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Abstract

We present a new scheme of generating high-power attosecond pulses and arbitrary
waveform synthesis by multicolor synthesis. The full bandwidth of the multicolor laser
system extends more than two-octaves and reaches 37,600 cm�1 which can be used to
generate sub-single-cycle (�0.37 cycle) sub-femtosecond (360 attosecond) pulses with
carrier-envelope phase (CEP) control. The results show a promising approach for genera-
tion of relatively high-power attosecond pulses in the optical region. In this chapter, the
design and diagnostics of the laser system are described. In part 2 of this work (the
following chapter), we demonstrate selected applications of this novel source, such as
coherently controlled harmonic generation as well as phase-sensitive 2-color ablation of
copper and stainless steel by this multi-color laser system.

Keywords: arbitrary waveform synthesis, harmonic generation, cascaded harmonics,
laser ablation, laser sources, pulse generation, multicolored

1. Introduction

Human history has taught us that the invention of novel light sources and related technologies

would lead to breakthroughs in science and impact the society and civilization tremendously.

X-rays and lasers are good examples of such technologies. High-power laser systems are a

class of coherent light sources that play a major role in the advancement of science and

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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technology, ranging from inertial nuclear fusion, laboratory astrophysics to laser weapons and

3D printing. Such lasers emit continuous wave (CW), nanosecond (ns), picosecond (ps) and

femtosecond (fs) pulsed output. Single or near-single cycle electromagnetic radiation can now

be generated by laser-based techniques from the terahertz (1 THz = 1012 Hz) to the soft x-ray

regions of the spectrum. The spectra of the latter yield attosecond (1 as = 10–18 s) pulses. Such

novel sources are expected to have a wide range of potential applications. Attosecond sources [1,

2] are perhaps among the most exciting new laser sources currently under development. In the

near future, controlled light wave can steer electrons inside and around atoms. This emerging

technology has been dubbed as “lightwave electronics” [3]. Nonetheless, study of condensed

matter with attosecond time-resolution remains a challenge [4]. While the potential of microfab-

rication and nanostructuring of materials by ultrafast lasers were recognized and demonstrated

more than a decade ago [5], there have not been reports of real-world applications of attosecond

pulses to date. Primarily, this is limited by the lack of powerful attosecond sources.

Among the approaches that allow generation of attosecond pulses, the high-order harmonic

generation (HHG) [6] seems to be the most promising one. HHG can serve as a source of

intense attosecond pulses that extending from the Vacuum Ultraviolet (VUV) or extreme

ultraviolet (EUV) to the soft X-ray region [7]. Alternatively, Chen et al. [8] and Hsieh et al. [9]

showed that carrier-envelope-phase (CEP) controlled sub-cycle pulse train can be generated by

high-order stimulated Raman scattering (HSRS) process. Recently, we demonstrated the gen-

eration of attosecond pulses through pulse synthesis of harmonics of the same laser up to the

fifth order. These harmonics were generated through second-order nonlinear optical processes,

that is, second harmonic generation (SHG) or sum frequency generation (SFG). This novel

source is able to generate sub-single-cycle (�0.37 cycle) pulses with peak intensity of a single

pulse as high as 1014W/cm2, pulse width as short as 400 attosecond with carrier-envelope-

phase (CEP) control [10]. Waveform (purple trace) and intensity (red traces) of such ultrashort

pulses are shown in Figure 1.

Figure 1. Waveform (blue trace) and intensity (red traces) of sub-femtosecond pulses synthesized by cascaded harmonics

of an injection-seed high-power Q-switched laser.
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We further show that the relative phase among the optical fields of the harmonics can be

maintained a constant at least for thousands of nanosecond pulses. The worst-case relative

phase fluctuation is 0.04 π rad. It is shown that sub-femtosecond (360 attosecond) pulses with

carrier-envelope phase (CEP) control can be generated in this manner. Synthesis of arbitrary

waveforms, for example, square and sawtooth waveforms are possible [11].

Compared to the mainstreammethod of generating attosecond pulses by higher-harmonic gener-

ation (HHG) of few-cycle femtosecond pulses, this novel light source has advantages of compact-

ness and simplicity. Further, arbitrary optical waveform can be synthesized while the attosecond

pulse generated in thisway is sub-single-cycle with full CEP control. In Section 2 of the chapter, we

describe the basicprinciple for generation of attosecondpulses by synthesis of cascadedharmonics.

