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Abstract

With the end of Moore’s law in sight, new computing paradigms are needed to fulfill 
the increasing demands on data and processing potentials. Inspired by the operation 
of the human brain, from the dimensionality, energy and underlying functionalities, 
neuromorphic computing systems that are building upon circuit elements to mimic the 
neurobiological activities are good concepts to meet the challenge. As an important factor 
in a neuromorphic computer, electronic synapse has been intensively studied. The utili-
zation of transistors, atomic switches and memristors has been proposed to perform syn-
aptic functions. Memristors, with several unique properties, are exceptional candidates 
for emulating artificial synapses and thus for building artificial neural networks. In this 
paper, metal oxide-based memristor synapses are reviewed, from materials, properties, 
mechanisms, to architecture. The synaptic plasticity and learning rules are described. 
The electrical switching characteristics of a variety of metal oxide-based memristors are 
discussed, with a focus on their application as biological synapses.

Keywords: memristor, metal oxide, synapse, neuromorphic computing,  
synaptic plasticity

1. Introduction

With the aid of modern technology, human society has entered into a new big data era. Meanwhile, 

it brings a new challenge to humans for data processing. Despite the great success in the past 

decades, the traditional computer based on Von Neumann architecture and complementary metal 

oxide semi-conductor (CMOS) technology is still suffering limitations of dealing with big data 
while it can only deal with well-defined data. These machines cannot compete with the biological 
system in solving the imprecisely specified problems of the real world which are very simple 
for biological beings [1, 2]. Even though the digital computers can emulate some functionality 
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of certain animals with comparable speed and complexity, the energy consumptions increase 

exponentially as the animal hierarchy becomes higher with a very huge volume. Conversely, the 

biological brain is a compact dense system which can offer parallel processing, self-learning, and 
adaptivity with a combination of storage and computation in very low power consumption [3]. In 

these decades, the implementation of Von Neumann architecture computers to mimic biological 

systems has been in the form of software but such simulations are not comparable to biological 

systems in terms of efficiency and speed due to the physical limitation of those digital computers. 
Even the artificial neural networks based on CMOS-integrated circuits are far inadequate for con-

structing bionic systems. The truly reason for this drawback is the need to transfer data between 
a memory(storing data) and a processor(computing based on the data). This requirement of data 

transfer generates an intrinsic delay and inefficiency, which is a bottleneck for all CMOS-based 
neural networks [4]. In the past decades, the semi-conductive technology has led to great progress 

under the aid of the rapid development of the electronic industry, which has promoted the steps 

forward to develop artificial neural networks. In 2011, the supercomputer Watson, with 2880 com-

puting cores [5], won the human-machine contest which proved that supercomputers have their 

advantages in some aspects [6]. But the important point that has been ignored in this comparison 

is the energy consumption and the physical volume of the computers. Watson has thousands of 

cores and requires about 80 kW of power and 20 tons of air-conditioned cooling capacity [7], while 

the human brain occupies space like a soda bottle and consumes power of 10 W.

Therefore, an alternative approach to building a brain-like or neuromorphic computational 
system with distributed computing and localized storage in networks becomes an attractive 
option [1, 8–11]. The brain-like computational system can outperform conventional comput-
ers with good performance in handing the real-time processing of unstructured sensory 

data, such as image, video or voice recognition, navigation, etc. [12–17]. Also, the brain-like 
computational system has the advantages of architecture and function compared to conven-

tional computers, offering massive parallelism, small area, scalability, power efficiency, the 
combination of memory and computation, self-learning and adaptivity [3]. Many researches 

have helped us understand how neurons and synapses function and revealed how essen-

tial synapses are to biological computations, especially in memorizing and learning [18–21]. 

However, building compact neuromorphic computing systems remains as a challenge, espe-

cially for the lack of electronic elements which could mimic the biological synapses. In recent 
decades, the research of neuromorphic systems is renewed by the understanding of biological 

neural networks and the emergence of new nanodevices. Particularly, the emergence of the 
fourth electronic element, memristor [22–28], makes it feasible to construct bionic hardware 
which will lead to effective, high-performance neuromorphic computing hardware.

