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Abstract

Regenerative medicine and tissue engineering therapies present an attractive treatment
alternative to the current traditional clinical treatments. Stem cells are capable of self-
renewal and multilineage differentiation. They also have the ability to create immuno-
modulatory microenvironment, and thus help to minimize organ damage caused by the
inflammation and cells activated by the immune system. Human bone marrow mesen-
chymal stem/stromal cells (MSCs) have great potential for cellular therapy, as they possess
the abilities to proliferate as well as to differentiate. MSCs are present in all tissues
interacting with tissue cells and easy to isolate and expand in culture. Indeed, histological
examination of MSCs is one of the main goals for studying their morphology. Both the
light and the electron microscopes are essential tools where the histologist can identify the
structure as well as the detailed ultrastructure of these cells. This will guide users to
clearly understand their behavior, both in vivo and in vitro. Thus, the aim of this chapter
is to give a spot of light on these cells and their histology.
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1. Introduction

Stem cells can be defined as undifferentiated cells that have the ability to self-renewal; prolif-

erate into undifferentiated cells, and to differentiate into various mature specialized cells [1].

There are different types of stem cells that have been classified according to their potency. Cells

are described as pluripotent that is, embryonic cells from the blastocyst (4–14 days after oocyte

fertilization), they can differentiate into all cell types of the adult organism. If, in addition, they

can form the extraembryonic tissues of the embryo, they are described as totipotent (1–3 days

from oocyte fertilization) which can give rise to all the embryonic tissues and placenta.

Multipotent stem cells that is, embryonic cells from the 14th day onward, have the ability to

form all the differentiated cell types of a given tissue. The stem cells that maintain only one
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lineage are described as unipotent [2]. In the trilaminar embryo, a middle mesodermal layer is

formed between the ectodermal and endodermal cell layer. This mesodermal cell layer con-

tains mesenchymal stem cells (MSCs), which develop into connective tissue (mesenchyme) and

it maintains the progenitor stem cells that persist after birth [3].

2. Sources of stem cell

2.1. Embryonic stem cells

Embryonic stem cells (ESCs) have the greatest potential to differentiate into all cell types. ESCs

are derived from the inner cell mass of the blastocysts. However, the use of ESC is associated

with several ethical issues [4]. Also, safety concerns were raised with a high incidence of

teratoma formation [5].

2.2. Induced pluripotent stem cells

Induced pluripotent stem cells (iPS) were first achieved by inducing a forced expression of

specific genes that can reprogram human andmouse adult somatic cells into the undifferentiated

cell [6, 7]. iPS have the same characteristics of ESCs, such as expression of pluripotency markers

and differentiation capability [6].

2.3. Fetal stem cells

Fetal stem cells (FSCs) are derived either from a fetus or from extraembryonic structures. Various

subtypes of FSCs were described according to their origin (i.e., amniotic fluid, umbilical cord,

Wharton’s jelly, amniotic membrane, and placenta). FSCs are ideal sources of cells for use in

regenerative medicine. They are easily accessible, having a high proliferation rate. In addition,

FSCs do not form teratomas [8] and overcome the ethical problem associated with ESCs [9].

2.4. Adult stem cells

In principle, adult stem cells are unspecialized (undifferentiated) cells. They are found in differ-

entiated tissues and considered to be quiescent, but still capable of self-renewal and differentia-

tion. These cells remain in their undifferentiated state until stimulated [10]. Adult MSCs have

been isolated from different sites: bonemarrow, adult peripheral blood, tooth pulp and liver [11].

3. Mesenchymal stem/stromal cells (MSCs)

3.1. History

The concept of mesenchymal stem/stromal cells (MSCs) was first introduced about half a century

ago. In the 1970s, [12] Alexander Friedenstein described a population of bone marrow-derived

cells of mesodermal origin. These MSCs were shown to have the ability to self-renew and to
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differentiate into a multitude of mesodermal cell types [13–15]. Bone marrow MSCs represent a

heterogeneous population derived from the nonblood-forming fraction of bonemarrow, but have

the ability to regulate hematopoietic cell development. In vitro, adult mesenchymal stem cells

resident in this bone marrow fraction differentiate into bone, cartilage and fat [16]. Recently, a

standardized nomenclature for MSCs has been proposed and the term “multipotent mesenchy-

mal stromal cells” has been introduced [15] to refer to this population of fibroblast-like, plastic-

adherent cells [17]. Their asymmetric division produces one identical daughter stem cell and a

second progenitor cell that becomes committed to a lineage-specific differentiation program [18].