The prototype system is described. The diagnostics of such broadband sources is nontrivial.

Experimental methods for relative phase control among the harmonics are presented in Section 3.

This is followed by a review of the synthesis of arbitrary waveforms and their diagnostics by the

linear cross-correlation method. Finally, we summarize in Section 5 of the chapter. Applications of

this novel high-power laser system can be found in part 2 of this work (the following chapter), in

whichwe discuss coherently controlled harmonic generation [12] aswell as phase-sensitive 2-color

ablation of copper and stainless steel by this multi-colour laser system.

2. Generation of attosecond pulses by synthesis of cascaded harmonics

Fundamentally, an optical pulse train with a repetition rate of ωm can be viewed as the sum of

a set of frequency components that form an arithmetic series [13]. The electric field of each

component can be written in the following form:

Eq tð Þ ¼ Aqe
iϕqeiωqt, (1)

where ωq = ω0 + qωm, for q = 0, 1, 2, … To shape the pulse envelope, the phase term ϕq and

amplitude term Aq of each component are controlled. One can set the phase term ϕq and

rewrite it as ϕq = ϕ0 + qϕm. The synthesized pulse could then be expressed as:

E tð Þ ¼
X

q

Eq tð Þ ¼ ei ω0tþϕ0ð Þ
X

q

Aqe
iqωm tþ

ϕm
ωm

� �

¼ ei ω0tþϕ0ð ÞEc tþ ϕm=ωm

�

Þ, (2)

where Ec tð Þ �
P

q Aqe
iqωmt is a typical cosine pulse train and ω0tþ ϕ0 is the time-varying CEP

with frequency of ω0. In the commensurate case, the CEP is equal to ϕ0 for all ultrashort pulses

belonging to the same attosecond pulse train or within the ns pulse envelope in the HSRS

approach since ω0 equals to zero. As a result, CEP will be randomly changing if ϕ0 is random

from 1 ns pulse to another. For instance, a 802 nm and a 602 nm laser with pulsewidth around

ns and repetition rate of 30 Hz (corresponding to q = 3 and 4 of the Raman resonance of

molecular hydrogen) were employed to stimulate the Raman sidebands in early work by one

of the co-authors [14, 15]. Because the phases of the two driving lasers, denoted as ϕ3 and ϕ4,

are random and independent of each other in individual ns pulses, both ϕm = ϕ4 � ϕ3 and
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ϕ0 = ϕ3 � 3ϕm = 4ϕ3 � 3ϕ4 are random in time as well. Although CEP of generated pulse trains

with 1 ns pulse every 33 ms is fixed. The CEP of attosecond pulses in different ns pulse

envelopes varies randomly as well. This severely limits the application of this type of

attosecond light source. Cross-correlation by four-wave-mixing interaction among attosecond

pulses within the same ns pulse, which are commensurate. Therefore, correlation behavior

could still be observed.

Alternatively, CEP will be fixed if all phase-controlled frequency components of the pulse train

are optical harmonics from the same laser, rather than through Raman sideband generation. It

is clear that the relative phase among generated higher-order harmonics and the lower ones

are fixed. For example, relative phase among ϕ5, ϕ2 and ϕ3 of the fifth, second and third

harmonic of the same laser will not be changing, if light of frequency ω5 is generated from

SFG of ω2 and ω3.

At this junction, it is instructive to note that Hansch proposed that sub-femtosecond pulse

could be synthesized by nonlinear phase locking of lasers nearly a decade ago [16]. Later, his

group further demonstrated the feasibility of this approach with three cw phase-locked semi-

conductor lasers [17]. This approach, however, was not pursued since primarily because of the

low power generated.

In the following, we summarize the potential advantages and unique features of attosecond

pulse generation through pulse synthesis of harmonics of the same laser in contrast to the

earlier Raman sideband approach:

2.1. Higher efficiency

This is expected since all the wavelength conversion processes for generation of the harmonics

up to the near UVare from second order nonlinearity, instead of third order nonlinearity in the

Raman sideband approach.

2.2. Simplicity and compactness

Only one pump laser is required in the present scheme (see Figure 2(b)) rather than two in the

Raman sideband approach.

