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Abstract. Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel opera-
tors in both frameworks of standard and variable exponent Lebesgue spaces
are considered in this paper. The main aim is to describe certain dependencies
between the Fredholm property of some Wiener-Hopf operators acting between
variable exponent Lebesgue spaces and the invertibility of Wiener-Hopf plus
and minus Hankel operators on all the standard Lebesgue spaces. Different
types of Fourier symbols will be used but special focus will be considered on
the Wiener subclass of almost periodic matrix functions. In the first part of
the paper we will give a survey of investigations on related results. This will
be useful at the end of the paper to derive the above mentioned dependencies
between the operators under study.

1. Introduction

Although being obviously more general than the standard Lebesgue spaces,
variable exponent Lebesgue spaces preserve many of the properties of standard
Lebesgue spaces. The most standard properties of variable exponent Lebesgue
spaces may be seen in [12]. Namely, they are Banach spaces [12, Theorem 2.5], the
Hölder inequality holds [12, Theorem 2.1], it is known a characterization for them
to be reflexive [12, Corollary 2.7], and it is also known a condition under which
continuous functions are dense [12, Theorem 2.11]. Anyway, variable exponent
Lebesgue spaces appeared in the literature for the first time already in a 1931
article by W. Orlicz [18]. This allowed the consideration of the so-called modular
spaces which were systematically studied by H. Nakano [15, 16].

Following the development in variable exponent Lebesgue spaces (see the mono-
graphs [8, 12]), the research on operators defined between these spaces have re-
cently increased significantly (cf., e.g., [6, 7]). Obviously, this facilitates the pos-
sibility to better understand applied problems e.g. in elasticity, fluid dynamics,
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calculus of variations and differential equations (cf., e.g., [19] for specific applica-
tions in electrorheological fluids). One of the difficulties in the development of the
operator theory in the Lp(·) spaces is that the convolution operators are, in gen-
eral, not bounded in these spaces. Some invertibility properties of Wiener-Hopf
and Hankel operators – being well-known for standard Lebesgue spaces (cf., e.g.,
[1, 3, 4, 17]) – are nowadays interestingly analysed in the framework of variable
exponent Lebesgue spaces.

In the present paper we will be devoted to analyse consequences and depen-
dencies of the Fredholm and invertibility properties of Wiener-Hopf, Wiener-Hopf
plus Hankel and Wiener-Hopf minus Hankel operators (in short, Wiener-Hopf-

Hankel operators) on variable exponent Lebesgue spaces and also on standard
Lebesgue spaces.

In view to define these operators in a formal way, we will start by the definition
of the variable exponent Lebesgue spaces. Let p : R → [1,∞] be measurable a.e.
finite function. We denote by Lp(·)(R) the set of all complex-valued functions f
on R such that

Ip(·)

(
f

λ

)
:=

∫

R

∣∣∣∣
f(x)

λ

∣∣∣∣
p(x)

dx < ∞

for some λ > 0. This set becomes a Banach space when equipped with the norm

‖f‖p(·) := inf{λ > 0 : Ip(·)(f/λ) ≤ 1}.

The space Lp(·)(R) is precisely what we are refereing as the variable exponent

Lebesgue space.
We will suppose that

1 < p− := essx∈R inf p(x) ≤ essx∈R sup p(x) =: p+ <∞. (1.1)

Under these conditions, the space Lp(·)(R) is separable and reflexive, and its dual
space is isomorphic to Lp′(·)(R), where p′(·) is the conjugate exponent function
defined by

1

p(x)
+

1

p′(x)
= 1 (x ∈ R).

Additionally, with condition (1.1) we have that ‖φI‖L(Lp(·)(R)) ≤ ‖φ‖L∞(R) for a
function φ ∈ L∞(R).

