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Motivação: A medicina e as ciências da saúde estão atualmente num 
processo de alteração que muda o paradigma clássico baseado em sintomas 
para um personalizado e baseado na genética. O valor do impacto desta 
mudança nos cuidados da saúde é inestimável. Não obstante as contribuições 
dos avanços na genética para o conhecimento do organismo humano até 
agora, as descobertas realizadas recentemente por algumas iniciativas 
forneceram uma caracterização detalhada das diferenças genéticas humanas, 
abrindo o caminho a uma nova era de diagnóstico médico e medicina 
personalizada. 
Os dados gerados por estas e outras iniciativas estão disponíveis mas o seu 
volume está muito para lá do humanamente explorável, e é portanto da 
responsabilidade dos cientistas informáticos criar os meios para extrair a 
informação e conhecimento contidos nesses dados. 
Dentro dos dados disponíveis estão estruturas genéticas que contêm uma 
quantidade significativa de informação codificada que tem vindo a ser 
descoberta nas últimas décadas. Encontrar, ler e interpretar essa informação 
são passos necessários para construir modelos computacionais de entidades 
genéticas, organismos e doenças; uma meta que, em devido tempo, leva a 
benefícios humanos. 
 
Objetivos: É possível encontrar vários padrões no varioma e exoma humano. 
Explorar estes padrões permite a análise e manipulação computacional de 
dados genéticos digitais, mas requer algoritmos especializados. Neste trabalho 
procurámos criar e explorar metodologias eficientes para o cálculo e 
combinação de padrões biológicos conhecidos, com a intenção de realizar 
otimizações in silico de estruturas genéticas, análises de genes humanos, e 
previsão da patogenicidade a partir de diferenças genéticas humanas. 
 
Resultados: Concebemos várias estratégias computacionais para avaliar 
genes, explorar genomas, manipular sequências, e analisar o varioma de 
pacientes. Recorrendo a técnicas combinatórias e de otimização criámos e 
conjugámos algoritmos de redesenho de sequências para controlar estruturas 
genéticas; através da combinação do acesso a vários web-services e recursos 
externos criámos ferramentas para explorar e analisar dados genéticos, 
incluindo dados de pacientes; e através da aprendizagem automática 
desenvolvemos um procedimento para analisar mutações humanas e prever a 
sua patogenicidade. 
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abstract 
 

Motivation: Medicine and health sciences are changing from the classical 
symptom-based to a more personalized and genetics-based paradigm, with an 
invaluable impact in health-care. While advancements in genetics were already 
contributing significantly to the knowledge of the human organism, the 
breakthrough achieved by several recent initiatives provided a comprehensive 
characterization of the human genetic differences, paving the way for a new era 
of medical diagnosis and personalized medicine. 
Data generated from these and posterior experiments are now becoming 
available, but its volume is now well over the humanly feasible to explore. It is 
then the responsibility of computer scientists to create the means for extracting 
the information and knowledge contained in that data. 
Within the available data, genetic structures contain significant amounts of 
encoded information that has been uncovered in the past decades. Finding, 
reading and interpreting that information are necessary steps for building 
computational models of genetic entities, organisms and diseases; a goal that 
in due course leads to human benefits. 
 
Aims: Numerous patterns can be found within the human variome and exome. 
Exploring these patterns enables the computational analysis and manipulation 
of digital genomic data, but requires specialized algorithmic approaches. In this 
work we sought to create and explore efficient methodologies to 
computationally calculate and combine known biological patterns for various 
purposes, such as the in silico optimization of genetic structures, analysis of 
human genes, and prediction of pathogenicity from human genetic variants. 
 
Results: We devised several computational strategies to evaluate genes, 
explore genomes, manipulate sequences, and analyze patients’ variomes. By 
resorting to combinatorial and optimization techniques we were able to create 
and combine sequence redesign algorithms to control genetic structures; by 
combining the access to several web-services and external resources we 
created tools to explore and analyze available genetic data and patient data; 
and by using machine learning we developed a workflow for analyzing human 
mutations and predicting their pathogenicity. 
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1 | INTRODUCTION

1.1 GENETICS AS A NEW HEALTHCARE PARADIGM

In 1953 James Watson and Francis Crick announced to the world the structure of
DNA, a double helix resembling a twisted ladder (Figure 1.1) [193]. At the time, it
had already been shown that the DNA was in fact genetic material1, the foundation
of heredity, and that it was responsible for templating the construction of proteins,
with protein themselves having a crucial role in organisms. Five years later Crick
introduced an hypothesis dealing with the subject of protein biosynthesis, the process
by which proteins are created inside cells [47]. The central dogma of molecular biology,
as it was called then, explains how information coded in DNA is transformed to RNA
and then to proteins.

Figure 1.1 X-ray di�rac-
tion photography of a DNA
molecule, taken in 1953 by
Rosalind Franklin. It led Wat-
son and Crick to the discovery
of the double helix shape.

But more than a central role in building proteins, that
hypothesis held the building blocks to answer a wide vari-
ety of questions, mainly regarding the mechanisms for the
etiology of di�erentiation and disease. That hypothesis
became so central that much of current molecular biology
revolves around it, and several important branches have
emerged from it since, including computational biology
and genetic mutations research, the themes of this work.

Granted, Crick and Watson paved the way for an un-
precedented evolution in the comprehension of living be-
ings. In the past 15 years alone, we have witnessed major
breakthroughs in the understanding of genetics, such as
the �rst complete sequencing of the human genome in 2003 [45] which, for science,
brought novel insights onto the architecture and function of genes and diseases [127],

1Since 1944, with the popular Avery-MacLeod-McCarty experiment [13].
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2 1 | Introduction

but also encouraged numerous health-related companies to explore the released data
to create diagnosing solutions, such as genetic tests for breast cancer. The 1000
genomes project followed the lead in 2008 by multiplying the experiment into a thou-
sand and obtaining a comprehensive overview of the di�erences and similarities among
human beings [2]. The result is an integrated map of genetic variation, detailing the
pro�les of individuals from di�erent geographic locations and origins, with millions
of mutations.

Understanding the implications of a genetic alteration and being able to control
those changes could easily bring to science and society a breakthrough as signi�cant
as Crick and Watson's initial discovery, by changing the way medicine and healthcare
behave. Furthermore, though taking control over the genes of an organism is still
an early-stage idea, understanding genetic consequence is an active �eld of research
with tangible results. As an example, since 2008 about 1800 genome wide association
studies (commonly known as GWAS) have been made for more than 1000 diseases,
medication susceptibilities, and other traits ranging from physical phenotypes (e.g.
weight, hair color) to cognitive capabilities. In these studies, the genomes of small
populations of individuals with a common target trait are compared, and the similari-
ties among them and di�erences to control groups allow identifying the genetic causes
for those traits. Needless to mention how this approach streamlines the creation of
treatments and medicines [115]. As a consequence, genetics is rapidly becoming the
cornerstone of pathology and epidemiology [127].

The amount and complexity of the genomic data made available with these and
other projects far surpasses the analytical capabilities of humans, restating the role of
computer science and biotechnology. Following the need for data manipulation and
knowledge extraction tools, computational biology took the place as the main auxil-
iary discipline to help driving biology. An example of computational requirements lies
with the sequenced human genome itself, which bears more than 3 billion nucleotide
bases, and for which searches, annotations and alignments are intricate procedures.
Computer applications such as BLAST [88] are now widely used on a daily basis
to look for sequences, not only in the human genome, but also in the 655 billion
nucleotide bases of 280 thousand formally described species2 available in databases
such as GenBank [19] (see Figure 1.2). Another, more recent, example comes from
the spawn of variation data coming from several projects, such as the 1000 genomes.
The massive amount of data made available regarding human mutations opens an

2With about 3800 new species added every month.
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unprecedented opportunity to gather knowledge on the mechanisms of diseases and
other phenotypes. Dealing with such bits of information is only now gaining wide
popularity.

Furthermore, it has been pinpointed that some of the most important challenges
faced by bioinformatics include the personalized interpretation of a human genome,
along with the functional e�ects and impact of genomic variation [35, 58]. This
goal is intrinsically related with a moving healthcare paradigm, leaning towards a
more customized and less dogmatic medicine, increasingly relying on genetics. Al-
though several computational and technological solutions have already emerged from
research [139], we are still far from the ideal patient diagnosing pipeline: sequencing a

Figure 1.2 Number of DNA bases in
GenBank over the years, in log scale.

patient genome prematurely; analyzing DNA in sil-

ico; and inferring pathological issues in advance to
their manifestation.

Discovering the underlying information of
genes, describing protein functionality and inter-
actions, and assessing the e�ect and signi�cance of
the genetic information for cells are some of the
most important tasks in the �elds of both Molec-
ular and Computational Biology. In this subject,
several major discoveries have been made in recent
years, allowing for a more comprehensive under-
standing of the factors and mechanisms involved in

cell functioning, specially in the topic of protein synthesis. As cells bear the title of
living units, their mechanisms take responsibility for regulating the whole organism,
and this condition is ampli�ed by the fact that the DNA is replicated throughout all
cells. Therefore, merging the knowledge of gene and protein behavior with that of
genome functioning and, ultimately, with diagnose and treatment, is a highly desir-
able goal in the path to personalized medicine.

1.2 RESEARCH GOALS

This work tackles the subject of computational genomic evaluation and predicted con-
sequence as a contributing step to the diagnosing pipeline. In this line, understanding
the impact of genes and their properties bears great importance. In fact, it has been
shown numerous times that alterations in aspects otherwise considered minimal can
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introduce a great deal of change in the organism [147, 160, 165]. Therefore, we sought
to understand and numerically evaluate molecular and functional characteristics to
prove the hypothesis that the observed properties of a gene and other related entities
can e�ectively be computed and used to synthetically manipulate genes and predict
the phenotypical outcomes of genetic alterations.

The purpose of the research conducted in this doctorate is, therefore, to demon-
strate the capabilities of gene evaluation, manipulation and learning algorithms.
Thus, we focused on the creation of calculation methods to capture the properties
of genetic sequences, and then on the application of those methods in the context of
human variation. The overall objectives gravitate around the hypothesis being tested,
as the developed methods will perform the role of observed indicators combined to
assess the pathological e�ects of gene alterations. Thus, the main goals of the research
are de�ned as follows.

• Create computational strategies to improve the study of genes and proteins,
for instance by creating methodologies for gene and protein evaluation and
manipulation that settle on top of observable biological characteristics.

• Contribute to mRNA research by tackling the challenge of gene secondary struc-
ture manipulation, which represents a major factor in�uencing the synthesis of
proteins.

• Research machine learning methodologies to study the impact of human genetic
variation.

• Collaborate with medical research groups to integrate the developed method-
ologies into tangible solutions for the biomedical audience.

1.3 CONTRIBUTIONS

This research contributed to the current state-of-the-art on the computer science and
bioinformatics �elds by advancing knowledge on the digital manipulation of genetic
sequences, integrating new and known methodologies into working solutions, and by
delivering new computational approaches on the growing area of human mutations.
We can roughly divide the contributions into �ve parts (see Figure 1.3), corresponding
to gene evaluation and manipulation, mRNA secondary structure studies, integration
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of methods, pathogenicity prediction, and human variome exploration. I shall detail
those in the following paragraphs.

Figure 1.3 Contributions overview.

In the �rst contribution, we gathered from literature the main factors behind
gene expression and protein biosynthesis, and developed methods to evaluate mRNA
sequences on regard to those factors. These methods transform biological observations
into tangible indicators, allowing, among other uses, the comparison and analysis of
genes. Moreover, taking advantage of the degeneracy of the genetic code, we were
able to study the combinatorial problem of modifying genes to control the indicators.
Some of the outcomes of the study involve strategies developed to explore multi-
dimensional solution spaces using heuristics [67, 69]. Such heuristics allow �nding
pseudo-optimal genes.

The second contribution comes from the �eld of mRNA folding. The devised re-
search tackled the problem of secondary structures formed by nucleic acids. Given
the importance and contribution of this factor to gene and protein expression, we de-
veloped a method to rapidly evaluate the minimum free energy of an RNA molecule.
An algorithm was, therefore, created using heuristics to �nd equivalent mRNA se-
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quences with minimal structural conformations [68]. By managing the optimization
algorithms to control for Guanine and Cytosine content, we have also shown that
codon permutations have a large impact in the secondary structure, and not only the
amount of Guanine and Cytosine in the molecule. Along with the algorithm, a tool
for biologists was made available to promote a facilitated use of our strategy.

The next contribution is the integration of synthetic gene evaluation, exploration
and redesign functionalities into a usable solution. To ease and promote the work
and access to methods and tools, we created a software system, Eugene, that also
identi�es genes and genomes, retrieves annotations from online repositories, performs
alignments and protein secondary structure predictions. Eugene was created for bi-
ology researchers to easily analyze and redesign genes [69].

The fourth contribution lies on the subject of predicting the pathogenicity of spe-
ci�c human mutations. On this matter we have used machine learning in combination
with the developed evaluation algorithms in order to show that mRNA characteristics
have a large impact in the organism. Our solution also contributes by showing that,
contrary to the widespread approach of using protein characteristics, gene character-
istics can strongly contribute to prediction. As a result, we created a highly accurate
system for predicting the positive/negative outcome of single nucleotide variants in
human genes.

The last contribution is the integration of human gene and variome exploration
capabilities, along with the pathogenicity prediction system, into a patient genetic
analysis tool, Variobox [66]. To facilitate reporting new variants and �ndings, we also
automatized the discovery and annotation of mutations, as well as the comparison
of genes. This solution streamlines patient genetic examination as a step forward in
personalized medicine.

1.4 THESIS ORGANIZATION

The remaining chapters of this document are organized as follows.

• Chapter 2 will be on the background contextualization of this research, and a
review on the state of the art. I will also draw a summarization of the literature
on gene evaluation, and on the most recent techniques for predicting the impact
of genetic alterations.

• Chapter 3 will focus on the problem of gene evaluation by transforming litera-
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ture reported characterizations into methods. The chapter will also explore the
computational optimization of mRNA molecules through codon permutations
using heuristics. These methods will allow quantifying observable features of
genes, and redesign genes to control such features. The software package Eugene
will be presented as a practical solution to integrate the developed methods.

• Chapter 4 will expand on a particular type of gene redesign, which involves the
control over the formation of secondary structures in the mRNA. This forma-
tion represents one of the most important factors guiding gene expression, and
therefore I will present the solution we developed to rapidly evaluate minimum
free energy, and optimize genes to maximize that energy.

• Chapter 5 will be the culmination of the created methods, applied to a practi-
cal issue. I will present the problem of predicting the pathogenicity of the most
common mutation in genes. Using machine learning, I will then show how we
developed a system to tackle and solve this problem, and how we integrated it
in another software package, Variobox.

• Chapter 6 will terminate this document by presenting some concluding re-
marks and debate some compelling issues arising from the frontiers of this area.
Future perspectives will also be discussed.





2 | FROM GENE MECHANICS

TO DISEASE

In the previous chapter I mentioned the central dogma of molecular biology stated
by Francis Crick. Though the term dogma hardly sustains itself in the scienti�c land-
scape, the theory behind his contribution still holds as the acknowledged paradigm.
Nevertheless, I pointed that achievement because it bears the message of an unidi-
rectional �ow of information, intrinsic to living beings. In that sense, Crick stated
that DNA generates RNA which in turn generates proteins (see Figure 2.1). And
proteins are responsible for large and crucial parts of biological systems. They are
simultaneously the building blocks, operators, messengers and managers of organisms.

Figure 2.1 Central dogma of molecular biology. Blue arrows represent the normal trans-
fers of information, while orange arrows are special transfers occurring only in speci�c
conditions. DNA makes RNA which in turn creates proteins.

Naturally, when a vital manager, or any other important element, fails to perform
its work correctly, the consequences might be deleterious. But according to the central
dogma, this results from the e�ects of an upstream source of information: the RNA or
DNA. It is already accepted that the RNA templates that carry the direct instructions
on how to build proteins also carry indirect information that mainly serves to control
the synthesis process [86, 189]. Controlling that information has become a standard
way of regulating the protein creation process, and is the focus of a large share of
computational biology's e�orts. I will be discussing, in section 2.2, several of the

9
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factors that in�uence the biosynthesis and computational strategies to evaluate and
control those factors.

Another key factor resulting from the central dogma is that proteins are not di-
rectly prone to inheritance. The DNA is the single molecule that has the dual purpose
of passing information to o�spring and controlling the organism with that informa-
tion. Therefore the functions and e�ects of proteins are fully described in DNA, and
changes in DNA dictate the alterations at the protein level. Ultimately, analyzing the
DNA of an individual is su�cient to fundamentally understand the proteome of its
organism. It also means that the existence of a malfunctioning protein is coded in the
DNA since the genome was initially created, and might be passed down in replication
and reproduction. Of course I am largely ignoring external factors, such as environ-
mental stress, as well as alterations occurring in cell division and other processes.
However, these are largely unseen and unpredictable, and a minority compared with
inherited variants. Finding and classifying inherited variants is currently the target
of much research, given its potential for therapeutical and diagnosing applications
[146]. In section 2.3 I discuss several of these e�orts.

The next section will introduce the genetic contextualization necessary for the
remaining of the document, mainly how information is carried and transformed.

2.1 GENETIC TRANSFER OF INFORMATION

The Avery-MacLeod-McCarty experiment led to the isolation of DNA (Deoxyribonu-
cleic Acid), which is an inherited genetic library that de�nes most characteristics of
an organism, especially physical ones [13]. The DNA molecules are present in all
living beings, and are made up of four small base molecules, nucleotides (Adenine,
Guanine, Cytosine and Thymine), repeated millions of times in a non-random order.
In fact, the order and size of these molecules has been evolving during the past 3.55
billion years1 as by natural selection. It is the sole arrangement of the nucleotides in
DNA that dictates most of an organism's function, capabilities, physical attributes,
behavior, and even cognitive skills.

Evolution led to the development of small clusters of nucleotides combined in a
speci�c order, with prede�ned tasks, called genes. Since the DNA only carries in-
formation, the transformation of genes into useful functional blocks is performed by

1Throughout the document I refer to the short-scale billion, i.e. 109
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other entities. In the nucleus of the cell, where the DNA is stored in eukaryotes,
genes are copied from the DNA by an enzyme called RNA polymerase, in a process
called transcription (Figure 2.2a). This is the �rst step of a larger process called gene
expression, whereby the information carried by DNA is interpreted. The result of
this step is another nucleic acid molecule released into the cell nucleus, the precursor
mRNA, an exact copy of the gene except all Thymine nucleotides are replaced by
Uracil nucleotides. The precursor mRNA then undergoes a series of preprocessing
steps such as modifying its ends to avoid degradation, and most importantly, per-
forming splicing. Not all of the precursor mRNA is necessary; in fact, the majority of
a gene is made of large sequences of nucleotides called introns that are removed in the
splicing step (Figure 2.2b). After that only the information-bearing regions, exons,
are kept and joint together to assume the �nal form, the mature mRNA (messenger
RNA).

Note that the mRNA is the central molecule of this research, as much of the
computational analysis and manipulation is made on digital representations of it,
often in the form of strings of A, C, U and G, representing each type of nucleotide.

The �nal step of gene expression is translation, and it is a very complex process
involving many entities in the cell (Figure 2.2c). The goal is to build a protein with the
instructions coded in the mRNA. A complex called ribosome attaches to the mRNA
and reads groups of three consecutive nucleotides at a time, called codons, starting in
a speci�c codon named the start codon. The ribosome then reads the entire coding
region of the mRNA, until it reaches another special codon, the stop codon, where it
ends the translation and detaches from the mRNA. Each codon read by the ribosome
is decoded into an amino acid, and the amino acids are added together to produce a
polypeptide chain, which is the �nal product that the gene coded for.

Naturally, since a codon is a group of three consecutive nucleotides, the complete
coding sequence has a number of nucleotides that is multiple of three. Also, the same
codon is always decoded to the same amino acid, and since there are four di�erent
nucleotides the number of di�erent combinations of codons is 43 = 64. However there
are only 20 distinct amino acids, and so several di�erent codons can decode to the
same amino acid. As a result of this redundancy, there are on average 3 codons
capable of decoding each amino acid. Codons translating into the same amino acid
are called synonymous codons. This is called the degeneracy of the genetic code,
and is a fundamental property that is much explored in this work. It should also be
noted that stop codons do not decode any amino acid, but there are generally three
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Figure 2.2 Diagram of the steps of gene expression. In (a) the DNA is untwisted and
then a gene is copied by an external complex called RNA polymerase. The result is
the precursor mRNA. Next, in (b), splicing occurs removing intronic regions from the
pre-mRNA and stitching together the remaining exons, making the �nal version of the
messenger RNA. In (c) the ribosome (in gray) reads the mRNA, codon by codon. For each
codon, an external molecule, the transfer RNA (tRNA), brings the correct amino acid to
the ribosome, attaching itself to the codon, leaving the amino acid and then detaching. The
translation occurs by linking one amino acid at a time, forming a chain called polypeptide.
As the polypeptide leaves the ribosome and interacts with the cytoplasm (the liquid interior
of the cell) it folds to assume its three dimensional conformation. That step is represented
in (d) where, even after the translation is over, the folding proceeds with the help of other
cell mechanisms.
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variants of stop codons (this can change from species to species). Moreover, changes
in genes can be made by replacing codons with synonymous ones, and this is the
main mechanism behind the redesign of genes. Though the genetic code is almost
the same in all species, there are slight variations in what codons decode for which
amino acids. Table 2.1 shows the standard genetic code.

Table 2.1 Standard genetic code table. Each amino acid can be decoded by several
codons, but each codon only decodes into one amino acid. Note that the start codon also
codes for the Methionine amino acid, and that stop codons do not decode into any amino
acid (they only signal the termination of translation).

When the translation process is over, the protein (still just a polypeptide chain)
is not yet fully capable. As the chain leaves the ribosome, it starts folding on itself,
driven by the hydrophobicity and chemical interactions of its amino acids, until it
achieves its natural conformation, with minimal free energy [7] (Figure 2.2d). The
folding process is complex and is the target of a large amount of current research
in the �eld of computational biology. The acquired shape is essential to ensure the
functionality of the protein, as it allows exposing the correct interfaces to interact with
other elements of the organism. Moreover, incorrect folding may cause the protein
to lose some or all of its function, perhaps even rendering it toxic. For instance,
neurodegenerative diseases such as Alzheimer's and Parkinson's are believed to be
caused by the accumulation and aggregation of incorrectly folded proteins in neurons
[164]. Incorrect folding can easily occur when there is an alteration in one or more of
the amino acids of the protein, if that alteration generates signi�cant physicochemical
property changes. Changes in amino acids are generally caused by mutations in the
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genes, which in turn can be caused by numerous factors, such as replication and
reproduction errors. It should be noted that alterations in genes (and proteins) are
not mandatorily deleterious, and are indeed one of the mechanisms for evolution.

2.2 SYNTHETIC GENE EVALUATION AND REDESIGN

The evolutionary constraints that shape the genome of an organism have long been
the target of a large portion of the scienti�c community in biology [79, 133, 166].
These constraints are intrinsically related with the mechanisms of gene expression
and, ultimately, with the function of proteins. Understanding their impact not only
expands the knowledge regarding the mechanisms of genomes, but also paves the way
for synthetic gene manipulation.

As mentioned in the previous section, the sequence of nucleotides in the mRNA
de�nes the output of the translation: the chain of amino acids. I shall argue that
this sequence serves several simultaneous purposes besides that of translating, and
that such secondary functions can be computationally measured and used to algo-
rithmically optimize genes. In fact, Post et al. in 1979 were among of the �rst to
report a parallel set of information in the coding sequences of mRNAs, not directly
related with the translation [148]. They noticed that there was a strong correlation
between the usage of codons and the amount of cognate tRNAs. That bears some
explanation: codons, the decoding unit which is made of three nucleotides, exist in
di�erent amounts throughout all the genes of the DNA of an organism; the probabil-
ity of �nding each codon is not random, nor it is equal among all codons, meaning
some codons are more common than others (see Figure 2.3) [84]; tRNAs are the cell
entities responsible for bringing amino acids to the ribosome to create the polypeptide
chain; there are di�erent tRNAs for di�erent amino acids, and having more tRNAs
of one type makes the codons for that amino acid decode faster, because the chances
of having a tRNA in the surroundings of the ribosome are higher; Post et al. found
that the frequency of each codon is highly correlated with the amount of each type
of tRNA, and therefore with the speed of translation.

2.2.1 GENE EXPRESSION AND QUALITY INDICATORS

Codon usage was one of the �rst characteristics to be widely calculated on a gene,
besides those of function assessments. It allows estimating how fast a gene will be
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Figure 2.3 Codon usage distribution in Homo sapiens. The bars represent the 64 possible
codons, with a height corresponding to their frequency in the human genome. Some codons
are extremely uncommon, such as the stop codons (red), which are used only once in every
gene. A biased landscape is clearly visible.

decoded into a polypeptide by analyzing the frequency with which each codon of the
mRNA is used in the whole genome. Genes with common codons will have more
tRNAs available at the time of translation and thereby will create proteins faster
[37, 195].