2.3. Role of the fundamental frequency

In frequency-domain description of the pulse train, mode spacing or frequency difference of

adjacent modes dictates pulse spacing in time or pulse repetition rate in frequency [13].

Therefore, lower-frequency components of the pulse decide the main structure of the pulse

waveform while higher-frequency components provide the fine structure or details of the

pulse. To illustrate, Figure 3 shows a square wave synthesized by 10 modes with frequencies

from the fundamental to 10th harmonic of the pump laser. Severe distortion is observed if the

amplitude of the fundamental is attenuated merely by 10% (see Figure 3(b)). This reveals the

significance of the component at the fundamental frequency. Significantly, high-quality square
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Figure 2. (a) Schematic of the Raman sideband generation approach (b): Schematic of the cascaded harmonics approach

A Q-switched Nd:YAG laser and its harmonics up to the fifth order is used as the laser source.

Figure 3. (a) Synthesis of a square wave with modes at frequency from the fundamental to the 10th harmonic of the laser

output. (b) Same as (a) except that the amplitude of the mode at the fundamental frequency is attenuated by 10%.
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waveform can already be synthesized with five frequency components from the fundamental

frequency to fifth harmonic frequency.

2.4. Bandwidth

Compared to the Raman sideband approach, shortest pulse duration generated by the present

cascaded harmonics synthesis method is inevitably limited since fewer numbers of channels

are available in practice. However, this does not severely limit the application of the latter in

generating attosecond pulses. A pulse 0.6 fs in duration could be obtained by synthesis of the

fundamental wavelength of 1064 nm and its second, third, fourth and fifth harmonics. This can

be understood by realizing that bandwidth is independent of the number of channels physi-

cally. These five components already span sufficient bandwidths.

2.5. Pulse quality

Arbitrary waveform synthesis is of importance for attosecond science. As an example, we

show the synthesis of a Gaussian pulse with various numbers of frequency components or

channels. The image-quality-index, which is widely used in image pattern recognition, is used

to gauge the quality of the shaped pulse [18]. The quality increases step-wise only when

number of channels is equal to 2n (n is an integer), that is, 2, 4, 8, 16…). This implies that we

do not have to put too much effort into generating the sixth and seventh harmonic unless the

8th harmonic (133 nm) can be generated efficiently as well (Figure 4).

As a further example, we show the synthesis of a sawtooth waveform with various numbers of

channels (see Figure 5(a)). Figure 5(a) also indicates that a quality factor of 92% could be

achieved already with 4 channels. The perfect sawtooth wave, those synthesized with 4

channels (from the fundamental to the fourth harmonics) and 32 channels (from the funda-

mental to the 32nd harmonics) are illustrated in Figure 5(b). The sawtooth waveform synthe-

sized with 4 channels is already recognizable, while that generated with 32 channels is

indistinguishable from the mathematical function.

Figure 4. Image quality index of a Gaussian pulse generated with different number of channels.
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In our lab, we have constructed a system for the demonstration of attosecond pulse generation

by synthesis of cascaded harmonics. This is shown in Figure 6. The fundamental frequency

component at ω1 is from a custom-made injection-seeded Quanta Ray PRO- 290 Q-switched

Nd:YAG laser (λ = 1064 nm) operating at 10 Hz. The pulse duration is about 10 ns. The laser

frequency bandwidth is narrower than 0.003 cm�1. The nonlinear optical crystals for generating

2nd through the 5th harmonics of the laser fundamental beam are arranged in a cascaded layout.

The crystals are KD*P type II for the second harmonic ω2, KD*P type I for the third harmonic ω3,

BaB2O4 (BBO) type I for the fourth harmonic ω4, and BBO type I for the fifth harmonic ω5. Thus

the five-color output of the laser system covers optical spectra from the near infrared (NIR) or

1064 nm to the ultraviolet (UV), that is, 213 nm. The cascade setup was adopted to ensure that

the second-order nonlinear optical process all occurred collinearly. As a result, the fundamental

and harmonics overlapped spatially. The pulse energy of each harmonic was 380, 178, 70, 41, and

22 mJ, respectively. The polarizations of the five colors were elliptic, horizontal, vertical, vertical,

and horizontal for the fundamental through the fifth harmonic in that order. Eventually, all five

colors will be converted into horizontally polarized light (see below).