Moreover, Lp(·)(R+) denotes the variable Lebesgue space of complex-valued
functions on the positive half-line R+ = (0,+∞), and the subspace of Lp(·)(R)
formed by all functions supported in the closure of R+ is being denoted by

L
p(·)
+ (R).
Given a Banach space X , we denote by XN the Banach space of all columns

of height N with components in X . The norm in XN is defined by

‖(x1, . . . , xN )
T‖XN =

(
N∑

j=1

‖xj‖
2
X

)1/2

.
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Given a subalgebra B of L∞(R), we denote by BN×N the algebra of all N × N
matrices Φ with entries in B. Moreover, we equip BN×N with the norm

‖Φ‖BN×N = ‖(Φjk)
N
j,k=1‖BN×N =

(
N∑

j,k=1

‖Φjk‖
2
B

)1/2

.

We are now in condition to identify in a mathematical way the main objects
of this work. We will consider Wiener-Hopf plus and minus Hankel operators
acting between Lebesgue spaces with variable exponent p(·) (and also with fixed
standard exponent p(·) = p ∈ (1,+∞)), denoted by

WΦ ±HΦ : [L
p(·)
+ (R)]N → [Lp(·)(R+)]

N ,

with WΦ and HΦ being Wiener-Hopf and Hankel operators defined by

WΦ = r+F
−1Φ · F , HΦ = r+F

−1Φ · FJ, (1.2)

respectively. Here, r+ represents the operator of restriction from [Lp(·)(R)]N into
[Lp(·)(R+)]

N , F−1 denotes the inverse of the Fourier transformation F , Φ is the so-

called Fourier symbol, and J : [L
p(·)
+ (R)]N → [Lp(·)(R)]N is the reflection operator

given by the rule Jϕ(x) = ϕ̃(x) = ϕ(−x) which throughout the paper will be
always considered for even functions p(·) (so that J will therefore be a bounded
operator in those variable exponent Lebesgue spaces).

One of the goals of this work is to exhibit conditions under which Wiener-Hopf
plus and minus Hankel operators are both invertible in the full scale of standard
Lebesgue spaces, in the case when the Fourier symbol Φ belongs to the so-called
Wiener subclass of the almost periodic matrix functions (which we will define
later on in detail).

2. Preliminaries

The boundedness of a wide variety of operators (and in particular of Wiener-
Hopf and Hankel operators) follows from the boundedness of the maximal oper-
ator on variable exponent Lebesgue spaces.

Given f ∈ L1
loc(R), the Hardy-Littlewood maximal operator M is defined by

(Mf)(x) := sup
x∈Ω

1

|Ω|

∫

Ω

|f(y)|dy ,

where the supremum is taken over all intervals Ω ⊂ R containing x, and the
Cauchy singular integral operator S is defined by

(Sf)(x) :=
1

πi

∫

R

f(τ)

τ − x
dτ ,

where the integral is understood in the principal value sense.

Theorem 2.1. (cf. e.g. [9, Theorem 2.1.]) Let p : R → [1,∞] be a measurable

function satisfying (1.1). If the Hardy-Littlewood maximal operator M is bounded

on Lp(·)(R), then the Cauchy singular integral operator S is bounded on Lp(·)(R).

The following result states a sufficient condition on p(·) for M to be bounded
on Lp(·)(R).
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Theorem 2.2. (cf. e.g. [14, Theorem 2.5.]) Let p : R → [1,∞] satisfy (1.1). In

addition, suppose that p(·) satisfies

|p(x)− p(y)| ≤
C

− log |x− y|
, |x− y| ≤

1

2
,

and

|p(x)− p(y)| ≤
C

log(e+ |x|)
, |x| ≤ |y|.

Then, the Hardy-Littlewood maximal operator is bounded on Lp(·)(R).

Let P(R) denote the class of exponents p : R → [1,∞] continuous on R satisfy-
ing (1.1), and let B(R) denote the set of all p(·) ∈ P(R) such that M is bounded
on Lp(·)(R).