This evaluation gave room for further understanding the reasons underlying the
biased evolutionary choice of codons in genes. For instance, in 2009, Zhang et al.
reported that the translation speed signatures, that is, the di�erent zones of the
gene that decode slower or faster, can a�ect the e�ciency of the folding step [201].
They showed that regions of the gene with less frequent codons2 temporarily arrested
the ribosome during translation, waiting for tRNAs, and that slower rate allowed
the already created part of the polypeptide to fold correctly. Conversely, regions
with frequent codons were decoded faster. This means that the frequency of each
codon has a role that indirectly guides the creation of the protein [140]. Zhang et al.
also showed that replacing low-frequency codons by ones with a higher frequency can
negatively impact protein expression, by removing necessary pauses in the translation.
For instance, a transparent case of the role of codon usage is the di�erence between γ-
actin and β-actin proteins: both proteins are 98% similar in their amino acid sequence,
but have distinct functions within the cell; it has been shown that their di�erence is
due to codon usage di�erences that control the rhythm of translation [197].

Another reason for the existence of a codon bias is gene expression itself. Genes
vary widely in their expression, that is, in the amount of protein produced. This
variability is related with the necessity to produce proteins in di�erent quantities due
to their function in the organism. Thus, it has been shown that codon usage is used
to regulate expression levels, where genes with frequent codons being translated often

2Actually less abundant tRNAs, which is correlated with codon frequency [83, 101].
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and at high volumes [72, 85, 156]. The large impact of codon usage has made it a
preferred strategy to evaluate genes, and the base methodology for many other forms
of evaluation and redesign.

For instance, Eyre-Walker and Bulmer [55], as well as other authors [183], noticed
that the beginning of the gene plays an essential role in providing the correct circum-
stances for the translation to occur correctly. They observed that the initial region of
translation in genes is mainly populated by low-frequency codons, purposely slowing
decoding initially, in a ramp e�ect. More recently, it has been shown that this e�ect
is also related with mRNA structure [20].

Another example is the codon correction e�ect, by which codons used at the begin-
ning of a gene to encode amino acids, will be preferentially reused along the gene, or
at least the same tRNAs [31]. As mentioned before, each amino acid can be encoded
by several di�erent codons, called synonymous among themselves. Cannarrozzi et al.
observed that a single gene tends on using the same synonyms for each amino acid,
with the reasoning that this is energetically favorable and less prone to errors, as the
tRNAs are already nearby the ribosome and therefore the translation will be faster.

Though codon usage was shown to be one of the most important factors involved
in gene decoding, the developments made in the �eld have shown that many gene
characteristics in�uence the production and functionality of proteins. Another such
factor is codon context, which is to some extent similar to codon usage, but relates
to pairs of codons instead. It states that the choice of a codon is modulated by the
surrounding nucleotides and codons [48, 125]. More speci�cally, codon context is the
nonrandom utilization of adjacent codon pairs [179, 200] which is related to steric
interactions between consecutive tRNAs in the ribosomes [74, 171]. Ultimately, as
with codon usage, codon context is correlated with the translation rate and accuracy
[42, 124].

The amount of guanine and cytosine (GC content) in the genome and genes has
also been shown to be related with the expression of genes [113, 152]. It was suggested
that this relation may be due to the higher stability of guanine-cytosine molecular
pairs, favoring a higher accuracy during translation, and even driving codon usage bias
[96]. Cytosine-Guanine sites in genes can also be methylated, a chemical mechanism
that can turn a gene o�, and has been shown to be related with the expression of DNA
vaccines, for instance, in HIV treatment [99]. Moreover, given the stability of the GC
pairs, genes with larger amounts of GC content are more prone to the formation of
secondary structures in the mRNA.
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Secondary structures are another important factor contributing to gene expres-
sion. In DNA, Adenine nucleotides pair with Thymine, and Guanine nucleotides with
Cytosine. In RNA, the e�ect is the same3, but since RNA molecules are much smaller
and single stranded, they eventually end up folding on themselves. The consequence
of this phenomenon is the possibility of forming large stretches of paired nucleotides,
called secondary structure (the primary structure being the sequence of nucleotides
itself) [76]. In some occasions, this is a normal and desired behavior, such as with
tRNAs, where the formation of their secondary structure is what grants them their
functionality. However, in normal protein-coding genes, the formation of secondary
structures can hamper the work of the ribosome, causing pauses along translation or
even preventing the initiation of translation [20, 50, 104, 202]. This e�ect has a large
impact and is thoroughly explored in chapter 4.

Furthermore, errors during gene expression may be deleterious for the functional
maintenance of cells. A source for errors during the decoding step is the loss of the
reading frame (frame-shifting), whereby the ribosome shifts the reading of codons
by one or two nucleotides and erroneously proceeds the decoding until another stop
codon is found. One factor causing the slippage is due to the presence of long chains
of repeated nucleotides or repeated patterns of nucleotides [27]. However, the gene
has a mechanism to avoid the wasted consumption of cell resources (e.g. amino acids)
when frame shifting or other similar translation errors occur. As mentioned before, a
subset of codons is used in the genome to indicate the end of the translation region: the
stop codons. It has been shown that genes have evolved to include an overwhelming
amount of stop codons at out-of-frame positions, as this strategy prematurely stops
incorrect translations when frame-shifting occurs [144, 163]. An example of this
protection system is observed in the genome of Escherichia coli, where in nearly half
of the genes the start codon (ATG) is followed by a codon starting in Adenine, forming
the tetranucleotide ATGA. If frame-shifting occurs initially, the translation is halted
immediately because a hidden stop codon is found (TGA), preventing cell resources
from being used in an incorrect translation.

Another factor involved in controlling protein synthesis, and eventually even caus-
ing translation errors, is the interaction of the mRNA with other cell machinery. For
instance, in Escherichia coli, a toxin called MazF regulates growth by cutting mRNA
molecules at ACA sites [15, 203]. Another example is Shine-Dargarno or Kozak se-
quences, which are speci�c nucleotide sequences present in the mRNA before the start

3Though in RNA Thymine is replaced by Uracil, which still bonds with Adenine.
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codon, allowing the ribosome to initially attach itself to the mRNA [103, 170]; when
these sequences are found in the coding region, ribosomes might attach to the mRNA,
hampering any ongoing translation [87, 172]. Also, as seen in Figure 2.2b, a splicing
step splits the pre-mRNA to remove unnecessary regions. Splicing regulatory regions
are sequences within the gene that silence or enable splicing, and therefore have a
large impact in expression [189]. This has been shown to be associated with a large
portion of inherited diseases [123]. The presence of these and other sequences that
enable the interaction with cell machinery can be largely deleterious to the expression
of a gene.

The factors presented in this section are perhaps the ones that mostly in�uence
gene expression, and it is important to note that they can be directly measured
from the mRNA. However, the mechanisms that are involved and regulate protein
synthesis are not isolated from the remaining processes of the cell. Therefore there is
a substantial amount of still unknown, highly variable or hardly mensurable factors
that also impact the creation of proteins.

2.2.2 ANALYTICAL EVALUATION METHODS

In spite of the knowledge that gene expression indicators are an important source for
analysis, methods for the evaluation and manipulation of genes are still in an embri-
onary phase: since genes are central to living systems, the creation or redesign of genes
and proteins are intricate procedures involving the whole complexity of organisms.

Nonetheless, with the sequencing of genomes becoming streamlined, the availabil-
ity of DNA in digital format, from many species, has allowed to perform compre-
hensive statistical analysis both within species and among species, unveiling patterns
of evolution and functionality. Taking advantage of the degeneracy of the genetic
code, several strategies to evaluate and redesign genes have emerged, based on the
previously described gene expression and quality indicators.

To measure codon usage, the most simple method is measuring the frequency of
each codon in the whole genome. However, Sharp et al. proposed a di�erent method
that takes into consideration the frequencies of the amino acids, since the amino
acid distribution is not random [167]. Their method, the relative synonymous codon
usage (RSCU), measures the deviation of the observed frequency of a codon from the
expected frequency if codon usage was uniform among synonymous codons (equation
1).
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RSCUi,j =
Fi,j

1
ni

∑nj
k=1 Fk,j

Equation 1 The RSCU for codon j, is based on the frequency Fi,j of codon i for amino
acid j, and on the frequency of every other codon that decodes to the same amino acid.

Though the RSCU is an improvement over the simple frequency because it takes
into account the usage of synonymous codons, Sharp and Li have noted that this
and other similar measures (e.g. codon preference statistic, codon bias index) lack
the ability to be comparable among di�erent genes, due to the di�erence in amino
acid composition [166]. Thus, they proposed a method, Codon Adaptation Index
(CAI), based on the fact that some genes are highly expressed (often called house-
keeping genes), and that evolution has strong selective constraints in these genes that
favour translational e�ciency. Such pressure has led the genes to the use of highly
e�cient codons. CAI uses the codon usage of those genes to calculate a score of bias,
measuring the relative distance of any gene to the house-keeping genes (equation 2).

wi,j =
RSCUi,j
RSCUimax

CAI = (
∏N

k=1wk)
1
N

Equation 2 The CAI of a gene is formulated from the geometric mean of the relative
adaptiveness wi,j (for codon j and amino acid i) of each of its N codons/amino acids.
Note that CAI measures a whole gene, rather than a single codon.

Some authors have created modi�ed versions of this approach, for instance the
tRNA Adaptation Index (tAI), which is based on the fact that codon usage is highly
correlated with tRNA abundance, which in turn is highly correlated with the number
of genes in a genome that encode each tRNA [53]. The relative adaptiveness w of tAI
modi�es the original one as shown in equation 3.

wi =

ni∑
j=1

(1− si,j)tGCNi,j

Equation 3 The tAI of a gene is formulated from CAI, changing only the relative adap-
tiveness wi,j . ni is the number of tRNAs for codon i; tGCNi,j is the number of genes
encoding the jth tRNA for the ith codon; and si,j represents the e�ciency of the tRNA
in attaching to the codon.

However, both CAI and tAI are species-dependent measures, given that the set
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of optimal codons di�ers from species to species. To tackle that problem, Wright
proposed a new method, the E�ective Number of Codons (�Nc, shown in equation 4),
which measures the extent to which the codons used in a gene are biased [199]. This
measure varies between 20, when a single codon is used for each aminoacid, to 61,
when synonymous codons are equally used.

F =
(n

∑k
i−1 p

2
i )−1

n−1

Nc =
∑6

i=1
i
Fi

Equation 4 The e�ective number of codons is calculated by �rst quantifying codon ho-
mozygosity F for each amino acid. Fi is the average of codon homozygosity for all amino
acids with i synonymous codons.

Furthermore, codon context, as discussed previously, also has a large impact in the
translation e�ciency. Changing the codon context has been shown to be an e�ective
strategy to attenuate the action of virus. Coleman et al. have proposed a method, the
Codon Pair Bias (CPB), to measure the bias of codon pairs beyond simple frequency
by determining if the codon pairs of a gene are on average under or over-represented
in a genome (equation 5) [41].

CPSa,b = ln

(
Fa,b

FaFb
FxFy

Fx,y

)

CPB =
∑k

i=1
CPSi
k−1

Equation 5 Codon Pair Bias is the average of codon pair score for every pair of codons
i in a gene. The codon pair bias (CPS) measures the observed frequency F of a pair of
codons a, b compared to the expected when taking into account the frequency of the pair
of their corresponding amino acids x, y.

Codon context is independent of codon usage in the sense that even codon pairs
made of codons with large values of codon usage can be very infrequent. Other
methods, such as Pearson's chi-squared tests, have also been used to measure the
signi�cance of codon pairs bias [39], though CPB has been widely adopted. In the
research of Coleman et al., the codon context was changed in the gene encoding a
speci�c protein of a virus. The change into under-represented pairs of codons led to
a decreased rate of translation, and therefore attenuating the virus.

Assuming that no errors occur in the translation process, codons in genes can be
safely replaced by synonymous ones guaranteed that the resulting polypeptide will
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remain the same. However, as discussed in section 2.2.1, other factors contribute to
the correct formation of the �nal protein. Nonetheless, the base for redesigning a gene
while maintaining the amino acid sequence is codon substitution, and Coleman et al.
applied that method by searching for the best combination of synonymous codons for
each position of the gene that decreased the value of CPB. Analogously, optimizing
the codon usage of a gene can be achieved by replacing every codon of the mRNA by
a synonymous with a larger value of CAI, RSCU or other measure of codon usage.

Being able to arti�cially create or redesign genes that are able to produce proteins
faster, and consequently in larger quantities, is a goal of research and industry [196].
Besides academic applications such as the need for large amounts of diverse proteins,
large scale production of proteins is a necessary step for therapeutic ends such as
vaccine creation and drug design [64]. For instance, the RSCU was recently used
with success by Hashaam et al. to redesign the Interferon-λ gene in order to express
it in larger quantities to be used as a treatment for Hepatitis C [4]. Moreover, the
creation of proteins in large quantities is usually performed resorting to host species
such as the bacteria Escherichia coli, which allow fast growth rates, inexpensive media
and well understood genetics [29]. This process is called heterologous expression, and
is performed by placing the target gene in host species, so it recognizes the gene
and translates it to proteins as if it were from its own DNA. One vulgar example of
this process is the mass production of insulin, the protein responsible in humans for
regulating carbohydrates in the blood.

However, in spite of the advantages of using a di�erent host to perform translation
rapidly and in large amounts, there are several obstacles in expressing a gene (e.g. a
human gene) in a strange host species. Firstly, the genetic code and cell machinery
might be di�erent, and thus some codons might translate to di�erent amino acids. As
a result, the gene would produce a di�erent protein, likely non-functional. Another
obstacle is the fact that codon usage varies widely among species, and therefore a
codon that is frequent and yields a rapid translation in the source organism might even
be very infrequent in the host species, making that codon slow-decoding. As discussed
in section 2.2.1, the codon usage signature is an important factor in translation,
controlling the velocity of the protein synthesis. In fact, Angov et al. showed that
adapting the target gene's codon usage to the host species could yield a ten-fold
increase in the amount of protein expressed, compared to using the native sequence
[8, 9]. This was performed by an algorithm named codon harmonization. In codon
harmonization, the codons of the native gene are replaced by codons that in the host
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species decode into the same amino acid and have similar codon usage. This way, the
decoding speed signature remains the same as in the original organism, granting a
correct folding of the resulting protein. In Angov et al. study, a protein to potentially
�ght malaria which otherwise had no expression in E.coli was successfully expressed
after codon harmonization. Equation 6 determines the extent to which a foreign gene
is adapted to the host organism, largely based on the methodology applied by Angov
et al.

Harm = min
N∑
i

|Fnative(i)− Fhost(i)|

Equation 6 Evaluation of codon harmonization for a gene with N codons. By performing
codon substitution, the algorithm uses this function to re�ect how the codon usage of each
codon is deviated from the native codon usage. F can be any measure of codon usage,
such as RSCU.

As discussed previously, another factor that largely in�uences gene expression
if the formation of secondary structures in the mRNA. The secondary structure of
molecules is commonly measured by the minimum free energy resulting from the
most stable structure. The most stable structure is acquired when the maximum
number of nucleotides is paired. Numerous algorithms and approaches to predict
secondary structures have been created [98, 111, 176, 205], but the most sophisticated
and well known is the fast dynamic programming approach from Zuker and Stiegler
[206], which is based on a �rst approach from Nussinov et al. [134], and served as
the basis for more recent methods. While Nussinov et al. approach was simply
intended to maximize the number of base pairs, Zuker and Stiegler created a more
realistic algorithm by creating a model of Gibbs free energy of the RNA molecule
and then trying to minimize that energy. This algorithm has a time complexity of
O(n4), though it can be reduced to O(n3) with some optimizations, and a memory
complexity of O(n2). Implementations can be found in the mFold [205] or Vienna
RNA [80] software packages. It is important to note that though these algorithm try
to maximize the number of base pairs formed in the secondary structure of the RNA,
the original sequence is never altered, only the potential folding is.

2.2.3 COMPUTATIONAL REDESIGN

In section 2.2.2, codon usage harmonization was shown to optimize genes for heterol-
ogous expression. However, harmonization is not the only method for redesigning
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genes. Indeed all other gene indicators can be optimized by performing codon substi-
tutions, as long as there is a form of evaluating the indicators. For simple indicators,
such as codon usage or GC content, gene optimization can be achieved by succes-
sively altering codons by synonymous that increase their evaluations, e.g. RSCU or
the number of Guanine and Cytosine nucleotides. However, for more complex indica-
tors that cannot be reduced to single codon evaluations, such as the mRNA secondary
structure which results from the whole gene, using codon-by-codon substitutions is
not a feasible strategy: altering a codon in�uences the whole structure. Furthermore,
exploring the complete set of codon combinations to look for the best �t is computa-
tionally impossible as there are on average 3n possible permutations for a gene with n
codons. A peptide with ten amino acids can be coded by an average of 59 thousand
possible synonymous codon sequences. The problem expands when there are several
simultaneous constraints, such as improving codon usage while avoiding nucleotide
repeats that cause ribosomal slippage. Several solutions have been presented to over-
pass this issue, such as randomly generating many synonymous sequences and then
choosing one with optimal indicators, or using heuristics to search faster through
possible combinations.

Search algorithms have already been shown as an e�ective solution for the compu-
tational redesign of genetic sequences [157, 188]. Indeed the latest method employed
by Angov et al. to achieve codon harmonization was to perform a stochastic search
using an algorithm called simulated annealing to explore possible synonymous gene
con�gurations [9]. Moreover, Chung and Lee have also recently used genetic algo-
rithms to simultaneously optimize a gene for codon context and codon usage [39].
Using search algorithms for gene optimization is a topic thoroughly explored in chap-
ter 3.

Nonetheless, some available software packages already allow optimizing genes for
several expression indicators. For instance Gene Composer, a very complete protein
constructor, allows the back-translation of an amino acid sequence into a codon se-
quence [151]. It allows de�ning the values for speci�c indicators, to be used in the
back-translation, such as the percentage of GC content. However, the back-translation
and optimization processes are achieved by generating thousands of synonymous se-
quences, and selecting the one that most closely matches the target GC% [112]. Rep-
etition removal, inserting out-of-frame stop codons, removing deleterious sites and
other indicators are also available in Gene Composer in a stepwise manner achieved
by targeted synonymous codon replacement. Other applications, such as Gene De-
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signer from DNA2.0 and IBG GeneDesigner, use genetic algorithms to back-translate
a sequence according to a set of constraint parameters [187, 188]. GASCO, a software
dedicated to gene expression optimization, also uses genetic algorithms to enhance
codon usage as well as including and avoiding sequence motifs [157]. Using heuris-
tics grants these applications the advantage of a more thorough search for candidate
solutions. Optimizer is another software, available through a web page, focused on
the redesign of genes for codon usage enhancement [150]. It uses several techniques,
such as a Monte-Carlo based heuristic, and a method designed to achieve maximum
codon usage with minimum changes to the original sequence. It also o�ers codon us-
age tables for the highly expression genes of many species, which allows a researcher
to perform optimizations to adapt the codon usage to the speci�c machinery of a
species. Optimization, however, is limited to codon usage, and using personalized or
di�erent genomes than those supplied is out of the scope of the software. Similar
features are found in Codon optimizer, which also provides calculations for CAI, and
identi�es regions of interaction with cell machinery (e.g. restriction sites) [63]. Other
applications, such as GeneDesign [153], DNAWorks [81], and JCat [73], o�er tools to
interact and design genes in a step-wise manner, though the integration of expression
indicators is limited.

An overview of the main available software tools for gene optimization and their
inclusion of gene expression indicators is depicted in Table 2.2.

Table 2.2 Gene optimization software comparison. All the tools o�er a form of codon
usage, though GeneDesign only o�ers a frequency-only based approach. Harmonization
is not present in any of the applications. Some limited approaches to mRNA secondary
structure optimization exist, though poorly based in stepwise algorithms, or relying in
external tools (e.g. mFold). Only Gene Composer o�ers an algorithm to insert out-of-
frame stop codons.

Though all tools employ more than one gene expression indicator to redesign codon
sequences, most have only a very limited set of methods. Furthermore, only GASCO,
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IBG GeneDesigner and DNAWorks use heuristics to perform the optimization. The
remaining applications resort to iterative approaches where a gene is changed step-by-
step to control one indicator at a time, while trying to maintain the results achieved
in previous steps for other indicators.

2.3 MENDELIAN PATHOGENICITY

One of the main mechanisms for evolution is genetic mutations. Ironically, this mecha-
nism is also the main cause of disease. While genes are meant to encode the sequential
formulas to build proteins and replicate themselves to o�spring, they are often4 sub-
ject to alterations. The alterations can occur under several circumstances, such as
replication errors when the DNA is copied, or environmental in�uence such as UV
rays, chemicals and radiation. In humans, however, only alterations originating in
speci�c cells (germ cells) cause the alteration to be passed to o�spring. Once an
alteration is passed, there is a risk that it becomes part of the DNA of the following
generation and it can be inherited from that point on into subsequent generations.
Humans have two copies for each chromosome, one from each parent. This means
that a hypothetical genetic alteration may exist only in one copy of the chromosome
and not the other when inheriting the alteration from only one of the parents. This
alteration might be pathogenic, i.e. disease-causing. However, having two copies of
each chromosome grants humans with the ability to still express the gene correctly
from the non-pathogenic allele (one of the copies of the gene). Nonetheless, many
diseases can still express themselves with a single copy of the alteration. These are
called autosomal dominant diseases, and examples of these are Huntington's disease,
osteogenesis imperfecta (also known as brittle bone disease), and neuro�bromatosis.
On the other hand, when two copies are needed for the disease to happen, the dis-
order is called autosomal recessive, and examples of these include cystic �brosis, and
sickle-cell anaemia.

Until now I have only mentioned monogenic traits (i.e. that occur by the alteration
in a single gene, also known as Mendelian), but diseases can be extremely complex
and depend on multiple alterations in several genes or regions of the DNA. For in-
stance, rheumatoid arthritis, which is the most common rheumatic disease a�ecting
approximately 1% of the population, has its etiology linked with two or three genes

4The rate of human mutations has been shown to be broadly ∼ 2.5 × 10−8 per nucleotide per

generation [126].
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as well as environment and lifestyle factors [145]. Diabetes, Alzheimer's and cancers
are also examples of polygenic disorders, and there are, generally, more polygenic
disorders than monogenic [38]. Moreover, in the Online Mendelian Inheritance in
Man (OMIM) database there are 5,202 monogenic phenotypes for which the molecu-
lar basis is known, and 3,195 human genes with known phenotype-causing mutations
[77]. OMIM also reports 1,707 described phenotypes for which the molecular basis is
unknown, and 1,856 phenotypes with suspected mendelian basis. It is fair to assume
that the etiology of phenotypes, including diseases, is an active �eld still giving its
�rst steps. It is also worth mentioning that studies of monogenic diseases contribute
a great deal to the knowledge of polygenic diseases through the understanding of the
mechanisms of pathogenicity and gene regulation [10].

2.3.1 MECHANICS AND CONSEQUENCE OF MUTATIONS

Genetic mutations (also known as variants or alterations) can occur in distinct ways,
varying in size and form. The most simple and common variation is the single nu-
cleotide variant (SNV), whereby a nucleotide in the DNA is replaced by another.
When an SNV occurs within a coding region of the DNA it will a�ect a codon and
therefore it may alter the translated amino acid if the mutated codon is not a synony-
mous of the original codon. These variants are called non-synonymous SNVs (nsSNV),
and are opposed to synonymous SNVs (sSNV). Because nsSNVs directly a�ect the
structure of the protein, they are believed to have a larger impact on human health
compared with sSNVs [130]. Other types of variants include:

• Insertion When one or more nucleotides are inserted in the DNA between
two existing nucleotides. The impact of an insertion, even a single nucleotide,
in a coding region can be very deleterious to the expression of the gene, as a
frame-shift occurs and following codons are read incorrectly.

ATG GTC GGT CAA... −→ ATG AGT CGG TCA A...

• Deletion When one or more nucleotides are removed for the DNA. The conse-
quences can be similar to those of an insertion when occurring withing a coding
region.

ATG GTC GGT CAA... −→ ATG GTC GTC AA...

• Deletion-Insertion As the name indicated is the combination of the previous
two mutations types: a region of the DNA is replaced by one or more nucleotides.
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ATG GTC GGT CAA... −→ ATG GTC GAC GGG A...

• Inversion Occurs when a nucleotide sequence in the DNA becomes reversed.

ATG GTC GGT CAA... −→ ATG GTC CTG GAA...

• Duplication When a nucleotide, or a sequence of nucleotides, is copied one or
several times.

ATG GTC GGT CAA... −→ ATG GTC GGG GGT CAA...

Though the DNA of any individual is 99.5% similar to every other, we look,
paradoxically, very di�erent [107]. This happens because some small changes have
large phenotypic e�ects. At the heart of these changes is the e�ect that a mutation
can cause to the expression of a gene5. As discussed previously, a variant a�ecting
a codon can alter the primary structure of the resulting protein (i.e. the amino acid
sequence). The consequence of the alteration varies depending of many factors, such
as di�erences between the original and the new amino acid and, as shown in section
2.2.1, di�erences between the original and new codons. It is the order of the amino
acids that mainly dictates the �nal structural conformation that the protein will
have, and it is the structure that de�nes its functionality and role. Amino acids have
di�erent physicochemical properties, such as mass, volume, charge, hydrophobicity
(the ability to repel water), and polarity. These properties, mainly hydrophobicity
and the interaction between amino acids, guide the folding process by obligating
water-repelling amino acids to enclose themselves in the nucleus of a protein, leaving
hydrophilic amino acids in the exterior (also performing function), and at the same
time minimizing the free energy of the molecule conferring stability to the structure
[16, 52, 138]. By replacing an amino acid, the properties of the new amino acid
might result in a disruption of the original folding, or disabling of critical interaction
sites, rendering the protein dysfunctional. Besides the fact that the function originally
intended to be performed by such a malformed protein will no longer be accomplished
(or will be in a limited fashion) and therefore having a chance of being pathogenic,
it has also been shown that misfolded proteins can aggregate, forming �bers, and
initiate profound cellular dysfunction [26, 155]. This is the basis for diseases such as
Parkinson's, Huntington's and Alzheimer's [164].

