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Abstract

The problem of plane wave diffraction by a wedge sector having arbitrary
aperture angle has a very long and interesting research background. In fact,
we may recognize significant research on this topic for more than one century.
Despite this fact, up to now no clear unified approach was implemented to
treat such a problem from a rigourous mathematical way and in a consequent
appropriate Sobolev space setting. In the present paper, we are considering
the corresponding boundary value problems for the Helmholtz equation, with
complex wave number, admitting combinations of Dirichlet and Neumann
boundary conditions. The main ideas are based on a convenient combina-
tion of potential representation formulas associated with (weighted) Mellin
pseudo-differential operators in appropriate Sobolev spaces, and a detailed
Fredholm analysis. Thus, we prove that the problems have unique solutions
(with continuous dependence on the data), which are represented by the sin-
gle and double layer potentials, where the densities are solutions of derived
pseudo-differential equations on the half-line.
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1. Introduction

The problem of plane wave diffraction by wedge sectors counts already
more than one century of research. Indeed, we may identify the classical
works of Sommerfeld [67] and Poincaré [59] as the first ones where this type
of problem was significantly tackled. There, the solution of the Helmholtz
equation in an infinite wedge sector with Dirichlet and Neumann boundary
conditions was studied by using the Sommerfeld integrals and separation of
variables, respectively. Anyway, previous partial results can also be identi-
fied. This is the case of Macdonald [39] who already gave in 1895 a represen-
tation of the first and second Green’s functions (i.e., electrostatic and velocity
potentials) of the potential equation for a wedge of an arbitrary aperture an-
gle. In fact, this was first considered only for angles of the form π/m, where
m is a positive integer, and later (cf. [40]) Macdonald was able to obtain
formulas for the two Green’s functions of the Helmholtz equation for wedges
with any aperture angle. However, Macdonald’s method is not easy to follow
when involving somehow conventional formalisms of nineteenth century.

Carslaw did also relevant work on the construction of appropriate poten-
tials, by using the Sommerfeld’s method, first for some wedges of particular
aperture angles and then for arbitrary ones (cf. [3, 4, 5]).

In the last decades the mathematical analysis of wave diffraction prob-
lems by wedge configurations has been receiving increased attention. Con-
sequently, we can identify a significant number of publications where such
analysis was taken for particular cases of wedge amplitudes and/or boundary
conditions (cf., e.g., [2, 7, 8, 9, 10, 11, 12, 13, 18, 21, 22, 33, 34, 35, 42, 48,
44, 45, 46, 49, 50, 55, 56, 58, 60, 66, 72]). However, none of these listed pa-
pers contain final solvability results for the general problems in a rigourous
mathematical Sobolev space setting as is done in the present paper.

It is clear that one of the main difficulties in such analysis arises from
the geometry of the domain in consideration. For some regions, the direct
method of layer potentials works very well, allowing the well-posedness of
the problems in appropriate Sobolev spaces and, in some cases, closed-form
solutions. For smooth domains the list of publications is quite huge. Anyway,
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we would like to refer here to some corresponding excellent works which
present a somehow rather complete account of the theory in smooth domains,
as is the case of the books by Colton and Kress [14], Courant and Hilbert [17],
Hsiao and Wendland [26], Kress [37], McLean [41], and Taylor [69]. Moreover,
among the non-smooth domains, general theories for Lipschitz domains are
also available and can be tested in concrete corresponding boundary value
problems. Related to this, we would like to refer the works of Costabel [15],
Costabel and Stephan [16], Jerrison and Kenig [27, 28, 29], Kohr, Pintea and
Wendland [31], Mitrea and Mitrea [51, 52], Mitrea and Taylor [53, 54], and
Verchota [71].

We may say that the recent developments in problems of wave diffraction
by non-smooth regions were certainly inspired by also somehow recent sig-
nificant general results for boundary value problems in non-smooth domains.
As representatives of the latter ones, we may also cite here the monographs
[19, 25, 57, 62], as well as the pertinent work [36]. Here, Kondrat’ev’s method
is mainly based on the Mellin transform, already allowing information on the
smoothness and asymptotic expansion of the solutions at the edges of the
boundary angles.

The relevant work of Komech, Merzon and their collaborators [32, 33,
34, 35] must also be referred, where the so-called method of complex char-
acteristics for elliptic equations in nonconvex angles is used. Typically, the
crucial part of the method is played by the connection equation on the Rie-
mann surface of complex characteristics of the given elliptic operator. Also,
the limiting amplitude principle in the two-dimensional scattering of an inci-
dent plane harmonic wave by a wedge has recently been successfully applied,
cf. [13, 49, 56].

In [18], the problem of wave diffraction by impenetrable wedges having
arbitrary aperture angle was studied by means of the Wiener-Hopf method.
This positively answered the important issue (that had been open for a long
period) on the possibility of applying the Wiener-Hopf technique to this
more complex geometrical problem of having wedges with arbitrary angles.
However, no concern with the space setting was there presented. As a very
significant result, it was obtained that the diffraction by an impenetrable
wedge always reduces to a standard Wiener-Hopf factorization. For given
impedance boundary conditions, explicit factorizations were derived which
lead to consequent closed-form solutions.

The series of results obtained by Meister, Speck and their collaborators
(cf., e.g., [10, 11, 12, 21, 22, 42, 48, 44, 45, 46, 58]) constitute a systematic
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approach to a rigourous mathematical analysis of plane wave diffraction by
wedges. They obtained important conclusions on both the well-posedness of
the problems and consequent closed-form solutions, in appropriate Sobolev
spaces, for a large number of particular cases of aperture angles and different
types of boundary conditions. In particular, in [21, 22], the authors obtained
the well-posedness for the so-called rational angles of the form πm/n, where
m and n are natural numbers. This was done by using symmetry properties
within certain Riemann surfaces. In addition, this was a somehow natu-
ral development of the previous work [58] where, by using also symmetry
arguments and Sommerfeld potentials (resulting from special Sommerfeld
problems which are explicitly solvable), the well-posedness and explicit so-
lution in closed analytic form of the Dirichlet and Neumann problems for
the Helmholtz equation in the non-convex and non-rectangular wedge with
angle of 4π/3 was obtained. However, the proposed method does not work
for non-rational angles.

The authors of the present work have also previously considered several
cases of problems of wave diffraction by wedges with particular aperture
angles (cf. [7, 8, 9]) in which symmetry arguments, the potential method,
and Wiener-Hopf and Hankel operators were combined in a successful way.

