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Abstract

The dynamics of micro-piezoelectric resonators can be profoundly affected by immersion
in fluids. Aluminum nitride-based piezoelectric microresonators are fabricated and tested
under controlled pressures in several gases. The cases on microresonator vibrating in fluid
can be broadly divided into: (i) those that deal with vibration in free space and (ii) close to
a surface. For the first case, experimental and analytical results for the hydrodynamic
loading characteristics of the resonators at different resonant modes have been investi-
gated, as well as the influences of fluid viscosity and compressibility. For the second case,
most prior efforts have been focused on squeeze-film damping with very narrow gaps,
while in many practical applications, the resonators vibrate close to a surface with a
moderate distance. Experiments by using a micro-bridge resonator with a big range of
gaps are performed and compared with predictions from theoretical models.

Keywords: aluminum nitride, fluid-structure interaction, viscous damping,
compressibility, wall effect

1. Introduction

Piezoelectric microresonators have been recently used in a large variety of applications [1–9],

due to their tiny structures [10] and ultrahigh sensitivity [11], let alone their self-exciting and

self-sensing capability, together with full integration, as compared to electrostatic [12], electro-

magnetic [13], or optically associated [14] structures. Regarding the piezoelectric materials,

aluminum nitride (AlN) was selected in this work, to be compatible with complementary

metal-oxide-semiconductor (CMOS) technology. Besides, by carefully controlling the fabrica-

tion parameters [15], AlN film with high piezoelectric coefficients and low intrinsic stress can

be obtained.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Microresonators are normally operated in fluids (such as air or liquid) at atmosphere or under

reduced pressure. The resonator parameters, such as resonance frequency fr, quality factorQ or

phase shift, may change due to environmental influences. TheQ factor is defined as the ratio of

stored energy to the dissipated energy per cycle, equivalents to fr/△f, where △f is the peak

width at half power. In general, a high Q factor is preferred for micro-resonator sensors, as

high Q factor results in a sharper resonance peak and a better detectable resolution.

The energy loss Q�1 for a resonator consists of intrinsic energy loss Qint
�1 (e.g., radiation of

elastic energy into attachment and structural friction) [16] and external losses Qflu
�1 (e.g.,

acoustic, viscous, and squeeze-film damping) into the surrounding fluid. Qint
�1 can be mea-

sured by operating the resonator in a high vacuum. When operating in a fluidic environment,

Qflu
�1 would be the major energy loss source. The cases on microresonator vibrating in fluid

can be broadly divided into (i) those that deal with vibration in free space and (ii) close to a

surface. Experimental and analytical results for the hydrodynamic loading characteristics of

the resonators in both cases are presented in this chapter.

2. Experimental techniques

In this section, we describe the experimental techniques, including the device fabrication,

packaging, measurement setup, and electric readout. Piezoelectric AlN-based resonators were

fabricated and tested.

2.1. AlN-based piezoelectric microresonator fabrication

The AlN thin films were deposited using reactive sputtering. Films with good c-axis orienta-

tion [15] have been successfully achieved, and the effective piezoelectric constants were mea-

sured as: d33 = 3 pm/V and d31 = �1.0 pm/V [17].

Low resistivity (less than 0.1Ω cm) p-type (100) single crystal silicon (SCS) wafer was used as a

resonating element, serving simultaneously as a bottom electrode. The fabrication process is

shown as in Figure 1. The SCS wafer was oxidized in high temperature furnace to form 120 nm

thick SiO2 layers on both sides, and then a 500 nm thick PECVD SixNy layer was deposited on

the bottom side of the wafer (Figure 1a). In a next step, a 1 μm thick AlN film and a 300 nm

thick gold film were deposited on the top side and etched to form a sandwiched piezo-

electrode stack (Figure 1b). The resonant beam was formed by back side wet etching and then

released by a dry etching process (Figure 1c). Figure 2 shows an optical micrograph of a

fabricated resonator.

