final product could be sold in a wide range of shapes such 
as pyriform, high round, cylindrical, oval and sizes from small cherry tomato to very large 

beef tomatoes. The breeders’ law allows breeders to make new crosses either with their own 

materials or cultivars of their competitors [16]. To avoid taking many generations to remove 

deleterious genes, breeders often dodge using wild germplasm to introduce new traits. 

Crosses are, however, made to produce test hybrids i.e., hybrids developed through F4 to F6 

with fixed parental lines. These hybrids then go for testing at on station (breeders site) and 
finally to the farmers’ sites after which the best hybrids are selected for commercial usage. 
Recently, a number of tomato breeding companies are major players in the world market. It is, 

therefore, important that seed companies continue to develop new cultivars with added value 

[17]. It takes approximately 5 years for commercial tomato cultivars to turn over time. As a 

matter of fact, breeding companies can get return on their investments if prices are high for 
their seeds. This is typical of the fresh tomato market as the yearly value of worldwide tomato 

seed market is approximately half a billion euros especially for fresh market.

The goals of public and private tomato breeding programs vary widely depending on loca-

tion, need and resources. In general, breeding goals in tomato have gone through four phases: 
breeding for yield in the 1970s, for shelf life in the 1980s, for taste in the 1990s and for nutri-

tional quality currently. To be successful, growers must produce a high yield of high-quality 
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fruit, while holding production costs as low as possible. Therefore, many of the breeding 

goals focus on characteristics that reduce production costs or ensure reliable production of 

high yields with high-quality fruits. The genetics of a quantitative trait is hard to study, since 

the effect of each gene is small and often influenced by environment or by the interaction with 
other genes (epistasis). Many important tomato traits as described above are genetically con-

trolled by a combined action of QTLs with favorable alleles often present in the wild species 

[18–20]. To introgress the wild favorable allele into cultivated tomato, marker-assisted selec-

tion plays an important role and the map positions and markers linked to the QTLs provide a 

basis for breeders to design optimal breeding strategies. To map QTLs in tomato, interspecific 
populations have been extensively used. However, in an interspecific cross, multiple segre-

gating QTLs at the whole genome level often tend to mask the effects of one another [21, 22].

3. Development of genetic markers

An alternative approach to improving selection efficiency in tomato is to discover genetic 
markers that are associated through linkage or pleiotropy with genes that control the trait(s) 

of interest. Genetic markers are biological features that can be transmitted from one generation 
to another. They can be used as experimental probes or tags to track an individual, a tissue, a 

cell, a nucleus, a chromosome or a gene. The value of genetic markers as indirect selection cri-

teria has been known to breeders since early 1900s. Genetic markers can be classified into two 
categories namely classical markers and DNA markers [23, 24]. Classical markers comprise 

morphological markers, cytological markers and biochemical markers. DNA markers such as 

restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism 
(AFLP), rapid amplified polymorphic DNA (RAPD), simple sequence repeats (SSR), single 
nucleotide polymorphism (SNP), etc. have been developed. These DNA markers have devel-
oped into many systems based on different polymorphism detecting techniques or methods 
including northern and southern blotting of nucleic acid hybridization, polymerase chain 
reaction (PCR), and DNA sequencing [25].

4. Classical markers

Breeders have used morphological markers to select for superior phenotypes for many 
decades. During the history of plant breeding, markers mainly used included visible traits 

such as flower color, leaf shape, seed shape, fruit shape, flesh color, stem length, etc. These 
morphological markers can easily be identified and therefore usually used in the construction 
of linkage maps. Some of these markers are also linked with other agronomic traits and thus 

can be used as indirect selection criteria in breeding. However, morphological markers avail-

able are limited, and many of these markers are not associated with important economic traits 

like yield and quality. In addition, some even have undesirable effects on the development 
and growth of the plant. In tomato, there are over 1300 morphological, physiological (e.g., 

male sterility, fruit ripening, and fruit abscission), and disease-resistance genes [26] of which 

only less than 400 have been mapped [27].
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Cytological markers are represented by chromosome karyotype and banding patterns. These 
markers are not directly used in plant breeding but serve as landmarks on the chromosomes 

thereby used for identifying linkage groups and subsequently genetic maps are constructed. 