In this chapter, we will discuss synaptic devices and summarize the recent progress in neuro-

morphic hardware, which is based on memristors. In particular, we will focus on a few typical 

devices based on metal oxides and their key properties served as synapses. We will start with 
a brief description of memory and the learning of synapses in Section 2. In Section 3, we will 

elaborate more on these oxide-based memristors (TiO
x
, WO

x
, HfOx, TaOx, NiOx, etc.) with an 

emphasis on resistive switching (RS) characteristics, which is followed by neuromorphic com-

puting applications and the underlying physical mechanism. We limit this review to metal 

oxide-based memristive devices for the emulation of synaptic functionalities and will not 

cover the literature on neuromorphic circuits.
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2. Plasticity and learning of the synapse

In the nervous system, neurons and synapses are the basic units for transit information to the 

whole biological body. In the human brain, it consists of ~1011 neurons and an extremely large 

number of synapses, ~1015, which act as a highly complex interconnection network among the 
neurons [29]. Neurons consist of three main parts: a soma, dendrites, and an axon. Neurons 

generate action potentials (spikes), with amplitudes of approximately 100 mV and dura-

tions in the range of 0.1–1 ms in their soma. The spikes propagate through the axon and are 
transmitted to the next neuron through the synapses. A synapse [30] is a 20–40 nm junction 
between the axon and the dendrites (shown in Figure 1) that permits a neuron (or nerve cell) 

to pass an electrical or chemical signal to another neuron or to the target efferent cell. Each 
neuron connects with other neurons through 103–104 synapses to form a complex network. 
The information transmission between neurons with the synapses is very complicated which 

Figure 1. A schematic illustration of synapse.
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is excited by the surroundings. At the synapse, the plasma membrane of the signal-passing 

neuron (the presynaptic neuron) comes into close apposition with the membrane of the target 

(postsynaptic) cell. Both the presynaptic and postsynaptic sites contain extensive arrays of 

molecular machinery that links the two membranes together and carries out the signaling 
process. The presynaptic neuron will open the voltage-gated calcium channels as the action 

potentials arrive, and then the diffusion of Ca2+ ions will make the synaptic vesicle release 
neurotransmitters to the synaptic junction. Released neurotransmitters bind with their recep-

tor sites of the Na+ gated ion channels at postsynaptic neurons, which lead them to open and 

allow Na+ ions to diffuse inside the cell. When the aggregated membrane potential reaches a 
certain threshold, the neuron generates a spiking. The activation either potentiates or inhibits 
the postsynaptic neuron. The action potentials propagation, the neurotransmitters release and 
diffusion, and the neurons spiking activity constitute the ways whereby neurons communi-
cate and transmit information to one another and to nonneuronal tissues [31].

In the biological brain, neurons and synapses are the two basic computational elements con-

nected to each other. To perform different functions including visual, auditory, olfactory, 
gustatory and tactile means, as well as modulating and regulating a multitude of other physi-

ological processes, the neuron system operates computation by integrating the inputs coming 

from other neurons and generating spikes across the synapses. In neuron computation, the 
synapses change their connection strength as a result of neuronal activity, which is known as 
synaptic plasticity. It is widely accepted that synaptic plasticity is the key mechanism of learn-

ing and memorizing for the biological brain [32]. In Hebbian’s theory, both pre- and post-

synaptic cells are activated coincidently, which results in modifications of synaptic strength 
between the two cells, thereby creating associative links between them [33]. In other words, 

the synapse plasticity is triggered by release of neurotransmitters of the presynaptic neurons 
and by diffusion of calcium ions into postsynaptic neurons, through excitatory amino-acid 
receptors and possibly voltage-gated calcium channels (VGCCs).