2.2. Device packaging

Two resonator packages were used to investigate the hydrodynamic loading effects in free space

or close to a surface. For vibration in free space, the resonator chip was mounted on a printed

circuit board, with a pre-drilled hole (c.f. Figure 3a and b), and the resonator is suspended several

millimeters away from any surface, much bigger than the resonator dimensions. For vibration

Piezoelectricity - Organic and Inorganic Materials and Applications44



close to a surface, a curved cover was clamped on the top surface of the resonator (c.f. Figure 3c,

d), and the cavity depth h0 of the cover varies from 20 to 300 μm.

2.3. Measurement setup

The packaged resonator is then mounted on an electronic circuit (whose major functions are

electrical crosstalk compensation and signal amplifier, for details one can refer to [18, 19]) and

then placed in a custom-built vacuum chamber, wherein the pressure can be controlled from

atmospheric pressure down to high vacuum (lower than 10�4 mbar). Meanwhile, five noble

gases (He, Ne, Ar, Kr, and Xe) and N2 are used to observe the resonator performance variation.

Figure 2. Micrograph of a piezoelectric resonator.

Figure 1. Flow chart of the fabrication process.
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The noble gases are chosen in this work, since they are all monatomic gases with gradually

increasing density and decreasing sound speed under standard conditions. Figure 4 shows (a)

the camera picture (the gas bottles are behind the chamber, not shown in the picture) and (b)

the schematic diagram of the measurement setup used to characterize the resonator behavior.

2.4. Electric readout

The resonance frequencies and Q factors of the packaged resonators were measured and

characterized under controlled pressures. For vibrations in a high vacuum (10�4 mbar), a high

Q value can be achieved and the fluidic damping is negligible. Increasing the ambient pressure

results in a slight shift in fr but a dramatic reduction in the Q factor, as shown by example

resonant curves in Figure 5.

3. Hydrodynamic loading on vibrating microresonators

In this section, the research interest is focused on beam-shaped resonators operating in gas

media. First, the full set of Navier-Stokes (N-S) equation is semi-analytically solved, and the

solution can be interpreted by a “three wave theory” with coupled viscous, thermal, and

acoustic waves. Second, for slender structures at moderate reduced pressures, viscous drag is

typically the dominant loss mechanism. The influence of the fluid’s viscosity, density, and

compressibility on the energy loss of the vibrating beam is discussed. Third, in many practical

Figure 3. The photos (a and c) and schematic cross-sectional views (b and d) of packaged chips for vibration in free space

and close to a surface, respectively.
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applications, resonators are vibrating near a surface, and the influence of the vicinity on such a

surface is experimentally and analytically evaluated.

3.1. Full N-S model and numerical simulation

For a continuous fluid, the most extensive type of theoretical model is based on the full set of

N-S equations, which takes into account of fluid compressibility, thermal conductivity, and

viscosity. The variables are density, pressure, temperature, and velocity that all vary around

the resonator.

3.1.1. Theory

The basic equations governing the fluid motion induced by vibration are the compressible N-S

equation, the equation of continuity, the equation of state for an ideal gas, and the energy

equation [20]. The equations can be written as:

Figure 4. (a) The camera picture and (b) the schematic diagram of the measurement setup used to characterize the

microresonators in the vacuum chamber.
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∂u=∂tþ u � ∇ð Þu ¼ �
1

r
∇pþ

4
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η

r
∇ ∇ � uð Þ �

η

r
∇� ∇� uð Þ, (1)

r ∇ � uð Þ þ ∂r=∂t ¼ 0, (2)

p ¼ Cp � Cv

� �

rT, (3)

rCp∂T=∂t ¼ κΔT þ ∂p=∂t, (4)

where u, Cv, and t denote, respectively, the velocity vector, heat capacity at constant volume,

and time. The operators ∇ and Δ are the gradient and Laplace operator, respectively.

A solution of the full model called Boundary Element Method (BEM) [21, 22] is discussed here.