Biochemical markers or isozymes are alternative forms or structural variants of an enzyme 
with different molecular weights and electrophoretic mobility but have the same catalytic 
activity or function. The second generation of isozymes became more popular during 1970s 

and early 1980s. Although some 41 isozymic genes in tomato have been identified, character-

ized and mapped [28], these markers are few and less polymorphic [29].

5. DNA markers

In overcoming limitations associated with classical markers, development of DNA markers 

have proven to be of great significance in enhancing genetics and breeding of crop varieties 
[30]. A DNA marker is a fragment of DNA showing mutations/variations, which can be used 
to detect polymorphism between different genotypes in a population. These fragments are usu-

ally associated with a specific location within the genome and may be detected using modern 
molecular tools. In the past, different types of molecular markers have been developed and 
utilized. This includes both dominant and codominant markers. Dominant markers are mark-

ers that are unable to differentiate between homozygotes and heterozygotes, while codominant 
markers can differentiate between homozygotes and heterozygotes. A lot of molecular markers 
have been developed for tomato. Notable among them are RFLP markers; however, this marker 
is time and labor intensive and requires the use of large amount of DNA. As a result, RFLP 
markers have been replaced with PCR-based markers that are easy to handle (http://solgenom-

ics.net). Other marker techniques that have been developed for tomato include random ampli-

fied polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) [30]. 

Large amount of sequence information have been released for tomato species and subsequently, 

SSR markers developed. These SSR markers are widely used because they are easy to handle 

and able to detect multiple alleles. Currently, over 20,000 SSR markers have been developed 

from expressed sequence tag (EST) and BAC-end sequences and used as genetic and genomic 
tools in tomato species [31]. Single nucleotide polymorphism (SNP), which is now the marker 
technology of choice, has also been discovered by a resequencing strategy, and several SNP 
genotyping methodologies have been developed for application in tomato research. As a result, 

this high-throughput SNP analysis can be performed effectively in a large number of samples 
by array-based assays as genotyping platforms and applied to the construction of high-density 

genetic linkage maps and performance of genome-wide association studies [32]. The diversity 

arrays technology (DArT) platform, which is one of the array-based methods, has also been used 

to develop polymorphic markers across introgression line (ILs) population of tomatoes [33].

6. Genetic maps in tomato

The first linkage map of tomato was reported in 1968. This linkage map was constructed 
based on both morphological and physiological markers [34]. The map was later improved 
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and was assigned to the 12 linkage groups in tomato [35]. This facilitated the development 

of other maps including the tomato isozyme linkage map that was published in 1980. Then 

in 1986, another map consisting of RFLP and isozyme loci was also generated. Since then, 
several interspecific genetic linkage maps have been generated with RFLPs incorporating 
cleaved amplified polymorphic sequences (CAPS), SSR and SNP markers. Varying number 
of markers ranging from 93 to 4491 have been used for constructing linkage maps with a 

coverage of about 50% of the genome. Other intraspecific maps were later constructed using 
SSR and SNP markers. Identification and construction of these markers and maps, respec-

tively, will be helpful in identifying useful genes or QTLs that can be introgressed into desir-

able genetic backgrounds for marker-assisted breeding [36]. This may not only hasten the 

breeding process, but will also allow pyramiding of desirable genes and QTLs from different 
genetic backgrounds, which will serve as an effective complementary approach to substantial 
crop improvement.