5It should be noted that though I focus in changes occurring in coding regions to explain pheno-

types, there is large evidence that changes in non-coding regions are also responsible for regulating

the expression of genes.



28 2 | From gene mechanics to disease

As mentioned previously, di�erences are not limited to gene products. In fact,
the majority of the expression indicators discussed in section 2.2.1 can be involved in
determining the consequences of a genetic mutation. For instance, a variant altering
a codon into a synonymous one with very di�erent codon usage might provoke a deep
change in the translation speed, a�ecting the ongoing protein folding process that
occurs while translation happens [9, 100, 201]. Furthermore, variants occurring in
the initial coding region of the mRNA might a�ect the initiation of translation (see
ramp e�ect in section 2.2.1). Also, variants a�ecting splicing regulatory sites have
been shown to in�uence the pre-mRNA splicing step, with studies reporting that 16%
of disease causing mutations a�ect these sites [123, 189].

It should be noted that it is hard to deduce any determinism from the mechanisms
of mutations and gene expression, as they are complex processes depending on a large
myriad of variables, spanning from genetic to environmental factors. Variables such
as demographics, role of the gene in the organism, and the frequency of a mutation in
a population, have a large in�uence on de�ning the pathogenic (or neutral) outcome
of a mutation.

2.3.2 COMPUTATIONAL MODELS OF PATHOGENICITY

With a shift occurring in the medical domain, tending to the comprehensive under-
standing of the genetic etiology behind human disorders, it becomes hard to avoid
the question of what is the function of each of the ∼25,000 human genes, and how
does their genetic variation contribute to health and disease. Being able to com-
putationally distinguish between pathogenic and neutral variants can aid this task
signi�cantly by identifying and prioritizing candidate mutations of patients [181], be-
sides being cost and time advantageous when compared with the di�culty in attaining
such knowledge experimentally. The process of creating computer models that are
able to distinguish problematic variants from neutrals also gives itself insights into the
mechanisms of disease. For example, if a model performs better when accounting for
a particular characteristic change in a gene, then there is the likely chance that such
characteristic is involved in the causative elements of the disease. However, the enor-
mous complexity of genomics makes the creation of such disease-association models
a di�cult problem, as variants can a�ect biological function in numerous ways, and
many external factors can also contribute to disease.

Nonetheless, with the sequencing of the human genome, and specially with the
recent 1000 genomes project, a new era for human analysis and diagnosis began (a
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progress partially depicted in Figure 2.4). Since these projects, numerous approaches

Figure 2.4 Growth of the SNPdb database. The total submitted (blue line) shows the
raw number of human SNPs (SNVs with a frequency of 1% or more in the population)
sent to the database. The orange line shows the number of variant clusters, i.e. di�erent
variants, and the gray line the ones that have been validated. A large change occurred
since 2007/08, with the start of the 1000 genomes project.

haver emerged to crunch their data and extract signi�cant information and predic-
tions. However, on the topic of computational models of pathogenicity, attempts
started as soon as variant data became available, even before the 1000 genomes
project. The �rst solutions trying to tackle this challenge started in 2001 with the use
of protein sequence homology to verify if the mutated site was conserved among ho-
mologous proteins in other species [128, 129]. The rationale behind this method, SIFT
(Sorting Intolerant From Tolerant), is that if an amino acid is well conserved, it is
likely to perform an important role in the protein, and therefore an amino acid change
might be deleterious. Other authors expanded this concept and created rule-based
methods also relying on the assessment of changes in the 3D structure of proteins at
the same time [36, 177]. They measured, besides homology conservation, if a substi-
tution was placed in an active binding site, a�ected interactions with ligands, lead
to hydrophobicity changes in crucial core amino acids, among other structural char-
acteristics. Another approach, Panther [180], combined homology conservation with
annotated information comming from a constructed ontology, and introduced the
use of machine learning by combining these attributes using Hidden Markov Models.
By using a simple ontology, they were able to classify proteins by function, adding
knowledge to their model of pathogenicity. In 2008, SNPs&GO combined the previ-
ous approaches using structural and physicochemical information with homology and
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ontology [161]. The wide range of features, including information on functional alter-
ations, role, and structure changes, along with the use of machine learning (Support
Vector Machines), gave their method a high performance. Other methods focused in
a speci�c functionality or goal, for example TANGO [59] was created to predict the
formation of protein agglomerations, a trait resulting from genetic mutations that are
speci�c to certain diseases such as Alzheimer's; or AUTO-MUTE, which was built to
predict energetic variations in protein structures. As a result of their narrow domain
speci�city, they are able to achieve large predictive performances (for instance, 90%
in AUTO-MUTE). Furthermore, several authors have created strategies to aggregate
many of these methods into meta-prediction tools, under the hypothesis that their
combination can achieve higher prediction performances than any of them alone, as
is the case with META-SNP [32] and, recently, PredictSNP [18].

With the beginning of the 1000 genomes project, available data on human vari-
ation began rising and, as a result, more accurate and sophisticated methods could
be developed and tested. The number of approaches and tools described in literature
increased and gave the �eld a signi�cant advance [3, 62, 82, 108, 162, 168, 169]. Table
2.3 depicts and compared the main methods described in literature.

Overall, the large majority of the methods rely on sequence conservation through
homology veri�cations. As a result, these methods can only be applied to phylogenet-
ically conserved regions, hence having poor coverage of the coding regions across the
DNA [82], and do not take into consideration functional information [93]. Nonethe-
less, there are many indicators on which the methods rely to perform predictions,
that can be roughly categorized into the following types of features:

• Amino acid features are those related with the mutated and neighboring amino
acids, in terms of physicochemical properties, e.g. change in the hydrophobicity
of the mutated amino acid.

• Structural features encompass characteristics related with the secondary and
tertiary structures of the protein, such as the probabilities of the mutated amino
acid pertaining to a solvent-accessible area of the protein, or pertaining to a
domain known to have functional relevance, as well as predictions of three-
dimensional changes.

• Homology features are related with the conservation of amino acids and nu-
cleotides in other species, as well as the frequency with which pairs or trios of
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Table 2.3 Pathogenicity prediction method comparison. Limited features translate that
the approach has only a partial/incomplete use of that feature type. TANGO and AUTO-
MUTE are trait-speci�c, as their goal is to predict protein energetic di�erences and protein
agglomeration, and thus have a large accuracy in comparison with generalist approaches
(whose average is 78%). META-SNP and PredictSNP are aggregators and therefore do not
use features but rather the outcomes from other approaches. The use of mRNA features
is very limited, and only present in three of the presented tools.

amino acids are found, e.g. values of the BLOSUM matrix, which re�ect the
substitution probabilities among amino acids.

• mRNA features account for characterizations of the coding sequence, such as
changes in the energy of the secondary structure, frequency of the a�ected
codon, presence of out-of-frame stop codons, or any other indicator described
in section 2.2.1.

• Role annotations are features including external knowledge, such as that com-
ming from the Gene Ontology, to annotate genes and proteins according to their
function in the organism.
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• External factors are the inclusion of variables in�uencing expression, pathogenic-
ity, or any other trait, such as temperature and acidity pH levels.

Generally, approaches rely mostly in homology, suggesting di�erent strategies to
calculate conservation and prioritize variants according to it. Also, most tools are
directed to nsSNVs, that is, variants where there was an amino acid alteration. How-
ever, according to the dbSNP database, only 59% of variants in coding regions are
nsSNVs, and 36% are sSNVs. Moreover, it has been extensively shown that synony-
mous variants are implicated in the development of several diseases, rejecting the
holding dogma that synonymous substitutions have neutral e�ects. Nonetheless, the
use of codon and RNA-oriented evaluations is still largely ignored.

2.4 SUMMARY

Before the �rst sequencing of the human genome, the techniques to map and isolate
the causes of genetic-associated diseases were slow-going and relied on labor-intensive
tasks performed in the laboratory. For instance, e�orts to identify the gene associated
with Huntington's disease began in the late 1970s, but it was not found until 1993 [38].
Today, this job is much more streamlined, mostly due to the inclusion of information
technologies in the process, and massive studies are now often created to identify the
genetic locations responsible for speci�c traits and diseases.

In this chapter, I introduced the genetic background and advances that have
been achieved in recent years on the topics of computational biology and protein
biosynthesis research, specially regarding the methods that are used to evaluate and
redesign gene coding sequences, and methods to predict the outcomes of genomic
alterations in humans. I showed that the central dogma of molecular biology is
largely responsible for the main processes of life, and that there is already a very
good knowledge of the factors involved in its steps, specially in gene translation.
These factors can be computationally measured and have broad applications, ranging
from genomic analysis and gene redesign, to pathogenicity prediction.

The next chapters build on top of these concepts, using and extending the dis-
cussed concepts to tackle the gene optimization, manipulation and exploration chal-
lenges, as well as the variant pathogenicity prediction problem.



3 | GENE CHARACTERIZATION AND

REDESIGN

Among the main goals of biotechnology is the ability to induce in a cell the production
of a protein it would not create under normal circumstances. This sort of manipulation
could, ideally, allow the creation of useful proteins, for example as therapeutics or
industrial catalysts [196], or to further extend our understanding of living beings [5].
The creation or redesign of genes for di�erent host species (heterologous expression),
as discussed in chapter 2, is in�uenced by many variables, and such dependence
may change widely among species, depending on their genetic machinery. Therefore,
gene sequences must be engineered in order for the host cell to properly recognize
its instructions and meet the redesign goals, such as, for example, maximizing the
expression of a protein.

In this chapter I will discuss how to redesign genes to meet speci�c objectives based
on the indicators previously acknowledged, and propose the methods developed for
the optimization of that procedure.

3.1 OPTIMIZATION

The goal of redesigning a gene for heterologous expression is to be able to create
the product of that gene in a target host, maintaining its functionality and, often,
enhancing some of the characteristics of the process, such as the speed of translation,
e�ciency, or amount of created functional protein. Hence, the �rst rule to keep the
conformation of the protein is to maintain the same sequence of amino acids: the
primary structure of the protein. Any changes applied to the gene sequence must,
thereby, be silent alterations, which involve changing codons by synonymous ones.
The fact that several di�erent codons can be used to encode each amino acid is the

33
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essence of gene optimization.

Furthermore, as mentioned in the previous chapter, altering codons allows im-
proving speci�c characteristics of the molecule and the decoding process. However,
several issues arise when trying to improve two or more competing characteristics, or
features that involve more than a single codon. For example, if the goal of a redesign
is to maximize the amount of Guanine and Cytosine on a gene, while also minimizing
codon usage, the two goals are concurrent because alterations are performed at the
codon level and the trade-o� between the two objectives might prevent obtaining an
optimal result for both of them simultaneously. Another example occurs when con-
sidering the maximization of the codon pair bias of a codon sequence. A consecutive
alteration of codons pairs that considers only a single pair at a time, in spite of pre-
vious alterations, will not achieve an optimal maximum codon pair bias in the whole
gene.

The set of possible synonymous codon con�gurations is called the solution space,
and the ease with which an algorithm traverses that space and looks for optimal con-
�gurations re�ects the capability of that algorithm to optimize a gene. Moreover, the
size of the solution space is equal to the amount of possible con�gurations, which is
roughly 3N for a gene with N codons, making it computationally unfeasible to com-
pletely explore. In the next sections I will overview some of the possible optimization
algorithms to solve the afore mentioned problems.

3.1.1 DYNAMIC PROGRAMMING

Dynamic programming is an algorithmic design which allows solving complex opti-
mization problems by identifying smaller subproblems and tackling them �rst, using
the answers to aid resolving the larger goal. This is performed resorting to Bellman's
principle of optimality:

�An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the �rst decision.�

� Bellman, 1952 [17]

The principle says that in an optimization procedure, subsequent states and de-
cisions must be optimal, regardless of the �rst state and decision. The statement
can be re-applied to any later subproblems, thus deconstructing the problem into
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consecutive subproblems, i.e. having optimal substructure. Another characteristic
of dynamic programming is relying on overlapping subproblems, that is, larger prob-
lems overlap with smaller ones such that the results from solved subproblems can be
reused several times, for instance in recursive situations. This strategy is also known
as memoization (or tabling), in which the results of computations for predetermined
inputs are recorded, to avoid recalculations whenever the same computation occurs
again, speeding up algorithms.

The codon pair bias optimization problem stands as a perfect example of a problem
with optimal substructure and overlapping subproblems. To maximize (or minimize,
for that matter) the codon pair bias (CPB) of a gene, it is guaranteed that any
subsequence of the gene must also have maximum CPB, regardless of the remaining
sequence. This logic can also be reapplied to any subsequences until the unit - a single
codon pair - is reached, and must also be maximized. The property of overlapping
subproblems can be found by the fact that solving the problem for a larger codon
sequence (e.g. the whole gene) requires solving the problem for several subsequences,
given that the problem relates to pairs of codons and therefore connecting every
subproblem.

Figure 3.1 Dynamic programming requirements for the gene CPB optimization problem.
Optimal substructure can be found by the fact that the solution to maximize the CPB
of a whole gene requires �nding the solutions for the maximization of a subsequence of
the gene, hence decomposing the problem. Overlapping subproblems are observed by the
fact that the CPB of the larger sequence depends on the CPB of a smaller subsequence
(subproblem a), which in turn depends on an even smaller subsequence (subproblem b).
Finding the solutions for the smaller subproblems allows speeding up the process of �nding
solutions for larger problems, since their computations can be cached.

Therefore, by exhibiting both principles, the CPB maximization problem can be
dealt resorting to dynamic programming. A possible implementation to solve this
problem involves going codon-by-codon, starting at one end of the gene, and recording
for every possible synonymous in each position the best cumulative CPB score with
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each synonymous of the previous position. Then backtracking every position and
choosing the synonymous codon that yielded the best score. This simple algorithm
guarantees yielding a synonymous gene with optimal maximum CPB.

Dynamic programming can also be used to achieve multiple purposes, i.e. multi-
optimization, by evaluating problems and subproblems using objective aggregation
functions. For instance, Pham et al. in 2004 used dynamic programming to optimize
a gene sequence to improve codon usage while simultaneously avoiding certain speci�c
sequence patterns, and include other [143]. In their approach, an aggregation function
was created that evaluates sequences and sums a score for codon usage with a weighted
score for the inclusion and exclusion of speci�c patterns. Such approach can be
extended and scores from multiple evaluations, such as those presented in section
2.2.2, can be included in the aggregation function as long as Bellman's principle isn't
violated.

Using dynamic programming avoids having to explore the solution space exhaus-
tively, and enables the search for solutions to more complex problems that are not
strictly single-codon oriented, as for example the problems of maximizing CPB or
out-of-frame stop codons. However, dynamic programming is limited to problems
depicting the principle of optimality. That is, problems that cannot be decomposed
into smaller subproblems are hard to be solved by dynamic programming, or require
reformulations. Another issue with dynamic programming is that the inputs must
be discrete, or limited, in order for the algorithm to be able to e�ciently store pre-
computed results (an issue derived from the overlapping subproblems requirement).
Thus, problems with continuous inputs must be reformulated or cannot be solved
with dynamic programming.

3.1.2 HEURISTICS

Heuristics are a class of problem solving techniques and algorithms designed to rapidly
explore the solution space and yield solutions that are close to optimal, though not
deterministically optimal. There are several advantages in using heuristics besides
that of reduced time complexity. For once, heuristics allow a greater �exibility to
be employed in abstractly complex combinatorial problems, when compared with de-
terministic algorithms, by not restraining themselves to speci�c classes of problems.
Another advantage is that the search algorithm (the heuristic) is greatly decoupled
from the evaluation functions, separating concerns and allowing the search to be pos-
sible with little knowledge of the problem. Also, by requiring only state evaluations,
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heuristics generally avoid the need to have analytical formulations of the problem to
be solved. This is largely useful when the goal to some problem is well de�ned, but
a mathematical formulation of that goal is hard to attain.

Heuristics are often associated with stochastic optimization, which involve apply-
ing randomness in the algorithms to provoke non-deterministic behaviors. However,
the behavior in itself is not random, but rather biased in the way it explores the
solution space, guiding the process by surveying regions of the space that bene�t
the search for (near-)optimal candidate solutions. An example of such algorithm is
the Hill Climbing (HC) method. In HC, an initial randomly-generated solution is
created, and then random alterations are made iteratively to the solution, accepting
only those that represent improvements. The algorithm terminates when no further
improvements can be found. However, this algorithm su�ers from an issue heavily
fought by heuristic techniques: falling into local maxima solutions. In fact, the ma-
jority of problems present a non-smooth space of solutions, that is, the space shows
regions that have solutions which are optimal in that region but are not the globally
best solutions. By only accepting better solutions in each step, the HC algorithm
easily gets stuck in local maxima, often returning poor results. Nonetheless, a possi-
ble implementation to optimize gene sequences would involve starting with a random
synonymous gene, and in every step producing an alteration to a random codon by
replacing it with a synonymous one (see Algorithm 3.1). If the new gene con�guration
represents a better solution to the goal, the method proceeds using that con�guration,
or otherwise the new solution should be discarded.

Algorithm 3.1 Hill Climbing algorithm to optimize genes
CurrentSolution← Random synonymous sequence from original gene

Score← Evaluate(CurrentSolution)

while End Criteria Not Met do

NewSolution←MakeAlterationInRandomCodon(CurrentSolution)

if Evaluate(NewSolution) > Score then

CurrentSolution← NewSolution

Score← Evaluate(NewSolution)

end if

end while

return CurrentSolution

Several variations and improvements to the Hill Climbing algorithm have been
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proposed, for instance the Simulated Annealing1 (SA) strategy [94]. SA is inspired
by the process of annealing in metallurgy, where materials are heated and then slowly
cooled in order to allow the atoms to �nd the best con�gurations, thereby improving
the material resistance and reducing its defects [194]. SA brings the notion of heating
and slowly cooling to the optimization landscape by employing a strategy that initially
generates large random changes in the current solution, and in each cycle reduce
the number of changes performed, while also easily accepting worse solutions at the
beginning (thus avoiding local maxima) and slowly decreasing the acceptance rate
until it only accepts better solutions near the end (see Figure 3.2). The HC algorithm
is therefore improved by always accepting new solutions if they are better, but also
accepting worst solutions according to a probability of acceptance derived from the
current iteration and the di�erence in score achieved. Equation 7 shows a possible
formulation of acceptance.

Pacceptance = e
Evaluate(NewSolution)−Evaluate(CurrentSolution)

α×βiteration

Equation 7 Probability of accepting a new solution, as a function of the current iteration
and the score of the new solution. i is the current iteration; β represents the cooling
schedule,that is, how fast the temperature decreases, and is comprised between 0 and 1;
and α a regulation factor to control the initial temperature.

SA has the advantage of being able to explore the solution space without becoming
stuck in local maxima regions. Nonetheless, achieving good solutions requires a trade-
o� with the speed with which the temperature decreases: better solutions require
larger computational time. The time required to obtain a near-optimal solution also
increases with the size of solution space, which in gene redesign is equivalent to the
number of possible permutations, and therefore dependent on the size of the gene. In
fact, it has been shown that SA with appropriate cooling strategies will asymptotically
converge to a global maximum [75]. A limitation of SA and HC involves the fact
that they handle a single solution at any time, which reduces the depth with which
the search is performed, and return only a single solution. When performing multi-
objective optimizations, it is often the case that several di�erent solutions are equally
valid.

Evolutionary algorithms represent another class of heuristic-based methods. The
computational methods in this class are based on premises from the biological evo-

1The SA method was actually proposed as an adaptation of the Methopolis-Hastings Monte Carlo

algorithm. It is, nonetheless, an improvement to the simple HC.
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Figure 3.2 Simulated annealing algorithm example. An hypothetical gene is altered in
each iteration, and the new gene is evaluated. Changes can be accepted or denied according
to their score and the acceptance formula.

lution of species. In the theory of natural selection, evolution is achieved through a
set of speci�c mechanisms, that allow genetic material to be passed on to o�spring
following simple rules that result in the adaptation of species to their surrounding
environment. The same idea is used in evolutionary algorithms in order to adapt solu-
tions to their goals, exploiting simpli�ed properties of the theory of natural selection.
These algorithms evolve a population (set) of candidate solutions through a cyclic
procedure that seeks to gather and amplify positive variations and eliminate negative
ones, by trial and error. Arguably the most well known methods in evolutionary
algorithms are Genetic Algorithms (GA).

GA work by starting with a set of randomly generated candidate solutions and, in
each iteration, evaluating each of the solutions, picking a sub-group of the solutions
(selection), combine those solutions to generate new ones (crossover), apply some
random changes to the new solutions (mutation), and then insert them into the
population set. These steps are isolated and can be described as genetic operators,
with many variations of them giving way to numerous variants of GA:

• The selection operator can be performed by a �tness proportionate selection

(also known as roulette-wheel), where only a fraction of the population is ran-
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domly selected for the next step with a probability proportional to their score.
Other methods for selection include for instance choosing only a top scoring
fraction of the population (truncation selection).

• Crossover can be achieved by picking two random candidates from the selection
phase, and creating one or more new solutions by combining them. One strategy
to perform combination, is to pick a random position in the solutions and swap
the solution vectors after and before that position. Uniform crossover is another
strategy which involves swapping a random fraction of the solutions.

• Finally, in the mutation operator, one or more random changes are created
in the new solutions, to ensure genetic variability in the population. This is
normally performed by altering a �xed fraction of the new solutions.

The new solutions can be inserted into the population set by excluding the worst
�t, or replacing the parent solutions, though there are also several other strategies to
this step. According to the theory of evolution, facilitating the crossover of solutions
with higher scores eventually leads to new solutions further adapted to improve the
score.

GA have the advantage of considering multiple possibilities simultaneously, thus
conferring the method with a deeper perspective of the solution space. Dealing with
multiple candidates also allows �nding multiple �nal solutions to the same problem,
which is specially useful under multi-optimization schemes. Moreover, by being con-
structed from several operators, the algorithm is �exible to adapt to di�erent prob-
lems. However, the number of operators also comes with the drawback of requiring
a large amount of con�gurations and parameters that may be �ne-tunned, such as
the fraction of solutions that are selected for crossover, or the number of mutations
of perform on a newly created solution.

3.1.3 SPACE CONVEXITY PROBLEM

Global optimization algorithms such as those presented before can be used to perform
searches that �nd minima or maxima for a single function with respect to a goal.
However, most instances of real problems involve several simultaneous constraints,
that is, having more than one criterion to optimize, called multi-objective problems
[194].
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In the context of genetics, redesigning a gene for heterologous expression might
require obeying to several criteria in order for the gene to correctly synthesize its
product and eventually enhance its expression. For instance, one might want to
harmonize the codon usage of the gene to guarantee the reliability of translation,
while simultaneously avoiding speci�c sites that might be deleterious to the mRNA,
and also maximize the amount of hidden stop codons to avoid resource consumption
when errors occur.

Heuristics o�er a possible solution to this issue since they rely on external evalua-
tion functions that ultimately determine the goal of an optimization. The advantage
is that it is easier to create evaluating functions than creating analytical formulations
of the problem to be solved. This is specially true in the context of genetics, where
our understanding is related to mechanisms and observations, rather than formulas.
For instance, it is trivial to evaluate the amount of out-of-frame stop codons in a
gene, but it is far more complex to redesign a gene to deterministically maximize
their presence (it requires using, for example, a dynamic algorithm such as that pre-
sented in section 3.1.1). Heuristics also ease the process of joining several evaluation
functions, since the evaluation is completely decoupled from the optimization pro-
cedure, and therefore several requirements can be aggregated in a single evaluation
function. After de�ning individual constraint and goal functions, there are several
strategies to create an aggregate objective function. The most common and simple
method is to perform a linear aggregation of the objective functions, allowing the
custom de�nition of importance (weight) for each objective (see Equation 8). This
approach also allows minimizing or maximizing individual functions withing the set
of functions of the problem, by assigning negative or positive weights.

F (s) = [f1(s), f2(s), ..., fn(s)]

AOF (s) =
∑
∀fi∈F

wifi(s)

Equation 8 An example aggregate objective function (AOF ) built from the weighted sum
(linear aggregation) of every evaluation function f . An heuristic uses the AOF to evaluate
a candidate solution. This strategy also permits having some functions being minimized
while others are being maximized.

One of the drawbacks with this approach is the di�culty in handling problems
where individual objective functions rise and fall asymptotically with di�erent ca-
dence, making the contribution of some of the functions negligible compared to the
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ones with larger growths [49]. This is hardly the issue with gene redesign problems,
since the limited genetic mechanisms and the boundaries of the solution space make
evaluation functions generally have upper and lower bounds with limited growths.
Nonetheless, another limitation with this approach is related with the structural shape
of the solution space: the impossibility to return solutions if the space is not convex.