A function φ ∈ L∞(R) (p(·) ∈ B(R)) is called a Fourier multiplier on Lp(·)(R)
if the operator F−1φF acting on L2(R)∩Lp(·)(R), extends uniquely to a bounded
operator on Lp(·)(R). The set of all Fourier multipliers on Lp(·)(R) is denoted by
Mp(·).

It follows that for Φ ∈ [Mp(·)]
N×N (with an even p(·) ∈ B(R)) the Wiener-Hopf

and the Hankel operators defined in (1.2), WΦ : [L
p(·)
+ (R)]N → [Lp(·)(R+)]

N and

HΦ : [L
p(·)
+ (R)]N → [Lp(·)(R+)]

N , are bounded. These are in fact necessary and
sufficient conditions for the Wiener-Hopf plus and minus Hankel operators to be
bounded in variable exponent Lebesgue spaces. In a sense, these conditions are
not explicit. For some more explicit conditions which determine the identification
of subsets of Mp(·), we would like to refer the reader to [10, §4.2] where, in par-
ticular, a generalization of the classical Mikhlin’s theorem on Fourier multipliers
(cf. [13]) to variable exponent Lebesgue spaces is presented.

In what follows, we will be also using the projection P and its complementary
projection Q (Q = I − P ), where

P = Fℓ0r+F
−1,

with ℓ0 : [L
p(·)(R+)]

N → [L
p(·)
+ (R)]N being the zero extension operator.

Let Ṙ := R∪ {∞}. We will denote by C(Ṙ) the set of all continuous functions
ϕ on the real line for which the two limits

ϕ(−∞) := lim
x→−∞

ϕ(x), ϕ(+∞) := lim
x→+∞

ϕ(x)

exist and coincide. The common value of these two limits will be denoted by
ϕ(∞). Furthermore, C0(Ṙ) will represent the collection of all ϕ ∈ C(Ṙ) for
which ϕ(∞) = 0.

For a continuous function f : R → C and C ⊂ R, let

osc(f, C) := sup
t,τ∈C

|f(t)− f(τ)|.

We denote by SO the class of slowly oscillating functions given by

SO :=

{
f ∈ C(R) : lim

x→+∞
osc(f, [−2x.− x] ∪ [x, 2x]) = 0

}
∩ L∞(R).

SO is a unital C∗-algebra of L∞(R) that contains C(Ṙ).
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In what follows, we will use the notation GB for the group of all invertible
elements of a Banach algebra B.

3. Relations between different classes of convolution type

operators

In order to relate operators and to transfer certain operator properties between
different types of operators, we will also use the notion of equivalence relation
and equivalence after extension relation between bounded linear operators. We
will now recall these concepts in detail.

Consider two bounded linear operators T : X1 → X2 and S : Y1 → Y2, acting
between Banach spaces. The operators T and S are said to be equivalent if there
are two boundedly invertible linear operators, E : Y2 → X2 and F : X1 → Y1,
such that

T = E S F. (3.1)

It directly follows from (3.1) that if two operators are equivalent, then they belong
to the same invertibility class. More precisely, one of these operators is invertible,
left invertible, right invertible or only generalized invertible, if and only if the
other operator enjoys the same property.

We say that T is equivalent after extension to S (and write T
∗
∼ S) if there are

Banach spaces Z1 and Z2 and invertible bounded linear operators E and F such
that [

T 0
0 IZ1

]
= E

[
S 0
0 IZ2

]
F,

where IZ1 and IZ2 represent the identity operators in Z1 and Z2, respectively. In
case that Z1 or Z2 are the trivial space, we will say that the operators T and S
are equivalent after one-sided extension.

If two operators are equivalent after extension, then they belong to the same
invertibility class.

The following theorem is well-known (cf. [2]) when considering L∞ Fourier
symbols in Wiener-Hopf and Hankel operators acting between standard Lp-spaces.
Here, we present its generalization by including the variable exponent Lebesgue
spaces case.