3.2. Importance and uses

MSCs produce many growth factors and essential cytokines needed for cell proliferation and

differentiation [19]. They also support hematopoiesis in bone marrow and play an indirect role

in supporting other cell types during tissue repair [20]. Adult stem cells could overcome many

of the ethical and technical debate associated with ESC as they are isolated from adult tissues,

including bone marrow stromal cells, adipose-derived stem cells and adult skin stromal cells

[21]. However, because of their limited differentiation potential (multipotent), they are less

likely to form tumors, although some are thought to be related to certain tumors [22].

3.3. Location

The exact location of these cells in vivo is not known, but recent work suggests that MSCs are

located in the perivascular spaces as sub-endothelial cells surrounding the vascular sinusoids

in the bone marrow [23]. Bone marrow contains three main cell types: endothelial cells,

hematopoietic stem cells, and stromal cells. Bone marrow connective tissue network is called

the stroma. The stroma consists of a heterogeneous population of cells that provide structural

and physiological microenvironment to support hematopoietic cells and forms a complex

extracellular matrix, which supports the hematopoietic process [23]. However, the frequency

of MSCs in human BM has been estimated to be in the range of 0.001–0.01% of the total

nucleated cells. Furthermore, the frequency of MSCs declines with age, from 1/104 nucleated

marrow cells in a newborn to about 1/106 nucleated marrow cells in an 80-year-old person [24].

4. Biology of stromal cells/MSCs

4.1. Tissue distribution

Interestingly, MSCs reside in diverse tissues throughout the adult organism [25]. Nowadays,

MSC populations have been obtained from many tissues other than the bone marrow, [26]

including the adipose tissue [27] and placenta [28].

4.2. Properties

Mesenchymal/stromal cells (MSCs) have the ability to differentiate into a variety of different

cells/tissue lineages; osteoblasts, chondroblasts, adipoblasts and reticular stromal cells [29].
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MSCs possess potent immunomodulatory and anti-inflammatory effects and have been used

as agents in autoimmune diseases [30]. They interfere with pathways of the immune response

by means of direct cell-to-cell interactions and soluble factor secretion. In vitro, MSCs inhibit

proliferation of T cells, B-cells, natural killer cells and dendritic cells [31].

4.3. Immunobiology

MSCs are believed to have critical roles in repairing damaged tissues. Tissue injury is associ-

ated with the activation of immune/inflammatory cells. In addition, inflammatory mediators,

chemokines and leukotrienes, are often produced in the microenvironment by phagocytes in

response to damaged cells [32]. Nevertheless, the function of the endothelial cells as a barrier is

often broken down in damaged tissues. Thus, these inflammatory molecules and immune

cells, together with endothelial cells and fibroblasts, result in the mobilization and differentia-

tion of MSCs and replace the damaged tissue cells. The study of endogenous MSC migration is

complex. Once MSCs have entered the microenvironment of injured tissues, MSCs start releas-

ing many growth factors, including epidermal growth factor (tissue regeneration), fibroblast

growth factor (cell survival and regeneration), platelet-derived growth factor (tissue repair),

vascular endothelial growth factor (angiogenesis and wound healing), hepatocyte growth factor

(intrinsic neural cell regeneration), angiopoietin-1 (angiogenesis) and stromal cell-derived factor-1

(neuroprotective effect). These growth factors, in turn, promote the development of fibroblasts,

endothelial cells and tissue progenitor cells, which carry out tissue regeneration and repair [33].

4.4. Homing

Studies have shown that MSCs have the ability to migrate and to home to a variety of tissues.

The migration process is represented by several distinctive steps and starts with the resistance

and adhesive interactions between cells flowing through the bloodstream and vascular endo-

thelium. The mechanisms used are assumed to follow the same steps that were described for

leukocyte homing.

In the first step, the cells come into contact with the endothelium by tethering and rolling.