Ultimately, the goal of the aggregation function is to �nd a solution from the
solution space that maximizes (or minimizes) all the objective functions. In a well-
de�ned problem, however, the objectives are con�icting with each other, and the
goal of the aggregation function becomes �nding the optimal trade-o� between the
objectives. For example, imagine redesigning a gene to maximize its average codon
usage while also maximizing its CG content. Both objectives work at the codon level,
and choosing a synonymous codon in each position to bene�t one of the objectives
could easily con�ict with the optimal choice for the other objective.

Having con�icting goals, somehow, transmits the erroneous idea that the best
compromise is related to the spacial distance between candidate solutions and the
utopian or ideal solution, that is, the closer (in Euclidean distance) a candidate solu-
tion is to the utopian solution the better (see Figure 3.3).

However, this assumption only holds in convex solution spaces [122]. In non-
convex spaces, such as that depicted in Figure 3.3, many solutions are posed to be
equally �t despite being abstractly distant from the ideal solution. Therefore the
possibility of having non-convex spaces in a problem nulli�es the use of a linear
aggregation function, since it is a direct extrapolation of a Manhattan distance and
will only work in convex parameters. Proving the convexity of a solution space is
hard, and requires analytical formulations of the problem, which is one of the reasons
that leads to choosing heuristics (to avoid formulations).

Vilfredo Pareto, who bootstrapped the mathematical foundations for multi-objective
optimizations with con�icting criteria, studied this issue and de�ned as Pareto front

the set of solutions that can be reached by trading-o� con�icting objectives in an
optimal manner (bold line in Figure 3.3) [194]. The solutions in the Pareto front are
equally �t, that is, no solution is better than another as to all the objectives, and
represent the best solutions to the problem. The Pareto front can be non-convex,
and its concavity can be abstractly large, that is, solutions within it can be unequally
distant (Euclidean distance) from the ideal solution.

One of the strategies to �nd Pareto optimal solutions (i.e. those located in the
Pareto front) is to use improved metrics to the simple linear aggregation, which is
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Figure 3.3 Non-convex solution space and its Pareto front. The solution space of a
hypothetical problem is shown, depicting two functions f1 and f2 to be minimized concur-
rently. The Pareto front solutions are shown in the thick black region. The minimum of
each function is represented by f∗1 and f∗2 respectively. The nadir solution is the realistic
upper bound to the problem. The Pareto front is enclosed between the nadir and ideal
solutions, though none of them has to actually exist.

a weighted form of the Manhattan distance [116]. In fact, both the Euclidean and
Manhattan distances are speci�c cases of a more generalized formulation called the
Minkowski distance (see Equation 9).

Mink = p

√√√√ n∑
i=1

|xi − yi|p

Equation 9 Minkowski distance between points xi and yi. When p = 1, the equation
becomes the Manhattan distance, and with p = 2 it becomes the Euclidean distance.
Another common variation is with p =∞, known as the Chebyshev distance.

When using an in�nite p, the Minkowski distance becomes the Chebyshev distance,
which basically re�ects the maximum value among all objective functions: max

∀fi∈F
(fi).

The Chebyshev distance has the advantage of guaranteeing to be able to retrieve all
Pareto optimal solutions, even in non-convex settings [51, 91]. To use it, the AOF
should be rede�ned to be the Chebyshev distance from a candidate solution in the
heuristic to the ideal solution (granted it can be calculated). Though it does not
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guarantee returning all solutions in the Pareto front, it does have the ability to return
them, as opposed to a Manhattan or Euclidean distance. Several other methods
have been presented to overcome the problem of capturing non-convex portions of
the Pareto front [116], such as the exponential weighted criterion [12] and physical
programming [121].

Despite the mathematical resolution that allows �nding optimal solutions, there
is also an algorithmic strategy to retrieve them, even when using linear aggregations
in non-convex spaces. When resorting to heuristics, there is an advantage in terms of
space exploration, since the algorithm visits and evaluates numerous solutions. Con-
sidering this, an archive of Pareto front points has been suggested which enables the
tracking of visited solutions that are Pareto optimal, independently of the aggregation
function [97, 185]. This is possible because assessing if a candidate solution dominates
all other potentially optimal solutions visited so far is a feasible task which requires
only a few evaluations and comparisons. A solution dominates another when it is
better in every goal (objective function). The algorithm works by confronting each
visited candidate solution with an archive of solutions that are currently believed to
be the Pareto optimal solutions. When a new candidate solution is not dominated by
any solution in the archive, or is found to be better (dominates) some solutions in the
archive, it replaces those solutions and is kept in the archive. The step is repeated
until the heuristic terminates, guaranteeing that at the end only non-dominated so-
lutions (potentially belonging to the Pareto front) are in the archive.

3.2 METHODS

3.2.1 ALGORITHMS

Several algorithms were developed to evaluate genes regarding each gene expression
and quality indicator. Generally speaking, the algorithms take an mRNA sequence
and produce a numeric value representing an evaluation of the indicator over that
sequence. For instance, algorithm 3.2 shows the pseudo-code for evaluating a gene
regarding its codon pair bias.

Most algorithms that consider two consecutive codons at a time, such as the hid-
den stop codons evaluation, which counts the presence of out-of-frame stop codons
between every two codons, have a similar structure to the calculation of CPB. More-
over, we devised evaluation algorithms for all the indicators in Chapter 2 (see the
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Algorithm 3.2 Gene CPB evaluation
N ← length of gene in codons
for i = 1 to N − 1 do

codona ← codon at position i
codonb ← codon at position i+ 1

CPS = ln

(
Fa,b

FaFb
FxFy

Fx,y

)
. As explained in Chapter 2

accumulator ← accumulator + CPS

end for

return accumulator
N

details of the developed algorithms in Appendix A).

As mentioned before, the advantage of having evaluation rather than redesign
algorithms for each expression and quality indicator is two-fold: �rst, it allows eval-
uations to be combined in aggregation functions and used in di�erent optimization
strategies; and second, creating specialized algorithms to redesign genes according to
a set of observable rules is abstractly more complex than creating an algorithm to
evaluate a gene. The latter can be seen, for instance, when trying to deterministically
achieve optimal CPB using a dynamic programming approach (algorithm 3.3), where
the complexity of the redesign strategy is substantial.

Nonetheless, in terms of e�ciency for optimization procedures where only a sin-
gle indicator is used, and to accurately calculate ideal and nadir boundaries, using
specialized deterministic algorithms is advantageous.

When heuristics were needed, however, we used simulated annealing for fast re-
sults and genetic algorithms for a more extensive overview of Pareto optimal solutions.
Moreover, we employed the Pareto archive strategy when using GA to help avoid-
ing the problem of non-convex solution spaces. Each generated candidate solution is
evaluated in order to keep track of Pareto front points that traverse the population.
We de�ned gene dominance as follows (assuming a maximization problem) [67]

[synonymous dominance] gi dominates gj if and only if fk(gi) ≥ fk(gj),∀k and
there is at least one k such that fk(gi) > fk(gj)

Here gi and gj are the synonymous genes being compared and fk refers to any evalu-
ation function being considered in the optimization procedure.
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Algorithm 3.3 Gene CPB redesign using dynamic programming
# First part: memoization

CPS[1][syn]← 0,∀syn in position 1 . Initialize CPS array
N ←length of gene in codons
for i = 2 to N do

for each synonymous syna in position i do
CPS[i][syna]← max{CPS[i− 1][synb] + CPS(syna, synb)},∀synb

end for

end for

# Second part: backtracking

M ← max{CPS[N ][syn]}, ∀syn
RedesignedGene[N ]← c← j, such that CPS[N ][j] = M

for i = N − 1 to 1 do

for each synonymous syn in position i do
if CPS[i][syn] + CPS(syn, c) = M then

RedesignedGene[i]← c← syn

M ←M − CPS(syn, c)

continue to next position i
end if

end for

end for

return RedesignedGene

We developed a GA using a Pareto archive, similar to the Strength Pareto Evo-
lutionary Algorithm [204], and which is shown in algorithm 3.4.

We also use a �tness proportionate selection as the section operator, thus choosing
candidate genes from the population with a probability proportional to its AOF
value. This choice has been shown to be more advantageous as it maintains variety
in the population. The crossover was performed by swapping codons of the same
positions, between the parents, in a random fashion, i.e. each position of the new
gene is randomly selected from one of the parents. It uses two parents to yield
two new candidate solutions. The mutations applied to each new candidate solution
are performed by randomly changing a �xed proportion of the gene by synonymous
codons. To decelerate the rate of mutations as the genetic algorithm approaches the



3.2 | Methods 47

Algorithm 3.4 Gene redesign using a genetic algorithm
Population← Random sequences, synonymous to original gene
Archive← GetNonDominated(Population)

repeat

Parents← Selection(Population)

Children← Crossover(Parents)

Children←Mutation(Children)

if AOF (Children) > AOF (Parents) then

ReplaceParentsByChildren()

end if

# Pareto archive maintenance

NewArchive← Union(Archive, Children)

Archive← GetNonDominated(NewArchive)

until EndCondition
return Population[BestIndividual]

end, we used equation 10 to control the probability of applying a mutation.

Pmutation =
itmax − itcurrent

k × itmax

Equation 10 Formulation of the probability of mutating a codon. Depending on the cur-
rent iteration itcurrent, the rate of mutations decreases linearly as the algorithm proceeds.
The initial mutation rate is controlled by k.

Because k controls the mutation rate, it also controls the rhythm of the evolution
in the heuristic. Larger k leads to fewer changes in the o�spring, promoting the
selection of local maxima solutions.

For evaluating the �tness of each candidate solution, we used the Chebyshev
distance between the solution and the ideal solution. Furthermore, to guarantee that
every objective function is treated equally and the di�erence in scale of functions does
not introduce bias in the aggregation function, we normalize each objective function
using its ideal and nadir solutions (Equation 11).

The ideal solution is calculated by performing individual optimizations for each
goal function, using deterministic algorithms. By �nding solutions that are guar-
anteed to be individually optimal for each objective function, we also guarantee its
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fnormi =
fi − znadi

zideali − znadi

Equation 11 Normalization of arbitrary goal function fi by rescaling it using values from
the nadir and ideal vectors.

presence in the Pareto front, and are able to retrieve values for the ideal solution.
Since nadir solutions are hard to �nd or calculate, hypothetical upper bound values
(such as the individual maximum for each function) are used to replace them. The
same is performed when the ideal solution cannot be easily attained. The normalized
functions become scaled to the range [0, 1].

3.3 RESULTS

3.3.1 OPTIMIZATION RESULTS

We assessed the viability of redesigning genes through heuristic optimization by test-
ing the algorithms in 40 di�erent genes from several species, in two separate experi-
ments (depicted in Figure 3.4). In the �rst experiment 20 genes were redesigned to
obtain codon con�gurations that maximize their Codon Pair Bias and simultaneously
maximize codon usage (RSCU). In the second experiment, we randomly selected an-
other 20 genes, and added the goal of minimizing the amount of out-of-frame stop
codons. This increases the di�culty of the problem substantially due to the existence
of several competing objectives. Experiments were performed using both simulated
annealing and genetic algorithms, though the di�erence between results (�nal solu-
tion in SA, and best candidate in the population in the last iteration of the GA)
was residual and not statistically signi�cant (p > 0.1). From every sample we �rst
measured the score of the original gene and then optimized the genes with each goal
individually in order to obtain the values that constitute an hypothetical ideal so-
lution. For example, in the �rst experiment, prior to the multi-optimization, we
used the dynamic programming approach to deterministically obtain the score of the
codon combination with the highest CPB, and also ran an algorithm to obtain the
best possible RSCU. The individual scores were aggregated using a simple average.
We then performed the multi-optimizations and collected the score of the �nal result
as a percentage of the AOF of the ideal score.

In experiment 1 we observed improvements averaging 31 percentage points, while
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in experiment 2 the average improvement was 24 percentage points. No individual
objective attained a worse score than the original. Also, every optimization result
was on average 12% distant from the hypothetical ideal solution.

Figure 3.4 Results of gene redesign experiment using SA. Results are shown for each
gene, as the percentage of the ideal solution score. The blue bar represents the score of the
original gene (prior to optimization), the orange bar represents the achieved improvement,
and the gray bar represents the unachieved di�erence to the ideal solution score.

We also observed the ability of the genetic algorithm in exploring the solution space
more deeply and, with the aid of the Pareto archive, being able to retrieve Pareto

optimal solutions (Figure 3.5). Simulated annealing, on the other hand, obtains good
solutions in only a fraction of the time, but also only �nds a fraction of the front.

3.3.2 GENE REDESIGN PLATFORM

In order to advance and facilitate synthetic gene design and analysis, we developed a
tool that integrates expression and quality indicators, along with the synthetic gene
redesign techniques explored previously. The tool, Eugene, was created to allow the
synthetic manipulation and analysis of genes through a researcher-friendly interface
(Figure 3.6).

Eugene's capabilities can be divided in two blocks: data gathering and gene opti-
mization. In the �rst block, a set of features allows the retrieval of information about
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Figure 3.5 GA and SA redesigning a gene for RSCU and CPB simultaneously. The
solutions for every iteration are plotted for each of the optimization algorithms. Simulated
annealing considers a single solution in each iteration, while the genetic algorithm uses
a population. This fact confers the genetic algorithm a better ability to retrieve Pareto

optimal solutions.

a gene from several known online sources, o�ine tools, and statistical calculations.
In the second block, the tool allows redesigning a gene according to the already dis-
cussed factors that in�uence gene expression and quality, often resorting to the data
gathered in the �rst block. These are discussed in the following sections.

DATA AGGREGATION

A large amount of information about genes and genomes can be considered (or is
needed) for gene in silico analysis. For instance, it is common to evaluate the protein's
secondary and tertiary structures to map the codon sequence to these structures.
Unraveling which codons are responsible for the correct folding of a polypeptide might
be essential when redesigning genes. Another clue for identifying important regions
of a gene is given by its level of conservation among orthologs. Moreover, other forms
of information such as the set of highly expressed genes for a genome are required
in order to calculate some indicators, for example CAI values. Therefore, Eugene
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Figure 3.6 Screenshot of Eugene's interface. Three vertical zones correspond to: the re-
design panel (left), where expression indicators are available to control; the gene workspace
(center), where genes are uploaded to and analyzed; the informative panels (right), where
details about the gene are shown, such as values of indicators and the retrieved tertiary
structure of the resulting protein.

encompasses a series of features related to gathering data useful both to the analysis
of the gene and to the calculation of several of the redesign indicators. Data is
obtained or computed from several sources, such as online databases and o�ine tools
(Figure 3.7). A more detailed description follows.

• Eugene has the ability to read the most common genome formats (FASTA
and GenBank), and calculates the frequency of each codon, pair of codons and
amino acid in the coding regions of a genome immediately after reading it. This
information allows calculating RSCU and CPB, and several other indicators that
require codon usage data.

• To correctly retrieve further data regarding a gene uploaded to the workspace,
Eugene seeks to identify the gene using two strategies. The �rst is process-
ing gene annotations that are normally present along with the gene's DNA
sequence in FASTA and GenBank formats, extracting any database identi�ers.
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Figure 3.7 Eugene's use of external resources. On top, online databases, which also
include online tools like BLAST. On the bottom, o�ine resources such as the MUSCLE
and PsiPred tools used by Eugene, and the databases of genomes in the user's computer,
which is the source of genes.

The identi�ers are used to access NCBI and obtain names for the gene, genome
and resulting protein. If the �rst strategy fails, a second one uses the gene
codon sequence to search for similar sequences in NCBI's online database. The
search is performed using BLAST [88], and the best match with similarity over
95% is selected. If a match is found, the same information is retrieved (gene,
protein and genome names).

• To obtain the tertiary structure of the protein, a BLAST is also performed
using the Protein Data Bank web services and the best and most complete
match is selected. The protein 3D structure is visually mapped to the codon
sequence, easing the understanding of which codons decode to which regions of
the protein.

• The names and other retrieved meta-data are then used by Eugene to obtain
orthologs for the gene. Orthologs are genes in di�erent species that descend
from a same gene in a common ancestor. Analyzing orthologs allows inferring
a great deal of information, for instance, one can verify which regions of a
gene are conserved among orthologs to deduce regions that are functionally
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relevant, since they were maintained along several evolutionary lines. To retrieve
orthologs, Eugene contacts KEGG web services [135] using information about
the gene identi�cation retrieved previously.

• Orthologs are seamlessly aligned with the gene using MUSCLE [54], and colored
in the interface according the degree of conservation of each amino acid, allowing
a visible assessment of conserved and functional regions.

• Furthermore, calculating the CAI indicator requires a set of highly expressed
genes for the genome that will be hosting the redesigned gene. To obtain those
genes, we manually curated a set of highly expressed genes for a single species
(E.coli), and programmed Eugene to search KEGG for orthologs to those genes
in the target species. With this strategy we can retrieve a set of highly expressed
genes for virtually any species available in KEGG.

• Moreover, the protein secondary structure is also seamlessly calculated using
PsiPred [119] and presented in Eugene next to the amino acid sequence.

• When working with speci�c genes, a functionality allows fetching an mRNA
sequence by indicating its NCBI transcript ID. NCBI web services are contacted
to retrieve the gene.

All retrieved and calculated information is always displayed. That includes, for
each gene, its size in codons, CAI, G+C content, Nc e�ective codons, average RSCU,
CPB, protein primary, secondary and tertiary structures, orthologs, and correspond-
ing names.

GENE REDESIGN

The main functionality of EuGene is optimizing synthetic codon sequences according
to user-customized indicators. A set of nine redesign approaches is available for both
optimizing and analyzing the gene: G+C content, codon correlation e�ect, removal
of deleterious sites (such as Shine-Dalgarno), codon context (CPB), control of repe-
titions, codon usage (RSCU, CAI and rare codons), hidden stop codons, unmodi�ed
tRNAs, and mRNA secondary structure.

Accordingly, all modi�cations are performed without changing the resulting native
amino acid sequence. Moreover, changes are controlled by the genetic code and codon
usage/context tables of the target host species and, therefore, if the host species
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is non-native, the protein primary structure is always maintained and all redesign
considerations are made using the statistical information of the host. This allows, for
instance, harmonizing the codon usage of a gene to a heterologous host, allowing a
researcher to express a gene in a di�erent species while maintaining its original protein
sequence and codon usage signature. The target host can be one whose genome data
(FASTA or GenBank �le) was uploaded into the application.

EuGene allows simultaneous optimization of any redesign approaches by using two
multi-objective optimization techniques: a genetic algorithm and simulated anneal-
ing. Both strategies aim at �nding the overall best gene candidate for the redesign
objectives. However, simulated annealing is faster in �nding a single optimal codon
con�guration and is, therefore, ideal for experiments that need fast results. For ex-
ample, Figure 3.8 depicts a redesign of the human gene AXIN2 by maximizing its
codon usage using simulated annealing.

Figure 3.8 Screenshot of codon usage redesign in Eugene. A block of codons from the
AXIN2 original human gene is shown above (codons 139 to 160), along with its corre-
sponding amino acid chain. Codons are colored according to RSCU values, ranging from
red infrequent codons to green frequent codons. The same gene block is shown below after
a codon usage maximization redesign, showing a much greener variation (higher RSCU).

When a deeper overview is required of several equivalent solutions that trade-o�
the redesign goals (i.e. Pareto optimal solutions) a genetic algorithm optimization
may be used. Using the genetic algorithm yields to the user a list of non-dominated
solutions found to constitute the Pareto front, so he can adequately choose one. A
chart is also displayed plotting those solutions using any two objective functions
among those chosen to perform the redesign (Figure 3.9).

Eugene was created so new gene expression indicators can be easily added to
the software, by using a plug-in system. Such feature is a requirement in a domain
constantly growing its knowledge.
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Figure 3.9 Screenshot of the Pareto front chart in Eugene. Every square represents a
non-dominated solution. The vertical axis represents the goal of maximizing codon usage,
and the horizontal axis maximizing the number of hidden stop codons. Note that several
of the plotted solutions would have not been retrieved if it wasn't for the Pareto archive,
considering the non-convex shape of the front.

3.4 CONCLUSIONS

As the technological capabilities to observe living beings at microscopical level in-
crease, literature becomes �ooded with information regarding their functioning and,
in the past decades, the functioning of all processes gravitating around the central
dogma of molecular biology. Protein biosynthesis is an intricate procedure, involving
many cell actors, variables and in�uencing factors. As new roles, components and cell
activities are discovered, the knowledge of the biosynthesis process is also updated
and, as a result, new improved forms of controlling the expression of genes can be cre-
ated. It is up to computational biologists to include the newly created knowledge into
existing systems and tools. Streamlining this procedure is hard due to the arbitrary
complexity that such knowledge might bear.

In this chapter I focused on the problem of including the acquired and continuously
growing knowledge regarding protein synthesis into a single system with the purpose
of redesigning genes. Being able to redesign genes enables the production of proteins in
foreign hosts, control over the amount of synthesized products, and rational design of
new polypeptides; applications range from e�cient vaccine production to the creation
of industrial catalysts, crossing through the study of the mechanisms of new species
and diseases.

The largest barrier to the integration of this kind of knowledge lies precisely in its
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arbitrary complexity and the range of subjects it can encompass. As shown, expres-
sion indicators can rely on disperse blocks of information such as codon frequencies,
mRNA folding energies, presence of speci�c motifs, conservation among species, etc.
Moreover, analytical formulations for each expression indicator can be extremely com-
plex and time-consuming, whereas on the other hand evaluations are commonly trivial
to calculate. We tackled this issue by creating a mandatory programming interface
to any expression indicator to be included in our strategy, in which a numeric evalu-
ation is independently performed and normalized according to an hypothetical best
and worst case (ideal and nadir solutions). This strategy enables the aggregation of
virtually any approach to evaluate genes that can be quantitatively measured.

Another obstacle is related to the combined redesign of genes. Given the un-
known complexity underlying evaluation functions, the optimal solutions to a redesign
problem can assume random shapes, many of which may be non-convex. The non-
convexity of the Pareto front is an issue intrinsic to multi-optimization challenges,
and which we tackled by using a speci�c case of the Minkowski formulation: the
Chebyshev distance.

We also explored optimization itself, by considering two solution-space explo-
ration techniques to permute synonymous codons: simulated annealing and genetic
algorithms. On one hand, SA permits rapidly traveling through the solution space
to �nd good or even optimal solutions. On the other hand, multi-redesign problems
often create con�icting goals where a trade-o� is observed in the Pareto front, and
therefore several solutions become equivalent. We developed a genetic algorithm with
a Pareto archive that maintains a set of non-dominated sequences while redesigning
a gene, o�ering the chance to choose a gene from a set of equivalent solutions at the
end of the optimization.

Furthermore, to enable the access to and extend the use of our methods, we further
continued the development of an existing software application for gene manipulation,
Eugene [65], which already allowed the integration of redesign algorithms through a
plug-in system, and performed genetic algorithm optimizations. We integrated our
methodologies in Eugene by implementing simulated-annealing, gene dominance and
a pareto archive, solution-space exploration techniques, and several gene evaluation
algorithms. Eugene is available at bioinformatics.ua.pt/eugene.

http://bioinformatics.ua.pt/eugene/
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1

Among the many factors that in�uence gene translation, the role of mRNA secondary
structure has long been shown to be of major importance [50, 76, 102]. For instance,
regulation of gene expression is highly dependent on the formation of stable structures
by nucleotide pairing in the mRNA strand. This is especially true when the structures
encompass translation initiation regions, hence hampering the start of the decoding
process [104, 202].

We discussed in previous chapters strategies to evaluate gene characteristics,
mainly based on codons or small regions of the mRNA. However, evaluating the
potential formation of secondary structures is a much more complex subject, target
of much research. Besides encompassing the evaluation of the whole mRNA sequence
simultaneously, even non-coding regions, performing structural analysis takes a con-
siderable amount of time with current methodologies, which makes its use in heuristics
unfeasible.

In this chapter we discuss how to simplify the evaluation of mRNA secondary
structures, at the cost of losing some of the accuracy of the method and the amount
of information retained from calculations (for instance, the visual secondary structure
itself), by approximating a trivial measurement function to the results of accurate
methods. We also show how this technique enables the use of heuristics to control
the secondary structure of a gene resorting to codon permutations, similar to what
was presented in Chapter 3.

1This chapter was largely based in the publication mRNA secondary structure optimization using

a correlated stem-loop prediction, Nucleic Acids Research, 2013 [68].
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4.1 RNA STRUCTURES AND FREE ENERGY

The formation of stem-loops and more complex structures occurs upon RNA folding
on itself causing secondary and tertiary nucleotide interactions, whose stability is
dependent on the nucleotides involved and the length of the interacting domains
(see Figure 4.1). The strength of two paired bases is largely determined by the
number of hydrogen bonds that connect the nucleotides: guanine-cytosine pairs share
three hydrogen bonds, and adenine-uracil pairs have only two; the wobble base-pair
guanine-uracil also share two hydrogen bonds. Longer paired zones and stronger
paired zones tend to be more stable, and therefore have higher melting temperatures,
preventing the ribosome from breaking the pairing and proceeding translation [102,
174].

