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Abstract

The anabolic effects of a supplemented diet with branched-chain amino acids,
especially leucine, on skeletal muscle wasting and as a co-adjuvant in cancer treat-
ment have been well-studied. Leucine is a precursor of protein synthesis and acts as
a nutritional signal, affecting multiple metabolic processes (e.g., satiety, thermo-
genesis, energy efficiency, and body composition). Previous studies related to
nutritional therapy have mainly focused on myopenia, which is the loss of skeletal
muscle mass in some pathologies, including cancer. Leucine plays a role in the
maintenance and even increase of lean body mass in healthy individuals as well as
the prevention of disease states that culminate in myopenia. Herein, we review the
available data addressing the mechanisms by which leucine acts as a cellular signal,
thereby stimulating muscle protein synthesis, leading to the inhibition of muscle
catabolism, especially in an experimental model of cancer cachexia. We also show
differences found in the metabolomic and proteomic analyses, including the use of
leucine in maternal diets as a preventative for muscle wasting as supported by our
experimental data.

Keywords: leucine, cell signalling, protein metabolism, protein synthesis,
protein degradation, muscle wasting, experimental cachexia models

1. Introduction

Cancer remains an enigmatic pathology for some patient types and can also
cause deleterious effects, e.g., in some cases ending in a cachexia state. Cancer
cachexia is a complex syndrome that results from anorexia associated with glucose
intolerance, depletion of body fat, and severe wasting of lean mass, which corre-
sponds to the more significant proportion of metabolically active tissue—the muscle
tissue. In particular, the loss of skeletal mass, which is referred to as myopenia in the
pathological process, is clinically relevant as this process is directly related to the
loss of muscle function in cancer patients. In every type of cachexia, the
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pathogenesis of muscle loss is complex and multifactorial. Due to the high energy
expenditure produced by neoplastic cells, the patient presents inefficiency of energy
production, as well as so-called futile energy processes, which is a major cause of
muscle wasting. These energy expenses include high glucose production via gluco-
neogenesis from lactate or gluconeogenic precursors where there is excessive con-
sumption associated with reduced the production of ATP. Then, the cancer patient
loses weight involuntarily with severe loss of muscle mass due to increased protein
degradation, which produces gluconeogenic amino acids. Moreover, this process also
includes lipolysis, resulting in glycerol as a glucose precursor, inducing a spoliation
cycle. All these points lead the cancer patient into fatigue and asthenia, thereby
leading to a worse prognosis. Recently, the number of studies on new cancer treat-
ment therapies has increased; most of these studies focus on the patient’s responses to
conventional treatments and improvement of survival and quality of life.

A novel therapeutic approach to cancer involves preserving, restoring, or even
an epigenetic influence to maintain an adequate nutritional status for cancer
patients, thereby slowing the onset of muscle mass wasting. In this context, nutri-
tional supplementation has been identified as a potentially useful intervention.
During protein synthesis, branched-chain amino acids (BCAAs), mainly leucine, act
as precursors of the carbon skeleton and nitrogen. Also, leucine can primarily be
oxidised in the muscle for energy supply and contribute nitrogen for the synthesis
of other amino acids. Leucine also plays an essential role in cell signalling, stimulates
protein synthesis, and modulates catabolism, mainly in skeletal muscle. In an
experimental cachexia model that includes a leucine-rich diet (data in print), we
report an improvement in functional muscle tests (verified by CatWalk test) and
the influence of maternal leucine supplementation on the offspring’s adulthood
responses in the improving of the muscle tissue response. Since recent works have
indicated that the most important goal during cancer progression is the mainte-
nance of lean body mass and considering the key role of leucine in modulating
skeletal muscle protein synthesis and degradation, our research group has been
evaluating the effects of a leucine-rich diet in an experimental model of cancer
cachexia. Herein, we summarise the findings of our group as well as others that
show that a leucine-rich diet can ameliorate the prognosis, reduce the risk of death,
and help to maintain the quality of life in cancer patients.