Having all this in mind, we note that a thorough justification in appropri-
ate Sobolev spaces, in the Hadamard well-posedness sense, for the problems
under analysis, has never been done.

Thus, in the present paper, we would like to consider problems of wave
diffraction by wedges having arbitrary aperture angle, facing Dirichlet-Diri-
chlet, Neumann-Neumann and Dirichlet-Neumann boundary conditions, in
a strict mathematical perspective where everything will be considered in ap-
propriate Sobolev space settings. Thus, as a main result, we shall prove
the unique existence of solution, and its continuous dependence on the data,
for each of those classes of problems. Moreover, integral representations of
the solutions are obtained in terms of the single and double layer poten-
tials, where their densities are solutions of certain Mellin pseudo-differential
equations on the half-line. In particular, this also opens the possibility of
considering further studies on the solutions based on the obtained formulas –
like the regularity and asymptotic behavior of the solutions near the edge of
the corresponding cones. Thus, the present work, at the same time, unifies
several past works and completes the existent open situations when consider-
ing the solvability of these classes of wedge wave diffraction problems for any
aperture angle within Sobolev spaces (although, for the Dirichlet-Neumann
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problems we only consider convex angles).
The paper is organized as follows: Section 2 is devoted to the presentation

of the basic definitions, the problem formulation and the conclusion that we
are dealing with classes of problems which admit at most one solution in the
considered Sobolev spaces. Section 3 reports the use of potentials and their
adjustment in a corresponding half-line setting which allows the construction
of appropriate auxiliary operators that will appear in the solutions represen-
tation. In Section 4, the Mellin transform and weighted Sobolev spaces will
be considered in order to obtain a reinterpretation of the problems in an op-
erator theory language, and so that it will serve for wedges with any aperture
angle. Then, in the last section, a detailed Fredholm analysis of the obtained
operators is deduced and the consequent properties are transferred to the
boundary value problems under consideration.

2. Formulation of the Problems and Uniqueness of Solutions

We use the notation S(Rn) for the Schwartz space of all rapidly decreasing
functions and S ′(Rn) for the dual space of tempered distributions on Rn. The
Bessel potential space Hs = Hs(Rn), with s ∈ R, is formed by the elements
ϕ ∈ S ′(Rn) such that

‖ϕ‖Hs = ‖F−1(1 + |ξ|2)s/2 · Fϕ‖L2(Rn)

is finite. As the notation indicates, ‖ · ‖Hs is a norm for the space Hs(Rn)
which makes it a Banach space. Here, F = Fx 7→ξ denotes the Fourier trans-
formation in Rn. For a given non-empty, open set D ⊂ Rn, we denote by
Hs

D = Hs
D(R

n) the closed subspace of Hs whose elements have supports in
D, and Hs(D) denotes the space of generalized functions on D which have
extensions into Rn that belong to Hs. The space Hs

D is endowed with the
subspace topology, and on Hs(D) we introduce the norm of the quotient
space Hs/Hs

Rn\D
. Thus Hs(D) = rD(H

s), where rD denotes the restriction

operator to D. Finally, let us introduce the spaces H̃s(D) = rDH
s
D with a

norm naturally defined as

||u||H̃s(D) := inf
ℓ0

||ℓ0u||Hs.

Here ℓ0u stands for any extension of a distribution on D to a distribution in
Hs

D (which is not unique for s < −1/2).
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Throughout the paper we will use the notation

R
n
± := {x = (x1, . . . , xn−1, xn) ∈ R

n : ±xn > 0}.

Note that the spaces H0(Rn
+) and H̃

0(Rn
+) can be identified with L2(R

n
+). For

a comprehensive treatment of the introduced spaces we refer to [1, 41, 70].
Let Ω = Ωα be a plane angle of magnitude α, 0 < α < 2π with vertex at

the origin and sides S1,+ := {(t, 0) : t ∈ R+}, S2,+ := {(t cosα, t sinα) : t ∈
R+}. Let further ∂Ω := S1,+∪S2,+∪{(0, 0)} and denote by n the unit exterior
vector of Ω, which equals to n1 = (0,−1)⊤ on S1,+ and n2 = (− sinα, cosα)⊤

on S2,+.
We are interested in studying the problem of existence and uniqueness of

an element v ∈ H1+ε(Ω), 0 ≤ ε < 1/2 such that
(
∆+ k2

)
v = 0 in Ω, (2.1)

and v satisfies one of the three boundary conditions

[v]+S1,+
= g1 on S1,+, [v]+S2,+

= g2 on S2,+, (2.2)

[∂nv]
+
S1,+

= f1 on S1,+, [∂nv]
+
S2,+

= f2 on S2,+, (2.3)

[v]+S1,+
= g1 on S1,+, [∂nv]

+
S2,+

= f2 on S2,+, (2.4)

where the wave number k ∈ C \ R is given. In addition, ∆ stands for the
Laplace operator, and the Dirichlet and Neumann traces on Sj,+, j = 1, 2,
are denoted by [v]+Sj,+

and [∂nv]
+
Sj,+

, respectively. Note that the Dirichlet
type condition can be understood in the trace sense, while the Neumann
type condition is understood in the distributional sense, defined by means
of Green’s formula and duality arguments (cf. [41]). Finally, for j = 1, 2,
the elements gj ∈ H1/2+ε(Sj,+) and fj ∈ H−1/2+ε(Sj,+) are arbitrarily given
provided they satisfy the following compatibility conditions:

g1 − χ∗g2 ∈ H̃1/2+ε(R+), (2.5)

f1 + χ∗f2 ∈ H̃−1/2+ε(R+); (2.6)

here χ∗ = χα,∗ denotes the pull back (χ∗u)(t) = u(χ(t)) of a function χ =
χα : R+ = S1,+ ∋ t 7→ eiαt ∈ S2,+, i.e. χα(t) = eiαt, t ∈ R+. Clearly, χ∗

induces isomorphisms

χ∗ : H
s(S2,+) → Hs(R+) and χ∗ : H̃

s(S2,+) → H̃s(R+)
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for all s ∈ R.
It is worth mentioning that from the compatibility conditions (2.5) and

(2.6) it follows (cf. [16, 25]) that there exist unique elements g ∈ H
1

2
+ε(∂Ω)

and f ∈ H− 1

2
+ε(∂Ω), respectively, such that

rSj,+
g = gj and rSj,+

f = fj , j = 1, 2. (2.7)

This observation allows us to state an equivalence between the boundary
conditions (2.2) and

[v]+∂Ω = g on ∂Ω (2.8)

for the Dirichlet problem and between the boundary conditions (2.3) and

[∂nv]
+
∂Ω = f on ∂Ω (2.9)

for the Neumann problem. Here note also that, the compatibility condition
(2.6) is an additional restriction only for ε = 0. Finally, let us mention that
the case when −1/2 < ε < 0 will not be considered here. We are not aware
of general uniqueness results for −1/2 < ε < 0 (apart from special cases on
the geometry/angle and on the boundary conditions; cf. [21, 22]).