The velocity is written as the sum of a viscous velocity uv, due to viscous effects, and a laminar

velocity ul:

u ¼ uv þ ul, (5)

which satisfy the conditions that the divergence of the viscous velocity is zero: ∇ � uv ¼ 0, and

the rotation of the laminar velocity is zero: ∇� ul ¼ 0.

The pressure is also split up into two components:

p ¼ pa þ ph, (6)

where pa is the acoustic pressure and ph is the thermal pressure. Splitting the acoustic variables

Figure 5. Resonant measurements of a microresonator under the pressures from high vacuum to 1000 mbar in an N2

environment for the first flexural mode.
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facilitates rewriting the governing equations into scalar wave equations for the acoustic and

thermal pressures and a vector wave equation for the viscous velocity:

Δþ ka
2

� �

pa ¼ 0, (7)

Δþ kh
2

� �

ph ¼ 0, (8)

Δþ kv
2

� �

uv ¼ 0: (9)

The temperature fluctuation ∆T is the sum of acoustic and thermal temperature variations

related to the acoustic and thermal pressures by:

ΔT ¼ αapa þ αhph, (10)

and the laminar velocity ul is written as:

ul ¼ ϕa∇pa þ ϕh∇ph: (11)

The exact expressions for ka, kh, kv, αa, αh, ϕa, and ϕh can be found in the literatures [21, 22].

3.1.2. Physical interpretation

The solution of the full N-S model can be interpreted as follows: the resonator vibration results

in acoustic wave propagation in the ambient fluid. The acoustic domain can be divided into a

boundary layer and the bulk region, as illustrated in Figure 6. In microscaled geometries, the

boundary layer occupies a substantial part of the acoustic domain, the acoustic model needs to

account for the viscothermal effects to accurately describe the wave propagation.

Mechel [23] describes the viscothermal acoustic equations as the interaction of viscous, ther-

mal, and acoustic waves. The viscous kv, thermal kh, and acoustic ka wave numbers are derived

as: kv
2 = �iωr/η, kh

2 = �iωrCp/κ, and ka = ω/c0. Viscous and thermal waves are heavily damped,

as their wavelengths λv and λh have comparable length scales with the boundary layer

Figure 6. Two regions in the acoustic domain: the bulk and the boundary layer, and three waves due to vibration.
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thickness; while the acoustic wave is slightly damped and propagates mainly in the bulk

regime. Figure 7 compares these characteristic length scales for vibration in air at frequencies

from 1 kHz to 1 MHz.

For microresonators vibrating at low frequencies, the characteristic length of the resonator

(e.g., width of the resonant beam) is much smaller than the acoustic wavelength propagating

in the fluid. The acoustic wave develops so weakly that the bulk region can be ignored and the

fluid is assumed as incompressible, and the vibration energy is mainly dissipated due to the

viscothermal effects. Consequently, the fluid motion can be modeled accurately by incom-

pressible N-S equations. However, as frequency increases, the acoustic wavelength reduces to

smaller than the characteristic length of the resonator. The bulk regime can become significant

and the acoustic wave starts to radiate vibration energy. Therefore, compressibility can become

important for operation at higher frequencies.

3.1.3. Comparison between experiments and simulations

Resonators with different geometry and dimensions have been fabricated to verity the pre-

dictions of the full N-S model. One of the AlN-based resonators is shown in Figure 8, the insert

shows the resonator chip mounted on a printed circuit board. The resonator has been tested

from high vacuum to normal atmosphere.

The full model equations are solved and simulated with a self-developed FEM solver using

MATLAB. Figure 9 shows the simulated pressure, density, temperature, and velocity ampli-

tude distributions of the air gap in the xz plane at 0.01 and 1000 mbar. The amplitude profiles

in Figure 9 indicate that, compare to vibration in the higher pressure, the pressure and density

perturbation are more constant, and the temperature is more homogenous across the air gap in

the lower pressure.