7. Applications of marker-assisted selection (MAS) in tomato 

breeding

Marker-assisted selection (MAS) is a tool for crop improvement where an associated marker is 

used for indirect selection of a trait. In this case, you are selecting for a trait based on the geno-

type of an associated marker rather than the trait itself. It is a technique that has been extensively 

explored for a wide range of plant traits and can reduce the cost as well as increase the precision 

and efficiency of selection in breeding. With recent development of molecular tools and genetic 
maps, MAS has become more attractive and practical than before. Molecular markers are not 
affected by either genetic or environmental factors, making MAS a useful tool in crop improve-

ment. Markers developed to be used for MAS must be tightly linked to the genes or QTLs. In 

recent years, it is widely accepted that QTL effects, QTL validation or fine mapping with high 
resolution is a requirement for MAS [37]. The most important issue in the application of molecular 

markers in plant breeding is that major effect QTLs or genes should be mapped with high accu-

racy. In addition, these genes should not have any negative effect on other traits. The use of MAS 
in tomato breeding started in the 1930s [35] much earlier than in many other crop species. It was 

employed for the improvement of many morphological, physiological, and disease resistant traits.

Although resistant genes or QTLs have been identified for many fungal diseases in tomato, 
only few of these are been used for MAS, while with the others, markers associated with resis-

tant genes/loci have been identified, but there are no reports on PCR-based markers developed 
for resistance breeding. Typical examples are with Alternaria stem canker [38] and gray leaf 

spot [39] where RFLP markers have been reported, but no PCR-based markers developed; with 
anthracnose ripe rot, few RADP markers associated with QTLs [40] have been reported but not 

validated for MAS; with black mold, QTLs [39] have been identified, but there is no report for 
MAS; with corky root rot, RFLP markers have also been identified and converted to CAPS and 
additional RAPD markers identified [41], but there is no report of using these markers for MAS; 
with Fusarium crown root rot, a RAPD marker has been identified, which may be useful for 
MAS in tomato breeding [42]; with early blight, QTLs have been identified [43], but there is no 
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PCR-based markers reported; with powdery mildew, several QTLs [44] have been identified, 
but there are no PCR-based markers closely linked to these QTLs identified; and with Septoria 
leaf spot, there has been no report of genetic mapping studies for resistance breeding. MAS has, 

however, been successful for resistance breeding in tomato for Fusarium wilt, late blight, leaf 

mold and Verticillium wilt. Molecular markers associated with Fusarium wilt resistance I, I-1, 

I-2 and I-3 [45] conferring resistance to four different races of the pathogen were identified, and 
PCR-based markers developed for all with the exception of I-1 and used effectively for MAS; 
markers associated for late blight resistance Ph-1, Ph-2 and Ph-3 [46] has also been developed 

and used for tomato breeding; several PCR-based markers linked to the Cf gene for leaf mold 

[47] and Verticillium wilt [48] has also been reported and widely used for MAS.

QTLs and molecular markers associated with resistance have also been identified in tomato for 
the various bacterial diseases; however, it is only markers that are tightly linked to RFLPs and 
PCR-based markers for gene Pto in bacterial speck [49] that have been used for resistance breed-

ing via MAS. With the other bacterial diseases including the bacteria canker, bacterial spot and 

bacterial wilt, QTLs or RFLP markers have been identified and reported but are not commercially 
used for MAS. With bacterial canker, two QTLs [50] have been developed and could be useful 

for MAS. RFLP markers associated with Rx-1 and Rx-2 and Rx-3 for bacterial spot have been 

reported [51], but Rx-1, Rx-2 and Rx-3 are independently associated with hypersensitive response 

in the greenhouse and are not polymorphic in most breeding populations and hence not useful 

for MAS breeding, while Rx-3 is associated with both hypersensitive response and field resis-

tance. CAPs markers have been developed for the gene Rx-3 and used for MAS breeding. Several 

QTLs have also been identified for breeding for bacteria wilt resistance in tomato; however, two 
dominant markers associated with the gene TRST-1 [52] have been suggested to be useful.