From now on we will refer to:

• Problem PD-D as the one characterized by (2.1) and (2.8);

• Problem PN-N as the one characterized by (2.1) and (2.9);

• Problem Pmixed as the one characterized by (2.1) and (2.4).

Theorem 2.1. The problems PD-D , PN-N , and Pmixed have at most one
solution.

Proof. The proof is somehow standard and uses the Green’s formula (being
sufficient to consider the case ε = 0). Let R be a sufficiently large positive
number and B(R) be the open disk centered at the origin with radius R. Set
ΩR := Ω∩B(R). Note that the domain ΩR has a piecewise smooth boundary
SR and denote by n(x) the outward unit normal vector at the non-singular
points x ∈ SR.

Let u be a solution of the homogeneous problem. Then the first Green’s
identity for u and its complex conjugate ū in the domain ΩR, together with
zero boundary conditions on SR yields

∫

ΩR

[
|∇u|2 − k2|u|2

]
dx =

∫

∂B(R)∩Ω

[∂nu]
+[ū]+ dSR . (2.10)
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From to the real and imaginary parts of the last identity, we obtain
∫

ΩR

[
|∇u|2 + (ℑm k)2|u|2

]
dx = ℜe

∫

∂B(R)∩Ω

[∂nu]
+[ū]+ dSR , (2.11)

for ℜe k = 0 and

−2(ℜe k)(ℑm k)

∫

ΩR

|u|2 dx = ℑm
∫

∂B(R)∩Ω

[∂nu]
+[ū]+ dSR , (2.12)

for ℜe k 6= 0. Recall that we consider the case ℑm k 6= 0. Now, note that
since u ∈ H1(Ω) then there is a monotonic sequence of positive numbers
{Rj}, such that Rj → ∞ as j → ∞ and

lim
j→∞

∫

∂B(Rj )∩Ω

[∂nu]
+[ū]+ dSRj

= 0. (2.13)

Indeed, first in (R,ϕ) polar coordinates we have

∫

∂B(R)∩Ω

[∂nu]
+[ū]+ dSR = R

∫ α

0

∂nu(R,ϕ) ū(R,ϕ) dϕ.

Due to u, ∂nu ∈ L2(Ω) we have that the integrals

∫ ∞

0

(
R

∫ α

0

|u(R,ϕ)|2dϕ
)
dR and

∫ ∞

0

(
R

∫ α

0

|∂nu(R,ϕ)|2dϕ
)
dR

are finite. This fact in particular implies that there exists a monotonic se-
quence of positive numbers {Rj} such that Rj → ∞ as j → ∞ and

∫ α

0

|u(Rj, ϕ)|2dϕ = ō
(
R−1

j

)
and

∫ α

0

|∂nu(Rj, ϕ)|2dϕ = ō
(
R−1

j

)
as j → ∞.

Further, applying the Cauchy-Schwarz inequality for every Rj we get

∣∣∣∣
∫ α

0

∂nu(Rj, ϕ) ū(Rj, ϕ) dϕ

∣∣∣∣ ≤
∫ α

0

|∂nu(Rj, ϕ) u(Rj , ϕ)| dϕ

≤
(∫ α

0

|∂nu(Rj , ϕ)|2 dϕ
) 1

2
(∫ α

0

|u(Rj , ϕ)|2 dϕ
)1

2

= ō
(
R−1

j

)
as j → ∞

and therefore we obtain (2.13).
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Since the expressions under the integrals on the left side of the equalities
in (2.11) and (2.12) are non-negative then we have that these integrals are
monotonic with respect to R. This observation together with (2.13) implies

∫

Ω

[
|∇u|2 + (ℑm k)2|u|2

]
dx = lim

R→∞

∫

ΩR

[
|∇u|2 + (ℑm k)2|u|2

]
dx = 0,

for ℜe k = 0 and
∫

Ω

|u|2 dx = lim
R→∞

∫

ΩR

|u|2 dx = 0,

for ℜe k 6= 0.
Thus, it follows from the last two identities that u = 0 in Ω.

3. Reduction to the Half-line

In the present section, we will start by recalling some results from po-
tential theory. Then, we will construct operators that will help us in the
analysis of the problems under study.

From now on, throughout the remaining part of the paper, we assume that
ℑm k > 0; the complementary case ℑm k < 0 runs with obvious changes. Let
us denote the standard fundamental solution of the Helmholtz equation (in
two dimensions) by

Φ(x) := − i

4
H

(1)
0 (k|x|) ,

where H
(1)
0 (k|x|) is the Hankel function of the first kind of order zero (cf. [14,

§3.4]). Furthermore, we introduce the single and double layer potentials on
Sj

Vjψ(x) =

∫

Sj

Φ(x− y)ψ(y)dySj , x /∈ Sj ,

Wjϕ(x) =

∫

Sj

[∂nj(y)Φ(x− y)]ϕ(y)dySj , x /∈ Sj ,

where S1 := {(t, 0) : t ∈ R}, S2 := {(t cosα, t sinα) : t ∈ R}, j = 1, 2, and
ψ, ϕ are density functions. Note that, for j = 1, sometimes we will write R

instead of S1. Let us first consider the operators V1 and W1.
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Proposition 3.1 (cf. [7, 20, 26]). The single and double layer potentials V1
and W1 are continuous operators

V1 : H
s(R) → Hs+1+ 1

2 (R2
±), W1 : H

s+1(R) → Hs+1+ 1

2 (R2
±) (3.1)

for all s ∈ R.