How the brain can achieve learning and memory is a critical question in neuroscience. In 

1949 [34], Hebbian postulated a concept of spike-timing-dependent plasticity (STDP), firstly, 
as a synaptic learning rule which has been demonstrated in various neural circuits over a 

wide spectrum including insects, animals, and humans, even plants [35–37]. It has attracted 
considerable interest in neuroscience from experiment to computation [38–41]. According to 

the asymmetric window of STDP, the synaptic plasticity depends on the order of pre- and 
postsynaptic spiking within a window of tens of milliseconds. Over the past decades, much 

progress has been made in understanding the mechanism of STDP. In general, the synapse 

will be excited (increases in synaptic strength or weight) if repeated presynaptic spikes arrive a 
few milliseconds before postsynaptic spikes, whereas the synapse will be inhibited (decreases 
in synaptic strength or weight) if repeated spikes arrive after postsynaptic spikes. In [35], Bi 

and Poo have plotted a figure of the synaptic weight change as a function of relative timing of 
pre- and postsynaptic spikes which is called the STDP function or learning window and varies 
in synapse types. The change of synaptic weight  ∆  w  

i
    depends on the relative timing between 

presynaptic spike and postsynaptic spikes. A smaller spike timing difference results in a larger 
increase in synaptic weight. The total weight change  ∆  w  

i
    induced by an impulse with pairs of 

pre- and postsynaptic spikes is considered as a function [42, 43]:
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The parameters A
+
 and A− depend on the current value of the synaptic weight w

i
 where τ
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and τ− are the time constants in the order of 10 ms for biological synapses [36]. Several recent 

reports have shown the STDP dependencies on rate, higher-order spiking motifs, and den-

dritic location [39]. This timing-centric view of plasticity is not meant to imply that spike rate 
is irrelevant. However, this timing-centric view of plasticity is not the only form responsible 

for synaptic learning in the biological brain. The learning rules may vary with different fac-

tors, such as the type, location of a synapse, firing rate, and spiking orders. Several other fun-

damental learning rules including rate-dependent synaptic plasticity, frequency-dependent 

synaptic plasticity, and cooperativity have also been studied extensively and believed to be 

very critical for biological neuron computation.

3. Synaptic devices based on metal oxide memristors

To imitate the learning and memorization of the biological system, new materials as well as 

architectures exhibiting memristive behavior fit the need well. Memristor, an abbreviation of 
memory and resistor, is the fourth fundamental passive circuit elements, the others being the 

resistor, the capacitor, and the inductor, which were proposed theoretically by Professor Leon 
Chua [22]. It is a kind of a nonlinear, two-terminal element that cannot be replicated with any 
combination of other fundamental electrical elements. Memristors behaves like a resistor with 
resistance depending on the history of the current passing through. In fact, it maintains a rela-

tionship between the time integrals of current and voltage across a two-terminal element, and 

the resistance remains in the value as it had earlier when the current stopped. In other words, 

the memristor has a memory of the current that was last turned on. In 2008, HP Labs realized 
memristors physically in nanoscale titanium dioxide cross-point resistive switches [24]. In this 

operation, the device exhibits pinched current-voltage(I-V) hysteresis indicating a resistive 

memory effect, and the conductive area is adjusted by the concentration of oxygen vacancies, 
which determine the whole conductive states (resistive switching state), that is, high resistance 

state (HRS) and low resistance state (LRS). This work invoked a renewable research of new 
materials and devices that have memristive effects, such as NiO, WO

3
 ZrO

2
, ZnO, HfO

2
, TaO

2,
 

and TiO
2
 [44–50] binary oxides, BiFeO

3
, SrTiO

3
, ZnSO

3
, and LiNbO

3
 [51–54] ternary oxides, 

and CuO/ZnO, HfO
2
/TiO

2,
 and TaO

x
/NiO

x
 [55–57] heterostructures. Table 1 gives a summary 

of the recent work of oxide-based memristors including memristive properties.
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Nowadays, the memory is usually referred to as resistive random-access memory (RRAM) 

devices which can be traced as early as the 1960s [58]. In general, these devices are nanoscale 

in dimensions and offer excellent performance for data storage in terms of operation speed, 
nonvolatility, and read/write cycling [59]. Amounts of work have been performed to elu-

cidate types of switching mechanisms that underlie resistive switching phenomena in a 