Although there has been reports on the identification of the resistant gene Cmr for the 

cucumber mosaic virus [53], pot-1 gene for Potyviruses [54] and two QTLs associated with 

the tomato mottle virus, there are no reports of use of these markers in tomato breeding. 
With the tomato mosaic virus, PCR-based markers for Tm-1, Tm-2, and Tm-22-resistant gene 

have been reported to be used for MAS [55]. Several genes have also been reported to be 

resistant to the tomato spotted wilt virus; however, PCR-based markers for only resistant 
gene Sw-5 have been reported to be developed and utilized by most tomato breeding pro-

grams [56]. With the tomato yellow leaf curl virus, PCR-based markers have been identified 
for and developed for Ty-1, Ty-2, Ty-3 and Ty-4-resistant loci [57]; hence, these markers 
are not very consistent and hence the challenge in using them for MAS. In the early 1980s, 

linkage association between the gene Mi [58] controlling nematode (Meloidogyne incognita) 

resistance and Aps-11 locus was reported [59]. RFLP markers associated with the Aps-11 

locus and PCR-based markers associated with the Mi gene [60] have been routinely used 

for the selection of root knot nematode resistance in tomato. The Mi gene has also been 

reported to be resistant to two biotypes of the whitefly Bemisia tabaci. Several studies have 

tried to identify genes or QTLs for insect resistance in tomato; however, there are fewer 
reports on the identification of these genes/QTLs [61]. This may be attributed to difficulties 
in phenotypic screening for insect resistance, linkage drag and ease of using pesticides for 

insect control. However, with the increasing crusade on integrated pest management and 

restrictions on the use of pesticides, new discoveries in marker development, it is expected 
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that more efforts will be devoted to the identification, development and use of markers for 
insect resistance improvement in tomato. In tomato, molecular markers have been used 

to map genes or QTLs for abiotic environmental stresses (such as salinity, drought and 

heat) and many flower and fruit-related characteristics including exerted stigma, petal and 
sepal characters, fruit size, shape, color, soluble solids content, pH, lycopene, acidity, flavor, 
ripening, and many others. However, there is very little indication of the use of MAS for 
manipulating QTLs for these complex traits, although attempts are being made to improve 
some quantitative traits. Although MAS is as an effective tool for crop improvement, most 
breeding programs especially in Africa are not using it routinely. It is imperative that MAS 

is employed in our breeding programs to enable us ripe the benefits.

8. Marker-assisted backcrossing approach in tomato breeding

8.1. Marker-assisted backcrossing

The backcrossing method has been used extensively in plant breeding to incorporate one or 

a few genes from one plant possessing a unique trait (donor parent) into a desired adapted 

or elite variety (recurrent parent) that lacks few qualities such as disease resistance. In most 

cases, the parent used for backcrossing has a large number of desirable attributes but is defi-

cient in only a few characteristics [62]. The application of molecular markers in backcrossing 

has increased the efficiency of selection. Marker-assisted backcrossing involves the use of 
molecular markers to track either the target locus or the background of the recurrent parent. 

The outcome of such a process is a cultivar that contains only the major gene that is obtained 

from the donor parent, while the genome of the recurrent parent remains intact.

8.2. Marker-assisted backcrossing approaches

Whereas [63] proposed two types of selections (foreground and background selection) under 

marker-assisted backcrossing, [64] identified three levels of marker-assisted backcrossing 
(foreground selection, recombinant selection and background selection).

8.3. Foreground selection

In the foreground selection, target locus of the donor parent is tracked using the selected 

molecular marker of interest [65]. The objective is to maintain the target locus in a hetero-

zygous state (one donor allele and one recurrent parent allele) until the final backcross is 
completed. This is done to ensure that the locus that is targeted for improvement remains in a 

state of heterozygosity in the progeny for both donor and recurrent parent. The progeny are 

then selfed to ensure segregation and recombination in the next generation. Individuals that 

are found to be homozygous for the allele of interest are identified and selected [66].