Let us now recall some properties of the above introduced potentials. The
following limit relations are well-known (cf. [7, 20, 26]):

[V1ψ]
+
R
= [V1ψ]

−
R
, [∂n1

V1ψ]
±
R
= [∓1

2
I]ψ ,

[W1ϕ]
±
R
= [±1

2
I]ϕ, [∂n1

W1ϕ]
+
R
= [∂n1

W1ϕ]
−
R
,

where I denotes the identity operator. Clearly, analogous results hold true for
the operators V2 andW2. Note that for the single and double layer potentials
given on ∂Ω

V ψ(x) =

∫

∂Ω

Φ(x− y)ψ(y)dy∂Ω , x /∈ ∂Ω ,

Wϕ(x) =

∫

∂Ω

[∂n(y)Φ(x− y)]ϕ(y)dy∂Ω , x /∈ ∂Ω ,

we have

[V ψ]+∂Ω = [V ψ]−∂Ω, [∂nV ψ]
±
∂Ω =: [∓1

2
I + V0]ψ ,

[Wϕ]±∂Ω =: [±1
2
I +W0]ϕ, [∂nWϕ]+∂Ω = [∂nWϕ]−∂Ω ,

where

V0ψ(z) :=

∫

∂Ω

[∂n(z)Φ(z − y)]ψ(y) dy∂Ω , z ∈ ∂Ω ,

W0ϕ(z) :=

∫

∂Ω

[∂n(y)Φ(y − z)]ϕ(y) dy∂Ω , z ∈ ∂Ω

are the direct values of the operators ∂nV and W on ∂Ω, respectively.
In the sequel we will need to consider operators on R+. Passing to the

boundary we arrive to operators rS1,+W0 and rS2,+W0. To treat this type of
operators by using the Mellin transform we decompose the integration over
∂Ω into the integrations over S1,+ and S2,+. Therefore, in what follows we
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will use the single and double layer potentials not only in the above sense,
when applied to elements defined in a full line or in the full boundary ∂Ω,
but also to elements defined just in a half-line. The mapping properties of
these operators are characterized in Lemma 4.2, Theorems 4.3 and 5.2 below;
see also [16, §1-2] for the corresponding details.

The following result is needed before we start applying the potential
method to our problems.

Lemma 3.2. Let 0 < s < 1. Then, the operators

χ∗rS2,+W1ℓ0, rS1,+W2ℓ0χ
−1
∗ : H̃s(R+) −→ H̃s(R+) (3.2)

are continuous and they are equal, i.e.,

χ∗rS2,+W1ℓ0 = rS1,+W2ℓ0χ
−1
∗ . (3.3)

Proof. From the mapping properties of the double layer potential (cf. (3.1))
and the restriction operator it follows that χ∗rS2,+W1 : Hs

R+
→ Hs(R+).

Since for any ϕ ∈ Hs
R+

the function W1ϕ ∈ Hs+ 1

2 (Ω), for x ∈ Ω, therefore
its Dirichlet boundary data necessarily satisfy the compatibility condition
(cf. [25]), i.e., χ∗rS2,+W1ϕ − rR+

ϕ ∈ H̃s(R+). Thus χ∗rS2,+W1ϕ ∈ H̃s(R+),

for any ϕ ∈ Hs
R+

. Similarly, we have rS1,+W2ℓ0χ
−1
∗ ϕ ∈ H̃s(R+), for any

ϕ ∈ H̃s(R+).
To show (3.3), we compare the kernels of these integral operators. First

note that

−∂yj
(
− i

4
H

(1)
0 (k|x− y|)

)
= −ik

4
Ḣ

(1)
0 (k|x− y|)xj − yj

|x− y| , j = 1, 2,

where Ḣ
(1)
0 denotes the ordinary derivative of the Hankel function, which

equals to −H(1)
1 cf. [24, 8.473(6)]. Therefore, taking x = (τ cosα, τ sinα)

and y = (t, 0) for the kernel of the operator χ∗rS2,+W1ℓ0, we obtain

∂n1(y)Φ(x− y) = −ik
4
Ḣ

(1)
0

(
k
√
τ 2 − 2τt cosα + 1

) t sinα√
τ 2 − 2τt cosα + 1

,

while taking x = (τ, 0) and y = (t cosα, t sinα) for the kernel of operator
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rS1,+W2ℓ0χ
−1
∗ we get

∂n2(y)Φ(x− y) = (− sinα ∂y1 + cosα ∂y2)Φ(x− y)

= −ik
4
Ḣ

(1)
0 (k|x− y|)

(
sinα(x1 − y1)

|x− y| − cosα(x2 − y2)

|x− y|

)

= −ik
4
Ḣ

(1)
0

(
k
√
τ 2 − 2τt cosα + 1

) t sinα√
τ 2 − 2τt cosα + 1

.

Since the kernels of the integral operators χ∗rS2,+W1ℓ0 and rS1,+W2ℓ0χ
−1
∗ are

the same they are equal.

Notice that the range of indices s for which the operators in the lemma
are continuous can be extended. However, the case s ∈ (0, 1) is sufficient
for our proposes and therefore, for simplicity, our consequent results will
also be formulated for this interval. In addition, for a matter of notation
simplicity, from now on we will avoid to exhibit the notation of the zero
extension operator in the appropriate places of the operators multiplication
- considering that it is clear where this trivial operator is in action.

3.1. The Problem PD-D

Let us look for a solution of PD-D problem in the following form

v(x) = Wϕ(x), x ∈ Ω, (3.4)

where W is the double layer potential on ∂Ω and ϕ ∈ H
1

2
+ε(∂Ω) is an un-

known function. Setting

ϕ1 := rS1,+ϕ and ϕ2 := rS2,+ϕ (3.5)

we have that the unknown functions ϕ1 ∈ H
1

2
+ε(S1,+) and ϕ2 ∈ H

1

2
+ε(S2,+)

satisfy the compatibility condition ϕ1 −χ∗ϕ2 ∈ H
1

2
+ε

R+
. Clearly, the functions

v is an element of the space H1+ε(Ω) and satisfy (2.1) in Ω. Further, from
the given boundary conditions on S1,+ and S2,+, we obtain (cf. (2.7)) the
following equations

1

2
rS1,+ϕ1 + [W2ϕ2]

+
S1,+

= g1

and

[W1ϕ1]
+
S2,+

+
1

2
rS2,+ϕ2 = g2.
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Thus we get a system of equations with respect to ϕ1 and ϕ2

{
rS1,+ϕ1 + 2[W2ϕ2]