The measured and simulated air damping coefficients under different pressures are shown in

Figure 10. This figure indicates that simplified models, such as viscous model or squeeze

model, are not suitable in this case, since they are accurate only for resonators with slim beams

Figure 7. Characteristic length scales for vibrations in air: acoustic (solid), viscous (dashed), thermal (dotted) wave-

lengths, and boundary layer thickness (dash-dotted).

Piezoelectricity - Organic and Inorganic Materials and Applications50



or narrow air gaps. In the free molecular region, the free molecular model is reasonable. The

full N-S model yields good agreement in the whole pressure range.

3.2. Hydrodynamics of microresonators vibrating in unbounded fluids

3.2.1. Measurement results at atmospheric pressure

The AlN-based microresonators were tested in the chamber filled with different gases under

atmospheric pressure, as shown in Figure 11. The resonance curve variations indicate that the

resonance frequency fr decreases as the density of the gas increases, shifting from 7 kHz for He

(r = 0.18 kg/m3) to 6.91 kHz for Xe (r = 5.90 kg/m3).

Figure 8. The geometry of the resonator (in μm). The insert shows the photo of the resonator [24].

Figure 9. Amplitude profiles of (a) pressure, (b) density, (c) temperature, and (d) velocity in the air gap at 0.01 mbar

(column I) and at 1000 mbar (column II) [24].

Hydrodynamic Loading on Vibrating Piezoelectric Microresonators
http://dx.doi.org/10.5772/intechopen.77731

51



To excite the cantilever in higher resonant modes, the frequency of the driving voltage was

scanned from 5 to 250 kHz. Figure 12 shows the resonance frequency response of the cantile-

ver in N2 at atmospheric pressure. Finite element analysis software COMSOL was used to

assign the resonant modes to the observed peaks. The resonant mode shapes inserted in the

figure are obtained by this software and depict the displacement of the cantilever for each

mode.

Figure 10. Air damping coefficient of the resonator as a function of ambient pressure [24].

Figure 11. Resonant measurements of the cantilever with different gases at atmospheric pressure in its first flexural mode [25].
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To evaluate the fluidic hydrodynamic loading effects, the cantilever vibrating in different

resonant modes has been characterized in different gases at atmospheric pressure. Only the

first two modes for Kr and Xe could be detected, since the signal of higher modes was too

weak. The remaining gases are successfully characterized up to the fourth flexural mode. Pure

fluidic hydrodynamic loading is evaluated by subtracting the intrinsic damping, which can be

measured in a high vacuum.

The quality factor induced by gas damping Qgas in atmospheric pressure is characterized

and illustrated in Figure 13. Resonator immersed in He shows the highest Q factors for all

modes. The two lightest gases, He and Ne, exhibit a continuous increase in Qgas with the

mode number, whereas for Ar and N2, Qgas decreases beyond the third mode. Taking N2

as an example, the measured values of Qgas increase from 543 to 1890 for the first to third

Figure 12. Amplitude spectrum and mode shapes of the cantilever at normal atmospheric N2 [25].

Figure 13. Q factors due to gas damping of the different flexural modes at atmospheric pressure [25].
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modes. However, this trend is broken when Qgas reduces to 1645 for the fourth flexural

mode, indicating that Qgas will not increase in an unlimited way with increasing mode/

frequency.

The corresponding resonance frequency shift ∆f, defined as fr,vac � fr, where fr,vac corresponds

to the resonance frequency fr in vacuum, has been characterized. Figure 14 shows ∆f as a

function of density r for different gases. The results in this figure indicate a dependence on

both fr and r.

3.2.2. Measured results at reduced pressures

The resonators were further tested at reduced pressures to investigate the influence of ambient

pressure. Figure 15 shows the measured Q factor curve of one resonator vibrating at the first

flexural mode as a function of N2 pressure. When the pressure is sufficiently low (<10�3 mbar

in this figure), the damping is independent of the fluid and relates only with intrinsic losses in

the resonator structure. Consequently, this pressure regime is called the intrinsic regime. Gas

damping starts to become visible at higher pressure levels. Three regions can be identified by

using the Knudsen number Kn (defined as the ratio between the mean free path of the fluid

and the width of the resonator):

• The molecular regime (Kn > 10): damping is caused by independent collisions of non-

interacting fluid molecules with the vibrating surface of the resonator and/or surrounding

walls.