2. Cancer cachexia

Cachexia is a condition characterised by reduced food intake; involuntary and
progressive weight loss; and intense catabolism of carbohydrates, lipids, and pro-
teins [1], thereby resulting in intense deterioration of host tissues, severe weight
loss, and adipose tissue and muscle mass wasting [2]. Weight loss and malnutrition
are the most common characteristics observed in advanced cancer patients [3].
Cachexia is responsible for almost 30% of all cancer-related deaths and associated
with significantly decreased physical activity and psychological burden [3].
Cachexia is also related to other pathophysiological changes, such as systemic
inflammation, insulin resistance, and oxidative stress [4]. Several pro-inflammatory
cytokines (e.g., IL-6 and TNF-α) and pro-cachectic factors (e.g., factor inducing
proteolysis [PIF] and lipid mobilisation factor [LMF]), which are considered medi-
ators of muscle wasting, act during the cachectic process [5, 6]. Considering the
high prevalence (50–80%) of cachexia in advanced cancer, the investigation of the
molecular process of cancer cachexia is important when considering the most effi-
cient targets of treatment. The use of nutritional interventions to minimise the side
effects of cancer is a novel and promising approach [7]. As such, supplementation
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with BCAA, especially leucine, has been shown to improve skeletal muscle mass
because leucine plays an important role in skeletal muscle metabolism, regulates
protein synthesis by stimulating the mTOR pathway, and inhibits the ubiquitin-
proteasome pathway [8, 9].

3. Muscle protein synthesis and leucine

Muscle mass is a controlled balance of protein turnover by the cellular processes
of protein synthesis and breakdown. In some pathological conditions, such as cancer
cachexia, protein synthesis could also be compromised, which results in skeletal
muscle atrophy and weakness [10, 11]. The regulation of protein turnover in skele-
tal muscle is a complex process, usually involving interactions between gene tran-
scription, translation, and protein degradation. Stimulation and signalling processes
are initiated by principal agents of these activities, such as anabolic hormones (e.g.,
insulin), growth factors, glucose, and amino acids. One such signalling pathway is
triggered by insulin, which initiates protein synthesis after binding to its receptor,
thereby activating several downstream components. The activated insulin receptor
triggers the tyrosine phosphorylation of the insulin receptor substrate (IRS) 1 and 2,
followed by activation of the phosphoinositol 3 kinase (PI3-kinase). Then, PI3-
kinase activates phosphoinositide kinases-dependent 1 and 2 (PDK1/2) to phos-
phorylate the protein kinase Akt/PKB. The activated PKB phosphorylates tuberous
sclerosis 2 (TSC2) inactivates the tuberous sclerosis complex 1 and 2 (TSC1/TSC2),
which are no longer able to perform GTPase activity at Rheb (brain-enriched ras-
homologue), allowing Rheb to release and activate the mechanistic target of
rapamycin (mTOR), the key component of this machinery [12]. Also, the Akt
substrate, PRAS40, when phosphorylated by PKB, loses its inhibitory effect over
mTOR. In fact, mTOR acts as a sensor and integrator of diverse inputs, such as
nutrients, growth factors, and energy status. mTOR, which consists of the mTORC1
and mTORC2 complexes, is a master regulator of protein synthesis and is essential
for the maintenance of muscle mass and function [13]. Upon encountering anabolic
factors, such as amino acids, mTORC1 is activated and signals to ribosomal protein
S6 protein kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1
(4EBP1)—these are the best-known downstream effectors of mTOR signalling and
control the protein synthesis pathway. Activated p70S6K subsequently leads to
phosphorylation of the downstream target S6K1, which results in the translation of
messenger RNA (mRNA) encoding for ribosomes and transcription factors [14]. In
parallel, mTOR phosphorylates the dissociation of the 4E-BP1/eIF4E complex,
releasing the eukaryotic initiation factor 4E (eIF4E), which subsequently binds to
eIF4G, thus forming the eIF4F translation initiation complex, and allows the
recruitment of the 40S ribosomal subunit to initiate protein translation [15].