+
S1,+

= 2g1 ,

2[W1ϕ1]
+
S2,+

+ rS2,+ϕ2 = 2g2 .
(3.6)

The sum and the difference of the first equation and the pull back of the sec-
ond equation in (3.6), due to (3.3), gives us that the system (3.6) is equivalent
to the following system of equations on R+:

{
rS1,+φ1 + 2χ∗rS2,+W1φ1 = 2g1 + 2χ∗g2 ,

rS1,+φ2 − 2χ∗rS2,+W1φ2 = 2g1 − 2χ∗g2 ,
(3.7)

where φ1 := ϕ1 + χ∗ϕ2 and φ2 := ϕ1 − χ∗ϕ2.
The solvability of the obtained system is equivalent to the solvability of

both equations in (3.7). Thus we need to study the invertibility of operators
(see also (2.5))

A+ : H
1

2
+ε(R+) −→ H

1

2
+ε(R+), (3.8)

and
A− : H̃

1

2
+ε(R+) −→ H̃

1

2
+ε(R+), (3.9)

where
A±ψ := rR+

ψ ± 2χ∗rS2,+W1ψ. (3.10)

Then ϕ1 and ϕ2 can be recovered by

ϕ1 = (φ1 + φ2)/2, ϕ2 = χ−1
∗ ((φ1 − φ2)/2).

Lemma 3.3. The operators A± in (3.8), (3.9) have trivial kernels, i.e.,

dimKerA± = 0.

Proof. It suffices to show that the system (3.6) has at most one pair (ϕ1, ϕ2)
of solutions, i.e., the corresponding homogeneous system

{ 1
2
rS1,+ϕ1 + [W2ϕ2]

+
S1,+

= 0 ,

[W2ϕ1]
+
S2,+

+ 1
2
rS2,+ϕ2 = 0 ,

(3.11)

has only the trivial solution, which is an easy consequence of Theorem 2.1
and the exhibited limit relations of the potentials. Indeed, let (ϕ1, ϕ2) be a
non-trivial solution of (3.11), thus ϕ 6≡ 0 (cf. (3.4)). Then the function

v(x) = Wϕ(x), x ∈ Ω ∪ (R2\Ω),

13



solves the Helmholtz equation in Ω with zero Dirichlet boundary conditions
on S1,+ ∪ S2,+. Then due to Theorem 2.1 the function v(x) ≡ 0, x ∈ Ω,
and therefore its Neumann data are equal to zero. Moreover, v solves the
Helmholtz equation in R2\Ω with zero Neumann boundary conditions (since
∂nW is continuous) and therefore v(x) ≡ 0, x ∈ R2\Ω. This implies that
zero Dirichlet data on ∂R2\Ω = ∂Ω. Then we obtain ϕ = [u]+∂Ω − [u]−∂Ω = 0.
Consequently the homogeneous system (3.7) has only trivial solutions, i.e.,
dimKerA± = 0.

3.2. The Problem PN-N

The representation formula for any solution of the PN-N problem suggests
us to look for a solution as follows

v(x) = Wϕ(x)− V f(x), x ∈ Ω,

where ϕ ∈ H
1

2
+ε(S1,+) is an unknown Dirichlet datum of v. Thus on S1,+ we

have (cf. (3.5))

[v]+S1,+
= ϕ1 =

1

2
ϕ1 + rS1,+W2ϕ2 − rS1,+V f,

which give us an equation ϕ1 − 2rS1,+W2ϕ2 = −2rS1,+V f. Similarly, on S2,+

we obtain ϕ2 − 2rS2,+W1ϕ1 = −2rS2,+V f . Thus we equivalently reduce the
PN-N problem to the following system of equations

{
ϕ1 − 2rS1,+W2ϕ2 = −2rS1,+V f ,

ϕ2 − 2rS2,+W1ϕ1 = −2rS2,+V f .
(3.12)

Arguing as above we take the sum and the difference of the first equation and
the pull back of the second equation in (3.12) and get the following equivalent
system of equations on R+

{
φ1 − 2χ∗rS2,+W1φ1 = −2rS1,+V f − 2χ∗rS2,+V f ,

φ2 + 2χ∗rS2,+W1φ2 = −2rS2,+V f + 2χ∗rS2,+V f
(3.13)

where φ1 := ϕ1+χ∗ϕ2 ∈ H
1

2
+ε(R+) and φ2 := ϕ1−χ∗ϕ2 ∈ H̃

1

2
+ε(R+) due to

(2.5). Note also that −2rS2,+V f + 2χ∗rS2,+V f ∈ H̃
1

2
+ε(R+), cf. [25] or [16].

Thus we need to study the invertibility of operators

A− : H
1

2
+ε(R+) −→ H

1

2
+ε(R+), (3.14)

14



and
A+ : H̃

1

2
+ε(R+) −→ H̃

1

2
+ε(R+). (3.15)

The functions ϕ1 and ϕ2 can be recovered by

ϕ1 = (φ1 + φ2)/2, ϕ2 = χ−1
∗ ((φ1 − φ2)/2).

The following lemma is a consequence of the uniqueness Theorem 2.1
due to equivalent reduction of the PN-N problem to the system of equations
(3.12).

Lemma 3.4. The operators A± in (3.14), (3.15) have trivial kernels, i.e.,

dimKerA± = 0.

Thus, having in mind the desired conclusions for Problem PD-D and Prob-
lem PN-N , we realize that we need to study invertibility of the operators A±

in both spaces H
1

2
+ε(R+) and H̃

1

2
+ε(R+).

3.3. The Problem Pmixed

In the present paper, for simplicity, we investigate the Pmixed problem
only for 0 < α < π. The case π < α < 2π involves different operators
which need additional investigation and, therefore, it will be considered in a
forthcoming paper.

Let us first consider the following auxiliary Dirichlet problem for the plane
angle Ω2α of magnitude 2α with the following boundary data

[u]+S1,+
= g̃1 on S1,+ and [u]+S⋆

2,+
= χ−1

2α,∗ g̃1 on S⋆
2,+,

where g̃1 is an arbitrary element of H
1

2
+ε(S1,+),

S⋆
2,+ := {(t cos 2α, t sin 2α) : t ∈ R+}

and χ−1
2α,∗ g̃1 ∈ H

1

2
+ε(S⋆

2,+). As we will see below (cf. Theorem 5.3) this
problem is uniquely solvable. It turns out that [∂n2

u]S2,+ = 0. Indeed, since
the problem is invariant under the rotation we may assume that S2,+ coincides
with the positive ordinate half-axis, which makes the problem symmetric
with respect to the ordinate axis (of the Cartesian plane). This implies that
u(x1, x2) and u(−x1, x2) are solutions of the same Dirichlet problems and due
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to the uniqueness results they coincide. Therefore [∂n2
u]+S2,+

= [−∂x1
u]+S2,+

=

[∂x1
u]+S2,+

, which gives us [∂n2
u]S2,+ = 0.