Figure 4.1 Secondary structure of an RNA sequence. The nucleotide sequence is shown as
a string, where paired non-consecutive nucleotides are shown with blue lines. The paired
nucleotides create the secondary structure of the mRNA (the primary structure being the
sequence itself).

Several recent studies have demonstrated that manipulating RNA sequences to
avoid secondary structures has a substantial impact on gene expression. Studer and
Joseph, in 2006, performed experiments where they changed several mRNA sequences
to control the presence and strength of secondary structures near translation initia-
tion sites, and showed the existence of a signi�cant negative correlation between the
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strength of the structures and ease of association to the ribosome [174]. Moreover,
sequences with no secondary structures associated faster with the 30S ribosomal sub-
unit, and therefore were more likely to form stable initiation complexes, which are
determinant for translation e�ciency. This e�ect has been further described by Ben-
tele et al. in 2013, arguing that natural selection has pressured the creation of gene
initiation regions with reduced mRNA structures through the use of speci�c codons
to control those regions [20]. Analogous results were obtained by studying the expres-
sion of Human IL-10 and Human interferon-α in Escherichia coli. Introducing silent
mutations to expose the start codon from secondary structures e�ectivelly improved
translation and heterologous expression of both proteins by 10-fold [202]. Similarly,
a study showed how the L1 gene from Human Papillomavirus type 16 was modi-
�ed to avoid the formation of secondary structures when expressed in Saccharomyces

cerevisiae, again yielding 4-fold higher expression than the wild-type [92].

The concept of minimum free energy is parallel to the formation of secondary
structures: the second law of thermodynamics states that the entropy of a system is
non-decreasing, and thereby an isolated system tends to equilibrium states where its
free energy is minimum. This e�ect guides the folding of many molecules, including
RNA and proteins. In RNA its free energy is bound to the nucleotides without a
pair, representing the potential of the molecule to perform work. Thus, minimizing
the amount of unpaired nucleotides also minimizes the free energy. The most stable
structures are those that yield minimum free energy, and RNA molecules tend to
stable conformations. On the other hand, if we are able to reduce the number of pairs,
and therefore increase the minimum free energy, we would prevent the deleterious
e�ects described before.

Assessment of RNA secondary structures and minimum free energy (MFE) can
be accomplished via numerous algorithms and approaches to structure prediction [98,
111, 176, 205]. The most sophisticated and well known is the fast dynamic-programming
approach from Zuker and Stiegler [206], which is based on a �rst approach from Nussi-
nov et al. [134], and served as a basis for recent methods. Their algorithm attempts
to �nd the structural basepair con�guration of an RNA sequence that yields the
minimum possible free energy. Implementations of this algorithm can be found in
the mFold [205] or Vienna RNA [80] software packages. Other applications focus
on performing inverse RNA folding, to produce nucleotide con�gurations for a given
secondary structure, regardless of the gene [6, 14, 30]. However, no method can yet
perform the process of obtaining an mRNA sequence that maintains the polypep-
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tide primary structure and achieves minimal secondary structure. This gap is likely
due to the di�culty in �nding the codon-sequence con�guration with the highest
MFE, requiring calculation of the MFE numerous times, which is an unfeasible task
time-wise.

Here we focus on the problem of avoiding stable secondary structures in mRNA
molecules by means of maximizing the minimum free energy of the nucleotide se-
quences, without changing the resulting amino acid sequence. For this, we have
developed a method which divides in two: a �rst part that uses a meta-heuristic
approach to explore the space of possible synonymous codon-sequences; and a sec-
ond part where a fast algorithm calculates a metric that is linearly dependent on the
MFE. Thus, the core of our approach resides in computing a pseudo-MFE using a
fast method whose results, though not as accurate as current estimators, are highly
correlated with MFE. When searching for a synonymous sequence using the meta-
heuristic, the pseudo-MFE is used to look for con�gurations that o�er high values of
minimum-free-energy, thus e�ectively optimizing an mRNA sequence.

4.2 METHODS

We consider the problem of having a nucleotide sequence with both coding and non-
coding regions, and maximizing the minimum free energy resulting from possible folds
by altering nucleotides in the coding region without altering its amino acid sequence.
We take advantage of the degeneracy of the genetic code to search for a synonymous
gene sequence that maximizes an energy function highly related to the strength of
the secondary structure.

The methods are split in four parts: a) the search for the best codon combination,
b) the development of a rapid pseudo-MFE calculation function, c) the optimization
of that function to maximize its correlation with an accurate MFE measure, and d)

a linear regression to transform the pseudo-MFE values into more precise bounds.

4.2.1 SYNONYMOUS GENE EXPLORATION

Finding an optimal synonymous sequence is a combinatorial problem which is often
impractical to solve in e�cient time given the volume of the search space (as shown in
previous chapters, 3N for a sequence with N codons). As a consequence, it becomes
attractive to resort to heuristics, such as genetic algorithms and simulated annealing,
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that facilitate the exploration of possible sequences, driving the search through regions
of the solution space of interest to the problem.

For the MFE maximization problem we used Kirkpatrick's simulated annealing
approach [94], which I already showed in the previous chapter to behave quickly and
achieve global near-maximum results in codon optimization problems. Thus, starting
from the original coding sequence, a number of codons are selected in each iteration
to be randomly changed for synonymous ones. The new sequence, including the non-
coding regions, is evaluated by the pseudo-energy assessor (described in the following
section) which returns a value correlated with the MFE. New sequences with larger
values are accepted for the next iteration. However, to avoid local maxima, sequences
with lower minimum free energies might also be accepted, according to a probability
mimicking the Boltzmann distribution:

exp
e− e′

kmax ∗ 0.9k

Equation 12 Adaptation of equation 7 in Chapter 3 to the problem at hand. e is the
energy value of the current sequence, e′ the energy of the new sequence, k the iteration
number, kmax is the maximum number of iterations and 0.9 is the cooling schedule.The
last two parameters were selected after an heuristic assessment to ensure the resulting
sequence is near optimal.

The number of codons that are changed in each step also decreases with passing
iterations, performing only targeted alterations near the end in order to �ne-tune
results. The search ends when the maximum number of iterations is reached.

4.2.2 SIMPLISTIC APPROXIMATION TO MFE ESTIMATION

Current tools for secondary structure estimation can accurately measure the minimum
free energy that results from the fold of a nucleotide strand. However, such accuracy
is achieved by thoroughly analyzing the space of possible secondary structures, and
this process may take up to several seconds or even minutes, depending on the size
of the sequence. Though they are generally fast enough for a single run, which is
the normal use of these tools, they become unfeasibly slow when there is the need
for multiple calls, which is the case if one is searching for an optimal con�guration of
codons and needs to frequently re-evaluate the sequence. For instance, making 1500
calls to RNAfold, in order to evolve an mRNA with 1000 codons (without non-coding
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regions), lasts over 6 hours2.

To overcome this hurdle we have developed an evaluation function that is much
faster at analyzing secondary structures, at the expense of less accurate results, and
that is highly correlated with the MFE calculated from accurate methods. To re-
duce the time complexity from the MFE estimation (O(N3) for RNAfold and MFold,
for sequences of N nucleotides) we introduced a simplistic approach with quadratic
complexity, which considers all possible single stem-loop conformations and averages
their interaction energy, as described in Algorithm 4.1.

The algorithm considers every possible conformation of the mRNA secondary
structure using only a single fold (there are approximately 2N) and, for each confor-
mation, looking for nucleotide pairs that bind (see Figure 4.2). The energy of each
fold is the number of hydrogen bonds shared in the interaction regions. The method
then returns the average energy for all folds. This approximation does not consider
more complex conformations of multiple stem-loop structures or pseudo-knots, which
require more intricate formulations that perform a deeper exploration, nor does it
intend to yield an accurate energy value. However, it does assume an abstract value
representing the minimum free energy that can be obtained from the primary folds
of the molecule (pseudo-energy), and that considering all possible single folds further
speci�es this value to represent a global view of the structure strength. As a result,
the algorithm returns a value largely associated with complex MFE predictions.

Figure 4.2 Illustration of the MFE estimation algorithm. All possible folds of a single
stem-loop are considered, starting from the 3' end. In each fold, the nucleotides close
to the folding region are not considered to interact. The average of the nucleotide-pair
contributions of all folds is the result.

4.2.3 FINE-TUNING NUCLEOTIDE INTERACTIONS

To further enhance the statistical dependence of our estimation function with an
accurate MFE measure, we chose RNAfold's output as the energy gold standard for

2Considering an average of 15 seconds for each call to RNAfold, which is generally a lower bound

in a modern personal computer.
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Algorithm 4.1 Calculate estimation of MFE
function estimateEnergy(seq)

seqSize← numNucleotides(seq)

iBlockSize← 2 . initial block size
fBlockSize← seqSize/2 . �nal block size
ls← 3 . minimum loop size
cEnergy ← 0 . Cumulative energy
for two times do

b = iBlockSize

while b < fBlockSize and seqSize ≥ ls+ 2× b do
b← b+ 1

subSeq1← sequence[0, b]

subSeq2← sequence[ls+ b, ls+ 2× b]
energy = GetEnergy(subSeq1, subSeq2)

cEnergy = cEnergy + energy

end while

sequence = invert(sequence)

end for

return −cEnergy/seqSize . Average energy
end function

function getEnergy(seq1, seq2)
bondEnergy ← 0

for i = 0 to numNucleotides(seq1) do

case (seq1[i], seq2[i]) is
(G,C) or (C,G) then e← 3 . Changed to 3.12 after tuning
(A,U) or (U,A) then e← 2 . Changed to 1 after tuning
(G,U) or (U,G) then e← 2 . Changed to 1 after tuning
else e← 0

end

bondEnergy ← bondEnergy + e

end for

end function

our function, which o�ers the current highest performance (0.76 F1-measure) among
single-strand secondary structure predictors [111], and the fastest calculation (see
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comparison in Appendix B). The tuning was made by changing the contribution of
each binding pair (getEnergy function in Algorithm 4.1) and assessing the correlation
between the approximation function and the results from RNAfold. For that, we
randomly selected 48 genes from 6 di�erent species3, with equal length, since the
length of the genes already has a large bias (-97% Pearson correlation) to the minimum
free energy.

To perform the optimization we also used a simulated annealing heuristic. Thus,
the contribution of GC, AU and GU pairs was changed in each iteration, evaluating
their performance by analyzing the correlation between our MFE estimation function
and RNAfold's output in the 48 genes. Correlations were measured using Spear-
man's rank correlation coe�cient, which focuses on measuring the extent to which
our function increases when RNAfold MFE also increases, using Formula 13.

ρ = 1− 6
∑

(fi − ri)2

n(n2 − 1)

Equation 13 Spearman's rank correlation coe�cient. fi is the rank of the value of our
approximation function, ri the rank of RNAfold's output, and n is the number of sequences
used (48 genes).

This allows the search algorithm to �nd binding-pair weights that maximize the
dependence to the target output.

Using this method we increased the initial correlation from 0.73 to 0.91, by chang-
ing the pair weights from (2, 2, 3) for AU, GU and CG to (1, 1, 3.12). We further
con�rmed a high linear dependence using Person's product-moment correlation coef-
�cient, which also returned 0.91.

4.2.4 LINEAR REGRESSION

The pseudo-energy values returned by our approach have little physicochemical mean-
ing: they represent only an average over simple folds. However, given the large linear
dependence that was created in the previous step, we were able to easily transform
the values returned by the MFE estimation function to closely resemble those of
an accurate MFE. Though this step is not necessary and does not change the �nal
correlation nor the optimization results, the transformed values become visibly com-

3Aquifex aeolicus, Escherichia coli, Homo sapiens, Mus musculus, Rattus norvegicus and

Drosophila melanogaster.
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parable to those of accurate measures, allowing quick assessment and comparison of
MFE values.

Using ordinary least squares we performed a simple linear regression using the
energy values of algorithm 4.1 as the input variable, and the MFE given by RNAfold
as the observed variable. Furthermore, to better predict MFE, we created two re-
gressions, the �rst for the wild-type genes, and the second for optimized genes, since
they are intrinsically di�erent in their nucleotide constitution:

MFEOrig = PseudoEnergyOrig × 0.457− 8.215

MFEOptim = PseudoEnergyOptim × 0.529− 15.212

Equation 14 Regression equations to convert the pseudo-energy into more realistic MFE
values. Two equations were created, one for the original gene (Orig) and the other for the
optimized gene (Optim), to better �t results.

4.3 RESULTS AND DISCUSSION

To test and evaluate our correlated optimization approach we randomly selected 36
di�erent genes from the same species used in the previous section. By using a dif-
ferent set of genes we avoid biases that might have been generated when tuning the
estimation function. To perform an initial assessment we evaluated all genes using
both our approximation function and RNAfold, and obtained a Pearson's correlation
of 0.99, indicating a perfect statistical dependence between the two approaches. The
increase in correlation compared to the results obtained during training is justi�ed by
the use of a gene set with random lengths, as opposed to �xed-length, which limited
the bias. We proceeded to the evaluation of the optimization of secondary structures
by applying our method to the 36 genes and then re-evaluating them with RNAfold
to assess evolution (Figure 4.3).

By analyzing the di�erence between the results of wild-type genes and optimized
genes we measured an average 46% increase in the minimum free energy, with a
p-value < 3× 10−11 (using Student's t-test). As an example, one of the largest
evolutions (67%) increased the MFE from -175 to -58 kcal/mol, strongly diminishing
the predicted secondary structures. In this optimization, the number of base pairs
of the resulting RNA was reduced by 54%, and particularly the number of GC pairs
decreased 60%, as depicted in Figures 4.3b and 4.3c.
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(a) (b) (c)

Figure 4.3 Secondary structure optimization results. In (a) the improvement for each
of the 36 genes is shown. In (b) and (c) the secondary structures of a Drosophila

melanogaster gene are shown for the original and optimized mRNAs in a circular chart.
The circle is created using the gene nucleotide sequence.

One might argue that the amount of guanine and cytosine in genes, which are
the nucleotides that produce the strongest pair, could be the main driver behind the
optimization process and that the optimization was merely a question of replacing
codons for synonymous with less guanine and cytosine. To understand the algorithm
bias towards the amount of guanine and citosine in genes we evaluated GC content
before and after optimization, measuring an average of 24% decrease, though weakly
correlated with the MFE improvement of each gene. We then assessed the role of GC
content by adding a rule to our optimization algorithm in order to evolve genes into
con�gurations that simultaneously increase MFE and maintain the same percentage
of GC as the wild-type, to ensure that it is codon structure rather than GC content
that is controlling the improvement. Results show MFE improvements averaging 28%,
without any change in GC content, which represents a 18% decrease in improvement
when compared to the original optimization. We also optimized the genes to minimize
the amount of GC% and observed improvements in MFE averaging 38%, which is less
than our approach. This suggests that the main contributing factor to our algorithm
is codon con�guration, though GC content also plays a signi�cant role (see Figure
4.4).

Furthermore, to control for GC content and assess its impact in optimization, 36
genes with equal amount of GC (50%) were randomly selected from the same species,
and optimized using our approach. Improvements in MFE averaged 43% with a t-
test probability of 8× 10−11, with results still showing a large correlation between
values of RNAfold and our approach (0.99). Also, by adding the previous rule to
maintain the same GC% amounts of the wild-type, we measured improvements in
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Figure 4.4 MFE optimization controlling GC content. The interior circle represents 0%
improvement, while the outer circle 80%. Our approach reaches the best improvements
on the majority of genes.

MFE averaging 29% with a p-value < 1× 10−10. Therefore the optimization can be
e�ective despite the original amount or change in GC content.

Considering that our MFE evaluation function is faster but less accurate than
RNAfold, we compared our approach with that of optimizing a codon sequence using
the same strategy but with RNAfold as the MFE estimation function instead of our
correlated method, in order to deduce the loss in accuracy and gain in time. For that,
we used the simulated annealing method with the same parameters, replacing only the
energy evaluation function by a call to RNAfold. We then performed the optimization
in the set of 36 genes (random GC% and length) and collected results for comparison.
All �nal results from both approaches were measured afterwards using RNAfold to
build a reliable comparable basis between methods. We found a small gain of 2%
when using RNAfold to optimize genes, with more than 35% of the genes having
similar or worse results than our approach. Also, higher di�erences were only found
in smaller genes and for genes larger than 250 codons the gain was null, suggesting
that as the problem becomes more complex our approach obtains equivalent results
to using RNAfold. However, being of quadratic time-complexity, our approach took
only a total of 34 minutes to optimize the 36 genes (<1 minute per gene), while using
RNAfold took more than 6 days (more than 4 hours per gene)4. Parallelizing the

4In a computer with Windows Server 2008, Intel Xeon 4 cores 2.67GHz, 4GB RAM
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process leads to bounding the problem to the longest optimization, which was around
∼4 minutes using our approach and ∼22 hours using RNAfold (see Figure 4.5). Thus,
having no signi�cant loss, and gains in time up to several hundred times, our strategy
becomes a feasible approach to optimizing RNA secondary structure.

Figure 4.5 Time complexity gain in using pseudo-energy. Using RNAFold to optimize
the genes takes a cubic time in relation to the size of the gene (see the regression results),
while our method is only quadratic. The loss in accuracy when using our method averages
2%.

We created linear regressions that try to approximate a realistic energy value for
our method, and obtained a coe�cient of determination R2 for both equations of 0.99

(n = 36), which re�ects the �exibility of the pseudo-energy method in �tting to the
energy predicted by RNAfold. Figure 4.6 depicts a comparison of the energy output
from both methods in 48 genes from di�erent species.

To promote the use of our strategy we created a command-line tool that uses
the pseudo-energy evaluation along with a simulated annealing heuristic to optimize
mRNA sequences, available at bioinformatics.ua.pt/software/mrna-optimiser. The
tool also allows controlling for guanine and cytosine content. Moreover, by having
an evaluation function we easily integrated the method into the Eugene software
previously presented, enabling the integrated multi-optimization with other methods.

http://bioinformatics.ua.pt/software/mrna-optimiser/
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Figure 4.6 Comparison of pseudo and RNAfold energy predictions. 48 original genes
(non-optimized) were employed. A correlated landscape is clearly visible.

4.4 CONCLUSIONS

The study of RNA secondary structures is an important area of research in com-
putational molecular biology. Speci�cally, structure prediction and MFE calculation
are prominent subjects in recent RNA literature. Being able to predict the forma-
tion of structures has allowed researchers to understand how RNA functions, while
reverse RNA folding has allowed building non-coding RNAs that have a speci�c struc-
ture. However, considering the impact of secondary structures on gene translation,
a strategy to redesign genes to produce less structured mRNAs that would allow for
improved or controlled expression is important.

We presented a �rst approach to optimizing the secondary structure of mRNA
sequences using a fast correlated MFE-estimation method. Though the estimation
algorithm was not built for maximum accuracy, results are closely associated with
those of using accurate methods, such as RNAfold, allowing for rapid calculation of
synonymous genes with improved structures. Overall, our tests indicate an average
of over 40% improvement in MFE, as measured by RNAfold.

Our method can be used in combination with other factors that in�uence gene
expression, such those discussed in Chapters 2. By creating a single function able to
calculate the pseudo-energy we enabled the use of the techniques explored in Chapter 3
for the aggregation of goals, which is only feasible due to the reduced time complexity.

Besides allowing the optimization of single mRNA sequences alone, the advan-
tage of being fast and accurate (to some extent, as shown) allow performing bulk
evaluations, for instance to use in data mining, as seen in the following chapter.





5 | PREDICTING PATHOGENICITY

Due to rapid and large advancements in genetics research and sequencing technology,
healthcare is undergoing a paradigm shift that brings the DNA to the center of
personalized and preventive medicine. Recent progresses coming from large-scale
projects have been able to deploy massive amounts of genetic data from hundreds
of humans, providing a comprehensive characterization of the human variome. The
gathering of these data has given rise to a new era of human health interpretation
through the analysis of the most intrinsic description of an individual: its genome.
Thus one of the most important and challenging topics in human genomics research is
the interpretation and transformation of such data into informative diagnosing tools.

A substantial amount of work is already being made to understand the impact
of genetic variation, which not only dictates individual characteristics but is also the
main driver of human pathogenicity. By using the methods discussed in previous
chapters to analyze and evaluate genes, we are able to acquire detailed information
regarding one of the fundamental steps in the central dogma of molecular biology
for any living being: translation. The value of this information in contributing to
the analysis of human mutations and consequently pathogenicity through the use
of machine learning is studied in this chapter, as we sought to develop an accurate
methodology to classify single nucleotide variants according to their pathogenicity.
We further develop the �eld of patient genomic analysis by creating a screening soft-
ware that detects mutations in patient genes and reports on their pathogenicity using
our methodology.

71
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5.1 PATHOGENICITY FEATURES AND LEARNING

5.1.1 HINTS TO PATHOGENICITY

The most common form of genetic variation are single nucleotide variants (SNV),
with recent reports from the 1000 Genomes Project revealing an average of 3.6 mil-
lion SNPs1 per individual, representing one SNV every kilobase [1, 2]. In comparison,
multi-base mutations are 10 times less frequent [126]. Only 24 thousand of these
are found in protein coding regions, approximately half of which directly a�ect the
protein (non-synonymous alterations). Moreover, SNVs were soon recognized as the
main cause driving genetic variation in humans and an excellent form to map traits
[44, 58]. Therefore, e�orts are being put in the development of algorithmic strategies
to di�erentiate potentially pathogenic mutations from variants with minor or no con-
sequences. Such algorithms allow screening through thousands of patient variants for
pathogenic candidates, performing genetic diagnosis that enable early or preventive
treatments. Moreover, by broadening the understanding of factors that impact pro-
tein function and play a role in disease, these computational methods may promote
personalized medicine.

In chapter 2 we explored several of the most popular approaches in literature
to classify genomic mutations according to their pathogenicity or degree to which
they might generate instability in a protein. The approaches are based on genetic
assessments on the protein at hand, and di�er in their classi�cation methodology,
with most of them using popular machine learning strategies to perform classi�ca-
tion. The assessments are related to genetic or physical-chemical properties, as well
as relations of conservancy among species. For instance, as already discussed, the
PhD-SNP, Panther and SIFT methods are based on evolutionary conservation, i.e.
they account for the level to which the a�ected region of the protein is maintained in
other species with the same protein, as mutations a�ecting conserved regions might
indicate a potential disruption of functional code [33, 129, 180]. Other approaches
such as MutPred, PolyPhen2, SNAP and SNP&GO also combine structural and pep-
tide information to analyze conformational and energetic changes that might occur
in proteins as a result of amino acid alterations, thereby increasing the ability of the
models to infer if the a�ected region is able to disturb the stability of the protein or
organism [3, 28, 161, 186]. Despite the large adoption of homology and protein-based

1SNPs (single nucleotide polymorphisms) are SNVs with a frequency of over 1% in the population.
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information to create models of pathogenicity, there is overwhelming evidence that
mRNA alterations are a major factor causing disease [159].

In fact, amino acid alterations account for only approximately half of the disease-
causing variants in the Human Gene Mutation Database [173]. It has been shown
that variations in the mRNA, independently of being synonymous [147, 165], have a
high impact on the polypeptide biosynthesis and consequently on the protein, mainly
due to the additional information carried by the mRNA besides that of decoding [86].
For instance, codon usage frequencies have been reported to play a signi�cant role in
translation speed regulation [8, 39, 100], hence variants altering codon usage might
disrupt important slow-decoding regions that allow the protein to fold correctly [140];
likewise, changes in codon context, which is the biased use of adjacent codon pairs,
have been shown to be able to cause decreased rates of protein translation [41, 124];
variants a�ecting splicing regulatory sites in�uence pre-mRNA splicing, with studies
reporting that 16% of disease causing mutations a�ect these sites [123, 189]; changing
the local mRNA secondary structure can a�ect translation initiation and elongation
by hampering the ribosome work, and also a�ecting folding speed [40, 105, 175]; and
nucleotide repeats may originate frame-shifting, causing mistranslation and wasted
consumption of cell resources [27].

Not withstanding, changes in protein physical-chemical properties, although hav-
ing a direct impact on the protein, have varying in�uence on pathogenicity, with a
signi�cant percentage of reported amino acid mutations being neutral [2]. Physical-
chemical properties include measuring changes in terms of acidity, mass, volume,
hydropathy, isoelectric point, net charge and polarity, when an amino acid is replaced
in the chain, since amino acids have di�erent chemical compositions (see table 5.1).

Table 5.1 Amino acid physical-chemical properties. Values for each amino acid are shown
for the most important properties [23, 56, 106]. The table is colored according to the scale
of each property.
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Signi�cantly changing some of these properties might cause a diminished or even
absence of functionality in the resulting protein, depending on other factors such as
the size of the protein, the importance of the a�ected region, and the impact of that
property in the polypeptide folding. For example, the presence of cysteine amino
acids in proteins can induce the formation of disul�de bonds, which make the protein
structure much more stable. Therefore these bonds are usually found in proteins that
function in harsh environments, such as digestive enzymes like pepsin, or proteins
that are too small and require additional help to hold a stable conformation, such as
insulin. Replacing a cysteine amino acid can therefore cause structural and stability
changes, rendering the protein less resistant to denaturation2. Although these are
arguably the most recognized and in�uential properties, the Amino acid Physical-
chemical property Database (APDBase) holds almost 250 redundant properties that
have been independently measured [117].