Precision control of the amplitude and the phase of each frequency components are essential.

To this end, we first spatially dispersed the five colors by a fused silica prism. The dispersed

beams were then recollimated but spatially separated by using another, larger fused silica

prism. In the parallel co-propagating region of the five colors, we inserted an amplitude

modulator and a phase modulator each. Therefore, it is possible to adjust the amplitude and

relative phase of these harmonics separately. Each amplitude modulator was the assembly of a

half waveplate and a polarizer. The polarization directions of the harmonic frequencies were

all horizontal after passing through the polarizers. We can adjust the pulse energy of each

harmonic by rotating the orientation of the half waveplate. To deal with the elliptical polariza-

tion of the fundamental frequency of the laser, we used a quarter waveplate to rotate the

elliptical polarization back to the linear polarization.

Figure 5. (a) Synthesis of a sawtooth waveform with various numbers of channels (b) the perfect sawtooth wave, those

synthesized with 4 channels (from the fundamental to the fourth harmonics) and 32 channels (from the fundamental to

the 32th harmonics).
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Each phase modulator consisted of a pair of right-angle triangle prisms. Adjusting the relative

positions of each prism in the pair independently along the direction of their hypotenuse will

change the effective path length traveled by each harmonic. The phase of each harmonic wave

will be altered by Δϕi = 2π (nprism � nair)l/λi, where l is the relative displacement of the two

prisms nprism, and nair are refractive indices of the prism and air, respectively. This scheme

allows variation of the phase Δϕi of the ith harmonic, i = 1–5, but will not affect the beam

alignment. Finally, these five beams of fundamental output and cascaded harmonics of the Nd:

YAG laser were recombined and collimated by another prism set at a symmetry position to the

first prism set. The whole setup is similar to a 4-f imaging system.

3. Relative phase measurement

For waveform control and pulse synthesis, we need to determine the relative phase among the

harmonics. This was accomplished as follows: First, the fifth harmonic was used as the refer-

ence. We then proceed to adjust the relative phase of all other four harmonic frequencies to the

reference. Four type I BBO crystals were employed. These were cut at (a) θ = 22.9� and ϕ = 0�

for 1064 nm + 1064 nm ! 532 nm, (b) θ = 31.3� and ϕ = 0� for 1064 nm + 532 nm ! 355 nm, (c)

θ = 47.7� and ϕ = 0� for 532 nm + 532 nm ! 266 nm, and (d) θ = 51.2� and ϕ = 0� for

1064 nm + 266 nm ! 213 nm, respectively. The Nd:YAG laser harmonic frequencies and

summed frequencies generated from the BBO crystal were then dispersed and detected by a

Figure 6. First-generation NTHU Attosecond source based on frequency synthesis of cascaded in-line harmonics of a

single-frequency Q-switched Nd:YAG laser. Amplitude and phase modulation of each of the harmonics are provided.

Insets (a) and (b) show predicted and experimentally generated square waveforms.
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set of photodiodes. Every harmonic was heterodyned with a signal at the same frequency

derived by optically summing two lower harmonics in a particular BBO crystal. Then the

resulting interference signal can be used to calibrate the phase modulator and to align the

phases of the harmonic frequencies. Since the polarization of the summed output is orthogonal

to that of the harmonics, a polarizer is used to project the polarization of the two states onto a

common axis in order to maximize the heterodyning signal. With five frequency components,

four measurements are needed for determining of their relative phases. The setup of the

relative phase between each harmonic is shown as Figure 7.

The flow chart of determining the relative phase of the second harmonic (532 nm) with respect

to the fundamental by measuring the interference signal is shown in Figure 8. First, light from

the laser system at ω1 and ω2 generates the signal at ω3
0 through the sum-frequency generation

(SFG) in a BBO crystal. By tuning the phase modulator inserted in the beam path of the light at

ω3 from the laser signal, we can introduce a phase difference Δϕ3 between the harmonic from

the laser system and light of the same frequency from the sum-frequency generation process.