The foreground selection is an efficient method to introgress favorable alleles into farmer-
preferred varieties and elite cultivars of crops including maize. This approach ensures that 

only the gene of interest is transferred, while the genetic background of the elite cultivar 

remains intact. The resulting variety is the same as the original recurrent parent except the 
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new gene. This prevents the need to promote the new variety [67]. This method is useful for 

traits that have laborious or time-consuming phenotypic screening procedures. It is also very 

effective for selecting reproductive traits at the seedling stage, so that only best plants are 
identified and tagged for backcrossing. Application of marker-assisted backcrossing enables 
the successful transfer of recessive alleles, which is difficult to do when using conventional 
approaches. Visscher et al. [68] reported that resistance in barley was improved following a 

successful tracking of a marker linked (0.7 cM) to the Yd2 gene for resistance to barley yellow 

dwarf virus in the progeny population. They observed that BC
2
 F

2
-derived progenies contain-

ing the linked marker showed fewer leaf symptoms and gave much higher grain yield though 

they were together with progenies that lacked the marker (Figure 1). The method has also 

been successfully used to improve salinity tolerance in rice. This selection involved the use 

of markers tightly linked to salt tolerance in rice to screen BC
1
F

1
 progenies for the presence 

of salt tolerance QTL. They were able to successfully identify individuals that carried homo-

zygous loci from the heterozygous ones though they were phenotypically the same. These 

heterozygous individuals were then selected for further evaluation in the program.

8.4. Background selection

The approach involves the use of flanking markers that are tightly linked to the genomic 
regions for recombinant selection and unlinked markers to select for the genomic background 

of the recurrent parent [69, 70]. Background markers are markers that are unlinked to the tar-

get gene. Therefore, these markers can be used to select against the donor genome. Individuals 

that are homozygous for as many alleles of the recurrent parent are selected for full recovery 

of the recurrent parent genome [71, 72].

The breeder selects the genome of the recurrent parent using marker alleles for all the genomic 

regions of the recurrent parent except the target locus. The target locus is then selected based 

on the phenotype. Sometimes, elite genes are colocated in the same genomic regions and may 

affect the final product if transferred together. Elimination of such regions is very difficult 
in conventional approaches. The application of marker-assisted backcrossing approaches 

using background selection enables the introgression of just the target locus. The background 

method of selection is important in eliminating such deleterious genomic regions of the donor 

parents that may negatively affect the final product. This is extremely useful because the 
recurrent parent recovery can be greatly accelerated. Conventional backcrossing takes a mini-

mum of six backcross generations to recover the genome of the recurrent parent, with some 

fragments of the donor genome still remaining intact. However, the genome of the recurrent 

parent can be achieved at the BC
2
, BC

3
 or BC

4
, thus shortening the process by two of the four 

backcross generations when markers are involved [69, 70, 72–74] (Figure 1).

8.5. Recombinant selection

This method of MABC approach is used to reduce the number of deleterious genes (linkage 
drag) that are transferred from the donor parent. It involves the simultaneous tracking of 

the genetic background of the recurrent parent and the allele of the donor parent in a het-

erozygous state [75]. Many undesirable genes that negatively affect crop performance may 
be linked to the target gene of the donor parent, and the rate of decrease of this undesirable 
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segment is slower than the unlinked regions [76]. After identification of individuals using 
foreground markers, single and double recombinant individuals carrying the donor alleles 

as well as the recurrent parents are selected [77, 78]. The use of flanking markers are able to 
greatly reduce the undesirable segment of the donor parent compared to the conventional 

Figure 1. Flowchart of foreground and background selection scheme. Source: http://passel.unl.edu/Image/siteImages/
MASFigure7Lg.jpg.
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approaches that may carry large segments of the donor parent even after several generations 

[79, 80]. Compared with conventional backcrossing approaches, marker-assisted backcross-

ing enables faster recovery of the recurrent parent genome especially when foreground and 

background selection are combined. In practice, both foreground and background selections 

are conducted simultaneously in the same backcross program.