Material (architecture) Endurance (cycles) Retention On/off ratio Reference

Pt/TiO
2
/Pt 83 104s 2 [69]

Pt/TiO
x
/Pt 8000 — 1.2 [50]

Pt/Ta
2
O

5
/Pt 1000 10 years 106 [49]

Ti/TaO
x
/Pt 120 104s 65 [50]

ITO/WO
3
/ITO 320 2 × 104 s 10 [45]

Al/WO
3
/Pt 200 3 × 104 s ~50 [79]

Cu/WO
3
/Pt 150 3 × 104 s ~10 [79]

Pt/WO
3
/Pt 50 3 × 104 s ~100 [79]

Cu/WO
3-x

/ITO 1000 5 × 104 s 105 [80]

Al/ZnO/Al 5 — 54.8 [47]

Al/ZnO
1-x

/Al 5 — 4.8 [47]

Ag/ZnO/Pt 100 107s 107 [106]

Ti/ZnO/Pt 1000 — 100 [107]

Al/ZnO/Pt 300 105s 104 [108]

Pt/ZrO
2
/Pt 200 104s 162 [44]

Cu/ZrO
2
/Pt 50 104s 30 [44]

Ti/ZrO
2
/Pt 100 — 104 [109]

ITO/ZrO
2
/ITO 150 103s ~7 [110]

TiN/ZrO
2
/ZrO

2-x
/TiN 50 104s 40 [110]

Ta/HfO
2
/Pt 1011 10 years ~100 [111]

TiN/HfO
2
/Pt 1000 104s ~15 [112]

Ti/HfO
2
/Pt 50 3 × 103 s 100 [100]

Pt/HfO
2
/HfO

2-x
/TiN 100 — 1000 [103]

Pt/BiFeO
3
/Pt 50 2 × 103 s ~100 [51]

Pt/Ti/Nb:SrTiO
3
/Pt 100 105s ~103 [105]

Cu/HfO
2
/TiO

2
/Pt 1000 103s 10 [56]

Pt/NiO
x
/TiO

2
/FTO 100 104s 100 [104]

Pt/Ti/Ta
2
O

5
/HfO

2
/Pt 50 2 × 103 s 650 [102]

Table 1. Recent work on metal oxide-based memristors.
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broad spectrum of material systems [25–28, 60–62]. According to the switching mechanism, 

the memristors can be categorized into phase change, valence change, conductive bridge, 

electrochemical metallization, and ferroelectric devices. Due to the simple structure, biologi-

cal plausibility, and excellent properties for memory, the scientific researchers explored the 
application of memristors from data storage to analogy neuromorphic computing for spatial-

temporal pattern recognition, sequence learning, navigation, and direction selectivity. As for 
the human brain-like characteristics, memristor technology could one day lead computer sys-

tems to a new state that can remember and associate patterns in a way similar to how people 
do. Next, we will focus on several kinds metal oxide-based memristors with analog synaptic 
behavior which are intensively studied for neuromorphic computing.