For the case of 355 nm light (see Figure 9),

∆ϕ355 ¼ ϕ0

355 � ϕ355 ¼ ϕ1064 þ ϕ532 þ
π

2
� ϕ355

Or

ϕ355 ¼ 3ϕ1064 þ π� ∆ϕ532 � ∆ϕ355 (3)

As the phase modulator is tuned, the interference signal shows the expected sinusoidal behav-

ior (see Figure 9). After the relative phase changes over a few cycles, the scan is stopped

(middle of Figure 9). This part of the interference record reflects the phase stability of the

system, as the phase and power of the harmonics do vary in practice.

The phase stability of the third-harmonic beam at 355 nm is 0.0407 π, while that of the second

harmonic is 0.1103 π. It is possible to control the phase modulator such that the interference

Figure 7. The experimental setup for relative phase measurement. Four BBO crystals were used. Second, third, fourth and

fifth indicate the nonlinear crystals in the cascaded generation process.
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signal is maintained at certain level, for example, the half, the maximum, and the minimum of

the magnitude of the interference signal. For example, we fixed ∆ϕ532 = π∕2. When the

interference signal at 355 nm is at half of the maximum intensity, the phase difference ∆ϕ355 is

0.5π. According to Eq. (3), the relative phase relationship is ϕ355 ¼ 3ϕ1064 which is the phase-

matching condition. The carrier envelope phase of the synthesized wave or CEP is zero.

Similarly, if we set the phase difference ∆ϕ355 to be 0. ϕ355 ¼ 3ϕ1064 þ π∕2. Therefore, the CEP

of the synthesized waveform is π/2.

Figure 8. The flow chart for measuring the relative phase through the interference signal.

Figure 9. The relative phase between fundamental and the third harmonic is determined as shown on the right of the

figure. Left of the signal shows the experimentally measured interference signal. CEP: carrier envelope phase.
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4. Waveform synthesis and its measurement

As the spectral bandwidth of this coherent laser source exceeds two octaves or 32,200 cm�1,

conventional methods for ultrafast waveform synthesis is not adequate. We used the shaper-

assisted linear correlation method [19] for such a task. This method is particularly suited for

diagnostics of multiwave synthesized waveforms.

The basic concept is the use of an effective delta function waveform to retrieve the waveform.

To begin with, the output electric field of a coherent multiwave synthesized optical waveform,

for example, a mode-locked laser can be expressed as:

Ea tð Þ ¼
X

N

n¼1

ancos nωtþ ϕ
anω þ ϕ

aCEP

� �

(4)

where an and ϕanω are the amplitude and phase of each component at the frequency nω, n is a

positive integer. ϕ
aCEP

is the carrier envelope phase. Considering two such waveforms, one is

the reference with field Ea tð Þ above and the target waveform with field Eb tð Þ, given by

Eb tð Þ ¼
X

N

n¼1

bn cos nωtþ ϕ
bnω þ ϕ

bCEP

� �

: (5)

The interference of the two with a relative temporal delay τcan be described as follows:

ET t; τð Þ ¼
1

2

X

Ane
i nωtþϕ

nωð Þ þ c:c: (6)

whereð Þ An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2nþb
2
n þ 2anbncos nωτþ ϕ

bnω � ϕ
anω

� �

þ ϕ
bCEP

� ϕ
aCEP

� �

q

ϕ
n
¼ cos �1 ancos ϕ

anω þ ϕ
aCEP

� �

þ bncos nωτþ ϕ
bnω þ ϕ

bCEP

� �� �

=An

� ��

An and ϕnω are the amplitude and phase of the nth Fourier component of the interference

signal. The linear cross-correlation function of the reference and target signals with a relative

time delay of τ. The time-averaged intensity of ET is then given by

I τð Þ ¼
1

T

ð

ET t; τð ÞE∗

T t; τð Þdt ¼
1

4

X

n

A
2
n

¼
P

a2nþb
2
n þ 2anbncos nωτþ n ϕ

bnω � ϕ
anω

� �

þ ϕ
bCEP

� ϕ
aCEP

� �� �

(7)

If the reference waveform is a transform-limited cosine pulse function of finite duration or a

delta function of unity amplitude, that is, an ¼ a0,phase ϕanω ¼ 0,ϕ
aCEP

¼ 0

I τð Þ ¼
X

a20þb
2
n

� �

þ 2a0bncos nωτþ ϕ
bnω þ ϕ

bCEP

� �

(8)

That is, the time-varying part of I(τ) is directly proportional to the target field, Eb(t) (see Eq. (6)).