9. Progress and prospects of MAS in tomato breeding

In most developing countries such as Ghana, the development of new cultivars, for example 

tomato, maize, groundnut, cowpeas, has been achieved through conventional plant breeding 

method rather than transgenic breeding. It generally comprises of sequences of imbrications 

of three corresponding stages:

• Assembling germplasm like landrace, wild types, improved and/or exotic types of toma-

toes as sources of genetic diversity for the major breeding activities to create different 
recombinants.

• Identification of superior recombinants through selection and testing. This comprise of the 
selection environment (e.g., promising against biotic and abiotic stresses), selection time 

(e.g., early against late generation), and the number of years and locations of testing.

• Releasing, distribution, and utilization of new cultivars [81–83].

This breeding method can take over five generations leading to increase in the number of years to 
develop an elite variety of a particular plant. Backcrossing is the breeding method, which involves 
transfer of alleles at one or more loci from a donor to an adapted variety or a desirable line [83, 84]. 

Recurrent backcrossing is the traditional backcrossing program based on the assumption proposed 

by [85] that the quantity of the recurrent parent genome is recovered at a rate of [1–(1/2)t + 1] where 

t is the number of generations of backcrossing. Thus, the expected recovery of the recurrent parent 

genome after six generations of backcrossing would be 99.2%, a situation called near-isogenic. 

An imperative objective of recurrent backcrossing is to reduce the effect of the donor genome, as 
the aim is to move just a few of its genes responsible for the target trait into the recurrent parent’s 

genetic background. It is generally used to improve qualitatively inherited traits such as pests 

and diseases resistance, since the existence of target trait genes must be confirmed by individual 
phenotype in the successive cross-generations. Thus, individual phenotypic performance is a key 

indicator of the genotype, provided genes have a major effect on phenotypic performance and the 
phenotypic uncertainty is insignificant [86]. However, due to linkage between a target gene and 

nearby genes (which could code for economically undesirable traits) from the donor parent [87] 

and/or chance (stochastic or nonrandom positions of chiasmata), any specific backcross progeny 
will digress from this expectation. This digression has been experienced in couple of plants, for 

instance, where one tomato cultivar developed after 11 backcrosses still had the complete chro-

mosome arm carrying the gene from the donor parent and introgressed fragments as large as 4 

centimorgan (cM) found in tomato cultivars developed after 20 backcrosses, [88]. This was also 

found in a study conducted by [89] where the fragments around the introgressed genes in barleys 

diverse from about 1–14 cM in seven (7) generation backcrossed lines. Consequently, two main 

limitations of recurrent backcrossing approach have been identified:
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• The number of generations, thus time, necessary to achieve the introgression objective

• The simultaneous transfer of other genes flanking the gene of interest of the donor parent 
i.e., linkage drag [90].

For the past three decades, an optimal number of molecular markers have been identified to be 
linked to traits of agronomic importance. These markers have been used as gene benchmarks 

to facilitate the introgression of genes of economic importance into elite varieties [91, 92]. 

Molecular markers are being used intensively to increase the efficiency of backcross breed-

ing programs. This is what is termed as marker-assisted backcrossing (MAB) (also known 
as marker-assisted introgression, marker-assisted selection or molecular breeding). In the 

context of recurrent backcrossing, MAB amplified the pertinence of recurrent backcrossing 
at least in the following facets. Firstly, for traits that are simply inherited, but challenging 

or costly to identify phenotypically, and/or that do not have a reliable phenotypic expres-

sion under certain specific selection conditions, the efficiency of phenotypic selection is low. 
The use of markers for foreground selection makes the transfer of target genes feasible and 

economic. Secondly, quantitative traits, which are generally not targeted by a recurrent back-

crossing approach, can be improved using recurrent backcrossing, if major quantitative trait 

loci (QTL) affecting the trait have been identified. Thirdly, markers provide an effective option 
to control linkage drag and to speed up the recovery of recurrent genome and make the use 

of genes contained in unadapted resources easier [93, 94]. Lastly, the number of backcross 

generations and the time required to eliminate unwanted fragments of donor parent genome 

to reach high level of similarity to the recurrent parent are lessened.