3.1. TiO
2
- and WO

3
-based memristors

The first physical instantiation of the memristor was generally acknowledged that was made 
from TiO

2
 by Strukov et al. [24], but as early as in 1968, it was found that the TiO

2
 thin-film 

device shows memristive properties [63]. In literature [63], the work demonstrated that thin 
films exhibited resistive switching (RS) effects with pinched hysteretic current-voltage (I–V) 
curves during repeated tests. And also, there are several experimental researches on the RS 

effect of TiO
2
-based devices before 2008, such as Pt/TiO

2
/Ru [64] and sputter-deposited Pt/

TiO
2
/Pt [65] devices. For memristors, the distinctive property is the pinched hysteretic loop 

indicating no energy dissipation. In [62], the prototype of memristor showed bipolar RS 

I–V curves with pinched points, which are a result of local stoichiometric change caused 

by the migration of oxygen vacancies. As oxygen vacancies act as donors in the TiO
2
 layer 

in the depletion zone, the conductance of the device could be modulated by the depletion 

or accumulation of Vos. Specifically, when the device undergoes a set process from a high 
resistance state to a low resistance state by the external electric field, the Vos will accumulate 
resulting in an increase of the conductive layer width. When applying electric pulse with 

reverse polarity, the Vos will be driven back thereby the conductive layer will become thin. 
Later it was demonstrated in some studies that the accumulation of Vos in TiO

2
 may cause 

the formation of a new Magneli phase (Ti
4
O

7
) that is metallic and directly studied by TEM 

[66, 67]. In 2009 [68], a flexible Al/TiO
2
/Al memristor fabricated by solution processing was 

reported. In this work, it showed that oxygen vacancies were introduced by the aluminum 
electrodes, and if a noble metal (Au) electrode was used, the form and reversibility of switch-

ing will change. The mechanism of the memristive effect strongly depends on the synthesis 
method, the choice of metal electrodes, and their interfacial properties. Many suggested that 

an understanding has been put forward through a series of experimental analyses from the 

view of film composition, microcrystalline structure, and switching zones. It also should 
be noted that the RS effect of the devices will be affected by device architecture, electrode 
materials, and layer stacks.

As a prototype of the memristor, TiO2−based devices show their potential in neuromorphic com-

puting. Seo et al. [69] used titanium oxide as the active material to perform synaptic behavior in 

the context of analog memory, synaptic plasticity and STDP function. A bilayer of TiO
x
 and TiO

y
 

structure was fabricated by atomic layer deposition and the sol-gel method, respectively. In the 

device, the titanium oxide bilayer works as a progressive resistance-changing medium with Al 
and W as the top and bottom electrodes. The multilevel conductance states were achieved by 
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the movement of oxygen between the TiO
y
 and the TiO

x
  layer. In the report, the thickness of the 

less conductive layer TiO
y
 was controlled by the applied bias which finally resulted in multi-

level conductance and analog memory characteristics. As a positive bias was applied to the top 

electrode, the oxygen ions were driven from TiO
y
 to TiO

x
 and the effective thickness of the TiO

y
  

layer is reduced, which resulted in an increased conductance. Conversely, by applying negative 

bias to the device, the oxygen ions are moved from TiO
x
 to TiO

y
, which caused a reduction 

of conductance. Due to the easy controlling of conductance, the analog characteristics of this 

device have been intensively studied. By applying sets of identical positive (negative) pulses, 

conductance can be progressively increased (decreased) as well as the potentiation (depres-

sion) in biological synapse. Figure 2 illustrated the continuous potentiating and depressing 

characteristics of the device which were extremely useful for precisely modulating the device’s 

synaptic weight. Also, the prior conductance state dependence of the subsequent conductance 

change is shown in Figure 2b. The results confirmed that the device showed the behavior as 
in the biological synaptic STDP model [70]: prior synaptic weight states affect the subsequent 
weight change. Furthermore, the time dependence of the device conductance change was stud-

ied which resembled that of the biological synapse. This indicated the titanium oxide bilayer’s 

resistive switching device had great potential for mimicking biological synapses.