From this observation we immediately have that the problem Pmixed has
a unique solution which is represented as

v(x) = u(x)− 2V2ℓf2(x), x ∈ Ω,

where u is a solution of PD-D problem in the plane angle of magnitude 2α with
the following Dirichlet data g̃1 := g1+2[V2ℓf2]

+
S1,+

on S1,+ and g̃2 := χ−1
∗ g̃1 on

S⋆
2,+; here ℓf2 ∈ H− 1

2
+ε(S2) is any fixed extension of the generalized function

f2 ∈ H− 1

2
+ε(S2,+).

4. Analysis of Associated Operators in Weighted Sobolev Spaces

Let

Mu(z) =

∫ ∞

0

tz−1u(t)dt

be the Mellin transform on the half-axis R+ ∋ t, first defined for functions
C∞

0 (R+). For the inverse, we have

M−1g(t) = (2πi)−1

∫

Γβ

t−zg(z)dz

for some β ∈ R, where Γβ = {z ∈ C : ℜe z = β} and g(z) =Mu(z).
Define the space Hs,γ(R+) for s, γ ∈ R to be the completion of C∞

0 (R+)
with respect to the norm ||〈z〉sMu(z)|Γ1/2−γ

||L2(Γ1/2−γ ), where 〈z〉 := (1 +

|z|2)1/2 and L2(Γβ) is the space of square integrable functions with respect to
dξ, ξ = ℑm z. Note that H0,γ(R+) = tγL2(R+). This definition shows that
the weighted Mellin transform Mγ : u→ Mu|Γ1/2−γ

extends from C∞
0 (R+) to

an isomorphism

Mγ : Hs,γ(R+) −→ 〈z〉−sL2(Γ1/2−γ).

Finally, we define the cone Sobolev spaces as a mixture between the spaces
Hs,γ(R+) and H

s(R+), namely,

Ks,γ(R+) := {ωu+ (1− ω)v : u ∈ Hs,γ(R+), v ∈ Hs(R+)}

for a fixed cut-off function ω. Throughout the paper a function ω ∈ C∞(R+)
is called a cut-off function (with respect to t = 0) if suppω is bounded and
ω ≡ 1 near t = 0.
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Let us note that the space Ks,γ(R+) is independent of the particular choice
of ω. Each Ks,γ(R+) can be endowed with a Banach space norm which is
generated by a Hilbert space scalar product, for more details and properties
of these spaces, we refer to [61, 62].

Now we shall formulate a result from [63, Section 2.3.1] which shows that
the Ks,γ(R+) spaces are a natural modification of the “usual” Sobolev spaces.
Let s ∈ R, κ(s) := max{j ∈ N : j < |s| − 1/2}, and

T s := {linear span of tjω(t) for j = 0, . . . , κ(s)}

for s > 1/2, T s := {0} for s ≤ 1/2, ω a fixed cut-off function. Further set

Ds := {linear span of (d/dt)jδ0 for j = 0, . . . , κ(s)}

for s < −1/2, Ds := {0} for s ≥ −1/2, with δ0 being the Dirac delta function
at t = 0.

Proposition 4.1. Let s ∈ R, then there are canonical isomorphisms

Hs(R+) ∼=
{

Ks,s(R+) + T s for s ≥ 0, s 6= 1/2 mod Z,
Ks,s(R+) for s ≤ 0

H̃s(R+) ∼=
{

Ks,s(R+) for s ≥ 0,
Ks,s(R+) +Ds for s ≤ 0, s 6= 1/2 mod Z.

The isomorphism for Hs(R+) follows by identifying distributions on R+ and

that for H̃s(R+) by duality. The identifications are continuous (in both di-
rections).

Further, for a, b ∈ R we set S(a, b) := {z ∈ C : a < ℜe z < b} and denote
by M−∞

O (S(a, b)) the subspace of all holomorphic functions h(z) on S(a, b)
with h|Γβ

∈ S(Γβ) (the Schwartz space on the weight line Γβ), for every β
uniformly in c ≤ β ≤ c′ for every a ≤ c ≤ c′ ≤ b.

For our proposes below let us show that

h(z) :=
sin((π − α)z)

sin(πz)
∈ M−∞

O (S(−1, 1)). (4.1)

Indeed, first note that the sine function is an entire function. The Weierstrass
factorization

sin(z) = z
∞∏

n=1

(
1− z2

n2 π2

)
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indicates that the function h(z) has no poles at z = 0 and therefore it is
holomorphic on S(−1, 1). Finally, since −π < π − α < π and

h(z) =
eiz(π−α) − e−iz(π−α)

eizπ − e−izπ

we see that h(z) tends exponentially to zero when ℑm z → ±∞, thus h|Γβ
∈

S(Γβ) for every β uniformly in c ≤ β ≤ c′ for every −1 ≤ c ≤ c′ ≤ 1. Let
−1

2
< γ < 3

2
, then the weighted Mellin pseudo-differential operator

opγ
M(h) :=M−1

γ h(z)Mγ : Hs,γ(R+) −→ Hs,γ(R+)

is continuous for all s ∈ R.

Lemma 4.2. Let 0 < s < 1, then the operator

χ∗rS2,+W1 : Ks,s(R+) → Ks,s(R+) (4.2)

is continuous. Moreover, for any fixed cut-off functions ω1 and ω2 the oper-
ators

(1− ω1)χ∗rS2,+W1ω2 : Ks,s(R+) → Ks,s(R+),

(1− ω1)χ∗rS2,+W1(1− ω2) : Ks,s(R+) → Ks,s(R+),

ω1χ∗rS2,+W1(1− ω2) : Ks,s(R+) → Ks,s(R+)

are compact.

Proof. The continuity result for the operator in (4.2) immediately follows
from Lemma 3.2 and Proposition 4.1.