Moreover, a�ecting properties such as the hydropathy can also have a large impact
in folding, since the main driver of protein folding is the water-solubility of amino
acids. Highly hydrophobic amino acids tend to avoid the contact with the water
environment by clustering in the hydrophobic core of the protein, which becomes
surrounded by the remaining proteins and leaving the outside of the protein formed
by hydrophilic amino acids. Signi�cantly altering the hydrophobicity of a region that
was intended to form the core of the protein can impede its correct folding and thereby
rendering it nonfunctional.

Also, proteins have di�erent degrees of importance, relating to their role in the
organism: a�ecting central proteins is far more deleterious than a�ecting proteins with
less important roles, or with compensatory or redundant systems. In that matter,
a few initiatives have been developed to annotate genes and proteins according to
their function and interrelations. The Gene Ontology (GO) is one of those e�orts,
which tries to unify and create a universally accepted and consistent terminology to
describe gene products in three domains related with their biological roles:

• molecular function - describes the biochemical activity of the gene or gene prod-
uct. Broad examples are �enzime� or �transporter�.

• biological process - related to the purpose or overall goal of the gene or gene

2Denaturation occurs when a protein loses its natural conformation, usually in the presence of

external agents such as strong pH, solvents, salts or heat. This results in the loss of activity by that

protein.
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product. It is often associated with chemical or physical transformations. Ex-
amples are �cell growth� or �signal transduction�.

• cellular components - refers to places inside the cell, or parts of it. Examples
are �ribosome� or �nuclear membrane�.

Using an ontology allows the creation of a semantic representation of the relations
between the factors involved with gene products. The ontology can be graphically
represented as a graph involving all biological components and their relations, as
depicted in Figure5.1, where a gene product can be annotated with one or several of
these terms. Concepts are represented as nodes of the graph, and relationships are
described in the edges that connect two nodes.

Figure 5.1 A Gene Ontology section. Two types of relations can be seen, the �is a� and
the �part of�. The �rst indicates a subclass-class relation and the second a part-whole
relation. (image adapted from the work of Pesquita el al. [142])

By also entailing the relationships between and among roles and components, the
GO enables searching biological databases by function and associations, and provides
a comprehensive source of knowledge to be used when creating models of living sys-
tems. This last advantage is essential to understanding how a mutation a�ecting a
protein might also a�ect the organism by an intertwined succession of interactions
with other actors and processes in the surrounding biological system. An example of



76 5 | Predicting pathogenicity

a tool resorting to GO is SNPs&GO, which provides a service to predict if amino acid
alterations are deleterious by using functional annotations coming from GO [34].

Overall, approaches in literature are still relying on homology and conservation
as the backbone for the analysis of mutations. Though, in principle, homology does
reveal the importance of the a�ected region as a measure of how much the zone was
kept among species throughout evolution, it lacks essential ingredients to measure
the impact in proteins or even pathogenicity. For instance, factors involved in the
translation step are largely ignored in literature. In 2001, Wang and Moult mapped
mutations known to cause disease onto their corresponding protein structures and
found that only 83% of the mutations a�ected protein stability[192]. That means
the remaining mutations cause other factors, such as a�ecting the translation and re-
ducing the amount of expressed protein. The use of curated knowledge is also rarely
adopted, despite the fact that it could potentially indicate the importance of a protein
inside an organism. The general disposal of such important clues to pathogenicity
justi�es the still relatively low accuracies in current prediction systems. Even in ag-
gregation strategies such as PON-P, which brings together several approaches (SIFT,
PolyPhen 2, SNAP and PhD-SNP), the lack of more informed features leads to a score
of 80% accuracy [137], which is only fractionally larger than the individual scores.

5.1.2 MACHINE LEARNING

To be able to perform computational predictions on whether a variant is pathogenic
or neutral to its carrier, an algorithm must be able to distinguish variants based on
given hints. Hints might be evaluations, retrieved data, or assumptions, and the goal
of machine learning is to generate an algorithm to represent and generalize those
hints such that new unseen samples can be correctly categorized. For example, one
of the most widely used systems based on machine learning is the detection of spam
in emails. Using the contents and meta-data as the hints of an incoming email, the
system must classify the email as spam or normal.

Therefore, the core hypothesis of machine learning lies in that learning to general-
ize a given input data in terms of building a classi�cation structure will allow inferring
the classi�cation of novel input data by mapping it to the constructed structure. It
intimately assumes that the initial input data is largely representative of future data,
that is, the structure of future data in somehow known, and therefore the input data
plays a crucial role (arguably the most important) in the ability of a machine learning
model to generalize.
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The learning procedure varies wildly depending on the generalization methodol-
ogy. Perhaps the most classical approaches can be divided in two classes: supervised
and unsupervised learning. The former assumes the availability of a prior classi�ca-
tion additional to the input data, where the learning procedure tries to �t the hints,
examples of which are Arti�cial Neural Networks, Support Vector Machines and De-
cision Trees. The latter does not require a prior classi�cation but rather tries to
�nd the underlying structure of the input data regardless of its class, for instance by
clustering data points. Examples of unsupervised learning include K-means, Hidden
Markov Models and strategies of dimensionality reduction such as Principal Compo-
nent Analysis and Singular Value Decomposition. However, most prediction systems
rely on supervised learning due to being more suitable to classi�cation tasks, often
yielding better performances, and allow learning by example.

For example, in order to classify data, Support Vector Machines try to �nd the
maximal margin that separates instances by class in a geometric space, and output the
separating hyperplane at the center of the margin [46]. That separation is found by
assuming that each hint represents a di�erent dimension in a high-dimensional space,
and that data instances represent points in that space (Figure 5.2a). The hyper-plane
that better separates instances of one class from the other is the best generalization.
New data is classi�ed by determining on which side of the hyperplane it belongs and
hence to which class it should be assigned. However, some input spaces might not
be linearly separable, and therefore kernel functions are used to map the input space
into a higher-dimensional feature space where the data can be more easily separated
(Figure 5.2b). The optimal kernel to use depends on the classi�cation problem and
the available data, and usually has speci�c parameters which can be controlled to
�ne-tune the SVM performance.

A well-designed machine learning experiment requires several steps, such as the
extraction of data, the creation of the model and its evaluation, and must consider
several major issues related with generalization, such as the trade-o� between bias
and variance (bias-variance dilemma), the dimensionality of the input, or redundancy
and dependency in data. These are explored as follows.

LEARNING STEPS

Regardless of the supervised learning method, a necessary �rst step towards creating
an abstract model capable of �tting data is extracting data itself and assembling a
dataset composed of the collected samples, their features (hints) and annotated or
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Figure 5.2 Example of Support Vector Machines. a) Instances of data are plotted in
the chart using two abstract hints (used in the horizontal and vertical axis). Circles and
rhombi distinguish their classi�cation. Support Vector Machines try to �nd the line that
optimally separates the classes. b) A linear separation is not possible because many
instances would be misclassi�ed. Using kernels allows mapping the input space into a
higher dimension that allows separating the classes with less error. In the image, only one
example is misclassi�ed after using a Radial Basis Function (RBF) kernel.

observed classi�cation. This �rst step ensures that a workable input with vector shape
can be used by the learning algorithm to map the output as a function of the input.
In our theme, that represents collecting a set of annotated variants, i.e. for which we
know the pathogenic outcome, and evaluate each of them according to several hints
(from now on, features).

A second step involves pre-processing the gathered data. This is a more generic
step that is highly speci�c to the case at hand (Figure 5.3a). To ensure the quality
of the input data before the actual learning, one must deal with inconsistent data,
missing values, unscaled features, noise, outliers and other issues that might compro-
mise the learning algorithm or the generalization capabilities of the learned model.
Common pre-processing approaches include:

• Removing instances that have inconsistent or empty data, or �lling the invalid
features using sampling from similar distributions;

• Selecting the instances that represent a good set of examples to the learning
phase, for instance by representing real-case examples;

• Scaling in order to keep all features inside the same boundaries and avoid bias
towards features with larger values. This is often achieved by reducing all
features to a null average and unity standard deviation;
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Figure 5.3 General supervised machine-learning steps. After collecting data and pre-
processing it, the train-test-evaluate cycle beings, starting by splitting the data set into
two parts, then using one of them to �t a model, and �nally evaluating the model in the
unused data. To correctly measure the generalization power of the created model, the
process is repeated several times using di�erent data splits, reducing the data bias.

• Performing feature selection to reduce the dimensionality of the input space
and remove noise from data. This approach is largely studied, and there are
many strategies to it including removing features that are redundant, share
little information with the class (i.e. are uninformative), or that were proved to
be less useful for the learning method;

• Normalizing instances such that all instances have an equal vector magnitude,
avoiding bias towards instances with larger or smaller magnitudes. This is
usually performed by reducing the instance vector to a unity magnitude;

Having the dataset prepared, the learning cycle may begin. The cycle is generally
made of three steps: the dataset is split into N equal parts (Figure 5.3b), using
N − 1 parts to perform the actual �tting of a model (training, Figure 5.3c), and
the remaining part is used to evaluate the created model in unseen data (testing,
Figure 5.3d). This is called cross-validation, and the process is repeated N − 1 times,
excluding a di�erent part to use for evaluation in each iteration. At maximum, N
can be the number of samples in the dataset, meaning that the model is �t to every
sample except one, which is used to test the model, and the process repeated for every
sample. This is called leave-one-out cross-validation. Cross-validation is a widely used
approach because it confers the learning cycle with a scienti�c approach to correctly
evaluate the generalization capabilities of the created model, as the testing data is
unknown by the learning method in the training phase and therefore its evaluation
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must be similar to that of any new unseen data. Again, this assumes that the dataset
prior to splitting is representative of the real-world distribution of data. Also, cross-
validation ensures the model is trained and tested using every part of the dataset,
thus making evident the presence of any bias in the data.

It should be noted the importance of performing some of the pre-processing ap-
proaches inside the learning cycle instead of prior to it. The reasoning behind that is
that some approaches, such as scaling and feature selection, operate over all instances
(and even the class) by analyzing them and then performing transformations based
on that analysis. The consequence of those operations is that information is shared
between instances, or even between the class and features, e�ectively introducing bias
and prior information into the data.

The evaluation of the model can be attained using numerous approaches. The
goal is to verify the extent to which the created model is generalized and not over-
�t to the dataset. Four base concepts can be easily outlined: the instances that
were correctly classi�ed by the model as belonging to the positive class are called
the true positives (TP); similarly, true negatives (TN) are negative class instances
that were classi�ed as negative; the errors of the model stand on the instances that
were incorrectly classi�ed as positive (false positives, FP) or incorrectly classi�ed as
negatives (false negatives, FN). Combinining these values leads to several well-known
formulations that serve as the basic evaluation of machine learning systems. One
of the most popular and important measures is accuracy, which is the ratio of true
classi�cations (TP+TN) in relation to the amount of classi�ed instances:

Accuracy =
TP + TN

TP + TN + FN + FP
(5.1)

Accuracy is perhaps the most used metric of evaluation, but bears the issue of
being biased if the amount of positive and negative samples in the dataset is not
balanced. Another two important methods are precision, which is the proportion of
positive samples among those that were classi�ed as positive: precision = TP

TP+FP
; and

recall (or sensitivity), which is the proportion of positive samples that were correctly
classi�ed, calculated with recall = TP

TP+FN
[114]. An assessment metric called F-

measure contemplates both precision and recall, by performing an harmonic mean of



5.1 | Pathogenicity features and learning 81

both:

Fβ = (1 + β2)
precision× recall
precision+ recall

(5.2)

The most common value for β is 1, granting equal weight to precision and recall
(F1-measure). This method is more e�ective than accuracy, as it can be used in un-
balanced settings. However, as pointed out by Powers in 2011, reducing the equation
reveals that the F-measure completely ignores the amount of true negatives, an im-
portant factor when evaluating a classi�er [149]. Employing the correlation between
the true and predicted classi�cations is another strategy, and one form of measuring
it is through the Matthews Correlation Coe�cient (MCC) [118]:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.3)

The MCC can be translated as being the geometric mean of markedness and in-
formedness, two other important measuring methods [149]: informedness = (recall−

FP
FP+TN

) and markedness = (precision− FN
TP+FN

). Lastly, but not less important, are
Receiver Operating Characteristics (ROC) curves [57]. ROC analysis plots the true
positive rate (recall) against the false positive rate (also known as fall-out, FP

TP+FN
),

as the threshold that generates the classi�cation decision is varied. For instance, Sup-
port Vector Machines use 0 as the threshold to decide whether an instance is from one
class or another. Varying the threshold will change the recall and fall-out, allowing to
assess the best thresholds, and the generalization capabilities of the learning method.
The ROC curve that is created will ideally be closer to the (0,1) corner where the
false positive rate is minimal and the true positive rate is maximal. Therefore, the
area under the ROC curve (AUROC) is often also used as a measure of classi�er
performance.

LEARNING ISSUES

The �rst issue with machine learning, as well as with optimization, is that according
to the no-free-lunch theorem there is not one single method that performs better
than all others [198]. In fact, the theorem showed that for any approach, its average
performance over all problems will return the same as any other. That means that
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the choice of method is highly dependent on the problem at hand, hence suggesting
the need to look for a good candidate approach before proceeding with further work.

Another issue to take into consideration is the bias-variance dilemma. This prob-
lem relates to the trade-o� that often exists between the ability of the model to
generalize to new data and its ability to capture the structure inherent to the train-
ing data [70]. Ideally a learned model has no bias, that is, it has optimal performance
in all the data used to train it, but also has no variance, meaning that unseen data set-
tings (unseen values, unseen combinations, noise, etc.) also behave optimally, which
translates into optimal generalization. However, this is rarely the case, as creating a
model with zero bias can be very hard depending on the dataset at hand, but even
when creating such model it would hardly generalize to any other data, due to be
over-�tting the training data. Therefore, it is common that problems are bounded
by a trade-o� between bias and variance, and �nding the right balance is important
in order to guarantee the practicability of the created model. Nonetheless, to over-
come this issue cross-validation techniques can be used since they maintain a separate
testing set of data instances allowing an unbiased performance evaluation, and the
training-testing cycle enables a formal assessment of variance.

Another strategy to tackle the bias-variance dilemma is employing techniques
of dimensionality reduction. The high dimensionality of the input space is another
important issue in machine learning. It is intimately related with geometrical spaces
and the fact that using more dimensions leads to having a sparser representation
of data. This occurs mainly due to most machine learning algorithms resorting to
Lp spaces, e.g. the Euclidean space, to perform distance measurements. As seen in
chapter 3, the Minkowski formulation (equation 9) depends on the dimension p of the
space where the measurement is made, and as p grows the equation becomes unable to
e�ciently discern the distance between di�erent pairs of instances, as points in space
tend to be equidistant. In fact, in high dimensional spaces, most of the volume is
concentrated near the boundaries of the space, and this e�ect increases exponentially
with the number of dimensions. For instance, in Figure 5.4 a small example is shown
where each object has a smaller version (shown in red) that represents 1% of the
size/volume of the larger object. In one dimension, the red line has a length of
exactly 1% the length of the black line. In two dimensions, in order for the red
square to have 1% the area of the black square, its edges have a length of 10%
of the edges of the black square. In three dimensions the same happens, and the
red edges now have 21% of the edges of the larger cube in order for its volume to
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represent 1% of the volume of the involving cube. In 1000 dimensions, the edges
of the red hypercube would have 0.01

1
1000 , which is approximately 99% of the edges

of the outer cube, but the red cube would still have only 1% of the size of the
black cube. That means that in high dimensions, the majority of the volume is
near the edges, and therefore measuring Minkowski distances becomes less e�cient.
Several machine learning models rely on Minkowski or derived distances, such as
Support Vector Machines. Another issue with high dimensionality is that having
more dimensions exponentially increases the amount of data necessary to have a
good sample of the possible range of combinations between variables. For instance,
when adding two dimensions that can have 10 discrete values each, the number of
value combinations that must be considered grows by 102 = 100 fold. This e�ect is
known as the curse of dimensionality.

Figure 5.4 Illustration of the dimensionality curse. The red versions represents 1% of
the size/volume of the black versions. As the number of dimensions grows, the red version
becomes closer and closer to the edges of the black version. For instance, in an hypothetical
hypercube of 1000 dimensions the inner red cube's edges would be 99% of the edges of the
outer cube, while still being only 1% of the volume.

To tackle this issue the number of dimensions should be reduced, for instance
using feature selection to �nd the best minimum combination of dimensions (by re-
moving irrelevant or low-gain dimensions), or matrix decomposition strategies such as
principal component analysis or singular value decomposition, which allow selecting
the most informative dimensions. Dimensionality reduction approaches also tackle
another important issue, which is that of redundancy and dependence in data, which
introduce noise and inconsistencies in the dataset, hampering the learning by some
methods.
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5.2 METHODS

5.2.1 FEATURE EXTRACTION

To obtain annotated variation data to use as our input data we gathered a total
of 56802 unique single nucleotide variants from the coding regions of 13779 gene
transcripts. The mutations were extracted from several Locus Speci�c Databases
(8 databases, 8501 variants, 85% classi�ed as pathogenic or likely pathogenic) [60],
SNPdb (48307 variants, 45% pathogenic, with neutral polymorphisms retrieved as
those having a global minor allele frequency above 20% in the Phase I 1000 Genomes
Project population) and Cafe Variome (691 variants, all pathogenic), as detailed in
Table 5.2.

Table 5.2 Source of our dataset variants.

It is important to note that neutral mutations from SNPdb were retrieved as those
that were very frequent among the population, hence assuming that when a variant
is present in more than 20% of the population it must not constitute a pathogenic
variant. Other approaches have assumed lower values, such as 5% and 10%, but
given the amount of variants now available we sought to fabricate a more consistent
dataset. We con�rmed the mutations against their mRNA transcripts, and only
valid single nucleotide variants in coding regions were selected. We then created a
balanced dataset (50% pathogenic, 50% neutral variants) with 55550 random variants
to perform experiments, measurements, and create a prediction model. About 28%
of the variants are synonymous (silent) alterations.

To extract variant, gene and protein characteristics (i.e. the features to be used
by the machine learning methods) we employed the methods explored in the previous
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chapters, along with some manually created algorithms for speci�c characteristics,
generating 152 features (see Appendix D).

For gene features, we calculate several characteristics mentioned in literature as
having the potential to impact translation or the overall protein biosynthesis process,
such as codon usage (relative synonymous codon usage), codon context (codon pair
bias), out-of-frame stop codons, nucleotide repeats, mRNA secondary structure en-
ergy (using the method described in Chapter 4), variant positioning (in the codon and
in the gene), GC content, proximity to splicing sites, presence of exon splicing regu-
latory sequences, potential to create nonsense alterations, the original and mutated
nucleotides, and several variations of these. We used the human genome (Genome
Reference Consortium GRCh38) to pre-calculate Relative Synonymous Codon Us-
ages and Codon Pair Scores for all codons and codon pairs. Hidden stop codons were
calculated by looking for UGA, UAA and UAG codons in all possible out-of-frame
codons surrounding the mutated nucleotide. Nucleotide repeats were calculated as
the number of consecutive repeated nucleotides (3 or more) within a window of seven
codons. Splicing features were two fold: the �rst was created by retrieving the exon
positions for the a�ected transcript to calculate the distance to the nearest splicing
site; the following features used two lists of exon splicing enhancers and silencers
[191] to calculate a score that represents the amount of possible matches between the
a�ected region and a known exon splicing regulation sequence. The features repre-
sented how much the score changed between the normal and mutated versions. The
score was obtained by summing the Levenshtein distances3 between the a�ected re-
gion and every splicing regulatory sequence on our lists, e�ectively indicating how
much the region encloses a regulatory sequence.

Whenever necessary we transformed the values of features using a natural loga-
rithm to ensure a better distribution of values if they encompassed large di�erences
in magnitude.

For protein characteristics, we describe alterations in the chemical properties of
the amino acid sequence: hydropathy, polarity, mass, volume, acidity, net charge,
and isoelectric point, as well as structural changes by predicting the protein sec-
ondary structure using PsiPred [89, 120] and evaluating changes in the a�ected region
(number of β-strands, α-helices and coils in the a�ected region). Variations of these
features were also extracted, such as calculating gene-wide and windowed (7 codon-

3The Levenshtein distance measures the di�erence between two strings in terms of the number

of single-characters changes required to transform one string into the other.
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s/amino acids) properties. We also use data from a published database of expected
Ramachandran plots to assess the stereo-chemical e�ects of amino acid replacements,
which re�ect important structural alterations in the protein [182]. For instance, when
a mutation caused an amino acid alteration, we retrieved what the expected PhiΦ-
PsiΨ angles (Figure 5.5a) should be between the a�ected amino acid and the previous
and next amino acids, and calculated the di�erence to the expected dihedral angles
of the wild-type protein sequence (Figure 5.5b). We did this by creating an algorithm
that searches the database for a pair of consecutive amino acids, and assesses what
are the most likely Phi-Psi angles between them, and then calculating the di�erence
between the native and mutated angles.

(a) (b)

Figure 5.5 Dihedral angles and Ramachandran plots. In a), a section of the backbone of
a protein is shown, and the Phi (Φ)-Psi (Ψ) angles are displayed next to the central Carbon
atom. Ramachandran found that depending on the neighboring amino acids, the Phi-Psi
dihedral angles assume very limited values, as seen in b),which shows the most common
combinations of angles for Alanine (blue the least common, red is the most common).

Furthermore, to categorize proteins according to their role we explored the struc-
ture of Gene Ontology (GO) annotations. Since there are thousands of GO terms
that can annotate proteins, we wanted to avoid having every term as a feature of
our dataset to prevent large dimensional spaces and bypass the problems associated
with it. Therefore, for each protein to which the variants in our dataset belonged, we
evaluated all its annotated GO terms and looked instead for their correspondence in
the second level of the gene ontology tree, rendering a limited and �xed set of anno-
tation. This was performed by using a protein-to-GO mapping supplied by UniProt
which allowed us to �nd which GO terms were manually attributed (curation) to a
given protein. We then traversed the Gene Ontology graph, which is provided as a
entity-relation-entity list, �nding for the ancestor entities that belong to the second
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level of depth of the graph, as illustrated in Figure5.6.

Figure 5.6 Gene Ontology traversing algorithm illustration. A protein annotated with
the GO terms X and Y (at the bottom) will be asserted as positive features for several
terms of the second level of Gene Ontology (third line of the graph). This is performed by
traversing the graph upwards, for each parent term, until the second level is reached.

There are 61 terms in the second level, but four of them had no correspondence
in the proteins of our datasets: GO:0019012 (virion), GO:0055044 (plant symplast),
GO:0036370 (D-alanyl carrier activity), and GO:0097423 (mitochondrion-associated
adherens complex). The �rst two are external to the expected human GO terms, and
the last two were not found due to the lack of proteins/diseases associated with those
terms in our dataset. The complete set of Gene Ontology terms that were used as
features in our dataset is available in Appendix C.

As an example, a variant whose a�ected protein is annotated as a basement mem-
brane (GO:0005604) would be characterized as being related to extracellular region
(GO:0005576) and extracellular matrix (GO:0031012), both terms from the second
level of the gene ontology that are attained by climbing up the graph.

5.2.2 CLASSIFICATION

Using the 152 characteristics extracted from the 55 thousand reported variants, we
sought to build a classi�cation model able to predict if a coding single nucleotide
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variant has a pathogenic outcome or not. To perform the prediction we tested 17
machine-learning classi�ers in order to �nd the classi�er that best matches our pre-
diction needs: Decision Trees, Random Forests, Extremely Randomized Trees, Per-
ceptron, Neighbor-based classi�ers, Naive Bayes, Support Vector Machines (SVM),
Ridge Classi�er, Gradient Boosting, and several variations of these. The complete
list is in Table 5.3.

Table 5.3 List of tested classi�ers. Besides the variations within each type, several
parameters were tested for each classi�er. For example, we tested the polynomial kernel
of SVMs using 2 to 6 degrees.

All classi�ers were tested in experiments by performing a 5-fold cross-validation
(data divided in 5 parts, training in 4 and testing in 1, and then rotating). Final tests
used a 20 fold cross-validation instead, to assess a more real predictive power. We also
tested several pre-processing strategies: scaling, normalizing, binarizing (transforming
feature values into 0s and 1s) and several combinations of these. It is important to note
that to avoid information leakage between instances of our dataset, and between the
training and testing sets, the pre-processing was included within the cross-validation
step. Hence, upon training the train data was pre-processed, and a pre-processing
model was saved, which was used later to pre-process the test data. We performed the
machine learning and pre-processing computations resorting to Scikit-learn, a Python
library for machine learning and data mining [141].

In order to assess the statistical signi�cance of our model's ability to �t the dataset
and �nd a real data structure, besides cross-validation we also employed a random-
ization test described by Ojala and Garriga [136]. In their method, the class of our
samples (pathogenic/neutral) are randomly permuted to estimate a null hypothesis
of the dataset. Then the fraction of permutations that yielded results better than
the original labels did is inferred. This strategy enables evaluating how likely the ob-
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served accuracy of our models would be obtained by chance, and obtaining a p-value
representative of our model's accuracy.

We also used several techniques to perform feature selection and reduce the di-
mensionality of our dataset. In terms of matrix decomposition, we used principal
component analysis, fast independent component analysis [24], and latent dirichlet
allocation [25] to verify the minimum amount of components we could achieve without
loosing performance. We employed a correlation matrix using Pearson's correlation
to create distance maps and avoid features that were mostly redundant.