Theorem 3.1. Let Φ ∈ G[Mp(·)]
N×N with an even p(·) ∈ B(R) in the case of

variable exponent Lebesgue spaces or simply Φ ∈ G[Mp]
N×N with p(·) = p ∈

(1,+∞) in the case of standard Lebesgue spaces. The following two operators are

equivalent after extension:

(i)

[
WΦ +HΦ 0

0 WΦ −Hφ

]
: [L

p(·)
+ (R)]2N → [Lp(·)(R+)]

2N ;

(ii) W
ΦΦ̃−1 : [L

p(·)
+ (R)]N → [Lp(·)(R+)]

N .

Proof. We start by noticing that the operators

WΦ ±HΦ : [L
p(·)
+ (R)]N → [Lp(·)(R+)]

N

and
PφP ± PφJP +Q : [Lp(·)(R)]N → [Lp(·)(R)]N
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are equivalent after extension. Indeed, due to the identity

PΦP ± PΦJP +Q = (ΦP ± ΦJP +Q)(I −QΦP ∓QΦJP ),

where the operator I −QΦP ∓QΦJP is invertible (with inverse being given by
I+QΦP ∓QΦJP ), it follows that the operator in (i) is equivalent after extension
to the operator

[
ΦP + ΦJP +Q 0

0 ΦP − ΦJP +Q

]
: [Lp(·)(R)]2N → [Lp(·)(R)]2N .

Observing that

1

2

[
I I

J −J

][
ΦP + ΦJP +Q 0

0 ΦP − ΦJP +Q

][
I J

I −J

]

=

[
Φ 0

Φ̃ I

]
P +

[
I Φ

0 Φ̃

]
Q,

and multiplying this operator from the left with the invertible operator

A :=

[
I −ΦΦ̃−1I

0 Φ̃−1I

]
,

we obtain the equivalent operator ΨP +Q, where

Ψ =

[
0 −ΦΦ̃−1

1 Φ̃−1

]
.

Since

ΨP +Q = (PΨP +Q)(I +QΨP ), (3.2)

where the operator on the right-hand side of (3.2) is invertible (with inverse being
given by I−QΨP ), it follows that the operator in (ii) is equivalent to the operator
PΨP +Q which in its turn is equivalent after extension to the operator PΨP .

Additionally,

P

[
0 −ΦΦ̃−1

1 Φ̃−1

]
P = P

[
ΦΦ̃−1 0

0 I

]
P

[
0 −I

I Φ̃−1

]
P. (3.3)

Since

B := P

[
0 −I

I Φ̃−1

]
P

is invertible, (3.3) shows an explicit equivalence after (one-sided) extension be-

tween PΨP and PΦΦ̃−1P . Due to the fact that PΦΦ̃−1P is equivalent toW
ΦΦ̃−1 ,

altogether, it follows that the operators in (i) and (ii) are equivalent after exten-
sion.

Finally, for the case of variable exponent Lebesgue spaces, we stress that all
the just used operators are bounded in the variable exponent Lebesgue spaces
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due to the hypothesis Φ ∈ G[Mp(·)]
N×N and the consideration of an even p(·) ∈

B(R). �

4. Matrix-valued AP symbols

The smallest closed subalgebra of L∞(R) that contains all the functions eλ (λ ∈
R), where eλ(x) = eiλx, x ∈ R, is denoted by AP and called the algebra of almost

periodic functions:

AP := algL∞(R){eλ : λ ∈ R}.

In addition, we use the notation

AP+ := algL∞(R){eλ : λ ≥ 0}, AP− := algL∞(R){eλ : λ ≤ 0}

for these two subclasses of AP (which are still closed subalgebras of L∞(R)).
We will likewise make use of the Wiener subclass of AP (denoted by APW )

formed by all those elements from AP which allow a representation by an abso-
lutely convergent series. Therefore, APW is precisely the (proper) subclass of all
functions ϕ ∈ AP which can be written in an absolutely convergent series of the
form:

ϕ =
∑

j

ϕj eλj
,

where λj ∈ R and
∑

j |ϕj | <∞ .
We recall that all AP functions have a well-known mean value. The existence

of such a number is provided in the next standard result from the theory of almost
periodic functions (cf., e.g., [5]).