In 2012 [71], Yu fabricated TiO
x
/HfO

x
/TiO

x
/HfO

x
 multi-layer RRAM stacks and showed 

that the resistance states of the stacks could be gradually modulated by using identi-
cal pulses. The gradual resistance modulation behavior is useful for learning with high 

fault tolerance. Berdan in 2016 [72] demonstrated that TiO
2
 memristors can exhibit non-

associative plasticity. The transition between long-term plasticity (LTP) and short-term 
plasticity (STP) of this device was presented. The rate-limiting volatility in TiO

2
 RRAM 

devices was very essential to capture short-term synaptic dynamics. In addition to Seo’s 

works on the bilayer TiO
x
/TiO

y
 device [69], Bousoulas studied the role of interfaces in 

TiO
x
/TiO

y
 RRAM structures for high multilevel switching and synaptic properties [73]. A 

CMOS-memristor architecture composed of the 8*8 array of the neuron was demonstrated 
by Mostafa [74]. The proposed system comprises CMOS neurons interconnected through 

TiO2 − x memristors and spike-based learning circuits which modulate the conductance of 

Figure 2. (a) The potentiation and depression for the device and (b) conductance dependence on history. Reprinted with 

permission from [69].
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the memristive synapse elements according to a spike-based perceptron plasticity rule. In 
2016, Park developed a Mo-/TiOx-based interface RRAM with 64-level conductance states 
and proposed a hybrid pulse mode for the synaptic application [75]. Under the stimuli of 

the hybrid pulse mode, the TiO2 − x-based devices show good performance and enhanced 

pattern recognition accuracy, which was confirmed through synaptic simulation.

Although many investigations have been carried out on the resistive switching mechanism of 

the TiO
2
-based memristor, the demonstration of TiO

2
-based memristor for the artificial syn-

apse is still limited when compared to PCMO, HfO
x
, and TaO

x
 materials. In most situations, 

TiO
x
 is used in bilayer or multi-layer stacks’ synaptic device to optimize the performance. 

Another great candidate for memristors as artificial synapses is tungsten oxides (WO
x
) because 

of their high endurance, CMOS compatibility, and memorization and learning functions.

Similar to TiO
2
, WO

3
 is also extensively studied as a memristor due to its CMOS compatibility 

into standard manufacturing processes [76]. Additionally, WO
3
 is a kind of transition metal 

oxide and can be served as n-type semiconductors depending on its stoichiometry and mor-

phology. Due to its attractive properties, it has been studied for both digital and analog mem-

ory. Liu et al. [77] have fabricated Cu/WO
3
/Pt structure devices and demonstrated multilevel 

storage properties by the application of suitable compliance current values. In that study, the 

device exhibited pronounced RS effects with an endurance of over 100 cycles and a retention 
of over 104 s. During the set process, the conductive filament is modulated by the compliance 
current between the Cu and WO

3
 interface. In addition to the work of Celano [78], the applied 

positive bias will aid the creation of oxygen vacancies resulting in conductive filaments. The 
applied negative bias will drive back the oxygen ions to recombine with the vacancies, making 
the device turn OFF. Meanwhile, the role of electrodes on RS effect has also been studied, 
such as Ag/WO

3
/ITO, W/WO

3
/Pd, and Pt/WO

3
/ITO [79, 80]. In these studies, no matter the 

material of the electrodes, the RS effects originate from the formation or annihilation of oxygen 
vacancies. Under positive bias, the non-inert electrode is oxidized and the ions diffuse toward 
another electrode to expand a conductive filament and vice versa. That is to say, a continuous 

concentration gradient of oxygen vacancies will be introduced during the oxidation process 

for the inert electrodes, which can result in low or high resistance states of the devices. In 

addition, the temperature and humidity impact on the performance of WO
x
 memristors were 

studied [81, 82]. The conductance will decrease as the temperature increases due to higher 

oxygen vacancies’ diffusion. In addition to the temperature, the memristive effects of tungsten 
oxide are also highly humidity dependent. The adsorbed moisture on the surface of WO

3
 has 

resulted in decreasing conductances as the H cation induces an increase in barrier heights.