Evaluating features and their importance to the classi�er brings understanding on
the biological impact of each characteristic. Therefore, we used several techniques to
evaluate the importance of each feature and draw conclusions:

• Information gain, or Kullback-Leibler divergence, compares the distribution of a
feature with the distribution of the class. It measures the amount of information
that is lost when trying to approximate the class using the feature.

• Recursive Feature Elimination, iteratively uses a machine learning model to
perform training-testing and removing the feature that contributed the least to
the learning method in each iteration. This is performed by using the weights
output by the classi�er for each feature, and thus only works with some methods.
At the end, features are ranked according to the number of iterations they lasted.
The last remaining feature is the most important.

• Weights when using classi�ers, for instance employing extremely randomized
trees allows extracting the importance of each feature after the method has
learned. The same can be achieved using linear-kernel support vector machines.

5.3 RESULTS AND DISCUSSION

5.3.1 DATA ANALYSIS

We analyzed the retrieved variants and the 152 calculated features, and found sev-
eral patterns in the data, specially patterns that indicate tendencies for pathogenic
mutations to occur under certain circumstances. These not only explain the predic-
tive power of the features under machine learning settings, but also yield important
insights into biological factors related to disease etiology, and have the potential to



90 5 | Predicting pathogenicity

expand the knowledge regarding the in�uence of genetic mutations in humans. We
explore these �ndings in the next paragraphs.

By analyzing characteristics related with the mRNA but not directly with the
protein, we found clear discriminatory patterns:

• The position of the variant within the codon was biased in distribution of
pathogenicity, which relates to the degeneracy of the genetic code4, with vari-
ants occurring in the third position having an 86% chance of being neutral (n =
18348), and other positions a 68% chance each of being pathogenic (n = 37202);

• The presence of nonsense alterations (i.e. alterations that lead into creating
a stop codon, which occurred in 11% of our dataset) also led to a large but
expected 98% chance that the variant is pathogenic. The remaining 2% are
explained by variants occurring at the �nal region of the gene where the insertion
of a stop codon has a lower impact in the protein conformation;

• Changes in codon usage, with values below -0.5 have an 83% chance that a
variant is neutral (n = 4543). Also, generally, there is a strong tendency for
increasingly negative changes resulting in more neutral variants (Figure 5.7a);

• Gene size, with large genes having a lower probability of causing pathogenic-
ity when a�ected by a mutation (88% of mutations in genes larger than 5200
nucleotides are neutral, n = 864), likely due to the low impact a single amino
acid has in the overall structure; In a related observation, the position of the
variant is also signi�cative, where variants occurring at the beginning of the
gene tend to be increasingly pathogenic, whether variants in late positions tend
to be increasingly neutral (see Figure 5.7c).

• Changes in codon GC content, where variants causing the loss of a guanine or
cytosine nucleotide have 64% probability of being neutral (n = 16644);

• Changes in codon context (as measured by codon pair score), where variants
with increasing changes, both positive and negative, tend on being neutral (Fig-
ure 5.7b). This result is counter-intuitive, as it indicates that changes in a gene
property tend on being neutral, and not performing changes tends on being
pathogenic;

4Changing the last nucleotide of a codon frequently yields a synonymous codon, hence represent-

ing a silent mutation.
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• Changes in local mRNA secondary structure energy (7 codons window), as
measured by our algorithm, with variants causing an increase in energy being
18% more likely to be pathogenic than the ones causing negative changes;

• The distance of the mutation to the nearest edge of the exon, where variants
farther away from exon edges have a higher chance of being neutral, up to a
maximum of 80%.

These patterns became more visible when calculating the distributions of each
feature, and grouping the result by pathogenicity, as depicted in Figure 5.7. We
further calculated the ratio of pathogenic-to-neutral mutations for the whole variation
of each feature, using a moving window. The ratio enables a localized evaluation of
each feature by assessing the probability of �nding a pathogenic variant for any value
of a feature. This probability is represented in Figure 5.7 by the black line, which was
smoothed to reduce noise using a LOWESS (locally weighted smoothed scatterplot)
regression.

As expected, we also found that features describing amino acid changes were
highly descriptive of protein dysfunction and caused a large impact in pathogenicity
when altered. For instance, we observed a 98% chance of a variant being pathogenic
in large mass changes (local mass di�erence larger than 12 Da, n = 5943), 94% in
large volume changes (local Van Der Waals volume di�erence larger than 10Å3, n =
7271), and 91% when polarity is signi�cantly altered (changes larger than 4.9, n =
10142, see Figure 5.7d).

Furthermore, when an amino acid is replaced but side-chain chemical properties
remain unchanged, we found a signi�cant chance that the alteration is neutral. For
example, the non-alteration of any of: amino acid's net charge, hydropathy, average
mass, Pk1 and Pk2, or van Der Waals volume, leads to an average 70% chance that
the amino acid replacement does not signi�cantly a�ect the protein. Furthermore,
we observed that properties themselves, regardless of mutations, already bear a sig-
ni�cant correlation with pathogenicity. For instance, the average mass of the original
amino acids surrounding the position were the variant will take place (7 amino acid
window) is a good indicator of pathogenicity (see Figure 5.7e), with larger amino
acids having increasingly higher chances of being pathogenic.

We also found no correlation between pathogenicity and the predicted secondary
structure a�ected by the variant. That is, α-helices and β-strands have only slightly
more chance of pathogenicity than random coils (55% vs. 46%, n = 8962 vs. n =
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7 Features and pathogenicity distributions. Stacked histograms are shown for
several features, showing neutral variants in blue and pathogenic variants in red (the hor-
izontal axis represent the values of each feature). The black line indicates the expected
probability of pathogenicity at each value of the feature. Some features show very pro-
nounced e�ects, such as changes in the amino acid polarity (d), where variants quickly
become largely pathogenic.
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769). However, we detected an unexpected tendency for variants to not occur inside
β-strands regions (only 1.4% of variants), which is not observed with α-helices (16.1%
of variants), indicating a selective pressure to avoid disrupting β-strands. Moreover,
�nding a variant in a transition region (24.6% of variants) is more likely than inside
a β-strand region.

When analyzing the changes in expected dihedral angles between the a�ected
amino acids and their neighbors we observed agglomeration regions where a large
number of variants clustered. For instance, 10% of the variants have Phi dihedral an-
gles changing between -55◦ and -65◦ (Figure 5.7f), with 98% of them being pathogenic.
Likewise, 10% of the variants in the Psi angle with the previous amino acid (and 13%
with the following amino acid) have -20◦ to -30◦ Psi angles rotation changes, with
88% of them being pathogenic. The Ramachandran features revealed to have a high
discriminatory value, and it becomes specially visible when plotting Phi against Psi
angle di�erences, discerning pathogenic from neutral variants, as depicted in Figure
5.8.

Figure 5.8 Phi vs. Psi angle di�erence plot. The dihedral angles di�erences between
original and mutated amino acids are shown, coloring pathogenic and neutral variants.
Islands of isolated variants with a single classi�cation are common and clearly visible. It
should be noted that though some scattering was applied to ease the understanding of the
amount of variants in each region, the central zone around zero degrees has a far greater
number of variants.
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Moreover, by using the Gene Ontology to categorize all the a�ected proteins in
our dataset, we were able to assess how the protein function and location relate
to pathological issues. After training a linear SVM classi�er we used its feature
weights to measure the importance of each Gene Ontology term and found that
the presence (or otherwise) of annotations under catalytic activity, developmental
process, transporter activity, cell part, and cellular process are the most associated
with pathogenicity (Table 5.4). For example, a mutated protein that is not annotated
with cellular process or cell part has only 19.5% chance of being pathogenic; while
mutations a�ecting proteins annotated with developmental process have a 68% chance
of pathogenicity.

Table 5.4 Most signi�cant ontology terms according to the linear SVM classi�er. The
10 most signi�cant gene ontology features are shown (ordered by feature importance, the
most important on top). Each feature represents all GO terms that derive (children) from
that term. The ratio of pathogenic variants for each feature reveals the probability of a
term being related to pathogenicity. There is also a pathogenicity probability associated
with the lack of annotation, for example when cell parts are not directly a�ected (i.e. the
a�ected protein is not annotated with cell part or any child term) there is a low chance
(19.5%) that the variant is pathogenic. It should be noted that the importance of a term
here is measured by its weight inside the SVM classi�er, and not directly by the probability
of pathogenicity.

5.3.2 PATHOGENICITY PREDICTION

Prior to testing classi�ers, we pre-processed our input data set to reduce dissimilarities
between features with large scale di�erences and reduce noise. For that, we tested
several pre-processing approaches and combinations of these, as seen in Figure 5.9.
For each pre-processing test, we used an SVM with the RBF kernel and performed
a 5-fold cross-validation. The pre-processing was made only to the train data, and
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a pre-processing model was recorded and applied to the test data, in order to avoid
any biases and information over�owing between the training and testing phases. The
f-measure evaluation of the model indicated the value of the pre-processing strategy
used. Scaling the features and then normalizing the magnitude of each sample was
found to be the best combination.

Figure 5.9 Comparison of pre-processing techniques.

To �nd the best machine learning classi�cation method and overcome the issue
with the no-free-lunch theorem, we sought to test several of the most popular ap-
proaches able to perform binary classi�cation. Our goal was to build a model able
to distinguish pathogenic from neutral human variants, and our hypothesis was that
mRNA features are important and contribute signi�cantly to the classi�cation pro-
cess. Among all the tested methods we found that using Support Vector Machines
with a Radial Basis Function kernel yielded the highest performance, as measured
by accuracy, F-measure and MCC (Figure 5.10). The tests were performed using a
5-fold cross-validation, and therefore a �fth of data is not used to train the model,
which lowers the score marginally. Using a 100-fold cross-validation increased the
RBF results to an average of 0.96 F-measure.

In order to reduce the dimensionality of our dataset and decrease its amount of
noise, we tested several matrix decomposition methods, whereby the dataset is de-
composed into linearly independent components, and the most important components
are then selected for training-testing. E�ectively, this is a form of feature selection,
though the �nal features don't directly correspond to the initial ones. A comparison
between the tested decomposition methods is shown in Figure 5.11, where the ini-
tial dataset was decomposed into 20 to 140 linearly independent components using 5
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Figure 5.10 Comparison of classi�ers performance. The F1-measure was used to compare
the 18 approaches and their variations. Support Vector Machines and Tree-based classi�ers
behave generally better, with the RBF kernel having the largest performance.

methods.

For the decomposition tests we used a smaller, yet also balanced, dataset with
20 thousand variants, and only a 2-fold cross-validation, so the results could be com-
puted in considerably less time. We assumed, thereby, that the results obtained with
the smaller dataset and inferior validation could be extrapolated to the full dataset
and complete validation. From our results we observed that using Latent Semantic
Analysis (LSA, also known as truncated Singular Value Decomposition) and Principal
Component Analysis (PCA) we can indeed reduce the dimension of the input data
and still obtain results as good or even better (number of components = 100) than
the baseline results (i.e. without matrix decomposition). By using the LSA strategy
against the full dataset we con�rmed a marginal improvement in accuracy, and a
considerable improvement in training speed.

Yet another strategy to reduce the dimensionality of our dataset was to create a
distance map based on the assessment of correlations between features, and remove
those that were highly associated with each other. The reasoning behind this idea
is that features with large correlations bring redundancy to the dataset, and are
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Figure 5.11 Comparison of matrix decomposition methods. For each approach, we lim-
ited the amount of resulting components to be used in the learning phase after the de-
composition. We varied the number between 20 and 140, in steps of 10 components, and
assessed its value from the f-measure results of the cross-validation. The yellow baseline
represents the f-measure result without dimensionality reduction, and in some values it
becomes surpassed by PCA (normal and randomized) and LSA.

possibly a source of noise, besides the fact that they do not add signi�cant amounts
of information when considering the downsides of having larger dimensions and longer
learning times. In Figure 5.12, a color matrix shows the correlation between each pair
of features, and also with the class. Several features are clearly dependent on each
other.

We removed all redundant features whose Person's correlation is above 90% (both
positive and negative wise), such as between the original amino acid's hydropathy
and its polarity, or between the original gene's average RSCU and the ratio of hid-
den stop codons. Additionally, we removed Gene Ontology features that were too
sparse and brought a negligible amount of information to the dataset: for example
the term GO:0005623 was only positive in tree instances of the dataset and null in
the remaining. After removing the redundancy, the dataset became reduced to 122
features, with features less linearly dependent on each other. However the resulting
performance did not improve (decreased in 0.04%). This was likely due to the loss in
information being superior to the gain in having a more consistent dataset.

In order to assess the predictive power of mRNA related characteristics, we re-



98 5 | Predicting pathogenicity

Figure 5.12 Feature correlations distance matrix. Rows and columns represent all the
features. The color of each square indicates the amount of correlation between the two
intersecting features. Red indicates a positive correlation, while green a negative one.
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moved protein related features from the dataset (i.e. features regarding protein struc-
ture, function, or amino acid physicochemical property changes), thereby excluding
features frequently described in literature, and performed a 20-fold cross-validation
experiment. The model still reached over 92% accuracy, which is already higher than
current pathogenicity prediction e�orts. By further removing Gene Ontology features,
hence keeping only mRNA features, the model achieved 89% accuracy, re�ecting the
strength and importance of mRNA characteristics in classifying the pathogenicity of
variants. Figure 5.13 depicts the performance of the dataset when isolating each of
the main types of features (gene features, role features, and protein features).

Figure 5.13 Performance by type of feature. The value of each of the three major types
of features is assessed by training and testing with only one type. AA features are features
related with amino acids and the protein structures.

We evaluated the prediction performance of our �nal model using 6 di�erent as-
sessment techniques: accuracy, f1-measure, sensitivity, precision, MCC and the area
under the ROC curve. The results are shown in Table 5.5. Since the datasets we used
in the learning schemes were always balanced, accuracy does not bear the problem of
being biased towards one of the classes.

Table 5.5 Performance indicators. All indicators vary between 0 and 1, except for MCC
which varies between -1 and 1.

We further con�rmed our model's ability to capture the dataset's structure and
avoid over-�tting by using the permutation strategy described in the methods section,
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with 100 permutations, to estimate the null hypothesis. As expected, we found that
the null hypothesis was observing a 0.499 f-measure (0.5 is the expected from a random
classi�cation) with a standard deviation of 0.007 (see Figure 5.14), and therefore our
model's p-value was lower than 0.01, which makes it statistically relevant and enough
to reject the null hypothesis [136].

Figure 5.14 Distribution of results in a permutation test. Each point represents a test
where the classes were randomly permuted (n = 100 tests). As expected, the randomization
leads to a result of 0.5 f-measure being the most expected observation. Our model yields
a 0.96 f-measure, far away from these values, which leads to a probability of �nding that
result (or better) by chance of less than 0.01 (p-value).

To extrapolate the value of each feature we employed information gain, recursive
feature elimination and the feature weights of linear SVMs. After scaling all measures
to the range 0-1 we ordered features by their importance according to the sum of the
measures (the 30 most important are depicted in Figure 5.15).

It becomes clear that the binary feature indicating if a mutation causes or not
an amino acid replacement is a factor of utmost importance, as it was awarded the
maximum score. This can be explained by the fact that the majority of the silent mu-
tations in the dataset (which represents about 28% of the instances) is neutral, and is
related with the lack of publishing of silent pathogenic variants in literature. It is also
visible that the majority of the top features are related with the protein (AA, amino
acid), with only the presence of a few GO terms and the mRNA secondary structure
energy and gaining a stop codon. The contradiction with the results shown above
(Figure 5.13) where features of the mRNA have a larger impact can be explained
by the information bore by individual mRNA features versus the information con-
tained by the group of protein-related features. Gene features bear less information
individually (and are less correlated with the class), but the classi�er transforms and
combines them in an optimal way, since the classi�cation was made resorting an RBF
kernel and not a linear one (which was used to assess the importance of the features).
On the other hand, protein features (specially amino acid features) are more directly
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Figure 5.15 Feature importances using several assessments.

connected with pathogenicity but are signi�cantly more redundant among themselves
(as seen in the correlations matrix in Figure 5.12).

Finally, comparing the overall accuracy of our method with that of the most
popular methods in literature (Figure 5.16) we �nd a signi�cant advancement of 10%
over the top methods for general pathogenicity prediction.

5.3.3 SIBYL

In order to ease and promote the use of our models we created Sibyl, a web-based tool
available at bioinformatics.ua.pt/sibyl, that resorts to a previously trained model to
perform online predictions (see Figure 5.17). Though the number of features required
to make a pathogenicity assessment is large, the user is only required to supply two
items: the reference ID for the mRNA where a mutation occurred, and the annotation
of the mutation, which indicates where the mutation was found in the sequence and
what was the substitution. The algorithms runs in the background to extract all
features using the given data, build an input vector, and use the created SVM model
to assess if the entry is pathogenic or neutral. Alternatively, the user can inform the
system about the reference ID of an existing SNP in the online SNPdb, which will be
then fetched and analyzed likewise.

http://bioinformatics.ua.pt/sibyl
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Figure 5.16 Comparison of popular methods accuracy. We included only general predic-
tion methods, and not trait speci�c such as AUTO-MUTE.

Figure 5.17 Screenshot of the Sibyl online system. The �rst version encompasses only a
basic input of transcript ID and variant annotation, or a reference SNPdb ID.
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An application programming interface was also created to access Sibyl's function-
ality and enable the creation of more applications related with pathogenicity analysis
through the use of our methods. A RESTful API is available to the outside, using
the following resource code:

http://bioinformatics.ua.pt/sibyl/api/predict/{variant_annotation}/{transcript_id}

The variant annotation needs to be according to the Human Genome Variation
Society (HGVS) format, for example c.138C>T. The mRNA transcript reference ID
is the identi�cation used within the National Center for Biotechnology Information
(NCBI), for example NM_003761.4. These are widely used standards which facilitate
the access to available resources.

5.3.4 VARIOBOX

We have seen an increased interest and focus on genetic sequence evaluation and vari-
ant analysis in the past few years, as the number of existing locus speci�c databases
(LSDBs, built from tools such as LOVD [61] and UMD [22]) rises, and solutions for
the integration of individual genomic data sprout to aid in the organization of the
large amounts of genetic data being created [109, 110].

Together with the increase in available genetic information is the increase in its
use for diagnostic purposes and disease management. In fact, progress in this �eld
is paving the way for a genetic-based medicine which demands new technology to
handle individual genomic and variant pro�les [71]. Also, the overwhelming quantity
of patient genetic data emerging from sequencing laboratories suggests the need for
integrated solutions that enable a more e�cient use of variant knowledge for genetic
research and patient-care scenarios.

Software such as MEGA4 [178], ANNOVAR [190] or SeqScape5 streamline the
initial sequence analysis process with the integration of alignment, variation inference
and hypothesis testing capabilities. However, these tools lack essential functionalities
regarding the annotation of input sequences and the interoperability with external
systems. The latter is rather important, as we must enable adequate access to the
abundant genetic data available in external resources.

Therefore, we developed Variobox, a new tool to support the patient sequence
analysis work�ow, integrating gene and variome analysis, including pathogenicity

5(Life Technologies, http://www.lifetechnologies.com/)
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prediction. Variobox comprises three main components to tackle the aforementioned
genetics software challenges: 1)Gene annotation: the selected gene reference sequence
is annotated with variants from external databases and additional protein metadata
from UniProt [11] and PDB [21]. Variants are analyzed using our models to infer
their pathogenicity; 2) Gene analysis: individual input sequences are shown in an ad-
vanced exploration interface, enabling navigation through the intronic/exonic regions
of genes and the corresponding protein sequences; 3) Gene comparison: the input
sequence is compared to the reference sequence from LRG or RefSeq databases, en-
abling the automated detection of sequence variants and generation of corresponding
standardized HGVS-compliant descriptions. A screenshot of the interface is depicted
in Figure 5.18.

Figure 5.18 Screenshot of the Variobox interface. The main window of the application is
depicted, with the working space on the left and the information panel on the right. The
gene exploration interface is shown, with the three regions of navigation: a gene overview,
showing exons and introns, and a resizable selector window; a sub-region exon-intron
overview with a slider to further specify a region; a zoom-view of the nucleotide sequence
showing codons, amino acids, corresponding variants and numbering, and the name of
the exon. Colour distinguishes variants types: yellow are single nucleotide variants, red
are deletions, green are insertions, cyan are duplications, pink are inversions, and grey
are indels. The navigation panel is shown below, with controls to explore the gene and
variants.

Variobox is built to provide intuitive visualization of sequences, presenting them
in several levels of abstraction that range from an overall perspective of the gene
(introns and exons) that allows selecting a window for further exploration, to a de-
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tailed �zoom� perspective where nucleotides, amino acids and known variants are
highlighted. Further details about each variant can be found in the information panel
after selection, such as its position, type, data source, reference sequence, annotation,
and an assessment of pathogenicity performed using the service provided by Sibyl.

We designed the software to ful�ll the requirements of both genetic researchers and
medical genetic laboratories to ease the step towards personalized genomics. Thus,
it also comprises gene comparison and management features, such as the ability to
load sequencing data in plain-text FASTA format or as SCF or AB1 sequencing chro-
matograms, and supports paired forward-reverse chromatogram reads, with automatic
assembly of the �nal sequence.

Overall, Variobox works as a �rst approach to a uni�ed and integrated environ-
ment that explores resources from the several levels of a patient genetic diagnosis
scenario. It is available at bioinformatics.ua.pt/software/variobox.

5.4 CONCLUSIONS

Genetic variants not only dictate phenotypic di�erences between individuals, but are
also the underlying cause of many disorders. Detecting, understanding, categorizing
and associating human variants with disease phenotypes is becoming the standard
process to accomplish personalized medicine. Starting with the Human Variome
Project [154], which aims to collect, integrate and categorize variants at a global
scale, several initiatives have made signi�cant steps towards the standardization of
genetic sequences and the availability of human variant annotations.

This recent focus on genetic sequence evaluation increases the demand for new
variant analysis methods that assist clinical and laboratory geneticists, researchers
and physicians. Moreover, substantial developments for medicine are now begin-
ning to take place in the �elds of genomics and proteomics, greatly assisted by the
technology revolution of the past three decades, and mostly by the advancement
in global communications. Transmitting knowledge and new discoveries on human
gene sequences and variants on a global scale is now an e�ortless task. However,
the problem is shifting towards the search and extraction for useful information and
knowledge among the overwhelming volume of data that is being generated. Hence,
the goal of personalized medicine is substantially hampered by our ability to explore
and transform data into useful and informative shapes.

http://bioinformatics.ua.pt/software/variobox/
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One of the largest searches in the last few years is the search for methods to extract
knowledge from DNA data, and one of its greatest branches is �nding hints within the
genetic code to whether diseases exist or might manifest. Currently available patient
variome data enables performing data mining and machine learning to that end, and
several approaches have already tackled the task of predicting the pathogenicity of
variants. Having that under consideration, we have set to contribute to this �eld in
three-fold:

• Develop algorithms to analyze and extract information from the mRNA of target
genes, and show the signi�cance and importance of these genetic characteristics
in the prediction of pathogenicity, as they are generally ignored in literature
despite overwhelming evidence otherwise.

• Gather a dataset of characteristics based on literature hints and previous knowl-
edge, and perform an analysis on the extracted characteristics to infer patterns
of discernment between pathogenic and neutral variants that are relevant to the
�eld.

• Develop a new machine learning methodology based on the extracted charac-
teristics to perform pathogenicity prediction with high accuracy.

We found several substantial patterns in our collected data, and explored those
patterns using statistical models to perform classi�cation and create a new approach
to pathogenicity prediction. When compared with other methods, our strategy achieves
superior performances, and we've shown that a large part of the performance is related
with evaluations of the gene and mRNA.

Our method was created by studying several machine learning approaches, pre-
processing methods, dimensionality reduction methods, and by seeking to correctly
evaluate our models and their statistical signi�cance to avoid over-�tting and measure
its ability to generalize. In the process, we also deeply analyzed our dataset and found
signi�cant patterns with biological meaning, such as pre-determined dihedral angles
where pathogenicity is more likely to occur, or selective tendencies for variants to
avoid a�ecting protein regions with β-strands. To promote the use of our method we
created a simple web interface to allow accessing the classi�cation model and perform
predictions.

We further approached the patient genetic diagnosis pipeline by creating a �rst
uni�ed work�ow that connects patient gene sequencing with available variant data,
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genetic exploration abilities and pathogenicity evaluation.
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�Let us understand what our own sel�sh genes are up to, because we may then at

least have the chance to upset their designs, something that no other species has ever

aspired to do.�

� Richard Dawkins, The Sel�sh Gene

Biopoiesis, the process whereby life is initially created, tries to explain how living
beings could have been formed from common compounds on earth. Current theories
and experimental data1 suggest that very simple molecules naturally arose, called
replicators, that had the ability to copy themselves into new similar molecules also
with that ability, and so on. The �delity with which those molecules replicated was
not perfect, and thereby new molecules often contained di�erences, mutations, that
made them di�erent from their parents but, more importantly, conferred them char-
acteristics that could impact their replication abilities either positively or negatively.
Over time, replicators with a better ability to copy themselves and access surrounding
resources became more abundant than those with insu�cient �delity to copy or inca-
pacity to ��ght� for resources. These molecules were not life as we know it, but bore
important properties still common to living forms, such as replication and variation
capabilities, which granted them evolvability. In fact, a laboratory created for the
�rst time in 2009 a molecular system capable to self-replicate, evolve, and adapt to
the environment, without being life-based [90].