Although the impairment of muscle protein synthesis in cachexia is not an obli-
gate feature, many studies are working in strategies to improve the muscle mass and
also the patient’s muscle function which could imply in better prognosis and quality
of life in those patients. Thereby, leucine together with valine and isoleucine, or even
alone, can stimulate protein synthesis and act as cell signalling molecules in skeletal
muscle by activating the mTOR pathway [16, 17]. Multiple studies have shown that
leucine alone stimulates protein synthesis, mediating the translational control of
protein synthesis in skeletal muscle independently of other BCAAs [18, 19]. For
example, some studies have shown that the oral administration or infusion of leucine
in adult humans or animals elevates muscular protein synthesis [20]. Moreover,
leucine appears to have a much more potent anabolic effect (i.e., stimulating the
mTOR pathway) than anabolic hormones, such as insulin. The administration of
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leucine after fasting or amino acid starvation stimulates protein synthesis and pro-
motes the phosphorylation and activation of S6K1 via the rapamycin-sensitive mTOR
in skeletal muscle [21, 22]. On the other hand, several studies have emphasised the
specific contribution of cell membrane transport through the coupling of the amino
acid transporter system 1 (LAT1 or SLC7A5), which carries leucine in exchange for
glutamine [23]. The availability of amino acids (especially leucine and glutamine) is
determined by its uptake by the cell, which appears to play an essential role in the
entrance of Leu into the cell and the maintenance of a high intracellular concentration
of glutamine [24]. Some evidence suggests that leucine uses the insulin signalling
pathway, but the exact mechanism of triggering the mTOR complex remains under
debate [25]. Nutritional supplementation with leucine stimulated the incorporation of
phenylalanine in muscle in an experimental cachexia model, confirming an increased
protein synthesis and also an increasing muscle mass [26, 27]. Subunits of the
mTORC1 complex (i.e., Raptor and GβL) and substrates belonging to the down-
stream pathway (i.e., 4E-BPs, eIF4A, eIF4B, eIF4E, including S6K1), which represent
the key points within the metabolism of proteins throughmTOR, are highly increased
in the muscle of Walker-256 tumour-bearing animals subjected to leucine nutritional
supplementation [27–29]. In vitro cell culture studies have generated evidence rele-
vant to the mechanism through which leucine affects mTOR [30, 31]. As such,
leucine supplementation can stimulate protein synthesis and, consequently, might
lead to a positive protein net balance, even within a high rate of protein degradation.
In addition to increasing the protein synthesis in skeletal muscle, a leucine-rich diet
has a protective effect in other tissues. In our previous works, we also observed
improvement of protein synthesis in placenta tissue since leucine acted by improving
the cell-signalling activity, thereby increasing placental protein synthesis and also
reducing the placental proteolytic process [32, 33].

Interestingly, our previous works and other experimental studies have shown
that leucine supplementation can work as an excellent nutritional strategy to treat
or prevent muscle wasting in cancer cachexia. In this way, leucine also emerged as a
potent stimulator of metabolism, leading to improvements in both oxidative
metabolism and mitochondrial biogenesis [34]. Recently, our research group used
metabolomic and proteomic analyses in an experimental cachexia model to better
understand the benefits of leucine supplementation. Compared to a non-
supplemented group, tumour-bearing rats under leucine supplementation showed
metabolic pathways diverted to ketone bodies and butyrate metabolism [35]. Since
an excess of leucine might provide ketone precursors being utilised by muscle tissue
as energy sources, this likely diverted the metabolism to improve muscle protein
synthesis [35]. The ketone bodies could provide additional energy to skeletal muscle
and host tissues; this energy source is not available to the non-leucine-
supplemented group. Besides acting as a fuel source to supply energy for the cellular
activity of several tissues, ketone bodies, especially acetoacetate, can also promote
muscle cell proliferation [36], probably accounting for the benefits of leucine
nutritional supplementation [35]. We also made important findings as part of our
proteomic analysis of the muscle tissue of tumour-bearing rats fed a leucine-rich
diet (data in print). These results show a significant action of leucine on modulation
of the mitochondrial membrane proteins involving the production of ATP, such as
the ATP synthase complex family. Proteins associated with ATP synthase (e.g.,
F1F0 or Complex V) participate in the synthesis of ATP from ADP in the presence
of a proton gradient across the mitochondrial membrane. One protein from this
family that stood out in our studies is the ATP5a1 synthase subunit alpha. The
tumour-bearing group showed a higher concentration of ATP5a1, which indicates a
higher mitochondrial activity for the production of ATP, which is associated with a
greater availability of glucose from the gluconeogenesis process. In contrast, the
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leucine tumour-bearing group showed lower muscle ATP5a1 content, likely indi-
cating that the production of ATP must be derived from other metabolic processes.
Therefore, the presence of tumour factors interferes in the cellular processes
involved with obtaining energy. Since cell proliferation depends on the constant use
of ATP for the duplication of all cellular machinery, the interference of tumour
factors in the muscle mitochondria and the electron transport chain leads to less
availability to energy for muscle cell activity. With leucine supplementation, a
stimulating pathway occurs to obtain energy, thus contributing to the maintenance
of adequate ATP supply and the ability maintain muscle activities. Since leucine is a
ketogenic amino acid, its entire carbon skeleton is converted to keto acid or acetyl-
CoA, which can be directed to participate in the Krebs cycle and beta-oxidation
processes, both of which produce ATP as the final product. According to our results,
the metabolic pathways in cachectic-tumour-bearing animals are related to ammo-
nia recycling and the urea cycle, likely associated with protein degradation and
directly associated with the futile cycle of energy production. In parallel, the meta-
bolic activity of the leucine-tumour-bearing group was affected, which was related
to ketone body and butyrate metabolism [35]. These points confirm the relationship
to the increase in the muscle tissue’s energy needs in tumour-bearing animals,
which are minimised/modulated when the animal’s diet is supplemented with leu-
cine. Our proteomic results show that, in muscle tissue, mitochondria dysfunction
occurs in the tumour-bearing host; however, under leucine supplementation, there
are muscle mitochondrial biogenesis and activities improvements (data not
published). Thus, we know that both insulin and leucine can independently affect
the activation of mRNA translation and, consequently, the protein synthesis process
[17, 37]. However, the real effect of amino acid signalling, especially leucine, on
protein synthesis via the mTOR pathway remains complex and less understood, and
there is a need for further studies, especially in vivo models. Moreover, as men-
tioned previously, our data for the CatWalk analysis showed an improvement in
muscular functional activity; i.e., when rats with tumours were fed a leucine-rich
diet, muscle function improved (data in print). Moreover, a leucine-supplemented
maternal diet can influence and ameliorate the adult host response in tumour-
bearing rats. In this way, an improved understanding of muscle protein synthesis
and how leucine influences it is essential when developing new targets and strate-
gies to restore muscle in muscle wasting diseases.