• The transition regime (0.01 < Kn < 10): the fluid is neither noninteracting nor contin-

uous.

• The continuous regime (Kn < 0.01): the fluid acts as continuum and most previous papers

(e.g., [26, 27]) found that the viscous drag is typically the dominant energy loss mecha-

nism based on the incompressible gas assumption.

Figure 14. Resonance frequency shifts ∆f of the different flexural modes at atmospheric pressure [25].
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3.2.3. Results analysis

It is found that the fluidic loading has a strong effect on the resonant behavior of the resonator,

especially at higher pressures (e.g., near atmospheric pressure). The following analysis focuses on

fluidicdampingat atmospheric pressure,which is commonlypresent inmanypractical applications.

Viscous drag is typically the dominant loss mechanism, for most microdevices vibrating at

relatively low frequency. For a microcantilever with dimensions of length l, width w, and thick-

ness h, undergoing flexural vibrations in a continuous incompressible fluid, the correspondingQ

factor due to viscous damping is given by [25, 28, 29]:

Qvis ≈
rbh
ffiffiffiffi

π
p

ffiffiffiffiffiffi

f r
rη

s

, (12)

where rb is the cantilever beamdensity. It can be seen that theQ factor scales inversely proportional

with
ffiffiffiffiffiffi

rη
p

and proportional with
ffiffiffiffi

f r
p

, which means that a higher resonance frequency (or higher

resonant mode) results in a higher Q factor. The measured and calculated Q factors Qgas of the

different flexural modes are plotted in Figure 16 as a function of the combination of the resonance

frequency fr, the density r, and the viscosity η of the surrounding gases. However, as noted before,

a decrease of the quality factor is observed for the third and fourth modes of Ar and N2.

One possible reason is the additional acoustic damping due to the compression of the fluid.

Incompressible flow is expected for low frequency vibrations, since the wavelength of sound in

the fluid is much longer than the dominant length scale of the vibrating beam. As the resonant

mode increases, the acoustic wavelength reduces and the incompressible gas assumption is no

Figure 15. Variation of the Q factor with N2 pressure. The solid diamond points are the measurements, while the hollow

points are the derived Q factors due to fluidic damping.
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longer valid [25, 29, 30]. Thus, at high frequencies, acoustic energy loss becomes important in

addition to viscous loss.

3.3. Hydrodynamics of microresonators vibrating close to a surface

3.3.1. Measured results

Wehavemeasuredbridge resonator different gapdepths to understandhow fluidic hydrodynamic

load is modified when the resonator is vibrating near a surface. The case of vibration at free space

was alsomeasured for comparison.Webeginbypresenting results of the resonance responsesof the

resonator immersed in atmosphericN2 at room temperature, as shown in Figure 17.

It is obvious that the air gap has a strong effect on the resonance behavior. A general trend is the

resonance peak getting broaden and shifting to lower peak frequency as the gap depth decreases.

There results fit with the expectation that the fluidic damping increases significantly when

approaching toward a surface. We have also observed that the resonance frequency shift is

relatively insensitive to air gap when the separation h0 is bigger than 150 μm, which corresponds

to a gap to the resonator width ratio of more than 0.5. However, for h0 = 150 μm, the Q factor is

approximately 20% less than vibration without gap, and for h0 = 250 μm, the Q factor differs by

only less than 2%.

To quantify the pressure effect on the dissipation in the fluid as the resonator is vibrating near

a surface, it was further measured under reduced pressures. Figure 18 shows the quality

factors for different gap heights and pressures in N2 atmosphere.