According to the gene-centered view of evolution, these replicators were the pri-
mordials of what are now known as genes. As a consequence, since genes are arguably
the main entity in humans, we are bound to evolve through the same mechanisms:
replication (by reproduction) and variation (by cross-over and mutations). Compu-

1Such as the Miller-Urey experiment, where amino acids were naturally formed using the same

conditions Earth had a few billion years ago.
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tational heuristics such as genetic algorithms and simulated annealing, which were
explored in chapter 3, make use of the same principles to �nd solutions that �t to
a problem's constraints. Replication errors (variation) are therefore one of the main
drivers behind evolution, and in humans that means they are the main driver behind
not only our phenotypes but also our ability to dodge and �ght harmful beings (e.g.
disease causing bacteria) and other machinery whose goal is also replicating (e.g.
viruses). One should not forget that we are invulnerable to the majority of organisms
in our environment due to random replication errors that occurred in our ancestors.
However, that evolutionary ability comes at the cost that the same replication errors
are also responsible for causing disease. That can occur in two ways: either by cre-
ating a genetic defect that causes a disruption in the normal internal functionality of
the organism, or by lack of functionality to cope with external agents (new bacteria
strains, viruses, etc.). In fact, the Nobel prize laureate Paul Berg once stated that
�All human disease is genetic in origin�.

It was only in the past few years that human variation became accessible, with
the pace of genome sequencing accelerating (by 2010, with the cost of sequencing
plummeting) and new computational technologies enabling its categorization and
availability. Only now it has become feasible to start looking for patterns and create
a global understanding of our genetic code and the meaning and impact of di�erences.
Many new disease-causing mutations have already been identi�ed [95, 131, 132, 184],
and the impact those �ndings bring to the clinical area is gaining wide interest. The
large amounts of genetic data currently being generated worldwide suggest that the
bottleneck to knowledge discovery now belongs to the �elds of computer science and
in particular to bioinformatics.

6.1 HYPOTHESIS

As genes evolved, they also �ne-tunned their structure and information to improve
their �delity and compete for survival. It is now known that several pieces of informa-
tion within the genetic code are largely responsible for its performance, and the most
clear example is the existence of a bias in the use of codons (codon usage). With the
availability of genetic codes in digital format, it is possible to perform measurements
and detect patterns related with the information carried by genes. Since this infor-
mation is crucial to the organism and its functioning, it is only logical that replication
errors altering it can have a large impact. Therefore, measuring alterations in the
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information in genes becomes a viable path to detect pathogenic issues, and one that
can be achieved algorithmically.

In this work we have sought to create computational methods to �nd, measure
and manipulate molecular and genetic characteristics (genetic �secondary� informa-
tion) and use the created approaches to predict the pathogenic outcomes of human
mutations. For that, I used chapter 2 to contextualize the panorama of genetics by
showing the importance of the gene and its translation in an organism, and review
the main gene characteristics pointed in literature has having a large impact. For
instance, I discussed the impact of codon usage, ramp e�ect, codon correlation e�ect,
codon context, content of GC, hidden stop codons, repeated nucleotides, external
interaction sites and the large importance of secondary structure formation in the
mRNA. I have also shown several strategies used to analytically evaluate these char-
acteristics. In the same chapter, I also described other characteristics, besides those
a�ecting the mRNA, that might have an impact in pathogenicity. Several existing
methods to predict pathogenicity mainly make use of protein homology, but also
protein structural characteristics.

Chapter 3 describes how we pursued the idea of evaluating genes, by creating algo-
rithms capable of performing assessments based on the gene characteristics discussed
in chapter 2 (expression indicators). This chapter was then centered on the discussion
of how to aggregate gene evaluations and employ them to manipulate genes, and on
the challenges behind �nding gene conformations for con�icting objectives. I also
described how we employed a Pareto archive to �nd optimal genes for a goal. Ma-
nipulating genes based on expression indicators is one example of the applicability of
gene evaluations to an end.

We then further explored one of the most intricate gene evaluations in chapter
4: the formation of mRNA secondary structures. Since current methods to assess
the free energy of an mRNA molecule are time and memory expensive, they could
not be used to perform massive evaluations, as needed to perform optimizations or
evaluate the energetic changes occurring in many mutations. Therefore, we created
a simplistic approach for the assessment of the minimum free energy of an mRNA
molecule with a fast algorithm, while �tting the results of the algorithm to those of
accurate measurement tools, to reduce the error.

Chapter 5 resulted as the culmination of the developed methods for evaluating
genes, turning to the goal of predicting pathogenicity in human genes. To that end,
we collected a considerable amount of curated variant data from online sources to
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use as our gold standard, and sought to explore statistical models able to predict
the pathogenicity of variants, by using the gene evaluations that were developed,
together with other hints. We built a coherent dataset consisting of evaluations
of the genes a�ected by the mutations we collected, with the reasoning that these
evaluations serve as hints to what information carried by the gene was changed, and
that a machine learning model could explore them to infer pathogenicity. We also
explored other characteristics also related with the a�ected proteins, and hypothesized
that Gene Ontology could provide functional annotations that indicate the role of
the protein. By analyzing the �nal dataset we were able to �nd several relevant
patterns that reveal biological tendencies that we consider important to understand
the impact of variants. We then studied several models, data processing techniques,
and optimization strategies to build a high performing classi�cation model to predict
pathogenicity.

Our hypothesis was that we could use mRNA-based observations and evaluations
to tackle the pathogenicity prediction problem. In the process, we also sought to
use the same evaluations to tackle di�erent problems, such as gene optimization for
heterologous expression and mRNA secondary structure manipulation.

6.2 OUTCOMES

In the process of creating strategies to evaluate and manipulate genes we achieved
several meaningful results, which are now summarized as follows:

• From our review of literature we gathered a compilation of gene expression
indicators that play an important role in organisms. These indicators were
used for creating algorithms capable of evaluating genes and return a numeric
assessment of the expression indicators.

• We built a framework of gene evaluation and optimization that allows combining
the developed assessment algorithms and any new algorithms. We used multi-
optimization strategies to build a methodology to explore the solution space of
possible gene permutations, by exploiting the degeneracy of the genetic code.

• We tackled an important problem in the �eld of RNA by creating a new al-
gorithm capable of rapidly �nding the minimum free energy created by the
formation of secondary structures in mRNA molecules, at the expense of a re-
duced accuracy but highly correlated. The created algorithm allowed building a
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tool capable of optimizing mRNA molecules by maximizing or minimizing their
minimum free energy. Since the algorithm is fast, it also allows performing a
large number of evaluations.

• When analyzing the variant data that was extracted and measured using our
algorithms, we found several patterns with a facilitated discrimination between
pathogenic and neutral variants. For example: changes in codon usage below
-0.5 have an 83% chance of being neutral; the proximity of the mutation to the
edge of a gene exon is a very good indicator of pathogenicity with variants far
from edges being increasingly neutral (up to 80%); or regions in the dihedral
angle di�erences that accumulated pathogenic or neutral variant islands.

• We created a highly accurate method for predicting the pathogenicity of coding
SNVs, based on the mRNA assessment algorithms, Gene Ontology, and protein
evaluation algorithms. The method uses machine learning to learn to distin-
guish pathogenic from neutral single nucleotide variants in the coding regions
of human genes, and its performance was tested using cross-validation veri�ca-
tions, which yielded a 96% accuracy, with a p-value of 0.01.

• From our machine learning prediction model we were able to determine which
characteristics bear the most importance for the classi�er to decide if a variant
is likely to cause a disease. We observed that protein chemical change charac-
teristics are the features which individually have the most weight, but mRNA
features as a whole have a larger impact. This role of mRNA-related character-
istics contradicts current trends in literature that mainly focus on homology and
the conservation of the a�ected regions among species. Assuming that the im-
portance of characteristics in the classi�er translates into biological importance,
these �ndings may be relevant for understanding and gaining novel insight into
the role and impact of variants.

• Besides the computational approaches, and to streamline the work in research
labs, three software applications were built or continued.

� First, using the developed optimization and evaluation framework and the
assessment algorithms, we evolved a practical solution (Eugene) for biolo-
gists to analyze and manipulate their genes through a usable interface. The
tool is directed at redesigning genes for heterologous hosts using multiple
simultaneous goals.
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� Second, we have built a systems for the analysis of variants, Sibyl, which
is a simple online interface to perform an assessment of pathogenicity for
a given variant, making use of our trained models. To encourage using
our strategy, along with Sibyl we also developed a RESTful interface to
perform online predictions from within other tools and services.

� And third, Variobox, is a platform for the exploration, annotation and
analysis of the human variome. This platform creates a �rst approach to
the uni�cation of patient genetic data, using information from gene se-
quencing along with knowledge present in online databases. Patient genes
are thereby compared with their reference genes, and found and known
mutations are shown along the sequences, allowing a quick assessment of
genetic alterations in patients, their meaning as reported in literature, and
their predicted pathogenic outcome from our prediction models.

6.3 FUTURE PERSPECTIVES

Along the methods, procedures, and results that were obtained in this work, there
are numerous possible improvements and lines of work that were left behind in favor
of achieving the �nal goal. These improvements might represent signi�cant advances
in several areas, and should not be discarded in future work. They are described as
follows:

• For the multi-optimization of genes we used two strategies to explore the space
of possible codon permutations, one of them to quickly return a good solution
(simulated annealing), and another one to more deeply explore the space and
attain a range of equally viable good solutions (genetic algorithm, using a Pareto
archive) at the cost of a slower return. However, a better strategy would be
to quickly explore the space until the Pareto front is found, and only then
expand the search to �nd as many Pareto optimal solutions as possible. One
form to tackle the problem that is to take advantage of the fact that we can
often easily achieve points that are certain to belong to the Pareto front, the
same way we can calculate how the ideal solution would look like (by �nding
the individual optimals). There are already several solutions to explore Pareto
fronts by varying the weights of each individual goal, which could be adapted
[185, 204].
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• In creating our prediction model, we concentrated on the most common type of
mutation: single nucleotide variants. However, as demonstrated in the second
chapter, there are several other types of mutations. Performing the same anal-
ysis and creating prediction models for these mutations extends the range to
which our approach can be used. Indeed, we have already created methods in
Variobox to identify and annotate several types of mutations, and the majority
of the features that were used can be adapted to other types. Furthermore,
another possible and important development can be obtained by performing
an analysis and creating a prediction algorithm for variants occurring outside
coding regions (98% of the genetic code), which are now known to be mainly
constituted of regulatory elements and transposable elements2. Also, while most
of the work we developed is single-gene oriented, some of the most di�cult ob-
stacles in the state of the art lie in the inter-relations between mutations, even
in di�erent genes or non-coding regions. Contemplating the vast dependencies
that occur among the several regions of the genetic code and their variation is
an essential task to comprehend some of the most complex diseases, such as
Alzheimer's.

• As mentioned earlier, the majority of current approaches for the prediction of
pathogenicity relies on the use of homology to assess if the a�ected region is
conserved within other species' genetic code. We have indeed used and tested a
basic version of this approach and tryed to improve our model's performance, by
including the values of the BLOSUM matrices [78] which foretell the probability
of an amino acid being replaced by another in a conserved region. However we
could not �nd a performance improvement, and the additional dimensions were
not desirable. Nonetheless, we do not discard the value of using homology to
reveal the importance of a region and infer the impact of a mutation in it. This
assumption can be extended to the evaluation of the importance of the a�ected
region, either by homology or by investigating the function of the region, for
instance by looking for known protein domains. The use of homology can be
specially useful when extending Sibyl to study speci�c diseases.

• The de�nition under which researchers are reporting variants as pathogenic is
too broad: some consider pathogenic as a�ecting the stability of a protein and
other consider pathogenic as disease-causing. We tried as much as possible to

2Replicators that created copies of themselves within the genome, and/or were placed there by

retroviruses ages ago.
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discern both, and include only those related with disease-causing, but there is
still some lack of standardization. It is important that variants are reported in a
concise format, and it is also important that they are reported independently of
their origin. For instance, we could only retrieve 223 silent pathogenic variants,
which hampers discerning pathogenic from neutral in silent variants. Also, as
human genomic variation data becomes increasingly available, it is important to
continue to update models, and specialize them to tackle more speci�c matters
instead of general pathogenicity. For instance, if the available data allows it,
models should be trained for populations with di�erent ancestries (European,
Asian, African, etc.) or di�erent phenotypes (training for diseases).

• To correctly follow the scienti�c method, comparison with other tools should
be performed on common grounds. For instance, we used the performance
results reported in literature by the own authors of methods or by independent
replication of the experiments when available. However, the lack of a systematic
and standardized form to access the methods and to perform independent tests
undermines the comparison. Also, the majority of the methods used their own
collected variants, and though they supply the used dataset, since most methods
are protein oriented, the variants are only available in amino acid mutation
formats, and not in nucleotide mutation formats. Recently, VariBench [158], a
variant database to benchmark pathogenicity prediction systems, was created
speci�cally to tackle this issue. To correctly compare our methodology with
other's, a common dataset such as those provided by VariBench should be used.

As a general guideline, our work is included in the whole landscape of genetic
analysis: from sequencing the DNA of a patient to creating a useful analysis and
diagnosis for medical practitioners and, ultimately, to prevention. The pipeline we
mentioned in the �rst chapter is far from being holistic and complete. Instead, many
other variables and entities must be considered, and specially data must still be
directed to where it is needed and transformed into information and knowledge, which
is one of the main goals of bioinformatics.

Data from ancestors, for instance a patient's parents, the origin of an allele and
its frequency in its original population, and further comprehension of the functioning
(and breakdown) of the whole genome are but examples of bits of information that
must be included in developed tools and systems for a patient diagnosis pipeline.
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6.4 FINAL REMARKS

After the publication of the �rst complete human genome, an excellent article was
published in the Nature journal by Francis Collins et al. [43], stating that:

�The genomic era is now a reality. (...)

Interwoven advances in genetics, comparative genomics, high throughput

biochemistry and bioinformatics are providing biologists with a markedly

improved repertoire of research tools that will allow the functioning of

organisms in health and disease to be analyzed and comprehended at an

unprecedented level of molecular detail.�

Indeed, the identi�cation of the etiology of human diseases was once an herculean
task requiring many years of research and �nancing. Nowadays the procedure is
shifting, and identifying the causes for a disease requires only enough genomic data
to perform data mining and �nd the di�erences between populations with and without
the phenotype. With this setup, being diagnosed is as hard as comparing our genome
with available data to �nd similarities.

Ultimately, progress in health, genetics and biotechnology will walk hand-in-hand,
as developments in the biomedical domain require more technological advancements,
which in turn will result in more developments. Eventually, these advancements have
a vast impact in human life. The computational study of genes, their functionality,
and the e�ects of the resulting proteins in organisms, is a goal that in its course has
already led to human bene�ts.

I envision a future where it is a common procedure to computationally analyze the
DNA of a newborn. Or even before birth. Having a complete model of our personal
genome and its behavior, through a system whose bases we lay in this work, it is
easy to picture an evolution of healthcare and personalized medicine in the sense of
fully understanding what is happening in our organism at any time, prepare adequate
treatment beforehand, and even manipulating other organisms to our own bene�t.
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A | GENE EVALUATION ALGORITHMS

A.1 CODON PAIR BIAS EVALUATION

Algorithm A.1 Gene CPB evaluation
N ← length of gene in number of codons
for i = 1 to N − 1 do

codona ← codon at position i
codonb ← codon at position i+ 1

CPS = ln

(
Fa,b

FaFb
FxFy

Fx,y

)
. As explained in Chapter 2

accumulator ← accumulator + CPS

end for

return accumulator
N

An adaptation of the same algorithm can be used to also evaluate for out-of-frame
stop codons. The change is made by replacing line 5 with a stop veri�cation.

A.2 CODON USAGE EVALUATION

Algorithm A.2 Gene RSCU evaluation
N ← length of gene in number of codons
for i = 1 to N do

RSCUcodoni ← Fi,j
1
ni

∑nj
k=1 Fk,j

. As explained in Chapter 2

accumulator ← accumulator +RSCUcodoni

end for

return accumulator
N
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Algorithm A.3 Gene CAI evaluation
N ← length of gene in number of codons
accumulator ← 1

for i = 1 to N do

RSCUcodon ← Fi,j
1
ni

∑nj
k=1 Fk,j

wcodon ← RSCUcodon
RSCUimax

accumulator ← accumulator ×RSCUcodon
end for

return accumulator1/N

To account for the availability of tRNAs, the tAI measure can be applied by
replacing the calculation of wcodon by the formula describe in equation 3 of chapter 2.

A.3 GENE INTERACTION SITES

Algorithm A.4 Gene interactions evaluation
siteList← list of known interaction sites
prefixTree← build trie from siteList . using the Aho-Corasick algorithm
N ← length of gene in number of nucleotides
accumulator ← 0

for i = 1 to N do

nuc← nucleotide in position i
score← get score for nuc from pre�xTree
accumulator ← accumulator + score

end for

return accumulator
N

An adaptation of the algorithm can be performed in order to evaluate similarity
considering the possibility for unexact matches.
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A.4 AMINO ACID STARVATION

Algorithm A.5 Gene AA overuse evaluation
N ← length of gene in number of codons
T list← list of tRNAs for each amino acid
accumulators← array of zeros with the size of Tlist
for i = 1 to N do

T ← T list[amino acid in position i]
accumulators[T ]← accumulators[T ] + 1

end for

return
∑

j accumulators[j]

A.5 CODON CORRELATION EFFECT

Algorithm A.6 Codon correlation e�ect
codonFraction← 20

accumulator ← 0

for i = 1 to codonFraction do

codonlist← codonlist+ codoni

end for

for i = codonFraction+ 1 to N do

if codoni in codonList then
accumulator ← accumulator + 1

end if

end for

return accumulator/(N − codonFraction)
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A.6 GENE REPEATS

Algorithm A.7 Gene nucleotide repeats evaluation
N ← length of gene in number of nucleotides
previous← nucleotide in position 1

minimumRepeats← 5

counter ← 0

accumulator ← 0

for i = 2 to N do

current← nucleotide in position i
if previous = current then

counter ← counter + 1

else

if counter ≥ minimumRepeats then

accumulator ← accumulator + counter

end if

counter ← 0

end if

previous← current

end for

return accumulator
N

A.7 GENE RAMP EFFECT

Algorithm A.8 Gene ramp e�ect evaluation
codonFraction← 20

accumulator ← 0

for i = 1 to codonFraction do

RSCUcodoni ← Fi,j
1
ni

∑nj
k=1 Fk,j

accumulator ← accumulator +RSCUcodoni

end for

return accumulator/(codonFraction)
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A.8 GENE GUANINE AND CYTOSINE CONTENT

Algorithm A.9 Gene GC% evaluation
N ← length of gene in number of codons
accumulator ← 0

for i = 1 to N do

GCcodoni ← amount of guanine and cytosine in codon
accumulator ← accumulator +GCcodoni

end for

return accumulator
N
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B | MRNA SECONDARY STRUCTURE

OPTIMIZATION TESTS

In order to compare our aproach with other methods, we selected 3 genes from Aquifex

aeolicus, with di�erent lengths, and performed the codon optimization using di�erent
known RNA structure predictors. In each method, the �nal evaluation is made with
both the method and RNAfold to create a comparable and reliable basis between the
methods. The gain in using each method instead of our pseudo-energy optimization
(Gain over PE), and the time for each optimization, are also shown. An extensive
test cannot be performed given the large time complexity of some algorithms.
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Table B.1 Structure optimization with several methods. The �rst block represents the
optimization resorting to our energy measurement algorithm (pseudo-energy). The wild
type (original) energy is also shown, as measured by RNAfold. In subsequent blocks, the
optimization is performed resorting to di�erent RNA secondary structure predictors to
perform evaluations: RNAfold, UNAFold, PknotsRG, and RNAStructure. For each of
them, the energy of the �nal optimized gene is also measured with RNAfold, to establish a
comparison basis. The �RNAFold improvement� indicates how much better the optimized
gene is than the original gene. We also measure how much gain in improvement there is in
comparison with our method. Only RNAFold achieves results better than ours in terms of
optimization results. PknotsRG took the most time with an average of 3 days to optimize
each gene.



C | GENE ONTOLOGY FEATURES

Term ID Term Name

GO:0003824 catalytic activity

GO:0032502 developmental process

GO:0005215 transporter activity

GO:0044464 cell part

GO:0009987 cellular process

GO:0044421 extracellular region part

GO:0045735 nutrient reservoir activity

GO:0008152 metabolic process

GO:0005198 structural molecule activity

GO:0044423 virion part

GO:0032501 multicellular organismal process

GO:0031974 membrane-enclosed lumen

GO:0031386 protein tag

GO:0044699 single-organism process

GO:0045499 chemorepellent activity

GO:0005623 cell

GO:0030054 cell junction

GO:0009295 nucleoid

GO:0016530 metallochaperone activity

GO:0042056 chemoattractant activity

GO:0000003 reproduction

GO:0048511 rhythmic process

GO:0016015 morphogen activity

GO:0009055 electron carrier activity

GO:0023052 signaling

GO:0051234 establishment of localization

GO:0001071 nucleic acid binding transcription factor activity
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GO:0022414 reproductive process

GO:0044456 synapse part

GO:0005488 binding

GO:0032991 macromolecular complex

GO:0005576 extracellular region

GO:0030234 enzyme regulator activity

GO:0040007 growth

GO:0071840 cellular component organization or biogenesis

GO:0016209 antioxidant activity

GO:0051179 localization

GO:0051704 multi-organism process

GO:0050896 response to stimulus

GO:0022610 biological adhesion

GO:0044420 extracellular matrix part

GO:0002376 immune system process

GO:0043226 organelle

GO:0016247 channel regulator activity

GO:0045202 synapse

GO:0065007 biological regulation

GO:0030545 receptor regulator activity

GO:0016020 membrane

GO:0040011 locomotion

GO:0060089 molecular transducer activity

GO:0000988 protein binding transcription factor activity

GO:0004872 receptor activity

GO:0031012 extracellular matrix

GO:0044422 organelle part

GO:0044425 membrane part

GO:0001906 cell killing

GO:0045182 translation regulator activity

GO:0019012 virion

GO:0036370 D-alanyl carrier activity

GO:0055044 symplast

GO:0097423 mitochondrion-associated adherens complex

Table C.1 Gene Ontology IDs and term names. All terms belong to the second level of
the Gene Ontology graph.



D | FULL FEATURES LIST

List of features used in the machine learning environment to predict pathogenicity.

Amino Acid related Codon related

AA a�ected secondary structure codon GC content change

AA average mass codon mutation position

AA hydropathy codon percentile position

AA hydropathy change codon RSCU change

AA isoelectric point codon lost a stop

AA isoelectric point change codon-next gained a stop

AA mass change codon-next lost a stop

AA net charge codon-prev gained a stop

AA net charge change codon-prev lost a stop

AA pK1 codon pair score orig-next

AA pK1 change codon pair score orig-next change

AA pK2 codon pair score prev-orig

AA pK2 change codon pair score prev-orig change

AA pKa codon pair score prev-to-next

AA pKa change codon pair score prev-to-next change

AA polarity is nonsense mutation

AA polarity change is synonymous mutation

AA Ramacha Next Phi Di� max repeats codon-next (mutated)

AA Ramacha Next Psi Di� max repeats codon-next (wild-type)

AA Ramacha Prev Phi Di� max repeats prev-codon (mutated)

AA Ramacha Prev Psi Di� max repeats prev-codon (wild-type)

AA structure di�erence windowed RSCU

AA van der Waals volume windowed RSCU change percentage

AA van der Waals volume change wild-type windowed number of stop codons

AA windowed averageMass change wild-type codon GC content

AA windowed hydropathy change wild-type codon RSCU

AA windowed isoelectric Pt wild-type windowed GC content

AA windowed isoelectric Pt change wild-type windowed num repeats

AA windowed net charge wild-type windowed num repeats change
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AA windowed net charge change mutation position inside codon

AA windowed pK1

AA windowed pK1 change Gene related

AA windowed pK2 gene codon pair bias change

AA windowed pK2 change gene RSCU change

AA windowed pKa gene sec struct energy change (log di�)

AA windowed polarity gene size

AA windowed polarity change mRNA secondary struct energy

AA windowed van der Waals change wild-type gene avg RSCU

windowed average mass wild-type gene codon pair bias

windowed hydropathy wild-type gene hidden stops ratio

windowed number of a-helix amino acids wild-type gene nuc repeats ratio

windowed number of b-strand amino acids wild-type windowed secondary structure (log)

windowed number of coil amino acids windowed secondary structure change (log di�)

windowed pKa change

windowed van der Waals volume Splicing regulation related

exonic splicing enhancer orig score

Gene Ontology related exonic splicing enhancer score change

see list of terms in Appendix C exonic splicing silencer orig score

exonic splicing silencer score change

distance of mutation to nearest exon edge (log)

Table D.1 Full list of features. AA stands for Amino Acid; windowed features were calcu-
lated in windows of 7 codons/amino acids centered at the mutation site; codon-next/prev
refers to characteristics measured at the a�ected codon site and the following/preceding
codon site.
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