4. Muscle protein degradation and leucine

4.1 Skeletal muscle wasting in cachexia

Muscle homeostasis is important because muscle makes up a large part of the
whole organism and performs many functions and activities. Moreover, as one of
the main structures of the body, it is the most significant source of the protein
turnover process. As noted above, muscle maintenance occurs by the intense activ-
ity of both protein synthesis and degradation [38]. Accordingly, proteolytic systems
also play a key role in the regulation of cellular homeostasis and cell recycling,
differentiation, cell cycle, abnormal protein degradation, and amino acid supply for
gluconeogenesis [39]. Myofibrillar protein degradation is performed by the follow-
ing four different pathways: ubiquitin proteasome system (UPS), autophagy, Ca2+-
dependent proteolysis, and caspase pathway [40]. The increase of protein catabo-
lism in skeletal muscle contributes to a worse prognosis in cancer patients, espe-
cially those in a cachexia state, which is one of the most important causes of
morbidity and mortality in these patients [41]. In cancer patients, the loss of either
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skeletal or cardiac muscle mass might lead to cardiac and respiratory failure, in
addition to the fact that it decreases the host’s response after conventional treat-
ments, such as chemotherapy or radiotherapy [42]. Moreover, it is well-established
that the ubiquitin-proteasome system is a very important pathway in skeletal mus-
cle degradation during cancer cachexia [43]. Furthermore, multiple studies have
identified released factors that contribute to an increase in muscle protein degrada-
tion during cancer. The main factors that lead to protein degradation during cancer
cachexia syndrome produced by the host are tumour necrosis factor alpha (TNF-α),
interleukin-6 (IL-6), interleukin-1 (IL-1), interferon gamma (IFN-γ) [44]. Mean-
while, the main factors produced by cancer cells are proteolysis-inducing factor
(PIF), lipid-mobilising factor (LMF), and anaemia-inducing factor (AIS) [44].