Synaptic behaviors and modeling of WO
x
 memristors were reported by Chang [83]. The Pd/

WO
x
/W memristor shows reliable synaptic operations with robust endurance behavior. The 

devices can endure at least 105 potentiation/depression pulses without degradation which is 

a necessary characteristic for practical applications in neuromorphic systems. Furthermore, 

the conductance change is governed by the history of the applied voltage signals, leading to 

synaptic behaviors including long-term potentiation and depression. The memristor behav-

ior was explained by a novel model that takes both drift and diffusion effects into consider-

ation. Figure 3 presents the retention loss curve and memory loss in a human memory curve 

of the Pd/WO
x
/W memristor [84]. It was found that the memristor device retention can be 
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improved with the application of repeated stimulations and bears remarkable similarities 
to the STM-to-LTM transition in biological systems. Among other transition metal oxides, 
WO

x
 is a great candidate material for synaptic device application. For further exploring 

its applications in neuromorphic computing, the enhancement of synaptic operation time 

(endurance) is of importance.

3.2. Other metal oxide memristor-based synaptic devices

Besides titanium oxide- and tungsten oxide-based memristors discussed above, a variety 

of other materials has been studied to implement the neural network as a synaptic device. 
Similar to TiO

x
, NiO

x
 is one of the earliest materials found to exhibit restive switching behav-

ior. Although NiO
x
-based RRAM devices have been reported with high endurance (106) and 

retention, its application for neuromorphic computing is restricted due to poor uniformity. 

Akoh fabricated synaptic devices with bipolar NiO
x
 memristors [85]. This device also has 

the ability to update the synaptic conductance according to the difference of pre- and post-
neuron spike timing. Hu et al. studied the paired-pulse-induced response of an NiOx-based 

memristor, which is similar to the paired-pulse facilitation(PPF) of biological synapse [86]. In 

addition to PPF, the synaptic LTP of NiOx-based memristors was also studied by Hu et al. 
[87]. The LTP effect of the memristor has a dependence on pulse height, width, interval, and 
number of pulses. An artificial neural network is constructed to realize the associative learn-

ing and LTP behavior in the extinction of association in Pavlov’s dog experiment.

AlO
x
 is of interest in memristor materials due to its large band gap (~9 eV) and low RESET 

current (~ μA). For neuromorphic application, AlO
x
 can also be used alone or stacked with 

other RRAM materials to improve the uniformity of the synaptic device characteristics. A GdO
x
 

and Cu-doped MoO
x
 stack with platinum top and bottom electrodes was reported by Choi 

[88]. The weighted sum operation was carried out on an electrically modifiable synapse array 
circuit based on the proposed stacks [89]. The biological synaptic behavior was demonstrated 

by Chang through integrating SiO
x
-based RRAM with Si diodes. The proposed one-diode-

one-resistor (1D-1R) architecture not only avoids sneak-path issues and lowers standby power 
consumption but also helps to realize STDP behaviors [90]. VO

x
 is a well-known Mott material, 

Figure 3. (a) Retention loss curve of Pd/WOx/W-based memristor and (b) forgetting memory of the human memory 
curve. Reprinted with permission from [44].
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which experiences sharp and first-order metal-to-insulator transition (MIT) at the around 68°C 
[91]. The application of VO

x
 as RRAM materials had been explored by Drisoll et al. [92] through 

the sol-gel technique. Nevertheless, most researches on VO
x
 so far focus on its use for select 

devices, which can be integrated with the RRAM device to mitigate sneak-path current. The 
Pt/VO

2
/Pt selector has been integrated with NiO unipolar RRAM by Lee et al. [93] in 2007 and 

ZrO
x
/HfO

x
 bipolar RRAM by Son et al. [94] in 2011. In 2016, 1S-1R configuration of W/VO

2
/

Pt selection device and Ti/HfO
2
/Pt RRAM was demonstrated by zhang et al. [95]. However, 

thermal instability is a major challenge with VO
2
 for practical applications [13].