If the reference pulse and target one are delta and square pulse, Eq. (5) can be written as
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E t; τð Þ ¼ Eδ tð Þ þ Esquare t; τð Þ

¼ Aδ

X

n

ei ωnt�kndð Þ þ Bsqu

X

n¼1, 3, 5, ::

2

nπ
ei ωn t�τð Þ�knd�

π
2ð Þ

¼
X

n

eiωntA
0

n τð Þeiφ
0

n τð Þ

(9)

where

An
0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aδ
2 þ

Bsqu

n

� �2
þ 2Aδ

Bsqu

n
cos ωnτ�

π

2

� �

r

,

φn

0
¼ tan�1

�Aδsin kndð Þ þ
Bsqu

n
sin ωnτ�

π

2
� knd

� �

Aδcos kndð Þ þ
Bsqu

n
cos ωnτ�

π

2
� knd

� �

2

6

4

3

7

5
for n ¼ 1, 3, 5::

(10)

An
0

¼ Aδ, φn

0

¼ �knd for n ¼ 2, 4, 6:… (11)

The linear cross-correlation measurement can be performed using any interferometric

arrangement, for example, a Michelson interferometer. Equivalently, it can be conducted

by adjusting the amplitudes and phases of the frequency components of the waveform.

The experimental setup is shown in Figure 10. A thermal pile power meter, which can

detect light from the fundamental (λ = 1064 nm) to the fifth harmonic (λ = 213 nm) of the

laser system.

We have shown previously that it is possible to synthesize attosecond pulse train and arbitrary

waveforms using this approach [11]. For example, Figure 11(a) shows the synthesized square

waveform by the fundamental, second and third harmonics of the Nd:YAG laser. The normal-

ized amplitudes of the harmonics are respectively, 1, 0 and 1/3. Figure 11(b) shows the

synthesized sawtooth waveform by the fundamental through the fourth harmonics of the Nd:

YAG laser. The normalized amplitudes of the fundamental and harmonics are respectively, 1,

1/2, 1/3 and 1/4. The measured waveforms are in good agreement with the theoretical esti-

mates (solid curves in Figure 11). Although we just used three of four waves in this experi-

ment, the synthesized waveforms already reproduce these familiar mathematical functions.

Figure 10. The experimental arrangement for linear cross-correlation measurement of the synthesized waveform. Second,

third, fourth and fifth indicate the nonlinear crystals that generated the cascaded harmonics.
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Our laser system can generate fundamental through the fifth harmonics with pulse energies of

380, 178, 70, 41, and 22 mJ. If these can be fully utilized, the synthesized transform-limited

pulse will exhibit a temporal FWHM of 480 attoseconds. The intensity envelope will be just 700

attoseconds. The intensity of each attosecond pulse will exceed 1014 W/cm2 when it is focused

to a spot size of 20 μm. Such high-power pulses would induce interesting nonlinear effect in

materials. Opportunities in novel laser processing should arise. These will be discussed in the

part II of this work.

5. Summary

We proposed and demonstrated a new high-power attosecond light source by frequency

synthesis. The laser system consists of a narrow-band transform-limited high-power Q-

switched Nd:YAG laser and its second (λ = 532 nm) through fifth harmonics, (λ = 213 nm).

The laser system was designed such that the cascaded harmonics spatially overlap and co-

propagate to the far fields. The spectral bandwidth of this coherent laser source thus exceeds

two octaves or 32,200 cm�1.The amplitude and phase of the comb consisting of the five

frequency components can be independently controlled. Sub-single-cycle (� 0.37 cycle) sub-

femtosecond (360 attosecond) pulses with carrier-envelope phase (CEP) control can be gener-

ated in this manner. The peak intensity of each pulse exceeds 1014 W/cm2 with a focused spot

size of 20 μm. It is also possible to synthesize arbitrary optical waveforms, for example, a

square wave. The synthesized waveform is stable at least for thousands of nanosecond.
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Figure 11. (a) Synthesis of a square waveform with the fundamental, second and third harmonics of the Nd:YAG laser.

(b) Synthesis of a sawtooth waveform with the fundamental, second, third and fourth harmonics of the Nd:YAG laser.

The solid squares are experimental data. The blue curves are theoretical curves. (reproduced with permission from [11]).
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