3.3.2. Review of analytical models

In many practical applications, restrictive squeeze-film assumption (very narrow air gap) does

not always hold; thus, traditional squeeze-film models are not suitable in those cases. Two

Figure 16. Evolution of the Q factors as a function of fr/(rη) for different gases and resonant modes at atmospheric

pressure. The dashed line represents the viscous model (Eq. (1)) prediction [25].
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recently improved models, namely (a) extended squeeze-film model [32, 33] and (b) unsteady

N-S model [34–36], are considered for describing the behavior of the resonators with moderate

gap depths.

Figure 17. Resonant curves of a bridge resonator in fundamental mode at atmospheric N2. The curves for gap depths of

250 and 300 μm and ∞ are overlapped. The dashed lines in the inserted figure represent the limit for the resonator at free

space [31].

Figure 18. Variation of Q factors with ambient pressure for N2 with different gap heights [31].
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3.3.2.1. Extended squeeze-film model

Osborne Reynolds first formulated the theory for a squeezed film between two surfaces in

relative motion to each other more than a century ago [37]. Generally, the compressibility

should be considered and its importance increases as vibration frequency. An important

measure for the squeezed-film effect is the squeeze number:

σ ¼
12ηw2ω

ph0
2

, (13)

where η is the fluid viscosity, ω is the angular frequency of the resonator, p is the ambient

pressure, w is the width of the resonator, and h0 is the gap depth. The number σ specifies the

ratio between the spring force due to the gas compressibility and the force due to the viscous

flow. When σ is much smaller than 1, the gas in the film has enough time to “leak” out; thus,

the gas is referred to as incompressible. For the resonator geometry in this study, the resonator

width w and the gap depth h0 are of the same order, e.g., h0/w > 0.05. For air at atmospheric

pressures, the vibrating frequency should be higher than 150 kHz to ensure σ is bigger than 1.

When σ is very small, the compressible effects can be ignored and the damping coefficient for a

slender resonator can be written as:

c ¼
ηlw3

h0
3
, (14)

and Q factor is then given by:

Q ¼
rbtω

ηw2
h0

3, (15)

herein rb, l and, t are the density, length, and thickness of the resonator, respectively.

An effective plate width weff ¼ wþ Δw is introduced, to include border effects into the much

simplified squeeze-film model. The effective width is such that the damping force for the

enlarged plate with trivial boundary conditions has the same values as that of a real device

size with the border effects. This concept is illustrated in Figure 19.

One method to predict the elongation caused by the border effect was proposed by Veijola

et al. [32, 33], based on a series of 2D and 3D FEM simulations. A simple conclusion has been

obtained for a slender beam:

Figure 19. Schematic diagram of extended squeeze-film model.
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Δw ¼ 1:3h0: (16)

The fluidic damping coefficient due to air gap is:

c ¼
ηl wþ 1:3h0ð Þ3

h0
3

: (17)

The quality factor consequently is:

Q ¼
rbwtω

η wþ 1:3h0ð Þ3
h0

3
: (18)

To account the non-continuum fluid behavior at very low pressures or for a narrow gap, an

effective viscosity ηeff is used instead of the gas dynamic viscosity η. Burgdoufer [38] obtained a

simple form for the effective viscosity coefficient:

ηeff ¼
η

1þ 6Kn
: (19)

3.3.2.2. Unsteady N-S model

Another method to deal with moderate gaps can be based on the unsteady incompressible

N-S equation and the continuity equation [20]. For a beam undergoing normal oscillations in

a viscous fluid, the general form of the hydrodynamic force in the vibration direction is given

as [39]:

Fd ¼
π

4
rω

2w2lΓ Reð ÞŴ xjωð Þ, (20)

where r is the fluid density, Ŵ is the Fourier transformation of the resonator beam deforma-

tion. Γ, the so-called “hydrodynamic function”, is a complex term: the real part Γreal represents

the inertial forces of the fluid or added mass components, whereas the imaginary part Γimag is

proportional to the viscous forces of the fluid or damping components.