Among the factors produced by a tumour, the proteolysis-inducing factor (PIF)
has central importance. This protein, first described by Todorov et al. [6], is a
24 kDa glycoprotein isolated from the adenocarcinoma MAC16 tissue, an experi-
mental model of cancer cachexia. Similarly, some studies found a PIF like those that
were also verified in other cachexia models, such as in Walker-256 carcinosarcoma
[31], in patients with gastrointestinal [45], pancreatic [46], and other types of
cancer [47]. The injection of PIF in mice induces an intense loss of lean body mass,
similar to that associated with MAC16 tumour growth [6]. After being synthesised
and released by tumour cells, PIF reaches the bloodstream and binds to its cell
membrane receptor in muscle cells [48], leading to activation of the ubiquitin-
proteasome pathway and a decrease in protein synthesis by stimulating the double-
stranded RNA-dependent protein kinase (PKR) [49]. The activated PKR leads to
phosphorylation of eukaryotic translation initiation factor (eIF2α) and, conse-
quently, inhibition of protein synthesis [50]. Many studies have shown that, unlike
starvation, a decrease in food intake is not sufficient to cause muscle mass wasting
in cancer patients, such as that which occurs during cancer cachexia [51].

As mentioned above, despite the fact that leucine stimulates protein synthesis,
leucine and its metabolite β-hydroxy-β-methylbutyrate (HMB) can also decrease
the rate of protein degradation apparently by reducing the expression of proteins
from the ubiquitin-proteasome system [52, 53] and the other proteolytic pathways,
i.e., mainly autophagy [54]. This characteristic makes leucine a great tool in cancer-
induced cachexia therapy. In fact, leucine or HMB, i.e., alone [55] or in combination
with other nutrients [56], can prevent the decrease of lean mass in cancer patients;
this has been verified by our group in an experimental cachexia model [32, 35].

4.1.1 Proteolytic pathways and leucine

As noted above, the UPS is responsible for degrading proteins and might be
responsible for up to 80% of proteolysis during skeletal muscle wasting [57, 58].
Since the UPS depends on linking the target protein to a ubiquitin tag and subse-
quent recognition and degradation by the proteasome core, leucine cell signalling
can affect multiple steps. Ubiquitin conjugation to target proteins involves the
action of a ubiquitin-activating enzyme (E1), which uses ATP to form thioester
ubiquitin; conjugating to the ubiquitin-conjugating protein family of enzymes (E2),
which in concert with ubiquitin protein ligase (E3), mediates the binding of the
ubiquitin C terminal end to the targeted protein. The specificity of the substrate
recognition is mainly dependent on E3 interaction with the targeted protein, giving
relevance to this class of enzymes in studies of muscle atrophy affected by tumour
evolution [59]. Our previous studies have shown that leucine supplementation can
minimise the E2 activity in the muscle of Walker-256 tumour-bearing rats,
suggesting a beneficial effect of this cell signal (data in print). Although approxi-
mately 1000 members of the E3 ligase family have been described, MuRF1 and
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Atrogin have been reported to be specifically expressed and increased in skeletal
muscle under many catabolic conditions [60, 61]. Interestingly, acute or chronical
leucine supplementation prevented the upregulation of proteasomal proteolysis in
fasted aged rats as compared to younger adult controls [62]. We have recently
verified that ageing causes additional proteasomal activity in an experimental model
of cancer-induced cachexia (unpublished data). Thus, leucine supplementation
might be a valuable tool to counteract higher susceptibility to cachexia in senes-
cence. Also, MuRF1, atrogin, and other E3 ligases, such as MUSA1 and SMART1,
have been associated with enhanced proteolysis during muscle wasting [63]. More-
over, the degradation of ubiquitin-tagged proteins occurs in proteasome 26S,
formed by regulatory (19S) and catalytic (20S) subunits. Interaction of the 19S
subunit with ubiquitin drives the target protein to the core of the proteasome, a
cylindrical protein complex formed by two external alpha rings (alpha 1–7) and two
central beta rings (beta 1–7), in which beta 1, 2, and 5 present caspase-like, trypsin,
and chymotrypsin protease activity, respectively [64]. Proteasome degradation
results in 7–9 amino acid peptides, which are subsequently degraded by cytosolic
proteases. During muscle wasting, the activity of chymotrypsin is increased, as is
the expression of 19S, 11S, and 20S, all of which are modulated by the nutritional
supplementation of leucine [27, 65, 66].