MAB is an accurate and an efficient process of introgression of major gene controlling a 
desired trait while retaining the vital features of the recurrent parent [95, 96]. MAB is the 
process of selecting an individual plant as the parent in a subsequent generation of a genetic 

improvement program using the results of DNA tests. Molecular markers used to perform 

DNA test are not influenced by the environment; hence, problems associated with conven-

tional plant breeding (i.e., selection based on phenotype) are eliminated. Here, selection is 

concentrated on genes that control the desired traits directly and are detectable at all stages 

of plant growth. With the availability of an array of molecular markers [97] and genetic maps, 

MAB has become possible both for traits governed by single gene and quantitative trait loci 
(QTLs) [98]. The philosophy in marker development and implementation can be divided into 

three broad categories: genetic mapping [99], analyses of links between molecular markers 

and the trait of interest, and MAB [85, 94, 100].

Gene mapping is the method used to locate the locus of a gene and the distances between 

genes [101].

The closer a target gene is to another gene, the more likely they are inherited together [94, 

100]. Therefore, the preferred condition for MAB is when a direct markers or gene assisted 
selection is used. This is a situation where molecular markers cosegregate or are closely linked 

with the desired trait [102]. The effective development of a marker that can be linked to a gene 
of interest leads to success of MAB. Hence, the assumption that the ideal distance between a 
molecular marker and a desirable gene initially isolated from wild germplasm be as close as 

2 cM, while that of a marker and a target gene from elite into elite lines be close as 12 cM. This 
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reduces the required size of the backcross population and the time taken to obtain the desir-

able results [103, 104]. MAB has been effectively used to introgress disease-resistance gene 
and improve fruit quality in tomatoes [27].

The challenge associated with the utilization of MAB in the developing countries like Africa 
is the initial cost of developing the markers and the requisite laboratory equipment. For it to 

be welcomed and used effectively in these regions, the economic returns on their usage must 
far exceed the cost of using the conventional backcrossing. The initial cost could be funded 

with aids from donors [105].

10. Conclusion

Tomato breeding evolved from conventional breeding where breeders directly selected for the 

traits of interest, to the use of morphological and physiological traits, differentiated domesti-
cated crops from their wild ancestors. The limitations of these morphological markers gave 

rise to more efficient approaches with the emergence of genetic marker technologies since 
the turn of the nineteenth century. The discovery of DNA markers that are closely associated 

with the desired phenotypes has been used to track tissue, cell, chromosome or a gene in indi-

viduals and increased selection efficiency. A DNA marker is a fragment of DNA that contains 
large amounts of sequence information and closely linked to traits of importance. The close 

association of DNA markers with morphological and physiological traits has facilitated the 

development of several linkage maps and enhanced the selection efficiency in marker-assisted 
tomato breeding programs. Marker-assisted selection has been explored to increase precision 

and efficiency of selection for many economic traits in tomato breeding. One classical marker-
assisted approach in tomato breeding is marker-assisted backcrossing, which targets either 

the genetic background of the recurrent parent (background selection) or tracking the gene of 

interest (foreground selection) through the use of flanking markers. Marker-assisted backcross-

ing enables faster recovery of the recurrent parent genome compared with conventional back-

crossing approaches. Due to the long duration of recurrent backcrossing approaches, adoption 

of marker-assisted backcrossing approaches will enhance selection efficiency and shorten the 
breeding process. The potential genetic and economic benefits of marker-assisted backcrossing 
need to be compared with conventional breeding programs to determine their viability.
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