Different molecules are involved in such process. The selectins on the endothelium are

primarily involved and the expression of hematopoietic cell E�/L-selectin ligand which is a

specialized form of cluster of differentiations (CD), CD44. This step is mediated by the

homing receptors expressed on circulating cells which interact with their corresponding

receptors expressed on the layer of endothelial cells. [34]. As regards the second step, the

cells are activated by G-protein-coupled receptors, followed by integrin-mediated activation.

MSCs express various integrins on their surface, among which integrin α4/β1, which medi-

ates cell–cell and cell- extracellular matrix interactions by binding to vascular cell adhesion

molecule �1 and to the V-region of fibronectin, respectively. In damaged tissues, fibronectin

is deposed together with fibrin at the injured site to stop the bleeding. The provisional matrix

is then remodeled by macrophages and fibroblasts, determining an increase in V region-

exposing fibronectin, which, in turn, allows MSCs to adhere and transmigrate into the

extracellular matrix. In the last step, diapedesis or transmigration occur through the endo-

thelium as well as through the underlying basement membrane. In this step one of the

Stromal Cells - Structure, Function, and Therapeutic Implications30



matrix metalloproteinases (MMP) - which are lytic enzymes required to cleave the compo-

nents of the basement membrane - the gelatinases MMP-2 and MMP-9 are the most impor-

tant because they specifically degrade collagen and gelatin components of the basement

membrane [35].

4.5. Characterization

MSCs isolated directly from bone marrow are positive for CD44. They are also positive for

CD29, CD73, CD90, CD105 and CD166. On the other hand, they are negative for the

hematopoietic surface markers such as CD11b, CD45, CD31, CD106, CD117 and CD135

[36]. As progress in phenotyping the MSCs and its progeny continues, the use of selective

markers has resulted in the enhanced propagation and enrichment of the MSC population,

while maintaining them in an undifferentiated state without diminishing the differentiation

potential [37].

A part of a work [38] was carried out at Department of Trauma, Hand and Reconstructive

Surgery, Johann-Wolfgang-Goethe University Hospital, Frankfurt, Germany. They demon-

strated that MSCs expressed typical MSCs specific antigens CD73, CD90 and CD105 (hemato-

poietic surface marker) and were negative for the hematopoietic marker and lymphocytic

markers CD34, CD45, respectively. According to the International Society of Cell Therapy,

CD73, CD90 alongside CD105 are positively expressed on MSCs and remain the primary

molecules used to identify MSCs [39]. The phenotypic characterization of MSCs from bone

marrow has been further realized through the identification of the cytokine expression profile

of undifferentiated cells. Constitutive expression of cytokines, such as granulocyte-colony

stimulating factor, stem cell factor, leukemia inhibitory factor, macrophage-colony stimulating

factor, and IL-6 and IL-11 is consistent with the ability of MSCs to support hematopoiesis [40].

5. Culturing

In order to avoid patient morbidity, the amount of MSCs that could be isolated from BM

aspirate should be too small [12]. Therefore, they should be cultured in vitro to enable the

expansion of MSCs to generate millions of cells which can be used for further therapeutic

applications [39]. It was stated that MSCs retain more potential to differentiate after the third

passage (P) [41]. In addition, over 70% of clinical trials used MSCs from 1 to 5 passages [42].

Moreover, a study reported that MSCs from 7 to 9 passages underwent osteogenic differentiation

more than cells of later passages. Moreover, recent data indicated that reactive oxygen species-

handling mechanisms (i.e., antioxidative activity/reduction potential) become disrupted in later

passages, a condition, which was not observed in the lower passage [43].

Although several researchers [41] showed that with the long-term expansion of MSCs and

with several sub-culturing, the cells lose their differentiating ability, a study performed [44]

reported that no change at the level of genetic expression or differentiation capability of long-

term cultured MSCs. Furthermore, MSCs have a stable phenotype over many generations
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in vitro [45]. Another study [46] reported that MSCs retained their multilineage differentiation

potential till passage 10 (P10) and maintain high levels of telomerase activity and long telo-

mere length up to P10, but steady decline in the efficiency of proliferation in all cell

populations after P10. Furthermore, MSCs showed a marked increase in the time required for

cell doubling and showed an enlarged, flattened cellular morphology at P15, after which they

ceased to undergo cell division but remained viable in culture. Thus, cells from passage 9 were

used for differentiation as it was needed to obtain sufficient cell numbers for use through

extensive cell quantity amplification and later passages were avoided [47].