The general form of the semi-analytical formula for the hydrodynamic function is Γ Re;Hð Þ

¼ 10ΓL where

ΓL Re;HLð Þ ¼ a1 þ a2ReL þ a3ReL
2 þ a4ReL

3
þ a5ReL

4

þa6ReLHL þ a7HL þ a8HL
2 þ a9HL

3 þ a10HL
4

þa11ReLH
LL

2
þ a12ReL

2
HL þ a13ReLHL

3 þ a14ReL
3

HL

þa15 ReLHLð Þ2 þ a16 ReLHLð Þ3,

(21)

HL ¼ log10 Hð Þ, and ReL ¼ log10 Reð Þ. The coefficients ak, k = 1, 2, …, 16, have complex values.

They are tabulated in Tung et al.’s paper [36]. The fit is valid in the range of 10�2
< Re < 104

and 10�1
< H < 10. The Q factor due to the fluid damping is defined by
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Q ¼

4rbt

πrwΓimag
: (22)

The calculations are technically valid only when the continuum hypothesis holds. This is

because the theory is based upon a subset of the N-S equations, which are based on a contin-

uum assumption. The useful range of this semi-analytical expression can be extended beyond

the continuum regime and into the slip and transition regimes by using an effective viscosity

concept.

3.3.3. Results analysis

The predictions from squeeze film (Eq. (13)), extended squeeze film (Eq. (18)), unsteady N-S

(Eq. (22)), and viscous (Eq. (12)) models are compared with the experimental data. Figure 20

shows the results for the first flexural mode of the bridge resonator oscillating in atmospheric

N2 with different gap depths. The intrinsic damping of the resonator can be obtained by

operating in a high vacuum, and this damping was subsequently removed mathematically,

leaving only the fluidic damping to be analyzed.

The traditional squeeze-film damping model overestimates the Q factor and the divergence

increases rapidly as the gap depth increases. While the extended squeeze-film model predicts

well the squeeze-film damping up to gap depth of 50 μm. This model accurately predicts the

fluidic damping well even into the free molecular regime, indicating the “effective viscosity”

concept is reasonable to account the rarefaction effect of the gas in a narrow gap. The unsteady

N-S model predictions are in better agreement with measurements as compared to other

models. The viscous model fits well with the measurements in the viscous regime, but when

the pressure decreases into the transition regime, this model loses its validity.

Figure 20. Q factors due to fluidic damping of a resonator. The squares represent the measurements, and the dashed lines

represent the analytical/semianalytical calculations, while the solid line shows the viscous model prediction [31].
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4. Conclusion and discussion

In this work, AlN-based piezoelectric microresonators have been fabricated and measured to

study the fluidic hydrodynamic loading mechanisms. Experimental, computational, and ana-

lytical tools have been developed, to analyze the dynamics of the resonators in different gases

from atmospheric pressure to high vacuum.

For resonators vibrating in a continuous fluid, the extensive type of theoretical model is based

on the full set of N-S equations. The equations were semi-analytically solved using the BEM

method. The solution can be interpreted as coupling of viscous, thermal, and acoustic waves.

However, this method does have some disadvantages, such as being computationally costly,

relying on sophisticated numerical techniques, and being non-intuitive with respect to under-

stand the results physically.

The resonators vibrating in free space fluids have been investigated, by measuring microcan-

tilevers in different gases and explaining the results using simplified models based on the

incompressible N-S equation. The analytical models agree reasonably with measurements.

Besides, it is found that the compressibility of gases leads to additional acoustic damping

when vibrating in higher mode/frequency.

For vibration close to a surface, experiments were performed using a bridge resonator with a

big range of gap depths. The traditional squeeze-film model could predict the squeeze-film

damping when the ratio of the resonator width to gap height w/h0 was bigger than 10, and the

gas rarefaction effect in the gap can be accounted by using an “effective viscosity” concept. The

extended squeeze-film model was valid for w/h0 ≥ 4. The unsteady N-S model could be used

when the gap height was even bigger.
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