3.3. Mechanisms

The modulation of the device resistance with memory effects is essential to mimic biological 
synapse. And the understanding of switching mechanism is also important to incorporate 

memristors as a bionic synapse into the neuromorphic computing system. Many suggestions 

have been put forward to elucidate the causes of resistive memory effects of those oxide-
based memristors. The most popular views on RS mechanism are taken as ionic diffusion and 
thermal effect.

For the mechanism of ionic drift and diffusion, under the stimulation of applied bias, the 
ions will migrate, and the conductance of memristors will be enhanced or depressed [96–98]. 

Actually, there are two types of ionic drift: cation and or anion drift, which depends on the 

materials used for active layers and electrodes. For example, for Strukov’s [24] TiO
2
 memris-

tor, both electrodes have inert Pt; the movement of oxygen vacancies causes the whole active 
TiO

2
 layer to separate into two parts, with one part rich in oxygen vacancies and being more 

conductive. Hence, the difference in the concentration of oxygen vacancies leads to oxygen ion 
(anions) diffusion. Oxygen ions move to the anode and more oxygen vacancies are created. 
The increase of oxygen vacancies then makes the device more conductive to a low resistance 
state. Meanwhile, there is some evidence that the noninert electrode can hinder the combina-

tion of oxygen ions and serve as an oxygen vacancy reservoir. In the set process, the metal is 

oxidized and the metal ions diffuse into the insulating layer to develop a conducting filament. 
Under negative bias, the filaments are ruptured by the increase of the electric field.

The second mechanism is about the heating effect [99, 100]. In the set or reset process, the 

active layer material is changed by the application of an electric field and flowing current 
heat. As the current is applied, the heat is released and the ions drift, forming an electron path 

to develop the conductive filament. At the same time, due to the collision of electrons, a new 
boundary may be created that inhibits the formation of the filament with excess heat [100]. 

Joule heating effects have been credited both in unipolar and in bipolar switching memo-

ries. In unipolar switching, under the high current passing through the memory devices, the 

heating fuses the conductive filaments in the reset process which is similar to that in bipolar 
switching. In bipolar switching, Joule heating dissolves the filament when sufficiently high 
current flows through the device. If this rupture happens in the SET process, it becomes a 
valid operation since the resistance did not stay in LRS and result in threshold switching 
[101]. However, large current should be avoided in the device which will introduce bad 

effects to performance or lead to a permanent failure because large current flowing through 
the filament will generate severe Joule heating, and a steep increase of the temperature in the 
filament will finally melt the filament.
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Generally, the physical origin of the switching effect in memristors depends on architectures, 
materials, and interfaces. The comprehensive study of the mechanism is very helpful to the 

manipulation of memory and to extend the application of memristors. In terms of conduc-

tance modulation in memristors, many metal oxide-based memristors can perform not only 

on digital memory but also on analog memory which is similar to biological functions.

4. Conclusion

In this review, we have outlined an overview of memristor-based synaptic devices, especially 

for the metal oxide memristors. The neuromorphic approach with oxide-based RRAM devices 

is promising. Focusing on TiO
x
, WO

x-
based memristor, the electrical switching characteristics 

are reviewed. Exploiting the physical mechanisms, the synaptic behaviors of those devices 

are also discussed. Owing to the magnificent increased computational efficiency, and also 
increasing compatibility in computer technology and CMOS technology, metal oxide-based 

synaptic devices are gaining prominent interest. The progress of neuromorphic engineering 

on devices confirms that the memristive synapses can meet the demand of low energy con-

sumption, high connectivity, and density in neuromorphic devices for efficiently encoding, 
storing, and processing information. However, challenges still remain for overall oxide-based 

RRAM materials. Although the inherent fault tolerance of neural network models is able to 
mitigate the impact of device variation to some extent, the improvement of spatial variation 

and temporal variation turns out to be one of the greatest challenges on a long-term basis. In 

addition, the improvement of reliability characteristics of the memristor synaptic devices is 

another key challenge which is not well studied.
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