6. Histology

Studying the behavior of MSCs in vitro has become an urgent need to give more insights on

their behavior in vivo and their mechanisms in initiating osteogenesis. Indeed, histological

examination of MSCs is one of the main goals for studying their morphology in vitro by light

microscope. Although it is a primary step, yet, it is not sufficient to rely on it alone, to detect

their behavior during their differentiation process, and as such it has to be accompanied by

ultrastructure examination to correlate between their morphology and behavior.

6.1. Light microscope

MSCs are characterized by being star-shaped cell with thin long processes [48]. Using hema-

toxylin and eosin stains, MSCs are characterized by pale cytoplasm, large vesicular nucleus

and multiple thin processes (Figure 1).

6.2. Phase contrast microscope

Regardless of the issue of origin, all MSCs share characteristics by consensus definition: they

are spindle-shaped and plastic-adherent. In our study, [38] isolated human bone barrow MSCs

Figure 1. Light microscopic picture of the umbilical cord showing MSCs with many thin processes (arrow). Each cell

exhibits a vesicular nucleus. Scale bar 50 μm.
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revealed that the cells were adherent to the surface of tissue culture plastic flask. Furthermore,

the cells were spindle in shape; which is considered as a second important characteristic of

mesenchymal cell morphology. Researchers [38] described a population of adherent cells in

culture till P5 (Figure 2). Most of the cells exhibited fibroblast-like spindle shape and showed

vesicular nuclei with prominent nucleoli. Moreover, in P9, the adherent cells remained

attached to the surface with their characteristic spindle shape (Figure 3). The cells exhibited

vesicular nucleus, prominent nucleolus and multiple processes [38].

6.3. Electron microscope

6.3.1. Scanning electron microscope (SEM)

The two-dimensional morphology of MSCs demonstrated by scanning electron microscope

(SEM) [38] showed the spindle-shaped cells with eccentric nuclei and several thin cytoplasmic

processes extending from the edge of the cell surface in P5 and P9. In addition, cells in P 9

maintained their spindle shape (Figure 4). These SEM results were also reported [49].

Figure 2. Cultured human bone marrow derived stromal cell from passage 5, showing adherent cells with their charac-

teristic spindle shape (arrow) [38]. Scale bar 200 μm.

Figure 3. Cultured human bone marrow derived stromal cell from passage 9, showing adherent cells with their charac-

teristic spindle shape (arrow) [38]. Scale bar 200 μm.
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6.3.2. Transmission electron microscope (TEM)

Electron microscopic examination of MSCs in culture revealed the presence of euchromatic

nucleus associated with abundant cell organelles which are considered as an indicator of an

active cell (Figure 5). The spindle-shaped cells showed large irregular, euchromatic nucleus

and the peripheral heterochromatin was slightly condensed along the inner surface of the

nuclear membrane and nuclear pores (Figure 6). The cytoplasm showed many elongated pro-

files of rough endoplasmic reticulum and multiple mitochondria (Figure 7). Cytoskeletal

structures were seen as fine filaments running parallel to the long axis of the cell near the

nuclear membrane as well as beneath the cell membrane (Figure 6).

The same features of active MSCs were noticed after 14 days in culture. The cells exhibited a

large euchromatic nucleus with numerous profiles of rough endoplasmic reticulum and mul-

tiple rounded mitochondria. In addition, the cell surface showed thin pseudopodia (Figure 7).

Cytoskeletal filaments were irregularly dispersed in the cytoplasm as well as around the

nucleus (Figure 7). Such observation was explained by the fact that the intracellular organelles

architecture is organized by the cytoskeleton [36, 50, 51].

Figure 4. Cultured human bone marrow derived stromal cell, showing spindle shape cell with an eccentric nucleus (N)

and multiple processes (P) [38]. Scale bar 50 μm.

Figure 5. Transmission electron micrograph of cultured human bone marrow derived stromal cell on day 7. The cell is

spindle in shape with an euchromatic nucleus (N). The cytoplasm shows mitochondria (M) and multiple lysosomes (L)

[38]. Scale bar 1 μm.
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Moreover, after 21 days in culture, the cells showed clearly demarcated nucleolus (Figure 8). In

addition, numerous large macro vesicles associated with the mature face of the Golgi complex

were clearly depicted (Figure 9). These cells are now ready for differentiation once in the

appropriate media. The structure of these cells would differ during the process of differentia-

tion accordingly.