Further, since ℑm k > 0 the function rS2,+W1ϕ(x) exponentially tends
to 0 as |x| → ∞, for x ∈ S2,+. Clearly, the same is true for the function
χ∗rS2,+W1ϕ(t) when t → ∞. Having in mind the isomorphism from Propo-
sition 4.1 we get that the operators

(1− ω1)χ∗rS2,+W1ω2 : Ks,s(R+) → 〈t〉−NK∞,∞(R+)

and
(1− ω1)χ∗rS2,+W1(1− ω2) : Ks,s(R+) → 〈t〉−NK∞,∞(R+)

are continuous for any N ∈ N. For the operator ω1χ∗rS2,+W1(1 − ω2) we
have that at infinity it is identically zero due to the cut-off function ω1, while
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the presence of (1− ω2) ensures the smoothness of the kernel. Therefore, we
obtain the fact that the operator

ω1χ∗rS2,+W1(1− ω2) : Ks,s(R+) → 〈t〉−NK∞,∞(R+)

is continuous. Then the final conclusions follow from the composition with
the compact embedding of 〈t〉−NK∞,∞(R+) into Ks,s(R+).

Theorem 4.3. Let 0 < s < 1 and ω1, ω2 be arbitrary cut-off functions, then
the operator

T := χ∗rS2,+W1 −
1

2
ω1op

s
M(h)ω2 : Ks,s(R+) −→ Ks,s(R+) (4.3)

is compact.

Proof. For (4.3) we have a decomposition χ∗rS2,+W = ω1χ∗rS2,+Wω2 + T1,
where

T1 := ω1χ∗rS2,+W (1− ω2) + (1− ω1)χ∗rS2,+Wω2 + (1− ω1)χ∗rS2,+W (1− ω2)

is a compact operator between the spaces Ks,s(R+); cf. Lemma 4.2. Further,
for the points x = (τ cosα, τ sinα) ∈ S2,+, τ ∈ R+, let us write

rS2,+Wϕ(x) = rS2,+W0ϕ(x) + T2(x),

where

W0ϕ(x1, x2) =
1

2π

∫ ∞

0

(∂n1(t,0)ln)(|x1 − t, x2|)ϕ(t)dt,

and

T2(x1, x2) :=

∫ ∞

0

(∂n1(t,0)m)(|x1 − t, x2|)ϕ(t)dt

with the function m(x) := Φ(x)− 1
2π
ln(|x|), which has the following behavior

as |x| → 0 (cf. [24], [38])

m(|x|) = const+O(|x|2ln(|x|)), m′(|x|) = O(|x|ln(|x|)), m′′(|x|) = O(ln(|x|)).

These estimates together with the cut-off functions ω1 and ω2 give us that
the kernel of the operator ω1χ∗rS2,+T2ω2 is square integrable and therefore
it is a compact operator between the spaces Ks,s(R+) as well as between the
spaces L2(R+). Now it remains to show the equality

χ∗rS2,+W0 =
1

2
ops

M(h)
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while T = T1 + ω1T2ω2.
We have

χ∗rS2,+W0ϕ(τ) =
1

2π

∫ ∞

0

τ sinα

(τ cosα− t)2 + (τ sinα)2
ϕ(t)dt

=
sinα

2π

∫ ∞

0

τ
t

( τ
t
)2 − 2( τ

t
) cosα + 1

ϕ(t)
dt

t

=
1

2
M−1

s [h(z)(Msϕ)(z)] =
1

2
[ops

M(h)ϕ](τ),

where

h(z) =
sinα

π

∫ ∞

0

tz
t

t2 − 2t cosα + 1

dt

t

=
sinα

π

∫ ∞

0

tz

t2 + 2t cos(π − α) + 1
dt

=
sin((π − α)z)

sin(πz)

provided −1 < ℜe z < 1, cf. [24, Formula 3.252.12].

5. Main Results

In this last section we will perform a Fredholm theory analysis of the
previously derived operators, and this will generate the main conclusions for
the problems under study.

Theorem 5.1. For any aperture angle α, let ω1, ω2 be arbitrary cut-off
functions, s ∈ R and 0 ≤ γ ≤ 1. Then, the operators

A0
± := I ± ω1op

γ
M(h)ω2 : Ks,γ(R+) −→ Ks,γ(R+)

are continuous. Moreover, they are Fredholm operators of index zero.

Proof. The continuity results follow from the properties of the spacesKs,γ(R+)
and the Mellin pseudo-differential operators opγ

M(h) with the symbol h for
0 ≤ γ ≤ 1, cf. [30, 62]. Moreover, it is well-known (cf. [23], [63], or [30,
Section 2.1.9]) that the condition 1 ± h(z) 6= 0 for all z ∈ Γ 1

2
−γ , cf. (4.1),

implies that
I ± ω1op

γ
M(h)ω2 : Ks,γ(R+) −→ Ks,γ(R+)
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is Fredholm, and

ind (I ± ω1op
γ
M(h)ω2) =

1

2π
∆arg(1± h(z))

∣∣∣
Γ 1

2
−γ

∣∣∣
ℑm z=+∞

ℑm z=−∞
,

where the ∆ indicates the change of the arguments of 1 + h(z) when z runs
from ℑm z = −∞ to ℑm z = +∞ on the line Γ 1

2
−γ. Note that KerA0

± and

CoKerA0
± are independent of s.

The identity | sin z| = | sin(ℜe z) + i sinh(ℑm z)| implies

|ℜeh(z)| ≤ |h(z)| = | sin((π − α)ℜe z) + i sinh((π − α)ℑm z)|
| sin(πℜe z) + i sinh(πℑm z)| < 1 (5.1)

provided |ℜe z| ≤ 1
2
. Indeed, for such z we have |(π − α)ℜe z| < |πℜe z| ≤ π

2

and therefore sin2((π − α)ℜe z) < sin2(πℜe z) while sinh2((π − α)ℑm z) <
sinh2(πℑm z), for all ℑm z ∈ R. The estimate (5.1) gives us

ℜe (1± h(z)) > 0, for all z ∈ Γ 1

2
−γ, 0 ≤ γ ≤ 1. (5.2)

Thus, the closed curve

Cγ := {1± h(z) ∈ C : z ∈ Γ 1

2
−γ} ∪ {(1; 0)} ∈ C\{0} (0 ≤ γ ≤ 1)

does not intersect the imaginary line due to (5.2), and therefore

∆arg(1± h(z))
∣∣∣
Γ 1

2
−γ

∣∣∣
ℑm z=+∞

ℑm z=−∞
= 0.