Proposition 4.1. Let A ⊂ (0,∞) be an unbounded set and let

{Iα}α∈A = {(xα, yα)}α∈A

be a family of intervals Iα ⊂ R such that |Iα| = yα − xα → ∞ as α → ∞. If

ϕ ∈ AP , then the limit

M(ϕ) := lim
α→∞

1

|Iα|

∫

Iα

ϕ(x) dx

exists, is finite, and is independent of the particular choice of the family {Iα}.

For any ϕ ∈ AP , the number that has been just introduced M(ϕ) is called the
Bohr mean value or simply the mean value of ϕ. In the matrix case the mean

value is defined entry-wise.
Let APW− (APW+) be the set of all functions ψ ∈ APW such that Ω(ψ) ⊂

(−∞, 0] (Ω(ψ) ⊂ [0,+∞), respectively). Here Ω(ψ) = {λ ∈ R :M(ψe−λ) 6= 0} is
the Bohr-Fourier spectrum of ψ. Naturally, APW− ⊂ AP− and APW+ ⊂ AP+.

Let us now recall the so-called right AP and APW factorizations and some
other notions associated with them.

Definition 4.2. A matrix function Φ ∈ GAPN×N is said to admit a right AP

factorization if it can be represented in the form

Φ(x) = Φ−(x)D(x)Φ+(x)
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for all x ∈ R, with

Φ− ∈ GAPN×N
− , Φ+ ∈ GAPN×N

+ , (4.1)

and D is a diagonal matrix of the form D(x) = diag[eiλ1x, . . . , eiλNx], λj ∈ R.
The numbers λj are called the right AP indices of the factorization. A right AP
factorization with D = IN×N is referred to be a canonical right AP factorization.
In the case when (4.1) is substituted by

Φ− ∈ GAPWN×N
− , Φ+ ∈ GAPWN×N

+ ,

we will be in the presence of a right APW factorization which will also turn to
be a canonical one in case of D = IN×N .

The vector containing the right AP indices will be denoted by k(Φ), i.e., in
the above case k(Φ) := (λ1, . . . , λN). If we consider the case with equal right
AP indices (k(Φ) := (λ1, λ1, . . . , λ1)), then the matrix d(Φ) := M(Φ−)M(Φ+) is
independent of the particular choice of the right AP factorization. In this case,
this matrix d(Φ) is called the geometric mean of Φ.

The just presented factorizations allow the possibility to find conditions which
induce the invertibility or, at least, the Fredholm property of Wiener-Hopf oper-
ators in standard Lebesgue spaces. Anyway, for APWN×N even stronger results
appear as it is the case of the following Kurbatov Theorem (cf. [11]).

Theorem 4.3. If Φ ∈ APWN×N , then WΦ : [Lp
+(R)]

N → [Lp(R+)]
N is invertible

for some p ∈ (1,+∞) if and only if WΦ : [Lp
+(R)]

N → [Lp(R+)]
N is invertible for

all p ∈ (1,+∞).

5. Matrix-valued SAP symbols

The C∗-algebra SAP of all semi-almost periodic functions on R is the smallest
closed subalgebra of L∞(R) that contains AP and C(R):

SAP = algL∞(R){AP,C(R)}.

In addition, it is possible to interpret the SAP functions in a different form due
to the following characterization of D. Sarason [20].

Theorem 5.1. Let u ∈ C(R) be any function for which u(−∞) = 0 and u(+∞) =

1. If ϕ ∈ SAP , then there is ϕℓ, ϕr ∈ AP and ϕ0 ∈ C0(Ṙ) such that

ϕ = (1− u)ϕℓ + uϕr + ϕ0.