In addition to UPS in muscle wasting, autophagy is a degradation process led by
lysosomes, and it manages the catabolism of long-life proteins, defective organelles,
and protein aggregates. Three different autophagy pathways have been described,
i.e., microautophagy, chaperone driven autophagy, and macroautophagy (herein
referred as autophagy)—extensively reported as a key regulator of muscle mass.
Autophagy involves complex protein machinery, including ATGs (autophagy-
related genes); ultimately, autophagy leads to the formation of phagophores, i.e.,
the formation of autophagosomes by the elongation of the lipid membrane, which is
followed by a fusion of the autophagosome to the lysosome, generating the
autolysosome with many hydrolases and proteases (i.e., cathepsins). The first step
of autophagy is the activation of ULK1, which, in turn, phosphorylates Beclin1,
promoting its interaction with VPS34, VPS15, and ATG14. This complex activates
VPS34, assembling the phagophore rich in PI3K class III enzyme to form PI3P, a
signal to recruit other ATGs. The ubiquitin-like ATG5 brings together the final
complex, i.e., ATG5/ATG12/ATG16, initiating and expanding the membrane
extension of the phagophore. In parallel, the conjugated form of ATG8, also a
homologue to LC3 in muscle, is tightly bound to the autophagosome membrane and
later cleaved by ATG4, thereby converting LC3I to LC3II, which is necessary for the
fusion of the autophagosome with the endocytic compartments, thus forming the
lysosome. Inside the autolysosome, cargoes are degraded with cathepsins L and B
being especially important for the degradation of myofibrils proteins [67]. Interest-
ingly, the treatment of C2C12 myotubes with PIF-like increased the cathepsin B and
chymotrypsin-like activity. The previous exposition of leucine PIF-like-treated
myotubes prevented not only cathepsins and chymotrypsin enzymes activity but
also proteasome activity [31], thereby highlighting another role for leucine in
cancer-cachexia reversal. Indeed, the inhibition of cathepsin activity has been
suggested as a useful approach to treat cancer cachexia [68].

Calcium-dependent proteolysis is composed by cysteine-proteases, which are
dominated by calpains and the endogenous inhibitor calpastatin [69]. Among the 14
calpains described, striated muscle contains considerable amounts of μ-calpain, m-
calpain and calpain 3, which are activated by the intracellular concentration of cal-
cium [70]. Above a certain threshold, Ca2+ intracellular levels interact with the C-
terminal domain of the calpain large subunit, thereby promoting N-terminal auto-
cleavage and leading to maximal protease activity. Therefore, there is a correlation
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between calpain activity and protein turnover in muscle, thereby suggesting an
important role in muscle mass maintenance and partially accounting for muscle
wasting in some pathologies [71]. Cancer patients and tumour-bearing rats present
higher calcium-dependent proteolysis, which is linked with increased calpain and
decreased calpastatin protein content [72, 73]. Moreover, there is evidence that
calpains, mainly μ-calpain, is localised to the Z-disk in the sarcomere, which is
anchored by myofibrils such as p35, nebulin, troponin-T, α-activin, and desmine.
Thus, Ca2+ dependent proteolysis seems essential to the initial disaggregation of the
sarcomere structure, thereby releasing contractile proteins for further degradation by
other proteolytic systems. Similarly, leucine supplementation improves muscle mass,
thereby minimising the muscle wasting by inhibiting the calpain activity.