This implies that operators A0
± are Fredholm of index zero.

Note that for the very special case of an angle aperture α = π, the
above closed curve Cγ degenerates to the particular case of the single point
(1; 0) ∈ C. This in fact reflects the simplicity of the geometrical case α = π,
which coincides with the classical Sommerfeld situation of diffraction by an
half-plane, for which the well-posedness and closed-form solution are well-
known in a Sobolev space setting for a long time; cf. [6, 43, 47, 68].

Theorem 5.2. The operators (3.10)

A± : H̃s(R+) −→ H̃s(R+)

and
A± : Hs(R+) −→ Hs(R+)

are invertible for all 1
2
− δ < s < 1, where δ > 0 is sufficiently small .
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Proof. The invertibility of the operators A± in H̃s(R+) spaces is a direct
consequence of Theorem 5.1 together with Proposition 4.1, Theorem 4.3,
Lemma 3.3, and Lemma 3.4 for 1

2
≤ s < 1, while for the case 1

2
−δ < s < 1

2
it

follows from the classical result of Shneiberg, cf. [64, 65], which states that if
an operator A is bounded on a complex interpolation scale {X}0≤θ≤1 and it
is invertible on an individual space Xθ0, 0 < θ0 < 1, then it is also invertible
on Xθ, for |θ − θ0| < δ, where δ > 0 is sufficiently small. Indeed, setting

X0 := H̃
1

2
−ε(R+), X1 := H̃

1

2
+ε(R+) (see also Lemma 3.2), we have that the

operator A± is invertible on Xθ0 , for the θ0 = 1
2
space, i.e, on the H̃

1

2 (R+)
space, and therefore it is invertible for 1

2
− δ < s < 1

2
too.

For the second result let us mention that for s ∈ (1
2
− δ, 1

2
) the spaces

H̃s(R+) and Hs(R+) are isomorphic, therefore if we prove the result for
s ∈ (1

2
, 1) then the result for the hole range will follow by interpolation. The

mapping properties of the potential operators we have continuity result in
Hs(R+) spaces for the operators A± as well as for the operators ω1op

s
M(h)ω2,

for arbitrary cut-off functions ω1 and ω2 with the property ω2ω = ω, where
ω is a fixed cut-off function from T s, cf. Proposition 4.1. Now setting

ω̃ := ω1op
s
M(h)ω2ω,

then it follows by the calculus of residues that, cf. [16],

ω̃(0) =
α− π

π
.

This implies that ω̃ ∈ T s. Therefore for the fixed functions

ω̃± := A±ω

we have

ω̃+(0) =
α

π
, ω̃−(0) =

2π − α

π
.

Further, for an arbitrary element u = u0 + λω ∈ Hs(R+), with u0 ∈ H̃s(R+)
and λ ∈ R we have

A±u = A±u0 + λA±ω = A±u0 + ω̃±

= A±u0 + λ(ω̃± − ω̃±(0)ω) + λω̃±(0)ω = ũ0 + λ̃ω,

where ũ0 = A±u0 + λ(ω̃± − ω̃±(0)ω) ∈ H̃s(R+) and λ̃ = λω̃±(0). Due to the

invertibility of the operators A± in H̃s(R+) spaces the obtained relations can
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be also written as

λ =
λ̃

ω̃±(0)
, u0 = A−1

± (ũ0 − λ(ω̃± − ω̃±(0)ω)) ∈ H̃s(R+),

which show that the operators A± in Hs(R+) spaces are bijective.

Due to a direct combination of the results obtained above we have now
the main conclusions of the present work for the problems in consideration.

Theorem 5.3. If 0 ≤ ε < 1/2, then the problem PD-D has a unique solution
which is represented as

v(x) = Wϕ(x), x ∈ Ω,

where the functions ϕ1 = rS1,+ϕ ∈ H
1

2
+ε(S2,+) and ϕ2 = rS2,+ϕ ∈ H

1

2
+ε(S2,+)

are unique solutions of the system of equations (3.6), namely,

ϕ1 = A−1
+ (g1 + χ∗g2) +A−1

− (g1 − χ∗g2)

and
ϕ2 = χ−1

∗

(
A−1

+ (g1 + χ∗g2)−A−1
− (g1 − χ∗g2)

)
,

where A−1
± denote the inverse operators of A±, respectively.

Theorem 5.4. If 0 ≤ ε < 1/2, then the problem PN-N has a unique solution
which is represented as

v(x) = Wϕ(x)− V f(x), x ∈ Ω,

where the functions ϕ1 = rS1,+ϕ ∈ H
1

2
+ε(S2,+) and ϕ2 = rS2,+ϕ ∈ H

1

2
+ε(S2,+)

are unique solutions of the system of equations (3.12). Namely,

ϕ1 = A−1
+ (rS2,+V f − 2χ∗rS2,+V f)−A−1

− (rS1,+V f + χ∗rS2,+V f)

and

ϕ2 = −χ−1
∗

(
A−1

+ (rS2,+V f − 2χ∗rS2,+V f) +A−1
− (rS1,+V f + χ∗rS2,+V f)

)
,

where A−1
± denote the inverse operators of A±, respectively.
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Theorem 5.5. Let 0 < α < π and 0 ≤ ε < 1/2. Then the problem Pmixed

has a unique solution which is represented as

v(x) = u(x)− 2V2ℓf2(x), x ∈ Ωα,

where u(x) is a solution of PD-D problem in the plane angle Ω2α of magnitude
2α which is represented with the help of the double layer potential on ∂Ω2α

as follows
u(x) = Wϕ(x), x ∈ Ω2α;

here the functions ϕ1 = rS1,+ϕ ∈ H
1

2
+ε(S2,+) and ϕ2 = rS∗

2,+
ϕ ∈ H

1

2
+ε(S∗

2,+)

are unique solutions of the system of equations (3.6), namely,

ϕ1 = 2A−1
+ g̃1 and ϕ2 = 2χ−1

2α,∗A−1
+ g̃1, (5.3)

where A−1
± are the inverse operators of A±, respectively, g̃1 := g1+2[V2ℓf2]

+
S1,+

,

for some fixed extension ℓf2 ∈ H− 1

2
+ε(S2) of the generalized function f2 ∈

H− 1

2
+ε(S2,+) and S

⋆
2,+ = {(t cos 2α, t sin 2α) : t ∈ R+}.
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