Another ultrastructure feature of MSCs is the presence of vesicles in the cytoplasm.

Intercellular communication can be mediated through direct cell–cell contact or transfer of

secreted molecules. Recently, a third mechanism has emerged that involves intercellular trans-

fer of extracellular vesicles. Cells release into the extracellular environment membrane vesicles

either of endosomal origin or of plasma membrane origin. They are named exosomes and

microvesicles, respectively [52]. In the study [38] carried out on isolated MSCs, showed vesic-

ular trafficking. (Figure 10) These vesicles were prominent after the cells were cultured in a

Figure 6. Transmission electron micrograph of cultured human bone marrow derived stromal cell showing part of the

same cell exhibiting an euchromatic nucleus (N) with nuclear pores (arrow heads). The peripheral heterochromatin (H) is

seen along the inner aspect of the nuclear membrane. Fine cytoskeletal filaments are noticed parallel to the long axis of the

cell near the nuclear and cell membranes (arrows) [38]. Scale bar 0.5 μm.

Figure 7. Transmission electron micrograph of cultured human bone marrow derived stromal cell on day 14. The

cytoplasm exhibits numerous profiles of rER, mitochondria (M), and well-developed Golgi complex (G). The cell mem-

brane exhibits a pseudopodium (Pd). Cytoskeletal filaments are irregularly dispersed in the cytoplasm (arrows). Part of

an euchromatic nucleus is also seen (N) [38]. Scale bar 0.5 μm.
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Figure 8. Transmission electron micrograph of cultured human bone marrow derived stromal cells on day 21, showing

large euchromatic nucleus (N) with clearly demarcated nucleolus (n). The cytoplasm shows mitochondria (M) [38]. Scale

bar 1 μm.

Figure 9. Transmission electron micrograph of cultured human bone marrow derived stromal cells on day 21, showing

part of its cytoplasm with multiple well-developed Golgi complexes (G) associated with large secretory vesicles (V),

numerous mitochondria (M), and lysosomes (L). The cytoplasm shows profiles of rough endoplasmic reticulum (rER)

[38]. Scale bar 0.5 μm.

Figure 10. Transmission electron micrograph of cultured human bone marrow derived stromal cells. The cytoplasm

shows several cytoplasmic vesicles (Vs) of variable sizes. A coated pit (arrowhead) and numerous subplasmalemmal

vesicles are also seen (thick arrows). A surface pseudopodium (Pd) is seen [38]. Scale bar 0.5 μm.
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media that stimulated its osteogenic differentiation. Microvesicles vary in size and are formed

by the budding of the plasma membrane. Most cell types are known to produce microvesicles

either constitutively or when stimulated during apoptosis or activation. The mechanisms

involved in the mobilization of secretory microvesicles to the cell periphery, their docking,

and fusion with the cell surface require the cytoskeleton (actin and microtubules), associated

molecular motor proteins (kinesins and myosins) as well as other factors [53, 54]. The other

clearly defined class of secreted membrane vesicles that originate from the endosomes are the

exosomes. Exosomes were first discovered by Pan and Johnstone in 1983 [55]. They are formed

by the invagination of endolysosomal vesicles to form multi-vesicular bodies. Exosomes are

released by exocytosis. First, the cell membrane is internalized to produce endosomes. Subse-

quently, many small vesicles are formed inside the endosome by invaginating parts of the

endosome membranes. Such endosomes are called MVBs. Finally, the MVBs fuse with the cell

membrane and release the intraluminal endosomal vesicles into the extracellular space to

become exosomes [56].

Exosomes directly interact with the signaling receptors of target cells [57]. After that, the

exosomes fuse with the plasma membrane of recipient cells and deliver their content into

the cytoplasm [58]. Finally, the exosomes are internalized into the recipient cells. Once in the

recipient cell, some of these engulfed exosomes may merge into endosomes and move

across the recipient cells to be released into the neighboring cells. In the other case,

endosomes fused from engulfed exosomes will mature into lysosomes and undergo degra-

dation [57, 59].