Other points of the proteolysis processes that should be mentioned include those
related to other intracellular pathways that govern cancer cachexia. For example,
AKT phosphorylation causes FoxOs inactivation and translocation from the nucleus
to the cytosol [74]. FoxOs (Foxo1, 3 and 4) are transcription factors that regulate
energy metabolism, the cell cycle, antioxidant defence, cell death, and longevity [75].
Repression of FoxOs by AKT is a key step in the anticatabolic action of insulin/IGF1
signalling [76]. Therefore, genetic ablation of FoxOs specifically in skeletal muscle
reverses muscle atrophy caused by starvation and denervation, indicating that FoxOs
are necessary to the expression of several atrophic genes, such as atrogin1, MuRF1,
proteasome subunits, and lysosomal enzymes [75]. FoxO directly upregulated many
proteasome subunits and E3 ligases in cancer-induced muscle wasting. Interestingly,
FoxOs also increased autophagy in tumour-bearing mice [77], inducing the expres-
sion of such genes as Cathepsin-L and other genes related to the lysosomal/autophagy
pathway (e.g., Gabarapl1 and Bnip3). Thus, FoxOs seem to mediate crosstalk
between proteasomal and autophagy-dependent proteolysis in cancer-induced
cachexia since the inhibition of FoxO3 or FoxO1 by RNA interference entirely pre-
vents muscle loss [78]. Also, pro-inflammatory cytokines contribute to mass muscle
decline under several conditions [79]. TNFα increases muscle protein degradation
by activating the transcription factor NFκB [38]. The blockade of NFκB signalling
in tumour-bearing mice partially attenuated cancer-induced muscle loss, thereby
enhancing longevity [80]. Activation of NFκB enhanced atrophy by the transcription
of MuRF1, ubiquitin, UbcH2 (E2), proteasome subunits, and autophagy-related
genes [81]. Likewise, higher levels of myostatin and activin-A (i.e., members of the
TGF-B family, share the receptor ACTRIIβ, and are known to regulate muscle mass)
are related to muscle atrophy [82, 83]. Moreover, the inhibition of the bioactivity of
activin-A and myostatin by inhibin and follistatin prevents muscle loss independent
of tumour growth [84]. Additionally, several human tumour cell lines secrete con-
siderable amounts of myostatin and activin-A [85], which are correlated with muscle
strength loss [86]. Moreover, myostatin acting due to ACTRIIβ downstream effectors
Smad2/3 activity also enhances skeletal muscle loss by phosphorylating the Smad2/3
and transcription of MuRF1, atrogin1, and autophagy induction [87], which corrob-
orates our data, thereby highlighting the modulatory effect of leucine supplementa-
tion in C2C12 cells treated with PIF-like. Interestingly, myostatin effects might
depend on the suppression of PI3K/Akt signalling [88], where we also find some
beneficial effects of leucine supplementation, such as restoring the inhibitory effect
of Akt and minimising proteolysis in PIF-like-treated C2C12 cells.

5. Myocardial muscle in cachexia and leucine

Recently, the number of studies addressing cancer and cardiac failure has
increased. This is because cancer has significant effects on skeletal muscle, causing a
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catabolic state and resulting in widespread and progressive atrophy, including
myocardial tissue. Studies have shown that cardiac atrophy can be a result of cancer
evolution and its treatments [89–91]. These damages result in symptoms that can
include breathlessness, lethargy, reduced exercise tolerance, congestive cardiac
failure, and mortality [92]. Because the alterations in cardiac muscle structure and
metabolism induced by cancer cachexia are poorly understood, cardiologists and
oncologists are working together to explore models of care to improve outcomes.
Some findings show that pancreatic, lung, and colorectal cancer patients have a
reduced heart mass with a reduced left ventricular (LV) and wall thickness and are
associated with smaller heart cell size and numbers and increased extracellular
stroma surrounding the myocytes [92]. Indeed, this cardiac atrophy is part of a
complex systemic metabolic syndrome caused by cancer damage, resulting in
severe muscle wasting, including of the myocardium. Rodent models of cancer
cachexia also show characteristics of cardiac atrophy, including decreased heart
weight and LV mass; the thinning of septal, interventricular, and posterior walls;
and chamber dilation as demonstrated by echocardiography [91, 93]. Cardiac atro-
phy in cancer cachexia is likely driven by cellular atrophy, including the activation
of UPS [93] and the imbalance of protein turnover [91]. Cancer cachectic mice
presented decreased cardiac contractile function and heart rate with concomitantly
increased heart tissue fibrosis, which was associated with higher pro-inflammatory
cytokine content and enhanced oxidative stress [94, 95]. Therefore, the use of an
experimental cancer cachexia model allows us to evaluate how leucine supplemen-
tation counteracts cachexia damage in the heart. Recently, we reported relevant
data related to the benefits of leucine supplementation for reverting/maintaining
cardiac mass for both tumour-bearing rats fed a leucine-rich diet [91] and adult
offspring whose mothers had been fed a leucine-rich diet (data not published).
More interestingly, we observed improvement in enzyme activities related to the
heart function via electrocardiography as a positive effect of leucine in tumour-
bearing rats [91]. We know that leucine stimulates protein synthesis through acti-
vation of the mTOR pathway, thereby stimulating the intracellular signalling path-
ways that modulate cellular metabolism and apoptosis; this supports our data since
the activation of mTOR is also essential for mediating physiologic cardiac hyper-
trophy and preventing cardiac dysfunction in the face of pressure overload [91, 96],
thus supporting the cardioprotective effects of leucine over the cancer-cachexia-
induced cardiac damages [91].