The functions ϕℓ, ϕr are uniquely determined by ϕ, and independent of the par-

ticular choice of u. The maps

ϕ 7→ ϕℓ, ϕ 7→ ϕr

are C∗-algebra homomorphisms of SAP onto AP.

The last theorem is also valid in the matrix case. In the next section we will use
the following result which allows a certain connection between the Fredholm prop-
erty of some classes of singular integral operators on variable exponent Lebesgue
spaces and consequent invertible operators on specific standard Lebesgue spaces.
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Theorem 5.2. ([9, Theorem 1.2]) Let Φ ∈ SAPN×N and p(·) ∈ B(R) ∩ SO. If

the singular integral operator ΦP +Q is Fredholm on the variable Lebesgue space

[Lp(·)(R)]N , then:

(a) there is an exponent qr lying in the segment
[

lim
x→+∞

inf p(x), lim
x→+∞

sup p(x)

]

such that ΦrP +Q is invertible on the standard Lebesgue space [Lqr(R)]N ;
(b) there is an exponent qℓ lying in the segment

[
lim

x→−∞
inf p(x), lim

x→−∞
sup p(x)

]

such that ΦℓP +Q is invertible on the standard Lebesgue space [Lqℓ(R)]N .

6. Wiener-Hopf and Wiener-Hopf-Hankel operators with APW

Fourier symbols in different Lebesgue spaces

Making use of the previous results and, in particular, the equivalence after ex-
tension relation presented in Theorem 3.1, we are in position to describe an inter-
play between the Fredholm property of a Wiener-Hopf operator acting on variable
exponent Lebesgue spaces and the invertibility of some associated Wiener-Hopf
plus and minus Hankel operators on standard Lebesgue spaces in all the possible
range of the p Lebesgue constant exponents.

Theorem 6.1. Let Φ ∈ GAPWN×N and p(·) ∈ B(R) ∩ SO. If the Wiener-Hopf

operator acting between variable exponent Lebesgue spaces

W
ΦΦ̃−1 : [L

p(·)
+ (R)]N → [Lp(·)(R+)]

N

has the Fredholm property, then the Wiener-Hopf plus Hankel and the Wiener-

Hopf minus Hankel operators

WΦ ±HΦ : [Lp
+(R)]

N → [Lp(R+)]
N

are both invertible operators for all p ∈ (1,+∞).

Proof. Having in mind that Φ ∈ GAPWN×N , we also have ΦΦ̃−1 ∈ APWN×N

and, moreover,

(ΦΦ̃−1)ℓ = (ΦΦ̃−1)r = ΦΦ̃−1.

Therefore, from Theorem 5.2, we obtain that there is an exponent

q ∈ [p−, p+]

(cf. (1.1)) such that the singular integral operator ΦΦ̃−1P +Q is invertible on the
standard Lebesgue space [Lq(R)]N .

However,

ΦΦ̃−1P +Q : [Lq(R)]N → [Lq(R)]N

is equivalent after extension to W
ΦΦ̃−1 : [L

q
+(R)]

N → [Lq(R+)]
N . Thus, W

ΦΦ̃−1 is

also invertible on the standard Lebesgue space [Lq
+(R)]

N .
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Therefore, due to the Kurbatov Theorem,

W
ΦΦ̃−1 : [L

p
+(R)]

N → [Lp(R+)]
N

is an invertible operator for all p ∈ (1,+∞). Using the equivalence after extension
relation, presented in Theorem 3.1, we obtain that the Wiener-Hopf plus and
minus Hankel operators WΦ + HΦ : [Lp

+(R)]
N → [Lp(R+)]

N and WΦ − HΦ :
[Lp

+(R)]
N → [Lp(R+)]

N are both invertible operators for all p ∈ (1,+∞). �
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