Lipids and proteins are the main components. The protein content of exosomes from different

cell types contains different endosome-associated proteins (e.g., RabGTPase, SNAREs, Annexins

and flotillin). They are also enriched in proteins that associate with lipid rafts, including

glycosylphosphatidylinositol-anchored proteins and flotillin [60]. The other main component of

exosomes is the lipid. In comparison to the plasma membrane, exosomes are highly enriched in

cholesterol, sphingomyelin and ceramides at the expense of phosphatidylcholine and phospha-

tidylethanolamine [52]. In addition to the proteins and lipids, various nucleic acids have recently

been identified in the exosomal lumen, including mRNAs, microRNAs and other noncoding

RNAs [61].

The main functions of exosomes are their capacity to act as antigen-presenting vesicles, to

stimulate immune responses [62]. Another main important feature of exosomes is being an

ideal drug delivery vehicle. Meanwhile, research has been carried out encapsulating anticancer

drugs into exosomes [63].

The function of MSC-derived exosomes has not been well defined. They act as an intercellular

communication vehicle for modulating cellular processes. It was recently revealed that

exosomes derived from MSCs play important roles in mediating the biological functions of

MSCs [64].

A study demonstrated the electron microscopy of exosomes. They were cup-shaped and

measured 40–100 nm in diameter. Exosomes are naturally secreted and well tolerated by the

body. They are also safely stored and provide many therapeutic applications with avoiding the
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risk of immunological rejection and malignant transformation [65]. Therefore, the use of MSCs

to produce exosomes for drug delivery is the subject of the day [66]. Recently, liposomes are

preferred drug delivery systems. It is a synthetic vesicle with a phospholipid membrane that

has the ability to self-assemble into various sizes and shapes in an aqueous environment [67].

Another morphological feature detected is pseudopodia-like structures extending from the cell

membrane (Figures 7 and 10). This might explain the capacity of the cells for migration within

the receiving tissue. The main role of these structures is to transmit the produced material from

one cell into another by extending the pseudopodia and communicating cells with each other

as well as in cell signaling [68]. Interestingly, one of the most striking features during differen-

tiation is the observation of finger-like extensions of the plasma membrane known as

fibripositors (Figure 11). These fibripositors were located at the side of the cell and protrude

into the spaces between cells. These fibripositors are the site where collagen fibrils were

located. It was reported that the initial stage of extracellular matrix deposition results in arrays

of short collagen fibrils completely enclosed within these fibripositors. These fibrils are then

subsequently deposited extracellularly [69, 70].

It was reported that fibrils leaving the fibripositors were seen to run along the external surface

of the cell. Tracking of fibrils revealed that the collagen fibrils in fibripositors were shorter than

those extracellularly. Thus, these data suggested that fibripositors might be a place of fibril

assembly. They determined that short fibrils become longer inside closed fibripositors, then

protruding fibripositors (open), often project into the matrix, releasing fibrils extracellularly

where individual fibrils then coalesce into bundles. Thus, fibripositors are specialized sites not

only of fibril assembly, but also share in fibril transport extracellularly [71].

Another study declared that the fibripositors are dynamic structures and their formation and

stabilization depend on the actin cytoskeleton [72]. This might explain the existence of the

cytoskeletal filaments in the differentiating cells [38]. Accordingly, these cytoskeletal structures

might be actin filaments. It is possible that fibripositors have been involved in the alignment of

extracellular collagen fibrils in a parallel arrangement [73].

Figure 11. Transmission electron micrograph of cultured human bone marrow derived stromal cells. The cell surface of

shows an open fibripositors (short arrow) with large amounts of secretory product (S) is observed. Note the euchromatic

nucleus (N) [38]. Scale bar 0.5 μm.

Stromal Cells - Structure, Function, and Therapeutic Implications38



7. Conclusion

The MSCs maintained their undifferentiated histological structure till passage 9 for further

tissue engineering. A detailed histological examination using the light and the electron micro-

scopes is essential to understand the function of MSCs. In addition, exosomes represent a

promising candidate for drug delivery vehicle.

Abbreviations

ESCs embryonic stem cells

iPS induced pluripotent stem cells

FSCs fetal stem cells

MSCs mesenchymal/stromal cells

CD cluster of differentiation

MMP metalloproteinases

P passage

SEM scanning electron microscope

TEM transmission electron microscope

SNARE soluble N-ethylmaleimide-sensitive factor receptor

Rab Ras-related proteins in brain

GTP guanosine triphosphate
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