6. Leucine maternal diet influence over muscle wasting

Since the number of new cases of cancer is increasing every year, and most of
these are attributed to environmental factors and lifestyle, prevention is a major
target of cancer studies [97, 98]. In addition to maintaining a balanced diet
throughout life, the influence of maternal diet on offspring’s adulthood has been
widely studied [99].

Among environmental factors, nutritional composition is the main factor in the
modulation of gene expression, especially those related to metabolic pathways.
The periods of gestation and lactation are considered crucial because the maternal
diet exerts influence on the development and the plasticity of organs and tissues of
the foetus/newborn [100]. The energy composition of foods, fatty acid composi-
tion, proteins, and micronutrients can modify several aspects of metabolism. Poor
or imbalanced maternal diet, e.g., undernutrition, might contribute to a change in
the metabolic programming of the offspring [101, 102], thereby increasing the risk
of metabolic diseases (e.g., insulin resistance, obesity, type II diabetes),
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cardiovascular disorders (e.g., hypertension and atherosclerosis), hormonal
imbalance, and even cancer incidence in the offspring [103]. Thus, some amount
of prevention may be achieved through a balanced maternal diet, considering not
only the proper nutrition but the nutritional scheme; this can be viewed as a long-
term investment that benefits both the current generation and its descendants, i.e.,
one that can minimise the risk of diseases (e.g., cancer) in the mother and her
adult children [104, 105]. Thereby, due to foetal and lifetime nutrition there are
epigenetic modifications [101], which are stable heritable patterns of gene expres-
sion in the DNA and histone proteins [106], and may result in DNA methylation,
histone modifications, and RNA interference. Global hypomethylation, global
miRNA downregulation, specific promoter hypermethylation, histone
deacetylation, and upregulation of epigenetic machinery have been reported in
cancer [107, 108], which are related to epigenetic silencing of detoxifying
enzymes, suppressor tumour genes, cellular cycle regulators, apoptosis inducers,
and DNA repair genes [109].

Knowing the benefits of leucine for attenuating the cachectic state and preven-
tive interventions [110–112], previous studies using animal models of cachexia
indicate that maternal nutrition affects the development of cancer cachexia and its
effects in offspring adulthood [113, 114]. In our previous work, a maternal diet
supplemented with leucine had a positive impact on the adult offspring’s ability to
respond to a Walker-256 tumour, diminishing the cachexia index, modulating
markers of hepatic damage functions, and increasing the antioxidant response of
the liver [112]. In this same experimental procedure concerning muscle wasting, our
unpublished data show that maternal leucine supplementation can minimise the
cachectic index by preserving the skeletal muscle mass in adult offspring. These
results are confirmed by the stimulatory effect on the expression of mTOR pathway
proteins. We observed a significant activation of mTOR and p70S6K, which indi-
cates the preservation of protein synthesis and a decrease in proteolysis (i.e., we also
verified less tyrosine release in the perfusion procedure) in the gastrocnemius
muscle of these adulthood Walker-256 tumour-bearing rats subjected to a leucine
enriched maternal diet (data in print). In fact, these findings indicate that leucine
supplementation can modulate the mTOR pathway, resulting in the preservation of
protein synthesis (data in print) and protection against the damaging effects of the
Walker-256 tumour. Thus, maternal leucine supplementation shows promise in
terms of improving the response to cachexia, i.e., preventing muscle loss, and
further studies are needed to better understand the epigenetic mechanisms involved
in this modulation and how the parental influence can counteract the damages
caused by cachexia.

7. Conclusion

In summary, in Figure 1, we present evidence demonstrating the key role of
leucine in improving skeletal muscle protein synthesis and minimising muscle deg-
radation; we also report some metabolomic and proteomic findings, which are
ameliorated by a diet supplemented with leucine. Also, these data show the benefits
of leucine supplementation in cases of cardiac cachexia and the potential that a
leucine supplemented maternal diet has for improvement of the host response to
cancer-cachexia-induced muscle damage. As found in our studies and reported by
other research groups, leucine is a suitable co-adjuvant treatment in an experimen-
tal model of cancer cachexia. However, more translation human studies are needed
to determine whether leucine supplementation is capable of modulating muscle
mass in cancer cachexia patients.
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